
in the figure. The 2DES remains completely polarized up to
n � 2=3 (accounting for the concentration dispersion). Then
electrons with spins inverted with respect to the field arise in
the system, and the polarization decreases. For a further
increase in n the dependence Sz=S

max
z has a minimum at

n � 0:8. Note that all the experimental curves in Fig. 5
virtually correspond to the universal dependence Sz=S

max
z

on n (accurate to the dispersion of the filling factor
s=�eHn=hc�, which is different for the curves measured at
various fields Hn). The universal behavior of the spin
polarization in the vicinity of n � 2=3 is demonstrated in the
inset of the Fig. 5 by the comparison between the experi-
mental dependencies of DC on ns and the data calculated for
the case when the system is completely polarized and
dSz=dns � ÿ1=2 in the absence of the concentration disper-
sion at n4 2=3, while at n > 2=3 all the electrons involved in
the system have spins inverted with respect to the field, i.e.
dSz=dns � 1=2. The calculated curves in the inset are obtained
by the chemical potential jump changed by the tiltedmagnetic
field and averaged over the Gaussian distribution with the
dispersion earlier determined, s � 4:2� 109 cmÿ2. The
dependence of Sz=S

max
z on n, corresponding to the values of

dSz=dns used in the calculations, is shown by the dashed line
in Fig. 5 for the system with zero dispersion. Note that the
jump of the derivative dSz=dns at n � 2=3 corresponds to the
completely spin polarized state of the 2DES at this filling
factor and the quasi-hole (or quasi-electron) excitations with
spin coinciding (reverted) with the magnetic field, as was
predicted in Ref. [15] by numerical calculations for systems of
few particles.

The universal dependence Sz=S
max
z on n, presented in

Fig. 5, demonstrates that the assumption of the indepen-
dence of the 2DES spin and the Zeeman energy, which was
made to derive (4), is fulfilled under the conditions of our
experiment. We show that this assumption actually results in
the universal dependence Sz=S

max
z on n and vice versa. If the

Coulomb energy at fixed filling factors and relative polariza-
tion is proportional to e2n

3=2
s [1], then the spin-dependent part

ES of the total energy of the 2DES ground state can be written
as

ES � e2n3=2s f
�
n;

Sz

ns

�
ÿ gmBHSz :

Here f is a function of the variables n and Sz=ns. The
equilibrium value of Sz should be found by the condition
qES=qSz � 0. It is easily seen that the universal dependence of
Sz�n�=ns on n results from the solution of the equation only
when the Zeeman effect can be neglected and the spin value
can be found from the equation qf=qSz � 0. Additional
experimental evidence in favor of the discussed assumption
is the observation of the linear dependence of DC on
�HÿHn� predicted by Eqn (4) for large changes of the total
fieldH. The corresponding data are shown in the inset of Fig.
4. The normalized values of DC=�HÿHn� actually corre-
spond to the universal dependence within experimental error.

Thus, by capacitance spectroscopy, we have measured
quasi-particle charge for the FQHE and the 2DES spin
polarization. We have discussed the key assumptions and
restrictions of the method.

This work was supported by grant INTAS-RFBR 95-
0576 and the Russian Program ``Statistical Physics''. One of
the authors (M.O.D.) is thankful to the Soros Foundation for
a post-graduate scholarship.
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Non-singular vortex-skyrmions
in a two-dimensional electron system

S V Iordanski|̄

The problem of the states of a thermodynamical system of
two-dimensional interacting electrons in a strong magnetic
field is still not solved completely. Various qualitative and
phenomenological results have been obtained and extensive
experimental material has been accumulated.

Recently considerable attention has been focussed on the
description of states at the Landau level with of filling factor
of 1. This Landau level in a strong magnetic field can be
considered in the Hartree ±Fock approximation with the
Slater determinant corresponding to a complete filling of the
level. In this case the negative exchange energy causes
ferromagnetic ordering of spins.

