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In the systems of all dimensions we studied here, it fluctuates
around a zero average with a mean square value which scales
with the height of the main resonance peak, Gr and is
inversely proportional to the conductance g(Lr) (measured
in quantum units) of a piece of disordered electrode with
typical dimensions L ~ /hD/I" determined by the width of
the resonance itself:

(@)~
dv, g(Lr)
The value of the correlation magnetic field of fluctuations is
also related to the length Ly, AB; ~ ¢/ L% and the correla-
tion properties of the pattern of d//dV with respect to the
voltage variations are found in an analytical form both in two
and three dimensions as a function of the voltage scaled by the
width of the main resonance peak. Both the amplitude of
fluctuations and the correlation parameter AB, are expected
to increase with the magnetic field.
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Resonant tunneling through
a single-electron transistor

J Konig, H Schoeller, G Schon

1. Introduction

Electron transport through mesoscopic metallic islands and
quantum dots is strongly influenced by the large charging
energy, Ec = e?/2C, associated with the low capacitance C of
the system [1—3]. In the prototype of these systems, the
‘single-electron transistor’, a small island is coupled via
tunnel junctions to leads and via a capacitor to a gate voltage
source. At low temperatures, T < Ec, a variety of single-
electron phenomena have been observed, including a Cou-
lomb blockade and oscillations of the conductance as a
function of the gate voltage.

The detailed features of the transport properties depend
on the properties of the island. We consider here two opposite
limits. In the first, the island contains a continuum of states,
and the tunnel junctions are ‘wide’ with a large number of
transverse channels. This is typically realized in metallic
grains. If the dimensionless tunneling conductance of the
junctions between the island and the lead electrodes,

Rx

O‘tEFRt (1)

is low, on a scale given by the quantum resistance
Rk = h/e2 ~ 25.8 kQ, the island charge is well-defined.

In the second limit, we consider the extreme case of an
island containing one spin-degenerate level in the interesting
energy range. This accounts for Coulomb blockade phenom-
ena in zero-dimensional systems, such as double-barrier
resonant-tunneling structures [4, 5], split-gate quantum-dot
devices [6—8], quantum point-contacts with single-charge
trap states [9], and ultra-small metallic tunnel junctions [10]
with particles of diameter below 10 nm. In these islands the
discrete level spectrum can be resolved, with a level spacing o
which may exceed T and eV. The coupling between the island
and the leads is then characterized by the intrinsic level
broadening in the non-interacting case I'.

For o < 1 in metallic islands or I' € T in quantum dots,
sequential single-electron tunneling can be studied using
perturbation theory [1, 3, 11—15]. On the other hand, recent
experiments with strong tunneling show deviations from the
classical description. In the metallic case, a broadening of the
conductance peaks much larger than temperature has been
observed [16, 17], demonstrating the effect of quantum
fluctuations and higher-order coherent processes. Several
theoretical papers [18 —24] dealt with the problem of higher-
order processes. This includes ‘inelastic co-tunneling’ [25, 24],
where, in a second-order process in oy, electrons tunnel via a
virtual state of the island. (The term ‘inelastic’ indicates that
with overwhelming probability different electron states are
involved in the different steps of the correlated processes.) An
extension of this process, which gains importance near
resonances, is ‘inelastic resonant tunneling’ [20, 23], a process
where electrons tunnel an arbitrary number of times between
the reservoirs and the islands.

The quantum dot is described by the Anderson impurity
model where the level is coupled via tunneling barriers to
electron reservoirs. A strong on-site Coulomb repulsion
suppresses double occupancy of the dot level. From the
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theory of strongly correlated fermions [26] it is known that at
equilibrium the spectral density of the dot can exhibit a
Kondo resonance at the Fermi level, which leads to an
increased linear conductance (Kondo-assisted tunneling)
[27, 28]. A more pronounced feature has been observed in
the nonlinear conductance, which shows a zero-bias max-
imum even for temperatures above the Kondo temperature
[29, 30].

