
state. Such an analysis performed in [13] for rc has shown that
the conductivity continues to follow the power law with
s0 ! 0, while the alternative logarithmic representation
becomes inappropriate.

Therefore, a description of the normal state in
YBa2Cu3O6�x as that of a 3D system in the vicinity of the
metal ± insulator transition seems to be preferable, and the
conductivity in close vicinity of the MIT may be described by
a scaling temperature dependence. The normal state under-
lying superconductivity is suggested to be metallic, while the
M± I transition is located on the phase diagram at a distance
from the SC region. Further studies are obviously highly
desirable, and the fact that the normal state appeared to be
just the same on both sides of the SC ±NSCphase boundary is
worth special notice, since it provides a possibility to deal with
the problem not complicated by superconductivity.

ANL gratefully acknowledges the warm hospitality of the
Institute of Solid State Physics where this work was mainly
carried out.
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Quantum êuctuations and dissipation
in thin superconducting wires

A D Zaikin, D S Golubev,
A van Otterlo, G T ZimaÂ nyi

1. Introduction
It is well known that fluctuations wash out the long-range
order in low dimensional superconductors [1]. Does this result
mean that the resistance of such superconductors always
remains finite (or even infinite), or can it drop to zero under
certain conditions? A lot is known about the behavior of two-
dimensional (2D) superconducting films where the physics is
essentially determined by the Kosterlitz ± Thouless ± Bere-
zinskii (KTB) phase transition [2]. In quasi-1D superconduct-
ing wires below the (mean field) critical temperature Tc a
nonzero resistivity can be caused by thermally activated phase
slips (TAPS) [3]. This effect is of practical importance at
temperatures close to Tc where the theoretical predictions
have been verified experimentally [4]. However, as the
temperature is lowered the number of TAPS decreases
exponentially and no measurable resistance is predicted by
the theory [3] for T not very close to Tc. Nevertheless, the
experiments by Giordano [5] clearly demonstrate a notable
resistivity of ultra-thin superconducting wires far below Tc.
More recently strong deviations from the TAPS prediction in
thin (quasi-)1D wires have been also demonstrated in other
experiments [6].

The natural explanation of these observations is in terms
of quantum fluctuations which generate quantum phase slips
(QPS) in 1D superconducting wires. However, first estimates
for the QPS tunneling rate derived from the time-dependent
Ginzburg ±Landau based theories [7, 8] turned out to be far
too small to explain the experimental findings [5] (see [9] for
more details).

More recently, the present authors [9] developed a
microscopic theory describing the QPS phenomenon and
demonstrated that in sufficiently thin wires QPS effects are
well within the measurable range and may lead to a nonzero
wire resistivity even at T � 0. Moreover, the existence of a
new superconductor-to-metal (insulator) phase transition as
a function of the wire thickness was pointed out in [9].

In the present paper we extend our theory [9] in several
important aspects, in particular providing a more detailed
discussion of the QPS action in various limits and paying
attention to dissipative effects outside the QPS core. We also
discuss a possible explanation of the recently observed
negative magnetoresistance [10] within the framework of our
QPS scenario.

2. The model
Our calculation is based on the effective action approach for a
BCS superconductor [11]. The starting point is the partition
function Z expressed as an imaginary time path-integral over
the electronic fields c and the gauge fields V;A, with
Euclidean action

S �
�
d3r

�b
0

dt
�

�cs

�
qt ÿ ieV� x

�
Hÿ ieA

c

��
cs

ÿ g�c"�c#c#c" � ieVni � E2 � B2
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�
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Figure 4. Plots of the conductivity sab � 1=rab versus T 1=2. The dotted
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for the `quenched' state. Inset: temperature dependence of the conduc-

tivity on a double-logarithmic scale.
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Here b � 1=T, x�H� � ÿH2=2mÿ m, eni denotes the back-
ground charge density of the ions, and �h � kB � 1. A
Hubbard ± Stratonovich transformation introduces the
energy gap D as an order parameter and the electronic
degrees of freedom can be integrated out. What remains is
an expression for the partition function in terms of an
effective action for D, V and A, with a saddle-point solution
jDj � D0 and V � A � 0. We obtain