In a ferromagnet special macroscopic excitations may
form corresponding to a slow rotation of the electron spin in
space. This produces a topologically nontrivial mapping of a
two-dimensional plane with long-range ferromagnetic order-
ing onto the sphere of average spin directions [1, 2]. Similar
states were suggested for the two-dimensional electron gas in
a strong magnetic field [3, 4].

Leaving aside phenomenological and numerical data, we
will concentrate on the results obtained by a gradient
expansion of the rotation matrix [5 ± 7]. These papers use the
approximation of wave functions projected onto a single
Landau level.

Let us point out the main problems of this approach. The
authors of Ref. [5 ± 7] use an electron spin rotation matrix
depending on two Euler angles. However in this case, one of
the Euler angles must be written as

a � mj� ~a�j� ; �1�
where ~a is a regular periodic function of the polar angle j in a
certain coordinate system, m coinciding with the mapping
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rank. But the rotation matrix must have a point singularity
and, in general, may be not single valued. The Fourier
expansion of the rotation matrix and its derivatives also has
a singularity, which is not taken into account in the
calculations performed under the assumption of all deriva-
tives being small. A non-singular smooth rotation matrix
depending on two Euler angles has a zero mapping rank and
cannot describe a skyrmion. The replacement of the rotation
matrixU�r� by thematrix ~U as performed in Refs [6, 7], acting
on the functions of a single Landau level, also presents serious
difficulties. In particular, it causes the projected matrix ~U�r�
to lose its unitary character U��r�U�r� � 1.

All these difficulties bring about a desire to seek a way to
solve the problem, which would directly use only rotation
matrices smoothly and slowly changing in space, whichwould
be free of the indicated drawbacks and, at the same time,
would enable one to calculate the energy and other physical
quantities in themain (first and zero) order with respect to the
external magnetic field. With this object in view we will
consider the complete differential SchroÈ dinger equation not
restricting ourselves to the projection onto a single Landau
level.

Let us consider the complete rotation matrix parame-
trized by three Euler angles

U�r� � Uz

ÿ
g�r��Uy

ÿ
b�r��Uz

ÿ
a�r�� ;

Uz�a� � cos
a
2
� i sin

a
2
sz ;

Uy�b� � cos
b
2
� i sin

b
2
sy ;

where sx, sy, sz are the Pauli matrices. Far away from the core
at finite electron g-factor the average spin must be directed
along the magnetic field. Therefore the angle b, measured
from the direction of the magnetic field must rapidly
(exponentially) vanish as r!1. It is assumed that the
matrix U�r� has no singularities for any r, which means the
absence of singularities in the matrices

Ak � iU�
qU
qxk
� O l

k�r�sl :

Expressions for O l
k can easily be obtained by direct differ-

entiation of U�r�:

O z
k �

1

2
�qka� cosb qkg� ;

O x
k �

1

2
�sin b cos a qkgÿ sin a qkb� ;

O y
k �

1

2
�cos a qkb� sin b sin a qkg� :

The unit vector of the average spin direction
n � �cos b; sin b cos a; sin b sin a� is obtained from the z-
direction by rotation through an angle a around the z-axis
and then, through an angle b around the y-axis. In the case of
a nonzero mapping rank the angle a�r� has a singularity in
space and O l has an irremovable singularity at two Euler
angles �a; g � 0; b�. However, this singularity can be elimi-
nated andO l

k�r�may be non-singular, if the singular point g�r�
coincides with the singularity in a�r� and occurs at the point
where cos b � ÿ1. Thus, the matrix U must include all the

three Euler angles and the angle a must have a vortex
singularity with an integer quantum number, since the
rotation matrix is single valued. Therefore it would be more
correct to speak of non-singular vortices whose core is
determined by a skyrmion, by analogy with 3He [8], but as
distinct from 3He, the vortex numbers are not necessarily odd.
The integral

1

2p

�
rotO z d2r � Q

is a topological invariant and expressed directly through
changes in the phase of a in bypassing the contour of large
radius. The smooth rotation matrix U�r� enables one to
perform a unitary transformation of electron spinors
c � U�r�w�r� to new spinors w�r�, which can be used in
addition to the initial ones w.