This article is devoted to the calculation of the conduc-
tance of a SET transistor beyond sequential tunneling. Since
the strong Coulomb interaction between the island electrons
cannot be handled in ordinary perturbation theory, we
explicitly keep track of the degrees of freedom responsible
for the interaction, but eliminate all other degrees of freedom.
The resulting reduced density matrix then characterizes the
time evolution of the system. In the metallic case the situation
is complicated by the fact that the island contains a large
number of electrons. In this case a Hubbard —Stratonovich
transformation introduces a collective variable replacing the
interaction between the electrons. We derive a diagrammatic
expansion in which we can identify sequential, co- and
resonant tunneling processes with certain classes of dia-
grams. We present different approximation schemes to
evaluate the spectral function and the conductance of the
system.

2. Metallic island

We consider a metallic island coupled by two tunnel junctions
(L, R) to two leads and capacitively to an external gate
voltage V,. An applied transport voltage V' = I — I’
drives a current. A microscopic description of this single-
electron transistor is based on the Hamiltonian,
H = Hy + Hr + Hy + Hep + Hy L + Hy r. Here

_ § ]
H; = €kor Ay Akor
ko

describes non-interacting electrons in the left and right lead,
r=L,R,and

_ i
Hy = E €40CysCqo
qo

models the island states. The Coulomb interaction is
accounted for in a capacitance model

2
Hg, = Ec <Z c;acqa — ng> .
qo

The energy scale Ec = ¢?/2C of the transistor depends on the
totalisland capacitance, C = C + Cr + Cg, given by the two
tunnel junction and the gate capacitance. The charging energy
can be tuned continuously by the ‘gate charge’
eng = CLVL + CrVr + CyV,. The tunneling Hamiltonian

H = Z(Tﬁaliorclja + HC)
kqo

describes tunneling between the island and the leads. The
matrix elements are related to the tunnel conductances by

2
- € g (2 or
R =SS NN O TP

where N(0) denotes the densities of states of the island and the
leads, respectively. We consider ‘wide’ metallic junctions with
N > 1 transverse channels. Extending the spin summation
they can be labeled by theindex o = 1, ..., N. In the following
we will put 7 = 1.

Our aim is to study the time evolution of the reduced
density matrix. We shortly sketch the main steps of the
derivation of this description.

(1) The time evolution of the density matrix introduces a
forward and a backward propagator, which get coupled when
we trace out the electron degrees of freedom of the reservoirs.
This procedure is known from the work of Caldeira and
Leggett [31] who, generalizing earlier work of Feynman and
Vernon, studied the influence of Ohmic dissipation on a
quantum system. Similarly the influence on electron tunnel-
ing for a single tunnel junction was described in Refs [32, 2].

(2) In order to describe the Coulomb interaction between
electrons, we introduce via a Hubbard — Stratonovich trans-
formation the electric potential of the island V(7)) as a
macroscopic field, i.e., the interaction between electrons is
replaced by an interaction with the collective variable.

(3) We treat the leads, as well as the electrons, in the island
as large equilibrium reservoirs with fixed electrochemical
potentials u, = —eV; for the leads (r = L,R). The fluctuating
voltage of the island V(¢) = —¢(¢)/eis related to a phase (7).
Its quantum mechanical conjugate is the number of excess
electrons n(z) on the island. Since it is independent of the
microscopic degrees of freedom described by ¢,, and cjw, the
electronic degrees of freedom can be traced out.

(4) The time evolution of the reduced density matrix
p(t; @, @,) can thus be expressed by a double path integral
over the phases corresponding to the forward and backward
propagators ¢; (j = 1,2). We combine the two integrations to
a single integral along the Keldysh contour K, which runs
from ¢ to # and back along the real-time axis. The reduced
propagator IT is then

Il =tr [pOTK exp (—i JK dzH(t))}
= [Plot]expifsulo] +slow))}. @

Here the collective variable ¢(¢) and the time integral are
defined on the Keldysh contour, and the time-ordering
operator Tk orders the following operators accordingly.

The first term of the effective action entering the
propagator represents the charging energy

San[0(1)] = JK dt {% [@} "y ngq)(z)} .

Electron tunneling is described by Si[¢(¢)], which, in the case
of wide metallic junctions, is expressed by the simplest
electron loop connecting two times,

Sie(n)] =2ri Y L dr

r=L,R
X JK dt’of(t,t") explip(r)] exp[—ig(t")] . (3)

The kernels of(s,¢") =af(t—1") for 1<t (t>1)
depend on the order of the times along the Keldysh contour.
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Their Fourier transforms are [2, 20, 23]

O — Uy (4)

Ocri(w) = oy, exp [j:(a) - #r)/T] —1

with o, ; = h/(4n%e?R,). In the following we use the notations
1e() = 5 (00) + 27 (o) and 2(0) = 3, (o).

