
an empirical procedure to determine the spin gap. Here the
thermodynamic density of states D��m� at n � 1 is compared
to that at n � 2 in different magnetic fields. If the fields are
chosen so that the gaps are equal, the dependencesD ��m� can
be expected to coincide. An example is given in the inset of
Fig. 5. As can be seen from Fig. 6, the data points obtained
with the help of all three methods are close to a straight line
corresponding to a constant LandeÂ factor g � 5:2. Within
experimental uncertainty this behaviour cannot be described
by a square-root dependence as indicated by the dashed line in
Fig. 6.

The observed linear dependence of the spin gap on the
magnetic field is very similar to that found in activation
energy studies [12]. According to Ref. [12], the activation
energy for n � 1 changes approximately linearly with mag-
netic field over the range 1.2 to 8 T. The corresponding g
factor is about 7, which is appreciably larger than the value
observed here. The difference is likely to be due to particula-
rities of the activation energy method because at n � 2 the
measured gap also exceeds the cyclotron splitting �hoc by
40%. Since, in theory, the gap values obtained by the
activation technique may, because of disorder, only be
smaller than gaps in the spectrum, the actual origin of the
discrepancy remains to be seen. We note that optical
investigations yield values of the spin gap at a filling factor
n � 1 and of the cyclotron gap at n � 2; 4 [13], which are
consistent with our data.

A simple estimate of the Coulomb exchange energy e2=kl
(where l is the magnetic length) gives values that are about an
order of magnitude larger than the experimentally deter-
mined spin gaps. Two physical mechanisms may lead to
decreasing exchange energy: the nonzero thickness of the
2DES and the disorder broadening of quantum levels. With
the 2DES thickness and the level width as adjustable
parameters, Smith et al. [14] succeed in describing the
magnetic field dependence of the spin gap found in Ref. [12].
In our case, knowing the density of states we easily found the
width and overlap of quantum levels [3]. The behaviour of the
density of states D�E� at n � 1 for the lowest magnetic field
used is shown in the inset to Fig. 6. One can see that the
corrections to the exchange energy due to level overlap do not
exceed 1% at B5 5 T. As far as the finite thickness of the
2DES is concerned, it gives rise to a considerable decrease in
the exchange energy at high magnetic fields while in the low-
field limit its effect is negligible. Hence, this mechanism alone
fails to provide an increase of the power of the theoretical
square-root dependence Ds�B�. Obviously, the approach [14]
does not explain our experimental data at strong magnetic
fields.

According to a recent model [15, 16], skyrmion-caused
modification of the excitation spectrum at odd integer fillings
results in a stronger change of Ds with magnetic field in the
region of competition between the Zeeman and Coulomb
energies. Measurements of the activation energy in tilted
magnetic fields [17] indicate that the change of the spin gap
attributed to skyrmion effects is smaller than 10% if
gmBB=�e2=kl�5 0:015. Using this condition we estimate that
in our experiment the skyrmion effects can be neglected at
B5 5 T. In our opinion, the theory's failure to explain the
obtained experimental data is caused by the fact that the
many-particle phenomena should be very sensitive to correla-
tions of a disorder potential which is present in real systems.
Thus, more theoretical work is needed taking into account
disorder effects.
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under Grant No. I/71162 , by the Programme ``Nanostruc-
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Effective action and Green's function
for a compressible QH edge state

L S Levitov, A V Shytov, B I Halperin

The edge of a quantum Hall (QH) system plays a central role
in charge transport, because the edge states carry Hall current
[1]. Also, for odd-denominator Landau level filling factors n
that correspond to incompressible quantized Hall states, the
excitations on the edge form a strongly interacting one-
dimensional system, which has drawn a lot of interest [2, 3].
The theoretical picture of the QH edge is based on chiral
Luttinger liquid (wLL) models, involving either one or several
chiral modes which may travel in the same or in opposite
directions.