Seff �
�
d3r

�b
0

dt
� jDj2

g
� E2 � B2

8p

�
ÿ Tr ln bGÿ1 ;

bGÿ1 � �qt � i

2
fH; vsg

�
1̂� jDjŝ1

�
�
x�H� �mv2s

2
ÿ ieF

�
ŝ3 ;

where the superfluid velocity vs � �1=2m��Hjÿ 2eA=c�, the
chemical potential for Cooper pairs F � Vÿ j=2e, and
D � jDjeij have been introduced.

3. Effective action for QPS
The effective theory is constructed by expanding up to second
order around the saddle point in F and vs to obtain the
electronic polarization terms [9, 12]. A phase-slip event in
imaginary time involves a suppression of the order parameter
in the phase slip core (i.e. inside the space-time domain
x4 x0, t4t0), and a winding of the superconducting phase
around this core. The total QPS action SQPS can be presented
as a sum of a core part Score around the phase slip center for
which the condensation energy and dissipation by normal
currents are important, and a hydrodynamic part outside the
core Sout which depends on the hydrodynamics of the
electromagnetic fields and dissipation due to the presence of
quasiparticles above the superconducting gap.

In what follows we will consider sufficiently thin wires
with cross sectionS < l2L, where lL is the London penetration
length of a bulk superconductor. Due to scattering on
impurities and boundary imperfections the electron mean
free path l in such wires is typically much shorter than the
coherence length of a clean sample l5 x0 � vF=2D. Here we
restrict our attention to this physically important diffusive
limit. Assuming that outside the QPS core the magnitude of
the order parameter field is not suppressed jDj � D0 for Sout

we obtain [9, 12]

Sout �
�
dxdt

�
C� C0

2
V 2 �

eC
2
F2 � 1

2Lc2
A2 �m2v2s

2e2 eL
�

� S

2b

X
o<1=t0

�
dx

s�o�
joj jqxV�o; x� �

ioA�o; x�
c2

; �1�

where the integration runs over jxj > x0; jtj > t0. In general
the kinetic inductance eL and the kinetic capacitance ~C in (3)
depend on the frequency o and the wave vector k [12]. In the
limit of low o and small k we have eL � 4pl2L=S and
~C � Se2N0ns=n, where ns and n are respectively the super-
conducting and the total electron density. In (3) we also
introduced the capacitance C0 � Se2N0nn=n which we will
drop from now on in the limit ns 4 nn � nÿ ns at low T.

The geometry and screening by dielectrics outside the wire
are accounted for by the capacitance per length C and the
inductance times length L that replace the E2 � B2-term. [For
thin wires transverse screening is irrelevant and so we retain

only one component of the vector potential]. The expressions
for C and L also depend on the relevant space and time scales
as well as on the wire geometry. In the ideal case of a
cylindrical uniform wire for kr0 5 1 (r0 is the wire radius)
one has C � er�2 ln�1=kr0��ÿ1 and L � 2 ln�1=kr0�=c2, c is the
speed of light and er the dielectric constant of the substrate. In
practice the details of the wire geometry can be very
complicated (e.g. the cross section S is not constant along
the wire, i.e. the wire is never uniform) and, on top of that,
other (metallic) objects may be located in the vicinity of the
wire. The above effects lead to an effective cutoff of the
logarithmic dependence on k at the scale k � 1=d with d
depending on experimental details (e.g. d may be a typical
scale of the wire inhomogeneity or the distance to the metallic
groundplane). Here we will stick to a simplified model and
assume C � er�2 ln�d=r0��ÿ1 to be constant at all relevant
distances. As to L, its particular form turns out to be
unimportant for thin wires with

���
S
p

< lL in which case the
kinetic inductance always dominates eL4L. In addition to
the above kinetic and electromagnetic effects, expression (3)
accounts for dissipative currents outside the core. The
corresponding contribution is described by the last term in
Eqn (3).

