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where I'(x) is the Gamma function, and f is the Brody
parameter. When the Brody parameter =0 (f=1), the
Brody distribution reduces to the Poisson (Wigner) distribu-
tion. This distribution is only heuristic and does not have a
theoretical basis as a measure of underlying chaos in the
system. However, in the absence of a distribution which does
have a theoretical basis, it is useful since it depends only on
one parameter. We obtain the best fit of our data at 2.5 T with
p=0.24 and D = 15 meV; at fields of ~ 0.5 T their values are
0.05 and 10 meV, respectively. Both f and D increase with the
field up to = 5 T and then saturate.

In summary, we have found statistical correlations in the
magnetoexcitonic spectra of GaAs QW’s which can be
regarded as a hallmark of quantum chaos. The separation of
the energy levels obeys a Brody distribution, which inter-
polates between a Wigner and a Poisson distribution. The
departure from a pure Wigner distribution is due to the
existence of excitonic levels which belong to different
irreducible representations. Those can be energetically
degenerate, thus the probability of zero energy spacing
grows, introducing a Poisson contribution to the distribu-
tion. Further studies, using tilted magnetic fields with respect
to the growth axis of the quantum well, are being performed
to investigate the effect of reducing the symmetry of the
system in the energy level distribution. Additionally, the
application of an external electric field can also be used to
lower the symmetry.
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Image of local density of states

in differential conductance fluctuations
in the resonance tunneling

between disordered metals

V I Fal’ko

The discussion of the local density of states (LDOS)
fluctuations in disordered metals was started in the theory
more than a decade ago [1, 2], and a lot is already known [3]
about their statistics in the metallic regime (i.e., at pg/ > 1).
Random point to point, or parametric dependences of this
quantity discussed in the literature are the result of the
interference of multiply scattered electron waves in a
disordered metal. Recently, it was demonstrated that the
amplitude of LDOS fluctuations and their statistics are
mainly governed by statistical properties of the wave
functions of a diffusive electron in a disordered metal [4—6],
and particularly by correlations between the individual wave
functions.

The direct manifestation of the density of states fluctua-
tions in the transport experiments were discussed, at first, in
the context of non-resonant tunneling between two disor-
dered metals [7]. Later, this idea was extended [8] to the
studies of resonant tunneling processes involving a resonance
level in the barrier, and the contribution of LDOS fluctua-
tions to the conductance of such a device was discussed in the
linear response regime. In recent vertical transport experi-
ments on small-area double-barrier semiconductor structures
[9—13], resonant tunneling between two heavily doped
semiconductors (which can be regarded as disordered
metals) through a single impurity level created below the
lowest quantum well sub-band by a fluctuation in the density
of charged donors was observed and identified, so that more
attention should now be paid to a quantitative analysis to
provide a basis for a quantitative comparison with the
existing experimental data. In the present paper, we report
the results of such an analysis.

Under the experimental conditions of Refs [9—13], the
linear response regime was hardly relevant, since, at a zero
bias, the energy of a discrete impurity level, Ey, does not
initially coincide with the chemical potential y; in the bulk
electrodes coming to the resonance only after the bias voltage
reaches the threshold value Vy(Ep). Being essentially non-
linear, the current—voltage I(V) characteristics of such a
device can be divided into three typical intervals [10—14]:
below the threshold, where 7= 0; the threshold regime
V =Vy(Ey) £ I'/ae, where I(V) takes a step after the
resonant level crosses the Fermi level y; in the emitter; and
the interval of a plateau, Vy(Ey) < V < V1(E;), where the
current remains almost constant until the next impurity level
E; is lowered enough to contribute to the transport. In most
of the samples studied in Refs [10—13], the emitter barrier is
much stronger than the collector barrier, so that in the
theoretical analysis one can neglect the influence of the
Coulomb blockade effect of the resonant impurity level
(which plays a crucial role if the barrier configuration is
perfectly symmetric [15]). If so, the width of the resonance in
the conductance I' is dominated by the electron escape from
impurity to collector, I' = I'g + 'L =~ I'r, whereas the value
of the current step is mainly determined by the tunneling rate
I'y through the thick barrier on the emitter side. In this
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approximation, the current can be represented in the form
[16, 8]
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where fi(r)(€) = {1 +exp[(c — p (g )/T]} . Being averaged

over dlsorder the I(V)-characteristics at the threshold can be
described by the height of the resonance conductance peak at
the voltage Vy providing u; = Eo(V),
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and its width at the half-maximum, V' = I'/ea. The factor
a <1 in Eqn (1) produces an actual distribution of the
potential drop across the structure. In the plateau regime (at
T < py, — Ep) the average current (I) saturates at
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so that the disorder average of (d//dV) tends to take a zero
value.