Another important part of the QH theory is the fermion-
Chern ± Simons approach, which can describe compressible
QH states at even-denominator fractions such as n � 1=2, as
well as the incompressible states [4, 5]. In this approach, the
fractional QH effect is mapped onto the integer QH problem
for new quasiparticles, composite fermions [6], which interact
with a statistical Chern ± Simons gauge field such that each
fermion carries with it an even number p of quanta of the
Chern-Simons magnetic flux. The structure of the edge can
then be obtained from Landau levels for composite fermions
in the average residual magnetic field [7].

Below we present a theory [12] of tunneling into the QH
edge based on the composite ± fermion picture. We find that
under certain conditions the IÿV curve is described by a
power-law I / V a. The tunneling exponent a depends only on
the conductivity and interaction in the bulk, and is insensitive
to the detailed structure of the edge. In this case the main
effect results from the relaxation of electromagnetic distur-
bance caused by a tunneling electron, in which we include
charge and current densities as well as the Chern ± Simons
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field. The characteristic times and spatial scales involved in
the dynamics are very large, which makes it possible to
express the leading behavior in terms of measurable electro-
magnetic response functions, the longitudinal and Hall
conductivities. Tunneling exponents can then be found as a
function of the filling factor.

Effective action. The effect of interaction on the tunnel-
ing rate arises mainly due to relaxation of collective electro-
dynamical modes. To describe it, we employ the semiclassical
effective action theory introduced elsewhere [15].

Below we list different parts of the action for our system.
In imaginary time, the action for the composite fermion
charge density n�r; t� and current density ja�r; t� reads:

Sn � 1

2

X
o

�
d2r

� r�0�ab

joj ja;ÿo�r� jb;o�r� � gnÿo�r�no�r�
�
; �1�

where o is the Matsubara frequency. Here r�0�ab is the
resistivity tensor, and g � U� kÿ10 , the sum of the short±
range interaction U and of the inverse compressibility
(density of states) of the non-interacting system.

The coupling to the statistical gauge field is described by
the Chern ± Simons action:

SCS � i

�
dt

�
d2r

�
na0 � j � a� 1

4pp
e mnlam qnal

�
: �2�

Note that because of charge continuity the current and
charge densities are not independent. By solving the con-
tinuity equation, _r� Hj � 0, one writes n and j in terms of the
displacement field:

n � ÿHw ; j � _w : �3�

The charge injected at the edge can be described by the source
term localized on the boundary: _wy�y � 0� � J�x; t�, where
J � ed�x��d�t� t� ÿ d�tÿ t�� describes adding a composite
fermion at the time ÿt and removing it at the time t. The
corresponding part of the action is constructed by using a
Lagrange multiplier:

Sf � i

�
dx

�
dtf�x; t�� _wy ÿ J� : �4�

Naively, the action is S � Sn � SCS � Sf. However, in
this form the action is not gauge invariant because of charge
non-conservation in the source term Sf. To restore gauge
invariance we add the term

Sflux � i

�
dx

�
dt a0 ~J�x; t� ; �5�

where

~J�x; t� �
�t
ÿ1

J�x; t� � ed�x��y�t� t� ÿ y�tÿ t�� :
Finally, the total action is Stotal � Sn � SCS � Sf � Sflux.

The physical meaning of the term Sflux is the following.
One notes that adding one electron to the system is equivalent
to adding one composite fermion and p negative flux quanta.
Thus term (4) describing the adding of one composite fermion
must be supplied by a corresponding flux source term. One

assumes that the time it takes the injected electron to bind p
statistical gauge field quanta is very short on the overall
relaxation time scale, and thus the process is described by ÿp
quanta left at the entrance point to be picked later, when the
electron is removed. The term in the action describing this
process is

i

�t
ÿt

a0�0; t� dt ;

which is the same as (5).
The dynamical equations are obtained by taking the

variation of the action with respect to all variables, and
eliminating the Lagrange multiplier f. The resulting equa-
tions have the standard form:

r̂�0�j � ECS ÿ HH�gn� ;