Though this transformation can be performed for
spinorsÐoperators of secondary quantization in the general
case, for simplicity we will consider the transformation of the
simplest Hartree ±Fock equation with a local exchange
interaction

i
qc
qt
� 1

2m
�ÿiHHÿ A0�2 ÿ gn � rc ;

where g is the exchange constant, and n�r� slowly changes in
space. We use the system of units where

�h � B0 � l 2B �
c�h

eB
� 1 :

Differentiating the transformation formula and multi-
plying by U�, we get

ÿi qc
qt
� 1

2m
�ÿiHHÿ A0�2wÿ i

2m
U�HHU�ÿiHHÿ A0�w

ÿ 1

2m
U�HH2Uwÿ gU�n � rUw :

Adding to this expression the quantity

ÿ 1

m

ÿ
U��HHU�U�HHU� �HHU��HHU� � 0 ;

which is zero due to the unitarity condition �U�U � 1,
HHU�U�U�HHU � 0� and choosing the rotation matrix
such that U�n � rU � sz, we can write the equation for w in
the form

i
qw
qt
� 1

2m

ÿÿiHHÿ A0 � O lsl
�2wÿ gszw� O l

tslw : �2�

This equation is a transformation of the initial one and
completely equivalent to it. However, as distinct from the
initial equation, its main part (at O l � 0) corresponds to the
SchroÈ dinger equation in a uniform magnetic field with a
uniform exchange term. Small terms containing the Zeeman
energy and the Coulomb interaction can be added to the
expression obtained, but they are irrelevant for us as yet.

We see that the equation for w now involves the spin-
dependent vector-potential and additional potential energy
expressed through O l

k which is assumed to be small. This
enables us to use the corresponding perturbation theory. In
this case the main undisturbed part of the equation has the
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Green's function

G0�tÿ t 0; r; r 0� �
�
do
2p

dp

2p
gs�o� exp

�
io�t 0 ÿ t��

� exp
�
ip�yÿ y 0��Fsp�x�Fsp�x 0� ; �3�

where Fsp�x� are oscillator functions in the magnetic field at
the chosen Landau gauge. Thematrices gs�o� correspond to a
complete filling of the zero Landau level (we restrict ourselves
to this case) for the spin upward states

g0 � 1� sz
2

1

o� gÿ id
� 1ÿ sz

2

1

oÿ g� id
; d! �0 :

�4�

The states with s > 0 are all empty:

gs � 1

oÿ soc � gsz � id
: �5�

In these formulae we have introduced the chemical potential
m � �hoc=2, corresponding to the filling of the lowest states.
The calculation of various physical quantities using the
perturbation theory is standard and uses the diagram
expansion of the total Green's function G and the formula
S � i Tr lnG for the action. The details of the calculation are
published in Refs [9 ± 11]. The result for the energy and
electron density in the lowest order of the perturbation
theory has a simple physical meaning, i.e. only rotO z, adding
to the external magnetic field Beff � B0 ÿ rotO z�r� is sig-
nificant. Other quantities O x, O y contribute only in high
order terms. The density r corresponds to the complete filling
of the Landau level in the local effective field and represents
the local density of states

r � 1

2p
Beff

and the change in the number of electrons by dN � ÿQ. In
this case the total additional thermodynamic energy of all the
electrons in the main order with no regard to changes in the
potential energy has the form

dhHÿ mNi � ÿ �hoc

2
Q :

This fact suggests that one should take corrections to the
kinetic energy into account and solve the corresponding
differential equations rather than take it to be constant as is
usually done in the approximation of functions projected
onto the zero Landau level. In this case the zero Landau level
is actually filled but in the effective magnetic field varying in
space. Note that in the absence of a skyrmion atQ � 0 the net
correction to the kinetic energy is lacking. Corrections to the
density enable one to find the corresponding terms in the
potential and exchange energy [11], so that the overall change
in the thermodynamic energy on formation of a vortex-
skyrmion has the form

