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Nonlinear screening, and spin
and cyclotron gaps in the 2D electron gas
of GaAs/AlGaAs heterojunctions

V T Dolgopolov, A A Shashkin, A V Aristov,
D Schmerek, W Hansen, J P Kotthaus, M Holland

We use AlGaAs/GaAs single-heterojunction samples that
contain, apart from a metallic gate on the front surface, a
highly doped (4� 1018 cmÿ3 Si) layer of thickness 200A in the
bulk of the GaAs. This layer remains well-conducting even at
very low temperatures and serves as a back electrode.
Whereas in standard AlGaAs/GaAs heterostructures the
electrons of a 2DEG originate from a doped layer in the
AlGaAs barrier, the 2DEG in our samples is created in a
similar way to Si MOSFET's: the 2DEG is field-effect-
induced at a positive bias Vg applied to the front gate with
respect to the back contact. The bottom of the conduction
band in our structure is shown in the inset to Fig. 1. A
blocking barrier between the gate and the 2DEG is formed by
a short-period GaAs/AlAs superlattice capped by a thin
GaAs layer. A wide but shallow tunnel barrier between the
back electrode and the 2DEG is created by the weak residual

p-doping of the GaAs layer. The electron transfer across this
tunnel barrier establishes an equilibrium between the back
contact and the 2DEG.

By modulatingVg with a small ac voltage, we measure the
ac current through the sample. The real part of the current
depends on the tunnel resistance [1, 2] while the imaginary
component is determined by the capacitance of the structure.
Unlike in earlier magneto-capacitance measurements, we
avoid spurious lateral transport effects using the back
electrode parallel to the 2DEG. From this back electrode the
electron system is charged through a tunnel barrier, regard-
less of the value of sxx in the 2DEG.

In our experiments [3] we studied the imaginary compo-
nent of the ac current through the sample as a function of the
gate voltage (CÿV curves).Weworked in the frequency range
100 Hz to 10 kHz at magnetic fields of up to 16 T and a
temperature of 25 mK. The amplitude of the ac voltage did
not exceed 1 mV and corresponded to the linear regime. The
majority of the measurements presented here were performed
on three samples. The gate areas were 9200 mm2 for one, and
870 mm2 for the others.

Typical experimental dependences of the low-frequency
sample capacitance upon gate voltage are presented in Fig. 2.
The data were recorded at temperature � 25 mK, but we
checked that below 1 K all the C�V� curves were temperature
independent. Already for small magnetic fields the data
clearly show the typical filling factor dependence of the
capacitance signal: the capacitance signal oscillates with
minima at integer filling factors, and an enhanced capaci-
tance with respect to the zero field value occurs between the
minima. This behaviour reflects the strong modulation of the
thermodynamic density of states (DOS) by themagnetic field.

In order to convert the low-frequency CÿV curve
Clow�Vg� into the dependence of DOS on the gate voltage,
we use the following procedure: (i) We find the high-
frequency limit of the sample capacitance Chigh�Vg� (see
Fig. 2). (ii) The distance xw as a function of gate voltage is
determined from the CÿV curve at B � 1 T using relation [1]
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Figure 1.Electron density in the 2DES as a function of the gate voltage in a

magnetic field B � 8 T. A blow-up of the n � 2 plateau region shows the

way to determine the plateau width. A sketch of the band diagram of the

device is displayed in the inset.
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Figure 2. Experimental gate voltage dependences of the structure capaci-

tance on the small area sample in different magnetic fields: B � 0 (solid

line), 1 T (open circles), 5 T (dots), 9 T (bold line). The value used for

Chigh�Vg� is also shown.
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The dependence xg�Vg� is obtained from the CÿV curve in
the absence of a magnetic field. (iii) Finally, using the
equation

Clow ÿ Chigh

Chigh
� e2D �x2w

e2D �xw�xg ÿ xw� � kxg
; �2�

we recover the dependence D��Vg�.
From the experimental curves in Fig. 2 we also obtain the

electron density Ns in the 2DEG as a function of Vg (see
Fig. 1):

dNs � dVg
xg
xw

Clow ÿ Chigh

Ae
; �3�

where A is the sample area. Thus, we obtain from experi-
mental data both the gate voltage dependent electron density
Ns�Vg� and the thermodynamic density of states D ��Vg� for
each value of the magnetic field B.