The latter statement is made to stress that in the regime of
bias voltages of E| > y; > Ey > ug, the differential conduc-
tance of the device is dominated by an irregular sample-
specific energy dependence of the tunneling coupling between
an impurity and the continuum of the electron states, e.g.,ina
disordered emitter ‘deep below’ the Fermi level y ,

ri(o) = 2]2“5" 1m [GA(p. p")] d0)" (p) (3)

where #(p) is a formal tunneling matrix element between the
impurity and bulk electrode, and Im[GA] = [G* — GR]/2
are the exact retarded (advanced) Green functions of the
electron in the bulk taken for a fixed configuration of
disorder. Here, we focus only on fluctuations in the emitter,
not only for quantitative reasons resulting from the assumed
asymmetry of a structure, I't < I'r, but also because at
realistic voltages V' > V; [10, 12, 13] the electron—electron
collisions and emission of plasmons and optical phonons in
the collector are fast enough to wash out the quantum
interference effects coming from it.

When speaking about the differential conductance G(V)
in the plateau regime, its irregular oscillations around the zero
average get a dominant contribution from the finest energetic
scale resolved using a fixed spectrometer, which is I'. As a
result, the correlation parameters of the differential conduc-
tance fluctuations are strictly bound to the energetic width of
the resonant impurity level: the correlation voltage can be
estimated as I'/e, and the correlation magnetic field is that
which provides a magnetic flux quantum per area L%, where
Lr = +/Dh/T is the diffusion length in a disordered metal
corresponding to the life-time 4/I" of an electron in the
resonant impurity state. Qualitatively, the whole region of
the size Lp around the resonance impurity is equally
important for forming an individual portrait of G(V,B),
which is exactly that part of the system which can be tested
by a diffusive electron during its typical lifetime at the
impurity centre. As a result, the short-range features of the
tunneling matrix element fall out of the theory, and the
differential conductance fluctuations simply coincide with
the energetic derivative of the local density of states fluctua-

tions,

drs d8v(e,B)
G(V,B) = T 4

The amplitude of irregular oscillations of d//dV found in
the calculations below is also related to the resonance width.
The variance (i.e., the mean square) of the differential
conductance at V' > V{ + I'/e normalized by the height of
the main resonance peak at V' = V is inversely proportional
to the conductance g(Lr) of a piece of an electrode with
dimensions L¢ measured in units of ¢?/h which can be
interpreted on the basis of the statistics of single-particle
wave functions of a disordered metal. This is the result of the
diagrammatic perturbation theory calculations and can be
explained qualitatively in the following way. The value of the
current in the plateau regime is determined by the sum of local
densities (at the spectrometer position) of the wave functions
[V (ro) |2 which lie in an energy interval I around Ej in a piece
of metal with characteristic dimensions Ly. These are the
states which can contribute resonantly to the tunneling
current. The average value of this sum is proportional to the
total number of states N(I') and to the typical density of a
single state, (|, (ro)]”) ~ 1/L{. Being achieved over a step
with width V' = I'/ae, such a value of the current plateau
results in the height of the main differential conductance peak
Gr which is proportional to N(I){ [y, (ro)|*)/ ¥r. On the other
hand, _(r¢) taken from an individual state is a random
variable with dominantly Gaussmn statistics in the metallic
regime [5], so that var (|, (ro)[*) ~ (. (ro)| >2. The variance
of the sum of a large number, N(I') > 1, of random additives
. (ro)|* is of the order of N(F)<|zp€(ro)|2>2, and being
individual for each next energy interval I, this fluctuation is
responsible for the ﬂuctuatlon in the differential conductance
with variance N(I'){|y,(ro) > / V2. Following Thouless [17],
we estimate N(F ) ~ g(Lr), which gives the estimate men-
tioned at the top of this paragraph, (8G?)/G} ~ g~!(Lr). Itis
interesting to note that these fluctuations should be almost
insensitive to the temperature variations, since they are
generated by the electron states deep below the Fermi level,
and their amplitude is dominated just by the energetic width
of the ‘spectrometer’ I'.