F � dhHÿ mNi � ÿ �hoc

2
Q� 3e2

2lB

���
p
2

r
Q

� e2

2

�
rotOz�r� � rotOz�r 0�
�2p�2jrÿ r 0j d2r d2r 0

�
��

J

2

�
qni
qrk

�2

� gB � n 1

2p�lB�2
�
d2r : �6�

This expression contains the change in the exchange energy
caused by the changed effective magnetic field, Coulomb
energy, the energy associated with heterogeneous spin
direction, and the Zeeman energy (the last term) where

J � 1

16
������
2p
p e2

lB
:

The overall energy corresponds to the Hartree ±Fock elec-
tron energy in the field of the non-singular rotation matrix
U�r�. There are some corrections to this expression associated
with zero oscillations of the rotation matrix itself. To
calculate these, one should treat collective oscillations. We
will restrict ourselves to the consideration of the most
significant correction related to the motion of a charged
vortex-skyrmion as a whole in the external magnetic field.

For this purpose we should find the skyrmion effective
mass. If the skyrmionmoves as a whole, the rotation matrix is
the function U�rÿ X�, where X�t� is the position of the
skyrmion center. This yields an additional small term
O l

tsl � ÿ _X �X lsl � H1 in the Hartree ±Fock equations (2).
In the isotropic case the corresponding linear in _X term of the
skyrmion integrated action becomes zero and the expansion
of the action starts with the second order term of the
perturbation theory

dS � i

2
Tr �H1G0H1G0� :

Taking into account only low order termswith derivatives, we
present this expression, with the help of Eqn (3), in the form

dS � i

2
Tr

�
�O lsl _X�g0�o��O l 0sl 0 _X�g0�o� exp�iod� do

2p
d2r

2p
dt :

Contributions are made by terms with poles on opposite sides
of the real axis o. The calculation of Tr accounting for the
isotropy yields

dS �
� � _X�2

2g

X
l6�z

�O l�2
2

d2r

2p
dt :

Using formulae (1), we can rewrite this expression in the form

dS �
�
dt
� _X�2
8g

1

4p

��
qni
qrk

�2

d2r :

It is known [2] that the skyrmion ground state corresponds to
the value

1

2

��
qni
qrk

�2

d2r � 4pjQj ;

which gives

dS �
�
m _X 2

2
dt ; m � jQj

2g
:

Besides the kinetic energy, the Lagrangian contains a term
with the vector-potential of the external field �e=c�Q _X � A0

which can also be derived by differentiation of the phase of
the wave function due to transferring the charge Q. Thus, the
Lagrangian for the motion of the skyrmion as a whole has the
form

L � m _X 2

2
� e

c
Q _X � A0 :
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We can introduce the generalized momentum Pi � qL=q _Xi

and quantize the problem, assuming the standard commuta-
tion relations �PiXi� � i�h to be fulfilled. This yields the
cyclotron frequency of the skyrmion as a whole �hos � 2g
and the minimum energy Es � g. Thus, in experiments the
skyrmion should exhibit a cyclotron resonance at a frequency
2g. The quantity g is determined as the exchange energy per
electron, in the case of a completely filled Landau level

g � e2

lB

������
2p
p

:

The energy g must be added to expression (5) obtained
above for the total energy.