As to the core contribution, it consists of two terms

Score � b

2
N0D2

0St0x0 �
S

b

X
joj>tÿ1

0

x0s
joj

����E�o; x02
�����2 : �2�

The first part is the condensation energy that is lost inside
the core and the second part defines the energy of dissipative
currents in the core during a phase slip event. Here s is the
normal state conductance of the wire: we already made use of
the fact that the typical QPS frequency is sufficiently high [9]
1=t00D0, therefore dissipative currents inside the core are
insensitive to superconductivity. It is also important to
emphasize that no gradient terms for D (both in space and in
time) should be added to (4). Such terms can be recovered
only by expanding the effective action in powers of o and k.
For fast processes (like QPS) this expansion obviously
becomes incorrect and it is necessary to carry out a more
careful treatment of polarization terms in the action. For the
QPS event with 1=t0 > D0 this treatment yields [12]
b � ln

�
1=�2D0t0� � x2=x20

�
, where x � ��������������

D=2D0

p
is the coher-

ence length of a dirty superconductor, D � vFl=3.

4. Variational procedure
In order to evaluate the QPS action SQPS � Score � Sout we
will use a variational approachwhich consists of several steps.

We first minimize the hydrodynamic contribution Sout

with respect to the potentialsV andA. As a result we arrive at
the saddle point conditions which link the potentials to the
phase variable outside the core. Making use of the fact that
for thin wires one has eL4L, eC4C, we obtain in the Fourier
representation

Vo;k �
iojo;k=2e

1� s�o; k�Sk2= eCjoj ; �3�

Ao;k � ÿik
cLjo;k

2e eL : �4�

With the aid of (3) and (4) one can rewrite the action Sout

in terms of only the phase variable j�t; x�. Then minimizing
this part of the action with respect to j and keeping in mind
the identity qxqtjÿ qtqxj � 2pd�t; x� (which follows from
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the fact that after a wind around the QPS center the phase
should change by 2p) we find

Sout �
�
joj<1=t0

do
2p

�
jkj<1=x0

dk

2p
G�o; k� : �5�

The general expression for the function G in (5) is somewhat
tedious and is not presented here. In the following limits
substantial simplifications can be achieved:

(1) o4s�o; k�Sk2=C. The function (5) has the form

G�o; k� � p2=2e2

k2=C� eLo2
: �6�

(2) s�o; k�Sk2= eC5o5 s�o; k�Sk2=C. We find

G�o; k� � p2s�o; k�S
2e2joj

1

1� eLs�o; k�Sjoj : �7�

(3) o5 s�o; k�Sk2= eC. The function G again acquires the
form (6) but with C substituted by eC.

As a last step of our variational procedure we minimize
the total QPS action Score � Sout with respect to the core
parameters t0 and x0. Let us first neglect dissipation by
formally putting s � 0 in (2) and (5). Then solving the
equations

qSQPS

qt0
� 0;

qSQPS

qx0
� 0

and treating b as a constant (i.e. neglecting its weak
dependence on t0 and x0) we obtain

x0 � c0t0 �
��������������������������

p

4e2 ~LSbN0D2
0

s
; �8�

where c0 � 1=� eLC�1=2 is the velocity of the Mooij ± SchoÈ n
mode [14] which determines the space-time asymmetry of the
core. The total action for a single QPS reads

S
�0�
QPS �

m
2
� m ln

�
R

2x0
� R

2c0t0

�
; �9�

where R2 � X 2 � c20b
2, X is the wire length and

m � �p=4e2��C= ~L�1=2. The first term in (9) represents the
core action Score, the second term defines Sout (for simplicity
we chose the cutoff by integrating outside the ellipse
�x=x0�2 � �t=t0�2 > 1). Substituting ~L � 4pl2L=S �
1=2pe2N0D0DS into (8) at T5D0 we find
x0 � c0t0 � px=

���
b
p

, i.e. the core size x0 is of the order of the
superconducting coherence length x, and the QPS time
t0 � x=c0 5 1=D0. This result justifies the above conjecture
that the typical QPS frequency is higher than D0 and
demonstrates why our core action Score / x0t0 is much
smaller than that found within the TDGL analysis [8] which
yields the QPS frequency of order D0.