We have converted these data into the DOS as a function
of the Fermi energyD ��EF� and into a dependence of the level
width G on Fermi energy (Fig. 3).

The dependences G�EF� turn out to be very similar for
different magnetic fields: the part of the curve corresponding
to a lower field B1 can be obtained by shifting the curve for a
higher field B2 by an energy ��hoc�B2� ÿ �hoc�B1��=2 (see the
dashed lines in Fig. 3). This means that over a wide range of
magnetic fields the level width G has exactly the same
dependence upon the Fermi energy counted from the
Landau level centre (the values of G are found to be large
compared to the expected spin splitting at n � 2).We find that
on a double logarithmic scale, part of the curve G�EF < 0�, as
a function of EF � �hoc=2, is well approximated by a straight
line. Taking into account the symmetry of the G traces, we
conclude that over a wide energy range (except for the vicinity

of EF � 0) the level width shows a power-law dependence

G�EF� � a
����EF � �hoc

2

����g �4�

with exponent g � 0:79. It is interesting to note that in a
slightly narrower energy interval the reciprocal of the
thermodynamic DOS can also be described by a power-law
dependence

1

D ��EF� /
����EF � �hoc

2

����gD �5�

with exponent gD � 1:86 which is approximately twice as
large as g. Moreover, we find that the relation�

D ��EF�
�ÿ1 / G 2�EF� �6�

is valid with good accuracy for all EF studied, except energies
close to the Landau level centre. In particular, this remains
true near the midpoint between the Landau levels where both
of the Landau levels contribute equally to the DOS value.

It is interesting that the exponent obtained g � 0:8 is not
very different from thewidely used value of 0.5 corresponding
to G / B 1=2. Nevertheless this difference results in a drastic
change in the behaviour ofD� from exponential to power-law
behaviour.

Screening effects in strong magnetic fields have been
considered from the theoretical point of view in a number of
publications [4 ± 6, 8]. In fact, one can distinguish between
two theoretical approaches: (i) calculations of G�EF� and
D��EF� in the self-consistent Born approximation allowing
for screening [4 ± 6]; (ii) a qualitative model of `threshold
screening' [7]. The latter model presumes that for the long-
range screened potential the Fermi level lies at the very edge of
the fluctuations of a Landau level, i.e.

G�EF� �
����EF � �hoc

2

���� : �7�

Here EF is again counted from the midgap and only the
nearest Landau level is considered. In the case of a uniform
distribution of charge centres in the space surrounding the
2DEG, for the thermodynamic DOS [7] this theory yields

D ��EF� � e2N

4pkG 2�EF�
; �8�

whereN is the bulk concentration of charged impurities. This
relation is in excellent agreement with our experimental
findings (6). From the experimental data using Eqn (8) we
find a sensible value of N � 1014 cmÿ3.

It is easy to show that the self-consistent Born approxima-
tion, as used in several numerical studies [4 ± 6], contains
Eqn (8) in an implicit form.

The experimental method employed here to determine the
spin gap is based on the measurement of the electron density
Ns of a 2DES in a quantizedmagnetic field as a function of the
gate voltage [9]. In Figure 1, we depict the corresponding data
that were determined from our capacitancemeasurements. At
gate voltages of Vg � 0:87 V and Vg � 1:02 V, plateau-like
structures are discernible that reflect the reduced density of
states in the spin and cyclotron gaps, respectively: when the
Fermi level m lies in a gap of the energy spectrum, the 2DES

80 EF, K40ÿ40ÿ80 0

20

15
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5

0

G, K

Figure 3. Level width G as a function of the Fermi energy at n � 2 for the

following values of magnetic field: 1.5 T (4), 2 T (!), 3 T (̂ ), 4 T (~), 5 T

(), 6 T (*), 7 T (&), 8 T (&). Vertical lines mark positions of the lower LL

centre EF � ÿ�hoc=2. Dashed lines represent a fit by Eqn (4) with a � 0:82
and g � 0:79.
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does not screen an incremental electric field so that a plateau
arises in the dependence Ns�Vg�. The plateau width is
obtained by linear extrapolation of the density dependence
as shown in the second inset of Figs 1 and 4. If the density of
states in the centre of the Landau levels is sufficiently high, the
extrapolated straight lines reflect the geometrical capacitance
given by the distance between the front gate and the 2DES to
a good approximation. If the back contact and the 2DES
remain in equilibrium, the plateau width directly reflects the
jump of the chemical potential between the centres of
adjacent Landau levels:

DVg � xg
xw

Dm
e
: �9�

In Figure 5 the chemical potential jump for the cyclotron
gap at n � 2 is depicted as a function of the magnetic field.
This linear dependence corresponds, taking account of the
Zeeman splitting, to an effective mass of 0:071m0 (m0 is the
free electron mass) which is close to the value of 0:070m0

found in cyclotron resonance studies on similar samples [10].
Assuming that the deviation of the data from the straight line
in Fig. 5 is due to experimental uncertainty, we can evaluate
the accuracy with which we determine the spin gap with the
same procedure (Fig. 4). In the range of chemical potential
jumps from 1.7 to 14 meV our procedure provides better than
10% accuracy in determining gaps in the spectrum.

Figure 6 shows the behaviour of the spin gap with
changing magnetic field. The range of magnetic fields used is
chosen so that the spin gap values fall within the above
indicated energy interval. To our surprise, the data are best
described by a proportional increase of the spin gap with
magnetic field.

In Figure 6 we compare the data derived with the help of
the procedure described above with the results of two
alternative methods for the determination of the chemical
potential jump at a filling factor n � 1. In the first method,
that, for example, was applied inRef. [11], we extract from the
experimental data the dependence of the thermodynamic
density of states on the electron density [3] and then calculate
the chemical potential as a function of the filling factor. The

corresponding result for B � 16 T is displayed in the inset to
Fig. 4. The linear extrapolation of the dependence m�n� at
n < 1 and n > 1 as shown in the inset of Fig. 4 defines the jump
of the chemical potential. We note that this method is less
accurate. Firstly, it requires extrapolation over a larger
interval of filling factors. Secondly, the jump Dm is much
more sensitive to the value of xg and, thirdly, the actual
extrapolation law is unknown{. In the second method we use

1.00

0

ÿ3

3.6

4.0

1.03

0.7 0.9 1.1

0.8 1.0 1.2

3

4
DS

n

2

0

Vg, V

DVg

N
s;
1
0
1
1
cm
ÿ2

m,
m
eV

Figure 4.Dependence of the electron density on gate voltage at B � 16 T.

The plateau region for n � 1 is blown up. The inset shows the correspond-

ing chemical potential jump calculated from the thermodynamic density of

states.

0 10

16

12

4

5

8

B, T

Dc, meV

n � 1

n � 2

ÿ2 0 2

0.1

1.0

m, meV

D
� =
D

0

Figure 5. Change of the cyclotron gap at n � 2 with a magnetic field. The

behaviours of the thermodynamic density of states in the spin gap at

B � 16 T and cyclotron gap at B � 3 T are compared in the inset.

151050

4

Ds, meV

B, T

2

20ÿ2

Ds

m

E, meV

D
=D

0

2

0

4

Figure 6. Behaviour of the spin gap at n � 1 with changing magnetic field.

The values of the spin gap are obtained from the plateau width (triangles),

the conversion of the thermodynamic density of states (diamonds) and the

comparison of the thermodynamic densities of states in the cyclotron and

spin gaps (squares). The spin gap value (dot) taken from optical studies

[13] is also shown. The solid line corresponds to the effective LandeÂ factor

g � 5:2. The dashed line is a square-root dependence drawn for compar-

ison through the maximum-field point, which is expected from a simple

theory, ignoring a numerical factor. The inset displays the profile of the

density of states for the spin sublevels at n � 1 in a magnetic field of 5 T.

{To solve a similar problemwith the chemical potential jump at fractional

filling factors an additional fitting parameter (the width of the Gaussian

density distribution) was introduced in Ref. [11].
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an empirical procedure to determine the spin gap. Here the
thermodynamic density of states D��m� at n � 1 is compared
to that at n � 2 in different magnetic fields. If the fields are
chosen so that the gaps are equal, the dependencesD ��m� can
be expected to coincide. An example is given in the inset of
Fig. 5. As can be seen from Fig. 6, the data points obtained
with the help of all three methods are close to a straight line
corresponding to a constant LandeÂ factor g � 5:2. Within
experimental uncertainty this behaviour cannot be described
by a square-root dependence as indicated by the dashed line in
Fig. 6.