1

2pp
E a
CS � eabj b ;

1

2pp
BCS � n� ~J ; �6�

where ECS � HHa0 � _a and BCS � HH� a. It is trivial to check
that eliminating the Chern ± Simons field leads to Ohm's law
with a corrected resistivity tensor:

r̂j � ÿHH�gn� ; �7�
where

r̂ � r̂�0� � ph

e2
0 ÿ1
1 0

� �
�8�

is the measured resistivity tensor.
Integrating out variables in the bulk. To understand better

the theory described by the action Stotal, let us derive an
effective one dimensional problem by integrating out the
dynamics in the bulk, and keeping only the variables on the
edge. The dynamic equations (7) in the halfplane y > 0 read:

iormnwn � g qm�qlwl� : �9�

To express w�t; x; y� through the bulk values w�t; x; 0� we go
to the Fourier transform in x,

wo�x; y� �
�
wo; k�y� exp�ikx� dk

2p
; �10�

and solve (9) for wx:

wx � i
rxyoÿ gk qy
rxxjoj � gk2

wy : �11�

The equation for wy�y� is
�
q2 ÿ q2y

�
wy � 0, where q2 �

k2 � joj=�gsxx�. In terms of the boundary value,
wy�y� � wy�0� exp�ÿqy�.

After substituting it into the action one gets

S �
�
do dk

�2p�2
�
1

2

jojuÿouo
�sxxq� isxyk signo� ÿ fÿo

�
iou� J�o��� ;

�12�

where u � wy and J�o� � 2ie sin�ot�.
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Finally, by integrating out u, we get

S � 1

2

�
do dk

�2p�2
ÿ
sxxqjoj � isxyko

�
fÿo;ÿkfo; k

� i

�
J�x; t�f�x; t� dx dt : �13�

This effective action represents a generalization of the
standard Luttinger liquid theory of the edge mode to the
compressible problem with finite sxx. Because of the relation
between q ando, the dissipative term in the action (13) is non-
local in the time representation. In the incompressible case,
sxx � 0, we recover the standard wLL action:

S � in
4p

�
qxf qtf dx dt� i

�
J�x; t�f dx dt : �14�

In the above derivation we ignored the effects of boundary
compressibility. Taken into account, these effects lead to an
additional term of the form�

�qtf�2 dx dt ;

which does not affect the long-time dynamics, and drops from
the final answer.

Let us remark that we derived the action (13) with a source
term. Thus, the electron creation operator can be written as
c��x; t� � exp

�
if�x; t��, which coincides with the standard

one-dimensional expression.
Instanton action. To find the tunneling exponent, we

need to evaluate the Green's function


c�0; t�c��0; 0�� of an

electron. From the above relation of c�x; t� to the bosonic
variable f�x; t�, the Green's function can be written as�

exp

�
i

�
J�x; t�f�x; t� dxdt

��
:

Evaluating the average with the action (13) is now
straightforward. One gets G�t� � exp�ÿS�, where

S � 1

2

X
k;o

��J�o���2
joj�sxxq� isxyk signo� : �15�

The integration over k gives a log-divergent answer which we
cut at kmax:

S �
�
do
joj

��J�o���2� rxx
8p2

ln
gk2max

joj �
1

4p2
rxyyH

�
: �16�

Note that this expression does not vanish even in the absence
of the Chern ± Simons field and the interaction (p � 0,
U � 0), which indicates that part of the answer represents
the contribution of non-interacting composite fermions and
must be subtracted off. The physical origin of the ultraviolet
divergence at kmax is that for free fermions the relaxation is
fast and involves large momenta k � kF. On the other hand,
the contribution resulting from the interaction does not
diverge at large momenta. To single it out, we subtract from
Eqn (16) the same expression with p � 0 and U � 0.
Integrating the difference over o, we get Sÿ S0 � a ln�t=t0�,
where a is the tunneling exponent discussed below [see
Eqn (17)], and t0 is the smallest of the relaxation times, of
the order of the scattering time.

