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We can introduce the generalized momentum P; = aL/aX i
and quantize the problem, assuming the standard commuta-
tion relations [P;X;] =iA to be fulfilled. This yields the
cyclotron frequency of the skyrmion as a whole fiwg = 2y
and the minimum energy Es = y. Thus, in experiments the
skyrmion should exhibit a cyclotron resonance at a frequency
2y. The quantity v is determined as the exchange energy per
electron, in the case of a completely filled Landau level
2

y =S Von.
Ip

The energy y must be added to expression (5) obtained
above for the total energy.

It is also interesting to find a term with the Hopf invariant
in the action which, according to modern views, determines
the skyrmion statistics [11]. For this purpose we should
calculate the terms containing one time-dependent Qt’ and
two space-dependent Q' in the expansion of the action in
terms of Q'. Calculations up to the third order are rather
cumbersome and require the consideration of numerous
diagrams, the second-order diagrams also contributing,
since their non-local character in time and space must be
taken into account [9, 10]. We present only the final result
corresponding to the ‘fermion’ character of vortex-sky-
rmions:

1 X
Sy =nH, —Jeﬁ'm,gi x Q d*rdt, (7)

- 2m2

where e/ is the unit antisymmetric third-rank tensor. The
integer Hopf invariant H is expressed in terms of Q' [12]. This
result does not coincide with that obtained within the method
of Landau functions projected onto the zero level [7] which is
a sum of several spatial derivatives. At the same time, formula
(7) has a standard form and agrees with that suggested in note
[13].

In conclusion we emphasize once again that the solution
of differential equations of the Hartree — Fock approximation
is necessary, since it determines the discrepancy between our
results and those obtained by projection onto a single Landau
level, when the differential form of the kinetic energy in the
Schrédinger equation is replaced by a constant energy. It is of
special importance in the calculation of the thermodynamic
energy of the vortex-skyrmion where the additional term
(—hw./2)Q appears, which can lead to spontaneous appear-
ance of vortices and a rearrangement of the ground state in a
rather strong magnetic field.

The study was partially supported by the grant RPL-273
US CRDF for the Independent States of the FSU and the
grants INTAS 95-1/RU-675 and RFBR (95-02-05883).
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Microscopic derivation of the effective
Lagrangian for skyrmions in an interacting
two-dimensional electron gas

at small g-factor

W Apel, Yu A Bychkov

1. Introduction

Electronic systems confined to two dimensions and exposed
to a strong magnetic field continue to be studied intensively in
both experiment and theory [1]. Due to the magnetic field, the
electronic single particle energies form degenerate Landau
levels and for the physical properties the electron—electron
interaction is crucial. Recently, the spin degree of freedom has
attracted a lot of attention. For a long time, it was accepted
that the basic excitations are of particle—hole kind (spin -
excitons), when the cyclotron energy is much larger than the
characteristic Coulomb energy [2—5]. However, recent
experiments performed at or near a filling factor of one,
where one spin - split Landau level is completely filled, have
changed this picture. The activation energy of the resistance
measured under pressure [6], the spin polarization measured
by magnetoabsorption spectroscopy [7], transport experi-
ments in a tilted magnetic field [8], and measurements of the
Knight shift with optically pumped NMR [9] are all taken as
evidence that there are new basic excitations, the skyrmions.
Theoretically, excitations of this kind have been studied
before in the context of two-dimensional isotropic ferro-
magnets [10]. Only recently was it shown that one also has
skyrmion quasiparticles in an interacting electron system in a
magnetic field, provided the g-factor is smaller than a critical
value [11]. The energy needed to create a skyrmion—anti-
skyrmion pair for g — 0 is only half the energy needed to
create a single spin-exciton with very large momentum. The
charge of a skyrmion is the electron charge e. The number of
reversed electron spins contained in a skyrmion was calcu-
lated in the Hartree—Fock (HF) approximation [12]; the
value depends on the g-factor and is larger than one. Very
recently, the quantum nature of the skyrmion quasiparticle,
i.e. its spin, was derived [13] from a microscopic model by the
generalization of a method used earlier [14] to derive the
Hamiltonian part of the effective Lagrangian.

This paper is organized as follows: in the next section, we
introduce, together with the model, our notation. Then, we
summarize the derivation of the effective Lagrangian which
was already partly described in previous works [14, 13]. The
two following sections are devoted to a short discussion of the
equations of motion and the energy — momentum tensor. In
the last section, we derive a criterion for the applicability of
the HF approximation.