It is also interesting to find a term with the Hopf invariant
in the action which, according to modern views, determines
the skyrmion statistics [11]. For this purpose we should
calculate the terms containing one time-dependent O l

t and
two space-dependent O l in the expansion of the action in
terms of O l. Calculations up to the third order are rather
cumbersome and require the consideration of numerous
diagrams, the second-order diagrams also contributing,
since their non-local character in time and space must be
taken into account [9, 10]. We present only the final result
corresponding to the `fermion' character of vortex-sky-
rmions:

SH � pH ; H � 1

2p2

�
e ljmOtOj � Ol d

2r dt ; �7�

where e ljm is the unit antisymmetric third-rank tensor. The
integer Hopf invariantH is expressed in terms ofO l [12]. This
result does not coincide with that obtained within the method
of Landau functions projected onto the zero level [7] which is
a sum of several spatial derivatives. At the same time, formula
(7) has a standard form and agrees with that suggested in note
[13].

In conclusion we emphasize once again that the solution
of differential equations of theHartree ±Fock approximation
is necessary, since it determines the discrepancy between our
results and those obtained by projection onto a single Landau
level, when the differential form of the kinetic energy in the
SchroÈ dinger equation is replaced by a constant energy. It is of
special importance in the calculation of the thermodynamic
energy of the vortex-skyrmion where the additional term
�ÿ�hoc=2�Q appears, which can lead to spontaneous appear-
ance of vortices and a rearrangement of the ground state in a
rather strong magnetic field.

The study was partially supported by the grant RPL-273
US CRDF for the Independent States of the FSU and the
grants INTAS 95-I/RU-675 and RFBR (95-02-05883).
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Microscopic derivation of the effective
Lagrangian for skyrmions in an interacting
two-dimensional electron gas
at small g-factor

W Apel, Yu A Bychkov

1. Introduction

Electronic systems confined to two dimensions and exposed
to a strongmagnetic field continue to be studied intensively in
both experiment and theory [1]. Due to the magnetic field, the
electronic single particle energies form degenerate Landau
levels and for the physical properties the electron ± electron
interaction is crucial. Recently, the spin degree of freedomhas
attracted a lot of attention. For a long time, it was accepted
that the basic excitations are of particle ± hole kind (spin -
excitons), when the cyclotron energy is much larger than the
characteristic Coulomb energy [2 ± 5]. However, recent
experiments performed at or near a filling factor of one,
where one spin - split Landau level is completely filled, have
changed this picture. The activation energy of the resistance
measured under pressure [6], the spin polarization measured
by magnetoabsorption spectroscopy [7], transport experi-
ments in a tilted magnetic field [8], and measurements of the
Knight shift with optically pumped NMR [9] are all taken as
evidence that there are new basic excitations, the skyrmions.
Theoretically, excitations of this kind have been studied
before in the context of two-dimensional isotropic ferro-
magnets [10]. Only recently was it shown that one also has
skyrmion quasiparticles in an interacting electron system in a
magnetic field, provided the g-factor is smaller than a critical
value [11]. The energy needed to create a skyrmion ± anti-
skyrmion pair for g! 0 is only half the energy needed to
create a single spin-exciton with very large momentum. The
charge of a skyrmion is the electron charge e. The number of
reversed electron spins contained in a skyrmion was calcu-
lated in the Hartree ±Fock (HF) approximation [12]; the
value depends on the g-factor and is larger than one. Very
recently, the quantum nature of the skyrmion quasiparticle,
i.e. its spin, was derived [13] from a microscopic model by the
generalization of a method used earlier [14] to derive the
Hamiltonian part of the effective Lagrangian.

This paper is organized as follows: in the next section, we
introduce, together with the model, our notation. Then, we
summarize the derivation of the effective Lagrangian which
was already partly described in previous works [14, 13]. The
two following sections are devoted to a short discussion of the
equations of motion and the energy ±momentum tensor. In
the last section, we derive a criterion for the applicability of
the HF approximation.

2. Effective Lagrangian

We are studying interacting electrons in two dimensions
moving in a strong magnetic field. The orbital states of the
electrons are confined to the lowest Landau level; we use the
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