Let us now include dissipation. At high frequencies
dissipative currents flowing both inside and outside the core
are important and should be taken into account even at
T � 0. The dissipative contribution from Sout is obtained
from (5) and (7). After a simple integration one finds

Sdiss
out �

sS
e2x0

: �10�

This expression is nothing but the Caldeira ±Leggett dissipa-
tive action of a normal conductor with cross section S and
length � x0. A similar expression defines the dissipative
contribution from the core Sdiss

core.
If s is small one can treat the dissipative terms perturba-

tively. This is sufficient as long as sS9e2mx. It is easy to check
that in the practically important Drude limit s � 2e2N0D the
above condition would mean x0c0=D0. This condition is
never satisfied for realistic parameters. Therefore in this limit
dissipation cannot be treated perturbatively and our varia-
tional procedure should be modified. Under certain simplify-
ing assumptions one can find

Sdiss
core �

sS
e2x0

�
1

2r6
� r6

�
ln
c0x0
Dr

; �11�

where r � c0t0=x0. The strong dependence of (11) on r
enforces the minimum condition r � 1, i.e. the asymmetry of
the core remains approximately the same as in the under-
damped limit. Under this condition the whole action
S
�0�
QPS � Sdiss

QPS can be easily minimized with respect to x0 and
we obtain [9] x0 � c0t0 � x

���
a
p

and

Score � am ; a �
�

c0
D0x

�2=3

: �12�

5. Metal ± superconductor phase transition
The next step is to consider a gas of QPSs in a super-
conducting wire. We also assume that an applied current I
(much smaller than the depairing current) is flowing through
the wire. Substituting the saddle point solution
j �Pn

i ~j�xÿ xi; tÿ ti� into the action and keeping track
of the additional term

�
dt
�
dx�I=2e�qxj [11], we find

Sn � namÿ m
X
i6�j

ninj ln
�
rij
x0

�
� F0

c
I
X
i

niti : �13�

The quantity rij �
�
c20�ti ÿ tj�2 � �xi ÿ xj�2

�1=2
defines the

distance between the i-th and j-th QPS in the �x; t� plane,
ni � �1 (ÿ1) are the QPS (anti-QPS) `charges', and
F0 � hc=2e is the flux quantum. Only neutral QPS config-
urations with ntot �

Pn
i ni � 0 (and hence n even) contribute

to the partition function [9].
For I � 0 Eqn (13) defines the standardmodel of a 2D gas

of logarithmically interacting charges ni. The effective (small)
fugacity y of these charges is

y � x0t0B exp�ÿam� ; �14�

where B is the usual fluctuation determinant which we
roughly estimate as B � am=x0t0. From the Coulomb gas
analogy, we conclude that a KTB phase transition [2] for
QPSs occurs in a superconducting wire at
m � m� � 2� 4py � 2: for m < m� the density of free QPS in
the wire (and therefore its resistance) always remains finite,
whereas for m > m� QPSs and anti-QPSs (AQPS) are bound in
pairs and the linear resistance of a superconducting wire is
strongly suppressed and T-dependent. We arrive at an
important conclusion: at T � 0 a 1D superconducting wire
has a vanishing linear resistance, provided the electromag-
netic interaction between phase slips is sufficiently strong, i.e.
m > m�.

The above analysis is valid for sufficiently long wires. For
typical experimental parameters, however, X < c0b (or even
X5 c0b), and the finite wire size needs to be accounted for.
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Here we consider the physical situation with non-vanishing
(even for o4D0) wire conductance far from the QPS core
s � sqp. This situation can be realized in the presence of
quasiparticles above the gap due to finite temperature or non-
equilibrium effects. In this case our consideration should be
modified as follows.