Tunneling exponent. In evaluating a, we assume that the
number of flux quanta carried by composite fermions is p � 2
for 1=3 < n < 1 and p � 4 for 1=5 < n < 1=3. Also, for
simplicity, we assume that the composite fermions have
`bare' conductivities r�0�xx and r�0�xy which are constants that
may depend, for instance, on the density, but which are
independent of temperature. The measured resistivities are
then rxy � r�0�xy � ph=e2 and rxx � r�0�xx . The theory predicts
the power-law I / V a, with

a � 1� 2e2

ph

h
yHrxy ÿ y�0�H r�0�xy

i
� e2rxx

ph
ln
gk0sxx

s�0�xx

; �17�

where yH � tanÿ1�rxx=rxy� is the Hall angle, y�0�H is the
corresponding bare Hall angle. Other notations in Eqn (17)
are as given above: g � U� kÿ10 , where U is the short-range
interaction constant, and k0 � m�=2p�h2 is the bare compo-
site±fermion compressibility, determined by the effective
mass m�, which we treat as a constant.

In Figure 1, the exponent a is plotted as function of rxy
which is proportional to the electron density. The tunneling
exponent (17) is a continuous and monotonically increasing
function of rxy. It is interesting, that in the limit rxx � 0 the
exponent a has cusp-like singularities at n � 1=2 and n � 1=4,
which correspond to rxy � 2; 4 in Fig. 1. To understand this,
consider the vicinity of n � 1=2, where the QH state can be
described as a Fermi liquid of composite fermions carrying
two flux quanta each, and exposed to a `residual' magnetic
field dB � 2ÿ nÿ1. At n < 1=2 the residual field direction
coincides with the total field, and all edge modes propagate in
the same direction [7]. On the other hand, at n > 1=2, the
structure of the edge is qualitatively different, consisting of
modes going in opposite directions. This effect makes n � 1=2
a singular density.

Of course, scattering by disorder will smear the singular-
ity. However, it is interesting that the change in the tunneling
exponent (17) resulting from finite rxx can be either positive
or negative, depending on the value of Uk0 (see Fig. 1).

The main difference of our results from those of the wLL
theory [2, 3] is that we get a continual tunneling exponent,
whereas the wLL theory provides results for a discrete set of

0 1 2 3 4 5
rxy

6

5

4

3

2

1

a

p � 2 p � 4

k0U � 0 rxx � 0:05rxy
k0U � 10 rxx � 0:05rxy
k0U � 100 rxx � 0:05rxy
any U rxx � 0

Figure 1. Tunneling exponent (17) shown as a function of rxy with the

composite-fermion flux p � 2 for 14rxy 4 3 and p � 4 for 34rxy 4 5.

A constant Hall angle is assumed. For rxx � 0:05rxy the exponent is

plotted for three values of the model short-range interactionU. At rxx � 0

the exponent is universal (no U dependence), but at finite rxx it can be

either bigger or smaller than the universal result, depending on the

interaction strength k0U.
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incompressible densities. Moreover, the wLL theory is
constructed in a different way for each incompressible
filling, and provides a picture supposedly valid for densities
around those fillings. For each such rational density it
predicts a plateau in both the resistance and tunneling
exponent. At the same time, for densities deviating suffi-
ciently strongly from those `good densities' the wLL theory
does not give any prediction for the tunneling density of states
or for the I�V� curve.

However, in the domain of overlap, our results agree with
the predictions of the wLL theory. Below we review the wLL
theory results. In this theory, the edge of an incompressible
quantized Hall state is described as a single- or multi-channel
wLL. For Jain filling fractions n � n=�np� 1� with positive
integer n and even p, there are n edge modes, all traveling in
the same direction. In this case, Wen [2] found universally
a � p� 1. By contrast, for states such as the Jain fractions
with negative n, where the edges havemodes going in opposite
directions, a may depend on the form of the interaction.
Nevertheless, Kane, Fisher and Polchinski [3] found in this
case that if there is sufficient scattering between the channels,
the system scales to a universal limit, with a � p� 1ÿ 2=jnj.

