February, 1998

6. Superconductor —metal —insulator transitions 217

o(T, B)

Figure 5. Normalized magnetoresistance o( 7, B) of the Cd —Sb sample asa
function of B at different temperatures. Inset: « as a function of 7" at two
values of B; (T =9) = (7).

bringing the value of « to unity. So, the resistance values at a
field of 4T, used for normalizing, are taken from the field-
independent region. Note that f(7) = «(7,0). In the tem-
perature range between 490 and 190 mK the value of §(7)
increases with decreasing temperature, in qualitative agree-
ment with Eqn (6) (inset to Fig. 5). This corresponds to what
has been observed previously at higher temperatures [12].
However, in the low-temperature limit the behavior of (7)
changes drastically. It is maximum at a temperature of about
100 mK and then decreases with further lowering of the
temperature. In weak magnetic fields an initial increase
appears on the dependence. However, at any fixed magnetic
field B < 2 T the value of o behaves similarly (see inset to
Fig. 5). This contrasts sharply with the temperature depen-
dence of the normal-state resistance which is monotonous in
the range of temperatures used (see Fig. 4).

The observed decrease of the ratio  with decreasing
temperature unambiguously indicates that at low tempera-
tures the conductivity o;, which originates from single-
particle tunneling, is shunted by the conductivity o, of
another kind:

og=0(T)+0,. (7)

We believe that ¢, is due to incoherent pair tunneling
(coherent, i.e. Josephson, pair tunneling is supposed to be
absent in this insulating state; probably the maximum of «(B)
at B~ 0.1T at the lowest temperatures designates the
destruction of the remnants of the coherent scattering by the
magnetic fields). The single-particle tunneling current #; is
described in the first-order approximation by the barrier
transparency #: ij o< texp(—A4/T). It is proportional to the
product of two small factors, one of which is temperature
dependent. Since the Cooper pairs are at the Fermi level, the
two electrons forming a pair do not need to be excited above
the gap for simultaneous tunneling. Hence i, o 2, without
the exponential temperature-dependent factor. When the
temperature is sufficiently low, so that

4 . 4
t>exp<—?), ie. T<m, (8)

the single-particle tunneling is frozen out, and the two-
particle tunneling current comes into play.

The two particles bound into a pair in the initial state may
come to be unbound in the final state. Such a process of pair
tunneling looks similar to the two-particle contribution to the
tunnel current through a superconductor — the normal-metal
junction (SIN junction) [14]. The latter may prove to be very
important in high-resistance granular superconductors.

4. Conclusion
Both experiments described above can be interpreted as
confirmation of the existence of localized pairs. But they do
not give any information about how this localization is
realized. The one-particle localization radius £ may turn out
to be either larger, or smaller than the coherence length ¢&.
The case &> & is an extreme limit of granular super-
conductors, with only one pair in a grain. The opposite case
¢ < & 1s assumed, for instance, in the model of localized
bipolarons [15]. To distinguish these two possibilities, other
experiments are required.
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Superconductor —insulator transition in the
disordered Bose condensate: a discussion
of the mode-coupling approach

A Gold

1. Introduction

In the last 20 years the Anderson transition [1] in disordered
Fermi systems has been studied extensively. The Anderson
transition is a disorder induced metal —insulator transition in
anon-interacting electron gas at temperature zero. It is widely
believed that a disordered non-interacting Fermi gas can be
described by the scaling theory [2]: according to this theory
one expects that in two dimensions and at temperature zero a
metallic phase does not exist, due to weak-localization
corrections, and for vanishing temperature the static con-
ductivity should scale to zero. For the disordered interacting
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Fermi gas in two dimensions it was recently shown that a
metal-insulator transition exists and that the scaling theory
does not apply [3]. Apparently, the metallic phase is stabilized
by interaction effects. This point of view has already been
used a long time ago in the mode-coupling approach for an
interacting disordered electron gas (disordered Jellium
model), where a metallic phase in two dimensions was found
for weak disorder and an insulating phase for strong disorder
[4]: screening effects reduce the effects of disorder. Analytical
results for the static conductivity of a disordered two-
dimensional electron gas with a long-range random potential
have been given in Ref. [5]. However, we note that the mode-
coupling approach was criticised because it cannot describe
weak-localization effects.