To proceed we change from the phase to the charge
representation. The time evolution of the density matrix
then depends on the propagator from n; forward to n{ and
on the backward branch from nj backward to n, with matrix
elements [23]

H,’,’z‘jn"zf" = [dwl [dfp{ [dfpﬁjdwz

x JM Do (1)] JD[n(z)} exp(ing,) exp(~imey)

x exp(iny @) exp(—inz@,)
X CXD<*iSch [n(0)] +iSi[p(1)] +iJK dtn(z)d;(l)) ,
(5)

in which Sen[n(1)] = [, dt Ec[n(1) — ng)’.

3. Expansion in the tunneling conductance

To obtain a diagrammatic description we expand the
tunneling term exp(iSi[¢(7)]) in Eqn (5). Each of the
exponentials exp[tip(z)] describes the tunneling of an
electron at time 7. These changes occur in pairs in each
junction, r = L, R, and are connected by tunneling lines
oX(¢,¢"). Each term of the expansion can be visualized by a
diagram. Several examples are displayed in Fig. 1. The
diagram is calculated according to rules which follow from
the expansion of Eqn (5), (for details see Ref. [23]).
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4

Ll Ll
v /R/R/ ’/
¥ 4 oeeen
La R/ R}//L L/4 , /4 L
\ 4 &4 é—d 4 )
1 0 -1 0 1 0 0

Figure 1. From left to right: sequential tunneling in the left and right
junction, a co-tunneling process, and resonant tunneling.

The propagator from a diagonal state n to another
diagonal state n’ is denoted by I, , . It is the sum of all
diagrams with the given states at the ends and can be
expressed by an irreducible self-energy part X, ,,/, defined as
the sum of all diagrams in which any vertical line cutting
through them crosses at least one tunneling line. The
propagator can be expressed as an iteration in the style of a
Dyson equation,

n

Hn,n’ = H(O)én‘,n’ + Znn,n”zn”.n'ﬂfg) .

n'

The term IT(%) describes a propagation which does not contain
a tunneling line. The probability for state n follows from

P, = ZP,(1()/)HH’,H

n'

(with P\” being the initial distribution). Our diagram rules
yield

d .
E Pn = —1 Z I:Pnzn,n' - Pn’zn',n} . (6)
n'#n

We recover the structure of a master equation with
transition rates given by X, ,. In general, the irreducible
self-energy X yields the rate of all possible correlated
tunneling processes. We reproduce the well-known single-
electron tunneling rates by evaluating all diagrams which
contain no overlapping tunneling lines. Similarly co-tunnel-
ing is described by the diagrams where two tunneling lines
overlapping in time, as shown in Fig. 1.

We calculate the current /. flowing into reservoirr = L, R
by adding a source term to the Hamiltonian and then taking
the functional derivative of the reduced propagator with
respect to the source. The result

I = —ieJ do {o (0)C” (w) + o (0)C=(w)}

is expressed by the correlation functions
C~(1,1") = —i{exp[—ig(t)] explip(1")]),
C<(1,t") = i(exp[igp(t")] exp[—ip(1)]) .

These are related to the
2nid(w) = C<(w) — C~ (o).
For sequential tunneling, the current reduces to

2,
Ir:4Tc Lde
h

spectral density by

S 2D ) ) — fr(@)] ()

- o)

with

o0

A(O)(w) = Z [Pn+Pn+l]5(w_An)

Nn=—00

and A, = Eq(n+1) — Eq(n) = Ec[1+2(n—n,)|, where
the probabilities follow from P,o"(A,) — P10 (A,) = 0.

To go beyond we have to choose a systematic criterion by
which higher-order contributions should be included. One
possibility is to take into account all second-order terms (co-
tunneling). At the minima of the Coulomb oscillations the
system is in the Coulomb blockade regime, and co-tunneling
processes dominate the conductance. A careful analysis of
our diagrammatic expansion not only reproduces the known
limits [25] but also provides the needed regularization of
divergences. We, furthermore, obtain new terms describing
the renormalization of the system parameters, which is
essential at the resonance. These results are presented in
Ref. [24].