To be described quantitatively, a random differential
conductance dependence on the bias voltage and external
magnetic field should be characterized by the disorder-
averaged correlation function of current derivatives d//dV
measured at different voltages or at slightly different
magnetic fields,

(G(V,B)G(V+AV,B+ AB)) = (8G*)K,(AV,AB). (4)
To get the analytical form of both the variance and
correlation functions of differential conductance fluctua-
tions, we employed the diagrammatic perturbation theory
technique [18]. In the case when the electrodes are 3D metals
(they extend in all directions over distances greater than
Lr = \/hD/I'), which is the case in the vertical tunneling
devices grown without any undoped spacer in front of the
tunneling barrier, the result of the perturbation theory
analysis has the form of Eqn (4) with variance

(567), = @n)y*?p ' JT/RD G2 )
16 vhD [1+hV/F]3/27
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where the coefficient  should be specified for the case of a
negligible (f = 1) and strong (f = 2) spin-orbit coupling, and
the correlation properties are described by the function

DT e e ()

V2 Yy

In Equation (5), f = 1 for the limit of a zero magnetic field,
p =2 when BL: > &, and Vi = Vr + fy/(ae) is slightly
modified, as compared to the width of the main resonance
V' by the decoherence rate y of a floating-up ‘hole’ below the
Fermi level created in the emitter after the tunneling event.
The value of the variance of fluctuations in Eqn (5) is
normalized by the value G from Eqn (1) in order to show
how is it parametrically suppressed, as compared to the height
of the main peak in d7/dV, by the factor 8G/Gr ~ g~'/*(Lr),
where g(Lr) is the conductance of a piece of electrode with
size L in all directions measured in units of ¢? /A [the second
multiplier in Eqn (5)].

A similar estimate is applicable to the case of a planar
emitter. The analytical result for that case can be written as

K = ,  where

(56?) _mp GP =@y’
* 4hD (14 my/TP NN
(6)

In Eqn (6), the factor 6 distinguishes between two configura-
tions of the device: 8 = 2 for a ‘horizontal’ tunneling through
a lithographically processed barrier in a 2D electron system,
and 0 =1 for a ‘vertical’ tunneling from a 2D layer
accumulated in front of the double-barrier structure in a
device grown with a wide spacer [10].

The correlation properties of random differential con-
ductance oscillations under the variation of a magnetic field
oriented along the current direction can be calculated in a
standard way [19], and we arrive at the correlation function of
differential conductances, K;(AB) in the form of

S 2X2 1

]
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(7)

where y?)(z) is the second order derivative from the psi-
function. At small X < 1, the correlation function K;(AH) in
Eqn (7) can be approximated by

5

Ky~1-—=X?,
3 32

1
Kzzl—ZX2.

The characteristic correlation field AB. (half-width of the
correlation function at half maximum) found from this is

e[l + hv]

eD {13

To complete the picture, we should also show the
analytical form of the variance and correlation functions for
the quasi-1D geometry, that is, for a wire with cross sectional
dimensions less than Lp. The calculation for the QID

d=3,

ABY ~ e (3)

geometry is standard [19], and we arrive at

(562 = 32m)2 1 G} )
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which, again, is determined by the conductance of a piece of
wire with length L. The correlation function of differential
conductance fluctuations as a function of the magnetic field
can be found in a similar way. The calculation can easily be
extended to a magnetic field tilted through an arbitrary angle
¢ with respect to the wire axis, and for cylindrical wires it
yields

1 Y, — (o) eAB

K(0,AB) = —— =
(0,AB) TESTRE e

}’Lr . (10)

In this equation, y(¢) = 1 +sin® ¢, so that the correlation
parameter B, for the field oriented along the wire axis and
perpendlcular to it may differ only by the factor of v/2,
B! /B} = /2, which is very much in contrast to what one
should expect in the case of a 2D emitter. Note that for a
quasi-1D cylindrical wire, BH =0.64%y/rLr.

It is useful to note that power spectra of fluctuations of
d7/dV in 3D and quasi-1D geometries as a function of the
voltage (which coincide with the Fourier transform of
K(AV,0) with respect to V) would give a different value
from that obtained from the half-width of the correlation
function, since the latter does not have a Lorenzean form in
those cases. In particular, the correlation voltage that one
would find from the power spectrum analysis coincides with
Vr, whereas the correlation voltage to be extracted from the
half-height of the correlation function is 0.65V in the 3D
case and 0.39 V7 in the quasi-1D case.