An interesting question in the context of disordered
quantum liquids is: what happens for a disordered Bose
condensate? The following two scenarios are at least
possible: (i) a transition from a superfluid phase to a metal
or (ii) a transition from a superfluid phase to a insulator.

2. Results of the theory

I predicted a disorder induced superfluid —insulator transi-
tion for an interacting Bose condensate in three dimensions
[6]. T found that at a critical amount of disorder a transition
from a superconductor to an insulator takes place. At the
transition point I found a phase with a finite static
conductivity. In the insulating phase the Bose condensate is
localized: in this phase a condensate density still exists but the
macroscopic wave function is localized (pinned) by the
disorder. I treated the interaction with the random-phase
approximation (RPA) and the disorder within a mode-
coupling approximation. Multiple-scattering effects are
treated within this approximation in an approximate
scheme. I have also studied the dielectric properties of the
disordered Bose condensate [7].

Recently, I calculated the transport properties of a
disordered Bose condensate in a superlattice [8] and in a
two-dimensional system [9] with a long-range interaction
potential (Coulomb potential) [10] and in three dimensions
[11, 12] with a short-range interaction potential (Bogolyubov
model). As in three dimensions I found a disorder induced
superconductor —insulator transition, which depends on the
condensate density.

We note that Ramakrishnan [13] suggested that a two-
dimensional disordered Bose condensate might be a realistic
model for superconducting ultra-thin films. Experiments on
homogeneous ultra-thin films showed some evidence for a
superconductor —insulator transition [14]: the onset of super-
conductivity in thin films of Bi or Pb takes place when the
normal state sheet resistance was below a certain value (near
6.45 kQ). For a recent review on the superconductor—
insulator transition, see Ref. [15].

In the mode-coupling approach [16] the current-relaxation
kernel, which corresponds to a frequency dependent relaxa-
tion rate (scattering time), determines the dynamical con-
ductivity. The current-relaxation kernel is calculated within
the mode-coupling approach, which is, essentially, Fermi’s
golden rule expression: the matrix element (disorder) times the
density of final states (for density modes). The density of final
states is given by the density-density relaxation function. In
the density —density relaxation function disorder effects enter
via the current-relaxation kernel (using a conserving theory),
which give a closed equation in order to calculate the current-
relaxation kernel in a self-consistent way [16].

In the case of a disordered Bose condensate the density of
final states is described by the collective modes of the system
[6]. The absence of particle—hole excitations in a Bose
condensate is the origin of the superfluid transport proper-
ties of the disordered Bose condensate if the amount of
disorder is small.

Different kinds of impurities (disorder) and different
kinds of interaction effects (long-range or short-range
interaction) and different dimensions d can be studied within
the mode-coupling approach. The mode-coupling theory
gives results for weak disorder, in agreement with perturba-
tion theory, but also for intermediate and strong disorder.
Only for weak disorder is the condensate a superfluid. For
large disorder an insulating phase is found. The transition
point shows a finite static conductivity. The superconduc-
tor—insulator transition occurs if the disorder is equal to a
critical amount of disorder (for fixed condensate density) or if
the condensate density N is lower than a critical density N,
(for fixed disorder). The frequency-dependent conductivity
for a disordered Bose condensate has been calculated for
three dimensions [7] and two dimensions [10].

The instability of the Bose condensate in the presence of
disorder can be regarded as a disorder-induced softening of
the collective modes (plasmons). Note, in the superfluid in the
long wave-length limit one finds that the collective modes are
well defined, however, the energy is reduced due to disorder.
The transition point, characterized by a metallic conductivity,
can be interpreted in terms of the Ioffe— Regel criterion. For
the metal —insulator transition in electron systems the Ioffe—
Regel criterion is well established. The localization criterion
for Fermi systems and for Bose condensates are very similar
and this indicates that in both systems the same kind of
physics is working: disorder versus screening. At low carrier
density (or for a large amount of disorder) disorder wins over
screening (the condensate is localized), while at high carrier
density (or for a small amount of disorder) screening wins
over disorder (the condensate is non-localized).