2. Effective Lagrangian

We are studying interacting electrons in two dimensions
moving in a strong magnetic field. The orbital states of the
electrons are confined to the lowest Landau level; we use the
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Landau gauge. Let &; (l;[j ) denote the creation operator of a
state with single particle quantum number p and spin
projection parallel (antiparallel) to the magnetic field. Then,
the Hamiltonian reads

gl > g)expligu(ps —p1)]

q, P1,p2

x [af af dpay + (@ —b)+2al bl byay]. (1)

Here V(q) = exp(—¢*/2)V(q), where V(q) is the electronic
interaction; p{ , = p12 F ¢,. The magnetic length /5; is used as
the unit for lengths and 7 is set to 1. The Zeeman term can
easily be added to (1); here it is omitted for the sake of brevity.

2.1 Hartree — Fock approximation

Next, we describe the HF approximation. The HF ground
state is the Slater determinant of single particle states
|Yurp) =11 AT|0) The creation operators for states in the
lower (upper) HF band, AT (B 1), are determined from those
of the original electronic states by

A4, = Z(Up«,plﬁpl +Vombp)
P

Bl’ = Z(WILPI dp, + Xp,pbp,) ; (2)

P

where the matrices
U= exp (%) cos g exp (@), V= exp (7/’) sin ¢ exp( 1‘1’)
W=—exp(— 7¢) sin ¢ exp (%), X=exp(- 2‘”) cos ¢ exp(f i’)

3)

are parametrized by the Hermitian matrices R,L, 0, and 43 We
define the elements of the latter to be the matrix elements of
the angular functions ¥(r), 0(r), and ¢(r) taken with the states
of the lowest Landau level. Thus, any HF trial state is given by
a choice of these three Euler angles.

From now on, we confine ourselves to HF states which
vary slowly in space. Then, we can express the physical
quantities in question by a gradient expansion. First, we
consider the gradient expansion for the HF expectation
values of the density N(r) and the spin-density S(r). Starting
from the standard definition (cf. Ref. [14]), we express these
expectation values by U and V, ie., by l// 0, and ¢.
Representing these matrices by the functlons Y(r), O(r), and
¢(r) and making repeated use of the composition law Eqn (20)
in Ref. [14], we finally find the results

N(r) = L +3N(r) + O(V°),

2n
dN(r) = 41_75 n(r) - 0,n(r) x o,n(r) 4)
and
S(r) = ﬁ n(r) + O(V*). (5)

The density and spin-density are thus determined by a unit
vector n,

n = (sin 0 cos ¢, sin Osin ¢, cos 0) . (6)

Here, the overbar denotes the average over the area of one
flux quantum, i.e., (we restore the physical dimensions )

0(r) = Jd2h exp( %) 6(r+h). (7)

nl?

Quite naturally, the magnetic length appears here as the lower
cut-off for the wavelength of spatial variations of density and
spin-density. Expressing everything in terms of the averaged
Euler angles simplifies the gradient expansion considerably
since the next leading corrections vanish [0(V4) in Eqns (4)
and O(V?) in Eqn (5)].

Now, we are ready to formulate the effective Lagrangian
L. We consider a time dependent HF state, parametrized by
the time dependent functions y, 6, and ¢. Then, £ consists of
a kinetic and a Hamiltonian part, £ = £ — Ly.

2.2 Hamiltonian part Ly of the effective Lagrangian
We first discuss the Hamiltonian part

Ly = (Pur|H|Pur) . (8)

Since we want to study the interactions of the skyrmions, we
need to push the gradient expansion up to fourth order. One
has to insert the density and spin-density into the HF
approximation of H, Eqn (7) of Ref. [13]. This becomes a
tedious task — even with the simplifications expressed in
Eqns (4) and (5), where the terms of the next leading order
are missing — since one needs the fourth order terms in the
spin-density. Collecting all the terms up to fourth order in
spatial derivatives, we finally arrive at a result which is
surprisingly simple:

Ly = ES(n)J & {‘1‘ S (@) —n-dn x ayn}
O rang +13 )

q

BN@. )

Here, E(0) is found from

2
(r) = [ explia 1)), (10)

(27)

and dN(q) is the Fourier transform of 3 N(r). This expression
for Ly is valid up to and including the fourth order of spatial
derivatives.