The stronger the quantum fluctuations are, either because
oy is large or the temperature is low, the more important are
contributions of higher order. We can sum them, in a
conserving approximation, as long as we restrict ourselves to
matrix elements of the density matrix which are at most two-
fold off-diagonal [23]. If we further consider only two
adjacent charge states, n =0, 1, which is reasonable when
the energy difference of the two states A, the bias voltage
eV = el — elVr, and the temperature 7 are low compared to
Ec, we can evaluate the irreducible self-energy analytically.
The following results are derived for this limit.
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We find that the current is given by Eqn (7), but with the
spectral density
o(w
A(w) = ( )2 5 - (8)
[0 — Ay — Rea(w)]” + [Ima(w)]

A complex self-energy o(w) accounts for energy renorma-
lization and life-time broadening effects via

Reo(w ffZZatrw 1)
[n(5) -er(t)]
Imo(w) = —na(w).

The quantum fluctuations have a pronounced influence
on the differential conductance G = 0I/0V. In Figure 2 we
present our results for the maximal differential conductance
in the linear response regime (V= 0). The asymptotic high-
temperature conductance is G,s = 1/(RL + Rr). At low
temperatures, when only two adjacent charge states get
occupied, the maximal conductance due to sequential (low-
est order) tunneling saturates at one half of the high-
temperature value (dashed line 7). The situation changes
when higher-order processes are taken into account. For the
resonant tunneling approximation (long-dashed line 2) we
find that the maximal conductance is renormalized by a factor
Z which depends logarithmically on the temperature,

Ec -
z= {1 2 In [max{eV/; 2nT}} } ’

i.e. the height of the conductance peak decreases with lower
temperatures.

Furthermore, we present the result for co-tunneling (solid
line), i.e., for processes up to ¢ but including all relevant
charge states, thus covering the whole temperature range.
Already on this level we find the logarithmic behaviour
indicating the renormalization of the conductance. In the
experiments of Ref. [16] the conductance ¢ is not too large
and the co-tunneling theory is sufficient. The good agreement
is demonstrated in Fig. 2.

©)

4. Quantum dot

The diagrammatic technique can also be applied to quantum
dots [33]. We concentrate here on the limiting case of a single
level. The level is either spin degenerate or may be split by a

Gmax/Gas 1.0
0.8

0.6

0.4

02

0 1
0.01 0.1 1,0 10
T/E,

Figure 2. Linear differential conductance normalized to the high tempera-
ture limit for sequential tunneling (dashed line /), sequential plus co-
tunneling (solid line) and resonant tunneling (long-dashed line 2) for
oy = 0.063. The data points are experimental results from Ref. [16].

magnetic field. The Hamiltonian introduced above reduces in
this case to the Anderson model H = Hy + Hr + Hp+
H; | + Hi g with

Hp = Zégcicg + Ecnﬂli .
The tunnel part reads

Hy,=> (T"a],co+Hc).
ko

The tunneling rates in and out of the dot to the reservoir r are
in lowest-order perturbation theory in Fourier space

7 0) = 5= o) (@~ 1),
with
®) =21 |T78(0 — €her) ,
k
[fo)=flo), [(0)=1-flo)

The interaction in the system is described by a few degrees
of freedom, while we can trace out the reservoirs directly
using Wick’s theorem. We thus obtain the reduced density
matrix which explicitly keeps track of the dot state only. The
expansion in the tunneling part leads, then, to a similar
diagrammatic representation as in the metallic case. The
main difference is, that the tunneling lines [representing the
rates y (w)] and the dot states now carry the information of
the electron spin.

Inordertodescribe Kondo-like behaviourin quantumdots
it is essential to proceed beyond a finite-order perturbation
theory. Itis reasonable to use the same conserving approxima-
tion as for the metallic case, i.e., to take into account non-
diagonal matrix elements of the total density matrix up to the
difference of one electron-hole pair excitation in the reservoirs.
A further motivation of this procedure is the fact that for a
system with spinless electrons (N = 1) this scheme is exact,
since the neglected part adds up to zero.