Our result (17), taken at large Hall angle
(yH � y�0�H � p=2), agrees with the wLL theories discussed
above. At large Hall angles and for the Jain fractions
n � n=�pn� 1� we use the following values of the Hall and
Ohmic resistance:

rxy �
�
p� 1

n

�
h

e2
; r�0�xy �

h

ne2
; rxx � r�0�xx � 0 : �18�

By substituting this into Eqn (17), one gets a �
1� jp� 1=nj ÿ 1=jnj, which agrees with the universal tunnel-
ing exponents found by Wen and by Kane et al.

Comparison with experiment. Recently, the physics of the
edge has been probed experimentally by a tunneling con-
ductivity measurement performed on cleft edge overgrowth
systems [8 ± 11]. In this case the 2D electron system has a
sharp edge, and the confining potential is very smooth, with
the residual roughness of atomic scale. With the advantage of
the high quality of the system, one can explore tunneling into
both incompressible and compressible QH states [9]. It is
found that the tunneling conductivity is non-Ohmic at all
densities n < 1. The IÿV curve is described by a power law
I / V a, for V > 2pkBT=e, where the exponent a is a
continuously increasing function of 1=n [10, 11].

The experimentally measured a is shown in Fig. 2
(courtesy Grayson and Chang). Over a large range of
densities a has a striking linear dependence on 1=n.

Since the density profile near the edge is sharp, our results
should be applicable to this system. The experimentally
measured Hall angle is large: rxy=rxx ' 30. Therefore, in the
comparison with the theory one can ignore the effect of finite
rxx. The theoretical result for large Hall angles is shown in
Fig. 2 in a broken line. As a function of the density 1=n, both
the experimental and the theoretical exponent come out to be
a smooth and monotonically growing function. Apart from
this general similarity, the details of the experimental and
theoretical exponents' functional dependence are completely
different. There are two main distinctions:

(i) the difference in the overall average slope a vs. 1=n;
(ii) the plateau with a � 3 in the theoretical curve which is

absent in the experimental curve.
The first difference is probably explained (at least

partially) by the electrostatic effect of density enhancement

near the edge [10, 11]. Numerical simulations [10, 11] show
that the density near the edge is about 12 ± 16% larger than
the density within the system. When the values of n are
rescaled accordingly, the average slope of the experimental
curve, as well as the knee around n � 1, shifts closer to the
theoretical values.

The second difference is obviously more vital for the
physical picture of what is going on at the QH edge. At
present, there is no understanding of why there is no plateau
in themeasured curve. Obviously, to clarify this issue it would
be extremely useful to havemore data on tunneling exponents
in other QH systems.

One theoretical possibility to mention, which could
correct the theoretical exponent, is related to orthogonality
catastrophe effects in the composite Fermi liquid. The theory
presented above only accounts for the effects of shakeup of
electromagnetic modes arising from small k and small o.
There may exist, however, some corrections to the spectral
density of composite fermions arising from large k, i.e., from
small distances. Some evidence that this might be the case is
seen in the divergences found in the perturbation theory of
interacting composite fermions [13, 14].

Also, having in mind the disagreement with experiment, it
is of interest to think of our calculation from the point of view
of its robustness to changes in the notion of a quasiparticle.
Over the past years, a number of different quasiparticles in the
QH problem have been proposed, such as fractional charges
of several kinds and, more recently, composite fermions. It
would be interesting to try to anticipate what would happen if
it turns out that the quasiparticles near the edge are different
from those in the bulk.

Looking from this angle, it is clear that some part of the
calculation which has to do with the effective action for
tunneling, is entirely robust. What may be subject to change
is the expression for the electron creation operator in terms of
the quasiparticle creation operator, which is used for
evaluating the tunneling density of states. Under such a
change, the spectral density will always remain a power law,
but the exponent may change.