We have omitted a term of fourth order which is a total
derivative. Now, we demonstrate that this total derivative
yields a zero contribution to Ly for any solution of the
equations of motion [with a fixed value of the charge

= d?r 3N(r)]. In this case, the term in question can be
expressed by the density ON as

J d’r ASN(r) — 0. (11)

The total derivative does not contribute to the effective
Lagrangian, because ON is non-singular. We have also
checked explicitly the case of a solution with Q = 1, now for
a finite Zeeman coupling in the Hamiltonian and found again
that there is no contribution from this total derivative term.
The various parts in £y have been discussed in Refs
[14, 13]. Here, we want to concentrate on the term of fourth



136 Mesoscopic and strongly correlated electron systems ““Chernogolovka 97"

Physics— Uspekhi 41 (2)

order in spatial gradients in Eqn (9),

J d’r(An)?. (12)

This term leads to an additional interaction between the
skyrmions appearing as solutions of the equations of motion,
see below. We treat (12) in a perturbative way. We consider an
unperturbed solution, which describes two skyrmions sepa-
rated by a distance p. Then, we evaluate (12) and get the
following additional skyrmion —skyrmion interaction energy:

E0
Vsk—sk = const — % p2+0(p™). (13)

This interaction decays as the second power with the distance.
Hence, it can be neglected in comparison with the Coulomb
energy in the absence of screening, but it could be important
for a more realistic screened Coulomb interaction.

2.3 Kinetic part Ly of the effective Lagrangian
We now turn to the calculation of the kinetic part Ly,

Ly = (Yurlid|Pur) - (14)
Starting from this expression, one has to perform the gradient
expansion up to and including the second order in spatial
gradients. Again, with repeated use of the composition law
Eqn (20) in Ref. [14] this is a straight-forward calculation;
there is just one technical detail. As already indicated in Ref.
[13], one should carefully avoid changing the order of
summation over the eigenstates (indices of the matrices),
since these sums do not converge absolutely. Proceeding as
described in Ref. [13] we find the following result:

Lo — % J &2 [0ap(x, 1) + cos (r, 1) 3, (r, 1)]
1 O(,cos 0, ) 50(0,)
— ﬁ[ dzr {W - az |:COSQ a(x’y):| } (15)

Note, that while the Hamiltonian part of the effective
Lagrangian is determined by the unit vector n, all the Euler
angles i, 0, and ¢ enter the kinetic part.

This expression for Ly is valid in first order time
derivatives up to and including the second order spatial
derivatives. In the derivation, we have omitted a term

ia,J d?rdN(r) — 0. (16)

This does not contribute to the effective Lagrangian since it is
the derivative of the topological charge Q. The term
cos O(r, 1) 0,(r, ) in Ly determines the dynamics of the field
n (see below). The appearance of the Hopf term (first term in
the second line in £y) was thoroughly discussed in Ref. [13].
The prefactor of the Hopf term, ® = © determines the spin of
the skyrmion. Following the arguments in the work of
Wilczek and Zee [15], we find that the skyrmion carries a
spin of 1/2.

3. Equations of motion

In this section, we discuss the equations of motion for the
spin-density n(r, ¢) following from the effective Lagrangian

L = Ly — Ly [cf. Eqns (15), 9)]:

1 3
om=nx 3 E(0) <An +1—6 AAn>

— (@:nd, -0, n@x)J &r E(r — 1/ SN(x', 1) . (17)

Here, we have omitted the arguments, r and ¢, of the field n.
The dynamics of the unit vector n are determined by the term
cos00,¢ in L. All the other parts of £y are either total time
derivatives or of a topological character like the Hopf term
and do not contribute to the equations of motion. As is well
known, the value of the charge Q is conserved since this is a
topological invariant describing the mapping S, — S>.
Hence, the term proportional to Q in Ly (the second term in
the first line) also does not contribute to the equations of
motion. Further, the solutions can be classified according to
the value of Q.

3.1 Static solutions

The effective Lagrangian describes both spin-excitons and
skyrmions (spin-textures). Spin-excitons are small angle
fluctuations of n(r) around the state n(r) = const belonging
to Q = 0. Skyrmions, on the other hand, are large angle
solutions of the equations of motion (for a very small g-
factor) with a given non-zero value of the topological charge
Q. As an example, Fig. 1 shows how the spin rotates as one
moves radially through the center of such a skyrmion (Q = 1).
The skyrmion solutions have been well studied in the
literature, cf. Refs [10, 16, 11].