The current is expressed by the spectral density 4,(®),

L= 2neJ Z/r

a,r’
The corresponding correlation functions C.(t,¢')=
—i{ce(t)cl(t))) and C7(1,1") = i<c;(t’)ca(t)? are mainly
determined by the resolvent |w — ¢, — 0% ()|~ with

= 5n2["(3)

1 i(o+¢ —¢
_Re¥y(=
¢ (2+ T

Ao (@) [fir(@) = fi(@)] . (10)

Reo?(

)]

3 0+ _Q,)} .
A

() =~ (0)

At zero magnetic field, i.e. ¢, = ¢,/, we can perform the
resummation analytically and find

7 (w) +7 (0)
[0 —€—Re a(co)}2 + [Im a(w)]2

Alw) = (11)
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In addition to the renormalized level, at low temperature new
resonances, the Kondo resonances, emerge near the Fermi
levels of the reservoirs. This is due to the logarithmic
divergence of Re o(w).

The resonances in the spectral density have pronounced
effects on the nonlinear differential conductance as a function
of the bias voltage V, as shown in Fig. 3 for the case ¢ < 0. We
recover the zero-bias maximum [30, 34] observed in the
experiments of Ref. [9]. It arises since the splitting of the
Kondo peak with increasing voltage leads to an overall
decrease of the spectral density in the energy range |w| < eV
(see inset of Fig. 3).

G.[e*/n) 06

0.5 |

0.4 ~1.0-05 0 0.5 1.0
/T

0.3

0.2 | | | |

~0.50 ~0.25 0 0.25 0.50
eV/r

Figure 3. Differential conductance vs. bias voltage for 7= 0.005T,
¢ = —2I', and Ec = 50I". The curves show a maximum at zero bias. Inset:
increasing voltage leads to an overall decrease of the spectral density in the
range |[E| < eV.

An applied magnetic field leads to a finite Zeeman energy
and lifts the spin-degeneracy. In this case, we have determined
the spectral densities numerically. The influence of the self-
energy ¢’ () on the spectral density 4,(w) leads to Kondo
resonances at energies w = p, + €, — €, with ¢’ # ¢. From
Eqn (10) we see that there is no Kondo-assisted tunneling at
low transport voltage, but it sets in if the transport voltage
and level splitting are equal. Therefore, for low lying levels the
conductance peak at zero bias, described in the previous
section, now splits into two peaks separated by the twice the
level splitting [30] (Fig. 4).

For further extensions, including the effect of double
occupancy of the dot level, the influence of a fluctuating
environment, as well as tunneling through double-dot
systems we refer to Refs [33, 35].

5. Conclusions

We have described single-electron tunneling in systems with
strong charging effects beyond perturbation theory in the
tunneling conductance. For this purpose we considered the
real-time evolution of the reduced density matrix of the
system. A systematic diagrammatic expansion allowed us to
identify different contributions to the current. When we
restrict ourselves to diagrams corresponding to maximally
two-fold off-diagonal matrix elements of the density matrix
we can formulate a self-consistent resummation of diagrams.
At low temperatures the restriction to two adjacent charge
states enables us to evaluate the summation in closed form.
The most important results are the renormalization of system

2
Gle*/h] B=085T

0.7 -

0.5

0.3 -

B=17T
0.7 -

0.5

03

V, mV

V, mV

Figure 4. Differential conductance vs. bias voltage for 7 =4.3 peV,
&(B=0)=-52 meV, I' =34 meV, ac = (CL — Cr)/C =0.33, and
Ec =30 meV. The circles are data from Ref. [9].

parameters and the life-time broadening of the conductance
peaks for the metallic island, as well as Kondo-like behaviour
in the quantum dot.
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Coulomb-like mesoscopic conductance
fluctuations in a 2D electron gas
near the filling factor v = 1/2