0 1 2 3 4 5
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2
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1=n

M
Q
R
J
[11]
Theory

Figure 2. Experimentally measured values of the tunneling exponent a are
shown (courtesy Chang and Grayson [11]). Different symbols represent

different groups of samples. Theoretical curve for a large Hall angle

(broken line) is shown for comparison.
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Recording zero-point current
and voltage fluctuations

G B Lesovik

In this paper we consider various methods for measuring
current fluctuations. Our aim is to reveal a quantity which can
be measured in treating fluctuations and transfer statistics on
the whole. The answer is known for an average current where
the quantity sought for is the averaged current operator
hIi � Tr frIg in view of the validity of the ergodic hypoth-
esis. The situation with current±current correlators is far less
clear, since the operators should be arranged in time (in
general, current operators at different times are not commu-
tative).

In fact, this problem is reduced to the measurement of
vacuum current fluctuations, and similar to the one of
recording photons in optics and the measurement of vacuum
electromagnetic fluctuations, although there is a significant
difference.

Considerable recent attention has been focussed on the
measurement of zero-point current and voltage oscillations
including the very possibility of such measurements. Current
fluctuations have been studied both theoretically and experi-
mentally [1 ± 5]. In Refs [6, 7] measurements were performed
at frequencies at which zero-point oscillations can arise at
practically attainable temperatures ��ho > kBT�.

On the other hand, paper [8] attracted considerable
interest to the possible breaking of the phase of conducting

electrons by vacuum fluctuations of an electric field, which
can significantly modify the localization behaviour at zero
temperature.

To begin, let us consider the spectral density of fluctua-
tions.

1. Measurement of spectral density of noise with a
resonance circuit. Current fluctuations of finite frequency
are usually measured by one of two main methods. In the
first, the current is measured as a time-dependent function
I�t�, for example, with a normal ammeter, and then the
spectral density S�o� is calculated numerically using a
Fourier transformation.

The classical equation ofmotion for an ammeter coincides
with the equation for an oscillator with friction and external
force / I�t�

�f � ÿO2fÿ g _f� lI�t� : �1�
Making the Fourier transformation, we express the angle-

angle correlator as:

hfofÿoi �
l2IoIÿo

�O2 ÿ o2�2 � o2g2
: �2�

To eliminate proper oscillations, it is usually assumed that
g4O1 � �O2 ÿ g2=4�1=2.

The method is appropriate for recording ultra-low
frequency noise, for instance, flicker noise, but, for various
reasons, it cannot be used at high frequencies. For example, as
in the case of voltage measurements with a discrete voltmeter
there is a `dead' time during which the device cannot record
changes in current (below we consider the measurement of a
time-dependent current±current correlator with an ammeter).

In recording high frequencies it is more suitable to use a
resonance circuit (RC) as a detector coupled by inductance
with the investigated conductor so that the RC is not affected
by dc.

In this case the detector can still be described by Eqn (1),
but now the external force is proportional to the derivative of
the measured current l _I�t�, and the circuit quality should be
high, so g5O.

Then the detector response is a changed charge at the
capacitor, f! Q,

Q2 �
�
do

l2o2IoIo

�O2 ÿ o2�2 � o2g2
: �3�

We have considered the same system in quantum-
mechanical terms [1], assuming the circuit to have a certain
temperature TLC. Treating the RC as an oscillator with
infinitely small damping Z, we have found the correction to
squared charge fluctuations, which is of second order with
respect to the inductance coupling constant. The result can be
formulated as follows: the measurable response of the
considered detector at the resonance frequency O is
expressed via current correlators as:

Smeas � K
n
S��O� �NO

�
S��O� ÿ Sÿ�O�

�o
; �4�

where we introduce the notations

S��O� �
�
dt


I�0�I�t�� exp�iOt� ;

Sÿ�O� �
�
dt


I�t�I�0�� exp�iOt� :
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