Figure 1. Spin-density n(r) for a Skyrmion state, shown as a function of
r = (x,0).

3.2 Electric field
In the presence of a static and homogeneous electric field Eeyq,
the energy

- J d?r eEeyr SN(r, 1) (18)

is added to Ly. In the equations of motion (17), this gives an
extra term on the r.h.s.:

13 5
— (eE% Oxn —

7 eEZ, Oyn).

ext

(19)

Here, we have restored the physical dimensions. With the
ansatz n(r,7) = n(r — v¢) we see that in the presence of an
external electric field, the static solution of the equations of
motion (17) moves as a whole with a drift velocity given by

1
Eext:—VXB.
4
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4. Energy —momentum tensor

In this section, we give the components of the energy—
momentum tensor T which result from the effective Lagran-
gian. For the sake of brevity, we omit the contribution of the
Coulomb term, the last term in £y. Then we find for the
energy density

1
Too = - E
0 =7 (0)

) {‘l‘a;y(a“n)z —n- 0 x Oyn — % (A“)z} . (20)

Note that in our normalization,

d*r
J2— Too = Ly.
T

The energy current is given by

1
To, = —= EO
= — EO)
x {(dm) - (3,n) — 2e,4n - Om x Ogn + O(3, V) }. (21)
The momentum density is
1 - _
Ty = 3 (0u) + cos 60,0) . (22)

The momentum density and the energy current are different,
since the effective Lagrangian is first order in time derivatives.
In the absence of Lorentz-invariance, the usual symmetry

Toy, = Ty 1s missing. The components of the momentum
current are
1 - _
Ty = ) (0, + cos 00, ¢)
1 2 2 4
16 E(O){(axn) —(©,m)"+0(V )} , (23)
(T, is given by the substitution 0, < 0,) and
1
Ty = Ty = = EO){@m)@m) + O(V*)}. (24)

Now, an infinitesimal spatial translation in the presence of a
static and homogeneous electric field Eey, yields

0,To + 03T, = —2meE, ON. (25)

ext

We collect the terms containing a time derivative and again
use the ansatzn(r, ) = n(r — v¢). Now, we find that the terms
in T, and T,p, which contain the Euler angles, combine to
form the Lorentz force and we are led to the same conclusion
and the same result for the drift velocity v as in the previous
section.

5. Fluctuations around the HF approximation

Our considerations were restricted to the HF approximation
and hence left open the question of in which regime the HF
approximation becomes applicable. In order to come to a
qualitative answer, we now calculate the size of the fluctua-

tions of the magnetization

. 1 e PN
$7 =5 (aja,—byb,) (26)
q
in the HF state. Denoting the fluctuation by
88 =87 — (Yur|S*| Pur) (27)

by straight-forward evaluation of the expectations, using that
in the HF approximation, the A-states are filled and the B-
states are empty, we get

(Pur|(857)| Pur)

L

" 8n (28)

J Er [ (0 + 0’ () + O(VY)].

As the result, for the homogeneous HF ground state
n*(r) = 1, the fluctuations are strictly zero; this is to be
expected, because the homogeneous HF state is an eigenstate
to S°. For the one-skyrmion state, on the other hand, the
result is best expressed in terms of the number of reversed
spins Neey = N/Z — §7. We have

1

(PHE|Neew|PrrF) = EJ d*r[1—n(r) +O(VH]. (29

Since the main contribution to the fluctuation (28) comes
from large r in the integral where n* = 1,
~ N .

(Pur|(8Nrey)’|WHF) 22 (PHF|Nrev| PHE) - (30)
Thus, the relative fluctuation is given by the inverse of the
root of the number of reversed spins. The number of reversed
spins, as the result of the competition between Coulomb and
Zeeman energy, increases in proportion to 1/g%[11] as the g-
factor becomes small. Therefore, the relative fluctuation
decreases as g!/3 as the g-factor becomes small and this

defines the limit in which the HF approximation becomes
exact.