Z D Kvon, E B Olshanetskii, G M Gusev,
J C Portal, D K Maude

More than a decade after its discovery, the fractional
quantum Hall effect (FQHE) still remains in the focus of
attention in solid state physics. Recently a new approach to
the FQHE, the composite fermion theory, has been proposed
[1, 2]. According to this approach strongly interacting 2D
electrons at a fractional filling of the first Landau level can be
viewed as a gas of novel weakly interacting quasiparticles, the
so called composite fermions (CF), that have a renormalized
effective mass and are expected to exhibit a number of
semiclassical properties. The FQHE for electrons is then
explained as an IQHE for CF moving in an effective
magnetic field Ber = B — Byj,, where B is the applied
magnetic field and B, — the magnetic field corresponding
to the half filling of the first Landau level. It is noteworthy
that all the main predictions of the CF theory have been
shown to be basically true in numerous and diverse experi-
ments [3—10]. The described approach to the FQHE raises a
number of questions concerning quantum interference and, in
particular, the nature and properties of universal conduc-
tance fluctuations (UCF) at a fractional Landau level filling.
Recently a theory has been proposed [11] which deals with
UCEF in the presence of a random magnetic field. The results
of this theory have been used to describe the behaviour of a
gas of CF in a system with random potential fluctuations. The
authors of Ref. [11] come to the conclusion that in the case of
CF the Fermi energy dependence of UCF is radically different
from that of electrons at B = 0. The gate voltage dependence
of CF conductance fluctuations at v = 1/2 is predicted to be
similar in some respect to aperiodical Coulomb-like oscilla-
tions with an effective charge e/2.

It appears that the first observation of conductance
fluctuations in magnetoresistance dependencies in the vici-
nity of v = 1/2 was made in a ballistic microbridge in Ref.
[12]. However the absence of any analysis of these fluctua-
tions in Ref. [12] makes it difficult to completely exclude the
possibility of these fluctuations being some kind of noise. A
more detailed experimental study of the magnetoresistance
conductance fluctuations in the vicinity of v =1/2 was
reported recently in Ref. [13]. The authors performed a
comparison analysis of these fluctuations and of the UCF
around B = O and came to the conclusion that the fluctua-
tions observed at v = 1/2 could indeed be described as UCF
of CF. The latter experiment, however, was limited to the
study of magnetoresistance dependences and lacked measure-

ments of CF conductance versus Fermi energy necessary for
testing the important theoretical prediction mentioned above
[11].

In the present work we have investigated the behaviour of
mesoscopic samples in the vicinity of the half filling of the first
Landau level. Both the magnetic field and gate voltage
dependencies of mesoscopic fluctuations near v = 1/2 were
studied. It was found that in contrast to the case of
mesoscopic fluctuations in weak magnetic fields, in the
vicinity of v = 1/2 there exists a special relation between the
R, fluctuations in the resistance versus magnetic field and in
the resistance versus gate voltage dependencies. Namely the
ratio of the correlation magnetic field to the correlation
electron density is found to be equal with fairly good
precision to 2@, (where @, is the magnetic flux quantum) i.e
to be determined solely by the Landau level filling factor. In
our opinion this experimental evidence corroborates the
prediction of Ref. [11] and mesoscopic conductance fluctua-
tions in the vicinity of v =1/2 can indeed be viewed as
Coulomb-like aperiodical fluctuations with a corresponding
effective charge e/2.

Our two experimental samples were microbridges with
lithographical length L =2 pm and width W =1 pm. The
actual width of the microbridges determined from Shubni-
kov—de Haas oscillations in weak magnetic fields is
(0.3—0.5) pum. The microbridges were fabricated by means
of'electron lithography and plasma chemical etching on top of
a 2D electron gas in an AlGaAs/GaAs heterolayer with a
spacer thickness of 60 nm. The electron density and electron
mobility in the original heterolayers were (1—2) x 10! cm~2
and (2—4) x 10° cm? (V -s)~! respectively. The microbridges
were etched in the middle between the voltage probes of a
conventional rectangular Hall bar with dimensions
100 x 50 um?>. At the final stage of preparation the structures
were covered by an Au/Ni metal gate. The schematic top view
of the structures is shown in the inset to Fig. 1. The
measurements were carried out at temperatures of 30 mK —
4.2 K in magnetic fields up to 15 T. The alternating driving
current of frequency 3—6 Hz was kept as low as (0.5—1) nA to
preclude electron heating.

Figure 1 shows a typical R..(B) curve for sample I at a
gate voltage of 4350 mV. One can see distinct minima
corresponding to v =1 and v = 2 and a weaker minimum at
B =8.5T corresponding to v = 2/3 in the microbridge. The
fact that R, does not become zero at v = 1 and v = 2 testifies
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Figure 1. Sample I, R, (B); T =30 mK, ¥, = 350 mV. Inset: schematic
top view of the experimental samples; the region under gate is hatched.
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