We first apply the 2D scaling [2] qly � �2ÿ m�y and
qlm � ÿ4p2m2y2, where m and y depend on the scaling
parameter l. Solving these equations up to l � lX � ln�X=x0�
we obtain the renormalized fugacity ~y � y�lX�.

For larger scales l > lX only the time coordinate matters.
At sufficiently low frequencies the inter-QPS interaction is
determined by function (7) and the problem reduces to a that
of a 1DCoulomb gas with logarithmic interaction. Therefore,
(for ~y5 1) further scaling is defined by [11, 13] ql~y � �1ÿ g�~y
and qlg � 0, where g � pSsqp=2e2X is the dimensionless
`quasiparticle' conductance of the wire. For g > 1 the
fugacity scales down to zero, which again corresponds to a
superconducting phase, whereas for g < 1 it increases indicat-
ing a resistive phase in complete analogy to a single Josephson
junction with ohmic dissipation. The phase transition point
again depends on S, but also on the wire length X and the
value sqp (see below).

6. Wire resistance at low T
At any nonzero T the wire has a nonzero resistance R�T; I�
even in the `ordered' phase m > m� (or g > 1). In order to
evaluate R�T� in this phase for a long wire we proceed
perturbatively and first calculate the free energy correction
dF due to one bound QPS-AQPS pair. The one QPS-AQPS
pair contribution dF to the free energy of the wire is

dF � Xy2

x0t0

�b
t0

dt
t0

�X
x0

dx

x0
exp

��
F0

It
c

�
ÿ2m ln

�
r�t; x�
x0

��
;

�15�

where r � �c20t2 � x2�1=2. For nonzero I the expression in
Eqn (15) is formally divergent for b!1 and (after a proper
analytic continuation) acquires an imaginary part Im dF. This
indicates a QPS-induced instability of the superconducting
state of the wire. The corresponding decay rate G � 2 Im dF
defines the total voltage drop V across the wire (see [9] for
more details). For the wire resistanceR�T; I� � V=I this yields
R / T 2mÿ3 and R / I 2mÿ3 for T4F0I and T5F0I respec-
tively. For thick wires with m > m�, we expect a strong
temperature dependence for the resistivity. For thinner wires
the temperature dependence of the resistivity becomes linear
at the transition to the disordered phase in which our analysis
is not valid. AtT5F0I=cwe expect a strongly nonlinear I ±V
characteristic V � I n in thick wires, and a universal n�m�� � 2
in thin wires at the transition into the resistive state with
V � I, i.e. n � 1. Note that in contrast to the KTB transition
in 2D superconducting films, the jump is from n � 2 to 1,
instead of n � 3 to 1.

For a short wire X < c0=T we again proceed in two steps.
A 2D scaling analysis yields the `global' fugacity ~y. In analogy
with the resistively shunted Josephson junction [11], the
voltage drop from the imaginary part of the free energy reads

V � 2F0~y2

G�2g�c~t0 sinh
�
F0I

2cT

�����G�g� iF0I

2pcT

�����2� 2p~t0
b

�2gÿ1
;

giving R / T 2gÿ2 and R / I 2gÿ2 respectively at high and low
T. Here ~t0 is defined from the high frequency cutoff in (7):

~t0 � XC=e2g. The above result is valid for g > 1 and also for
smaller g at not very small T [11]. At T! 0 in the metallic
phase the resistance becomes [11]

R � Ssqp
X

; �16�

i.e. R is just equal to the quasipartical resistance of the wire
whereas the superconducting channel is blocked due to
quantum fluctuations.

7. Discussion
Let us compare our predictions with experimental results [5,
6, 10]. Taking

���
S
p � 10 nm and er � 1, for typical system

parameters of kÿ1F � 0:2 nm < l � 1 ± 10 nm 9x � 10 nm
< x0 � lL � 100 nm we obtain the velocity
c0=c � cMS=c � �

���
S
p

=10lL�, m � 30� ���Sp =lL� and a � 5 ± 10.
This estimate yields the core action Score ' am910 in
agreement with [5].