6. Conclusion

In this work, we derived the effective Lagrangian describing
the low-lying excitations in a system of interacting electrons in
two dimensions and a strong magnetic field at small g-factor
for the case of a filling factor of one. While the effective
Lagrangian determines the spin of the skyrmion quasiparti-
cles and describes their interaction, one does not get a finite
result for the skyrmion’s mass at this level of the theory.
Future work will show whether this is due to the projection
onto the lowest Landau level, or to the HF approximation.
Yu.B. thanks the PTB for hospitality and acknowledges
support by the U.S. Civilian Research and Development
Foundation under Award RP1-273, and RFBR Grant 97-
02-16042.
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Nonlinear screening, and spin
and cyclotron gaps in the 2D electron gas
of GaAs/AlGaAs heterojunctions

V T Dolgopolov, A A Shashkin, A V Aristov,
D Schmerek, W Hansen, J P Kotthaus, M Holland

We use AlGaAs/GaAs single-heterojunction samples that
contain, apart from a metallic gate on the front surface, a
highly doped (4 x 10'® cm~3 Si) layer of thickness 200 A in the
bulk of the GaAs. This layer remains well-conducting even at
very low temperatures and serves as a back electrode.
Whereas in standard AlGaAs/GaAs heterostructures the
electrons of a 2DEG originate from a doped layer in the
AlGaAs barrier, the 2DEG in our samples is created in a
similar way to Si MOSFET’s: the 2DEG is field-effect-
induced at a positive bias V', applied to the front gate with
respect to the back contact. The bottom of the conduction
band in our structure is shown in the inset to Fig. 1. A
blocking barrier between the gate and the 2DEG is formed by
a short-period GaAs/AlAs superlattice capped by a thin
GaAs layer. A wide but shallow tunnel barrier between the
back electrode and the 2DEG is created by the weak residual

| | Tunnel
Blocking) Ibarrler
|barrier K |
Gate 2DES |
4+ Back
| electrode /./
(o]
=)
Q
S
£
2 L
0
0.7 0.9 1.1

Ve V

Figure 1. Electron density in the 2DES as a function of the gate voltage in a
magnetic field B =8 T. A blow-up of the v = 2 plateau region shows the
way to determine the plateau width. A sketch of the band diagram of the
device is displayed in the inset.

p-doping of the GaAs layer. The electron transfer across this
tunnel barrier establishes an equilibrium between the back
contact and the 2DEG.

By modulating V, with a small ac voltage, we measure the
ac current through the sample. The real part of the current
depends on the tunnel resistance [1, 2] while the imaginary
component is determined by the capacitance of the structure.
Unlike in earlier magneto-capacitance measurements, we
avoid spurious lateral transport effects using the back
electrode parallel to the 2DEG. From this back electrode the
electron system is charged through a tunnel barrier, regard-
less of the value of g, in the 2DEG.

In our experiments [3] we studied the imaginary compo-
nent of the ac current through the sample as a function of the
gate voltage (C— V curves). We worked in the frequency range
100 Hz to 10 kHz at magnetic fields of up to 16 T and a
temperature of 25 mK. The amplitude of the ac voltage did
not exceed 1 mV and corresponded to the linear regime. The
majority of the measurements presented here were performed
on three samples. The gate areas were 9200 um? for one, and
870 pm? for the others.

Typical experimental dependences of the low-frequency
sample capacitance upon gate voltage are presented in Fig. 2.
The data were recorded at temperature =~ 25 mK, but we
checked that below 1 K all the C(V') curves were temperature
independent. Already for small magnetic fields the data
clearly show the typical filling factor dependence of the
capacitance signal: the capacitance signal oscillates with
minima at integer filling factors, and an enhanced capaci-
tance with respect to the zero field value occurs between the
minima. This behaviour reflects the strong modulation of the
thermodynamic density of states (DOS) by the magnetic field.

In order to convert the low-frequency C—V curve
Ciow(Vy) into the dependence of DOS on the gate voltage,
we use the following procedure: (i) We find the high-
frequency limit of the sample capacitance Chign(V,) (see
Fig. 2). (ii) The distance xy, as a function of gate voltage is
determined from the C— ¥V curve at B =1 T using relation [1]

2eB J Ciow — Chigh dv (1)
—_— = —_—— g-
h exyl)ar,  Chign
2
C, pF
B :
SES 856 00| o8[S
ol pee & & °
o%gz: ® %zo % £ % °
Co
$§ E|e B ¢ °
° o
° o
g o
o
° o
o
: %
(-]
0,
1 €
Chigh
I I
0.8 10 VoV

Figure 2. Experimental gate voltage dependences of the structure capaci-
tance on the small area sample in different magnetic fields: B = 0 (solid
line), 1 T (open circles), 5 T (dots), 9 T (bold line). The value used for
Chigh (V) is also shown.
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