In the insulating phase the macroscopic wave function of
the Bose condensate is pinned by the potential fluctuations of
the random potential. This phase corresponds to a new state
of matter and one might call it Bose glass.

For a long-range random potential [10] the predictive
power of our theory has been demonstrated by presenting
analytical and numerical results. For weak disorder the
frequency-dependent conductivity can be derived in an
analytical form. A transcendental equation for the current-
relaxation kernel has been given for strong disorder [10]. The
transcendental equation has been solved analytically and
numerically: the frequency-dependent conductivity for low
frequencies and the stiffness in the insulating phase have been
calculated.

The similarity [17] of the calculated dynamical conductiv-
ity of a disordered two-dimensional Bose condensate and
recent experimental results found for the measured dynamical
conductivity in high-temperature superconductors indicate
that a disordered Bose condensate might be a relevant
‘effective’ model in high-7, materials.

3. Disorder: mode-coupling approximation

One of the problems concerning the mode-coupling approx-
imation was the fact that within this approach [16] the weak-
localization corrections cannot be described: the current-
relaxation kernel was proportional to the density—density
relaxation function and the squared gradient of the random
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potential (gradient coupling). Weak localization corrections
occur due to a certain symmetry of the density—density
correlation function [18], and within this symmetry the
current-relaxation kernel is proportional to the squared
random potential and the density-density relaxation func-
tion (potential coupling). For non-interacting electrons it was
shown that the potential coupling, responsible for the weak-
localization corrections, can be obtained within the mode-
coupling approximation [19].

It should be remembered that the mode-coupling theory
[16] was formulated for non-interacting electrons, where the
density —density relaxation function is determined by elec-
tron—hole excitations: the only decay channel for the current
is the decay into particle-hole excitations.

In the case of a Bose condensate such one-particle
excitations do not exist and the current only decays into
collective modes. This means, on the one hand, that the
modes (particle —hole excitations) responsible for the weak-
localization corrections are not present in the case of a Bose
condensate. On the other hand, it is not known whether the
above mentioned symmetry of the density —density relaxation
function is also present in case of an interacting system. A
disordered interacting quantum liquid can be a disordered
interacting electron gas (decay of current into particle —hole
excitations and decay into collective excitations) or a
disordered interacting Bose condensate (decay of current
into collective excitations).

4. Interaction: random-phase approximation

The instability point (transition point) of the superconductor
in the mode-coupling theory is described by the parameter 4
and A is proportional to the squared random potential
screened by the Bose condensate. The instability occurs for
Asp = 1 and the superfluid phase is characterized by 4 < 1.
In the insulator phase one finds 4 > 1. We have calculated the
dependence of 4 on the strength of interaction effects and we
found that A increases with decreasing interaction strength.
This dependence has been shown for a long-range interaction
potential [9] and for a short-range interaction potential
(Bogolyubov model) [12]. We conclude that the superfluid
phase of the Bose condensate without interaction effects is not
stable in the presence of weak disorder: interaction effects
(screening effects) are needed to stabilize the superfluid phase.
The detailed behavior of screening effects have been studied
[12] for a disordered Bogolyubov model. It was shown that
for dimension d < 4 interaction effects are crucial for the
existence of a superfluid phase even for weak disorder.
However, interaction effects are irrelevant for the existence
of a superfluid phase for d > 4 and weak disorder. Of course,
by including many-body effects via the local-field correction
into the screening function one can improve the random-
phase approximation. In general, one can say that many-body
effects beyond the mean-field approximation decrease the
screening properties and, therefore, increase the effects of
disorder [9].

5. Comparison with other theories

In the theoretical work [20] a superfluid-insulator transition
with a finite conductivity at the transition point was proposed
for the charged Bose condensate with uncharged impurities.
Scaling assumptions were used to argue that in two-dimen-
sional systems the conductivity at the transition point is finite
and universal (independent of all microscopic details). We
also found [9] that the conductivity at the transition point is

finite (as already found long ago for three dimensions [6]), but
the conductivity at the transition point depends on the form
of the random potential and is not universal.