The results of Eqns (5), (6), and (8) can be extended to the
differential conductance fluctuations in a classically strong
magnetic field, w.7 > 1. To achieve such a generalization, it is
enough [20] to replace the isotropic diffusion coefficient D in
expressions for the diffuson P? by a diagonal tensor
diag(D,D,,D,) taking into account that the diffusion
across the magnetic field direction is suppressed by the
cyclotron motion, D, = D/(1 + (wcr)z). When the magnetic
field is oriented perpendicular to the tunneling barrier, the
effect of skipping orbits [21] does not affect the boundary
condition to the equations on the diffuson (in contrast to the
case of the conductance fluctuations in metallic wires [22]), so
that we find that the variance of d//dV and the correlation
parameter A B, increase with the magnetic field as

((86)),
((66)%) 5

_AB(B)
" AB.(0)

~ 1+ (we1)?. (11)

The correlation voltage and the form of the correlation
function K,;(AV) remain unchanged, since they are deter-
mined solely by the spectrometer width independently of the
diffusion coefficient.

To summarize, the differential conductance of a system
with resonant tunneling from a disordered metal via a single
impurity level was analyzed in the regime of a current plateau.
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In the systems of all dimensions we studied here, it fluctuates
around a zero average with a mean square value which scales
with the height of the main resonance peak, Gr and is
inversely proportional to the conductance g(Lr) (measured
in quantum units) of a piece of disordered electrode with
typical dimensions Ly ~ /hD/I" determined by the width of
the resonance itself:

(&)~
dv, g(Lr)
The value of the correlation magnetic field of fluctuations is
also related to the length Ly, AB; ~ ¢/ L% and the correla-
tion properties of the pattern of d//dV with respect to the
voltage variations are found in an analytical form both in two
and three dimensions as a function of the voltage scaled by the
width of the main resonance peak. Both the amplitude of
fluctuations and the correlation parameter AB, are expected
to increase with the magnetic field.
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Resonant tunneling through
a single-electron transistor

J Konig, H Schoeller, G Schon

1. Introduction

Electron transport through mesoscopic metallic islands and
quantum dots is strongly influenced by the large charging
energy, Ec = e?/2C, associated with the low capacitance C of
the system [1-3]. In the prototype of these systems, the
‘single-electron transistor’, a small island is coupled via
tunnel junctions to leads and via a capacitor to a gate voltage
source. At low temperatures, T < Ec, a variety of single-
electron phenomena have been observed, including a Cou-
lomb blockade and oscillations of the conductance as a
function of the gate voltage.

The detailed features of the transport properties depend
on the properties of the island. We consider here two opposite
limits. In the first, the island contains a continuum of states,
and the tunnel junctions are ‘wide’ with a large number of
transverse channels. This is typically realized in metallic
grains. If the dimensionless tunneling conductance of the
junctions between the island and the lead electrodes,

Rx

atEFRt (1)

is low, on a scale given by the quantum resistance
Rk = h/e2 ~ 25.8 kQ, the island charge is well-defined.

In the second limit, we consider the extreme case of an
island containing one spin-degenerate level in the interesting
energy range. This accounts for Coulomb blockade phenom-
ena in zero-dimensional systems, such as double-barrier
resonant-tunneling structures [4, 5], split-gate quantum-dot
devices [6—8], quantum point-contacts with single-charge
trap states [9], and ultra-small metallic tunnel junctions [10]
with particles of diameter below 10 nm. In these islands the
discrete level spectrum can be resolved, with a level spacing o
which may exceed T and eV. The coupling between the island
and the leads is then characterized by the intrinsic level
broadening in the non-interacting case I'.

For o < 1 in metallic islands or I' <€ T in quantum dots,
sequential single-electron tunneling can be studied using
perturbation theory [1, 3, 11—15]. On the other hand, recent
experiments with strong tunneling show deviations from the
classical description. In the metallic case, a broadening of the
conductance peaks much larger than temperature has been
observed [16, 17], demonstrating the effect of quantum
fluctuations and higher-order coherent processes. Several
theoretical papers [18 —24] dealt with the problem of higher-
order processes. This includes ‘inelastic co-tunneling’ [25, 24],
where, in a second-order process in oy, electrons tunnel via a
virtual state of the island. (The term ‘inelastic’ indicates that
with overwhelming probability different electron states are
involved in the different steps of the correlated processes.) An
extension of this process, which gains importance near
resonances, is ‘inelastic resonant tunneling’ [20, 23], a process
where electrons tunnel an arbitrary number of times between
the reservoirs and the islands.

The quantum dot is described by the Anderson impurity
model where the level is coupled via tunneling barriers to
electron reservoirs. A strong on-site Coulomb repulsion
suppresses double occupancy of the dot level. From the