For the quoted parameters, we predict the superconduc-
tor to metal transition at a wire thickness���
S
p ' lL=15910 nm. This prediction also agrees with the
results of Giordano, who finds that wires with
r0 �

��������
S=p

p � 8 nm have a resistivity that saturates at a
measurable level at low T, whereas the resistivity of thicker
wires [5] r0013 nm always decreases with T.

Another remarkable feature is that the classical-to-
quantum crossover temperature T� was found to be quite
close to Tc for sufficiently thin wires [5]. Comparing our
quantum action 2Score with the classical exponent [3] we
immediately arrive at a simple estimate for
T� � D2=3

0 c
1=3
0 =x1=3. For the above parameters it yields

T� � 10D�T��, i.e. for thin wires one indeed expects this
crossover to happen quite close to Tc.

Independent measurements of R�T� for superconducting
wires have been carried out in Refs [6, 10], where systematic
deviations from classical predictions [3] for thin wires have
been also reported. Although the overall trend [6, 10] is
similar to that observed in [5] the shape of some experimental
curves look quite different from [5]. It was argued [8] that
these quantitative differences are due to the granularity of the
wires used in the experiments [5]. However, the variations ofS
were reported to be moderate in [5]. If so, this experimental
feature can only cause a somewhat non-uniform distribution
of QPSs along the wire because the QPS fugacity increases
with decreasing S. With trivial modifications our theory can
be applied to this situation as well. Although the agreement of
our predictions with the results [5] by itself cannot rule out the
`weak link' interpretation [8], it is quite clear that the inability
of the author [8] to explain the data [5] within the QPS
scenario is solely due to serious drawbacks in the theory [8]
and not due to possible experimental problems with the
granularity of the wires [5].

In order to proceed with our comparison let us recall that
the wires in [6, 10] were quite short X � 1 ± 2 mm whereas the
wires investigated in [5] were typically one or even two orders
of magnitude longer. At not very low T one can put sqp � s
and estimate the parameter ~tÿ10 to be of the order of 1 K or
even bigger for the samples [6, 10]. At the same time for the
samples [5] ~tÿ10 is typically below 10 mK. Thus the difference
between the results [5] and [6, 10] can be attributed to the
different behavior of the function G (5) for different
frequencies: the form (6) should be applied in the case [5]
whereas the samples [6, 10] in the interesting temperature
range should rather be described by means of (7). E.g. it
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appears that the data of Fig. 1a of [10] can be (at least
qualitatively) described by the dependence

R�T� / ~y2�T~t0�2gÿ2 �17�

both for thicker (g > 1) and thinner (g < 1) wires. The
resistance of the latter ± according to our analysis Ð should
increase with decreasingT. This is just what has been found in
[10]. The crossover from this behavior to that with decreasing
R�T� for thicker wires can be interpreted as an indication of
the phase transition at g � 1.

Another interesting feature to be discussed is the negative
magnetoresistance of the wires observed in [10]. At first sight
this feature contradicts our QPS scenario: in a (sufficiently
strong) magnetic field H the gap D0 is partially suppressed
and the barrier forQPS should decrease. Hence, the fugacity y
and the wire resistance R, in contrast to [10], should increase
with H. However, if one includes dissipative effects outside
the core the picture can change drastically. Indeed
sqp � snn=n strongly depends on the relation between T and
D0�T;H�. At sufficiently low T a decrease of Dmay lead to an
exponential [sqp / exp�ÿD0=T�] increase of the number of
quasiparticles and, therefore, dissipation. Thus we have two
effects: the field H increases the QPS fugacity y but also
increases the dissipation gwhich suppresses quantum fluctua-
tions. It is quite obvious [e.g. from Eqn (17)] that the second
effect may dominate in a certain parameter region and the
resistance will decrease with increasingH. At very largeH the
gap D0 will be suppressed and the resistance will increase
again. This re-entrant behavior was observed in [10].
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