In the scaling approach [20] it was assumed that a
superconducting correlation length ¢ diverges at the transi-
tion point as £ ~ A7 with 4 = (N — N.)/N.. A dynamic
critical exponent z for a characteristic frequency
Q. ~ 7% ~ A7 was introduced [20]. It was argued that for a
two-dimensional charged Bose condensate z =1 and v = 1.

The effective superfluid density Ny in our theory, which
appears in the A(w)-peak of the static conductivity, behaves
as Ny ~ (N — N.) and the characteristic frequency is given by
Q. ~ (N — N.). The critical exponents and the dynamic
instability of the superfluid —insulator transition were origin-
ally derived in Ref. [6]. Contrary to claims that the
importance of critical dynamics was first observed in Ref.
[20] we claim that this observation was first made in Ref. [6].
We also would like to mention that a diagrammatic approach
for the three-dimensional disordered Bogolyubov model [21]
has confirmed our predictions concerning a finite condensate
density at the instability point and the existence of a super-
fluid-insulator transition. We note, however, that in the
mode-coupling approach the condensate density is an input
parameter. We assumed that the condensate density N is finite
and independent of disorder (a disorder induced depletion of
the condensate density was neglected).

6. Conclusion

The importance of interaction effects for experiments con-
cerning the metal —insulator transition in a two-dimensional
electron gas was recently pointed out [3]: the metallic phase is
stabilized by interaction effects. The importance of interac-
tion effects (screening effects) for a disordered Bose con-
densate and a disordered electron gas [4] was emphasized a
long time ago. I would like to emphasize that the mode-
coupling approach gives real predictions for the static and
dynamic conductivity and predictions for the instability point
in terms of parameters which characterize the random
potential and the condensate density.

The mode-coupling approach is not an exact theory.
However, I believe that one part of the essential physics is
included in this approach. The important issues in this
approach are, on the one hand, disorder effects, described
by Fermi’s golden rule, and, on the other hand, screening
effects, described by the mean-field type random-phase
approximation. The superconductor—insulator transition in
a disordered Bose condensate was predicted in 1983 [6] and
only much later were conductivity measurements [14] inter-
preted as a superconductor-insulator transition with an
insulating phase in which the condensate is pinned.

References
1. Anderson PW Phys. Rev. 109 1492 (1958)
2. LeeP A, Ramakrishnan T V Rev. Mod. Phys. 57 287 (1985)
3. Kravchenko SV et al. Phys. Rev. B 517038 (1995)
4. Gold A, G6tze W Phys. Rev. B 332495 (1986)
5. Gold A Phys. Rev. B 44 8818 (1991)
6. Gold A Z. Phys. B52 1 (1983)
7. Gold A Phys. Rev. 433652 (1986)
8. Gold A Z. Phys. B81 155 (1990)
9. Gold A Z. Phys. B83429 (1991)
10. Gold A Z. Phys. B 87 169 (1992)
11.  Gold A Phys. Rev. Lett. 70 1563 (1993)
12.  Gold A Z. Phys. B91 501 (1993)
13.  Ramakrishnan T V Phys. Scr. T 27 24 (1989)
14.  Haviland D B, Liu Y, Goldman A M Phys. Rev. Lett. 622180 (1989)



220 Mesoscopic and strongly correlated electron systems ““Chernogolovka 97

Physics— Uspekhi 41 (2)

15.  Wallin M et al. Phys. Rev. B49 12115 (1994)

16.  Gotze W J. Phys. C 121279 (1979)

17.  Gold A Physica C 190 483 (1992)

18.  Vollhardt D, Wélfle P Phys. Rev. B 22 4666 (1980)
19. Belitz D, Gold A, G6tze W Z. Phys. B 44 273 (1981)
20. Fisher M P A Phys. Rev. Lett. 65923 (1990)