The observed linear dependence of the spin gap on the
magnetic field is very similar to that found in activation
energy studies [12]. According to Ref. [12], the activation
energy for n � 1 changes approximately linearly with mag-
netic field over the range 1.2 to 8 T. The corresponding g
factor is about 7, which is appreciably larger than the value
observed here. The difference is likely to be due to particula-
rities of the activation energy method because at n � 2 the
measured gap also exceeds the cyclotron splitting �hoc by
40%. Since, in theory, the gap values obtained by the
activation technique may, because of disorder, only be
smaller than gaps in the spectrum, the actual origin of the
discrepancy remains to be seen. We note that optical
investigations yield values of the spin gap at a filling factor
n � 1 and of the cyclotron gap at n � 2; 4 [13], which are
consistent with our data.

A simple estimate of the Coulomb exchange energy e2=kl
(where l is the magnetic length) gives values that are about an
order of magnitude larger than the experimentally deter-
mined spin gaps. Two physical mechanisms may lead to
decreasing exchange energy: the nonzero thickness of the
2DES and the disorder broadening of quantum levels. With
the 2DES thickness and the level width as adjustable
parameters, Smith et al. [14] succeed in describing the
magnetic field dependence of the spin gap found in Ref. [12].
In our case, knowing the density of states we easily found the
width and overlap of quantum levels [3]. The behaviour of the
density of states D�E� at n � 1 for the lowest magnetic field
used is shown in the inset to Fig. 6. One can see that the
corrections to the exchange energy due to level overlap do not
exceed 1% at B5 5 T. As far as the finite thickness of the
2DES is concerned, it gives rise to a considerable decrease in
the exchange energy at high magnetic fields while in the low-
field limit its effect is negligible. Hence, this mechanism alone
fails to provide an increase of the power of the theoretical
square-root dependence Ds�B�. Obviously, the approach [14]
does not explain our experimental data at strong magnetic
fields.

According to a recent model [15, 16], skyrmion-caused
modification of the excitation spectrum at odd integer fillings
results in a stronger change of Ds with magnetic field in the
region of competition between the Zeeman and Coulomb
energies. Measurements of the activation energy in tilted
magnetic fields [17] indicate that the change of the spin gap
attributed to skyrmion effects is smaller than 10% if
gmBB=�e2=kl�5 0:015. Using this condition we estimate that
in our experiment the skyrmion effects can be neglected at
B5 5 T. In our opinion, the theory's failure to explain the
obtained experimental data is caused by the fact that the
many-particle phenomena should be very sensitive to correla-
tions of a disorder potential which is present in real systems.
Thus, more theoretical work is needed taking into account
disorder effects.
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Effective action and Green's function
for a compressible QH edge state

L S Levitov, A V Shytov, B I Halperin

The edge of a quantum Hall (QH) system plays a central role
in charge transport, because the edge states carry Hall current
[1]. Also, for odd-denominator Landau level filling factors n
that correspond to incompressible quantized Hall states, the
excitations on the edge form a strongly interacting one-
dimensional system, which has drawn a lot of interest [2, 3].
The theoretical picture of the QH edge is based on chiral
Luttinger liquid (wLL) models, involving either one or several
chiral modes which may travel in the same or in opposite
directions.

Another important part of the QH theory is the fermion-
Chern ± Simons approach, which can describe compressible
QH states at even-denominator fractions such as n � 1=2, as
well as the incompressible states [4, 5]. In this approach, the
fractional QH effect is mapped onto the integer QH problem
for new quasiparticles, composite fermions [6], which interact
with a statistical Chern ± Simons gauge field such that each
fermion carries with it an even number p of quanta of the
Chern-Simons magnetic flux. The structure of the edge can
then be obtained from Landau levels for composite fermions
in the average residual magnetic field [7].

Below we present a theory [12] of tunneling into the QH
edge based on the composite ± fermion picture. We find that
under certain conditions the IÿV curve is described by a
power-law I / V a. The tunneling exponent a depends only on
the conductivity and interaction in the bulk, and is insensitive
to the detailed structure of the edge. In this case the main
effect results from the relaxation of electromagnetic distur-
bance caused by a tunneling electron, in which we include
charge and current densities as well as the Chern ± Simons
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