21. Huang K, Meng H-F Phys. Rev. Lett. 69 644 (1992)

Mesoscopic phenomena
in disordered superconductors

A Frydman, E P Price, R C Dynes

1. Introduction

The superconductor —insulator (SI) transition in 2D ultrathin
films has been thoroughly investigated during recent years
using two different morphologies; a uniform film in which the
morphology is homogeneous down to atomic scale [1] and a
granular film in which the morphology consists of grains of
about one hundred angstrom in diameter [2]. In both cases it
is found that as the normal-state sheet resistance, Ry, is
increased, the superconductivity is weakened and eventually
the sample behaves as an insulator. However, the nature of SI
transition is very different in the two morphologies. In the
uniform case the amplitude of the superconducting gap, 4,
and the critical temperature, T., decrease simultaneously as
Ry increases (so that A4/T.=const), implying that the
magnitude of the superconducting order parameter decays
with increasing resistance [1]. In granular films, on the other
hand, T. and 4 remain at bulk values throughout the entire SI
transition. In this case the superconducting transition as a
function of temperature becomes broader as Ry increases
until the sample becomes insulating (see Fig. 2). This behavior
implies that in granular films, the individual grains are large
enough to support a bulk superconductor order parameter.
However, as Ry increases, phase fluctuations appear between
the grains and long range phase coherence is destroyed; thus
the sample no longer exhibits global superconducting proper-
ties [2]. Even though the general mechanism for the SI
transition in granular superconductors is understood, the
nature of the resistive ‘tail’ on the superconducting side is
still a topic of interest as is the detailed role that spatial phase
fluctuations play in the destruction of superconductivity. For
this reason we have studied samples with sub-micron
dimensions that have a relatively small number of grains
along the length of the sample. We investigated samples with
lengths ranging from 0.1-2 pm and, by applying in situ
quench-condensation techniques we were able to go through
the SI transition using a single sample with only a minor
change in its morphology. We present data from samples
having different lengths and at different stages of the
transition. In all cases, samples which show signs of super-
conducting behavior exhibit a series of discontinuous voltage
jumps in the /—V curves, which we interpret as sequential
destructions of dc supercurrents in individual weak links
between grains. In addition, these samples are characterized
by a rich profile of conductance fluctuations as a function of
bias voltage or magnetic field. The amplitude of these
fluctuations scales with the sample conductance and may
reach values much larger than the normal-metal universal
conductance fluctuation value of e? //. The latter features are
ascribed to interference effects of the superconducting wave-
function within quantum-coherent regions. This interference

is modulated by a magnetic flux penetrating the sample due to
an external magnetic field or to self induced flux from the
current flowing through the granular system.

2. Experimental

We prepared the samples by thermally evaporating a strip of
Pb, connected to four leads, on a Si substrate. Next, we cut a
slit in the Pb strip, 0.1 —2 pm wide, using e-beam lithography
and dry plasma etching. In order to prevent oxidation of the
Pb we coated the sample in situ with a 20 A layer of Ag. The
sample was then immersed in a cryogenic evaporator which
was equipped with a Sn source. We evaporated sequential
ultrathin layers of Sn onto the slit in the Pb while the substrate
was held at 7= 10 K, and measured the transport properties
after each evaporation stage. This set-up allowed us to change
the resistance in situ and go through the entire insulator-
superconductor transition using a single sample. Figure 1
illustrates the sample geometry and shows an STM picture of
a similar quench-condensed film. It is seen that the grain sizes
are typically 100 A in diameter. An estimate based on
transport data yields a similar value [3]. We expect, there-
fore, that our samples consist of about 10— 150 grains along
the current direction. Standard dc and lock-in based ac
methods were used to measure resistance versus temperature
(R-T), current-voltage (/-V), dynamic resistance-voltage
(dV/dI-V) and magnetoresistance (R— H) curves for differ-
ent Ry. All measurements were performed in an rf shielded
room.

o

Figure 1. STM scan of a 100 A film of quench condensed Pb taken at
T = 8K. Inset: A schematic representation of the sample.

3. Results

In Figure 2 we show R— T curves for a 1.5 pm long sample.
Decreasing Ry corresponds to increasing the film thickness.
These curves are similar to those seen in large granular 2D
samples [2]. Note that ‘7, barely changes throughout the SI
transition, while the ‘tails’ of the R— T curves become broader
as the normal state resistance is increased. This implies that
the destruction of superconductivity is caused by phase
fluctuations between the grains rather than by suppression
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