
long range correlations


dIi j�R1;R2�dIi j�R3;R4�

� � Rÿ4�dÿ1�

when jR1 ÿ R3j � jR2 ÿ R4j � R4 l. As a result they give the
main contribution to the correlation function of the interlayer
exchange energy h�Ii j�Ikli at L4 l. As a result, we have:

hd�Ii jd�Ikli � 2

p
I 20E

2
FT
X
m

o
�
dR1 dR2 dR3 dR4

� �ŝiP̂c
o�R1;R2�ŝkP̂c

o�R2;R3�ŝjP̂c
o�R3;R4�ŝlP̂c

o�R4;R1�
� ŝiP̂d

o�R1;R2�ŝjP̂d
o�R2;R3�ŝkP̂d

o�R3;R4�ŝlP̂d
o�R4;R1�

�
:

�8�
Here o � p�2m� 1�T is the Matsubara frequency, m is an
integer, T is the temperature and ŝi are spin operators.
Integration over R1, R3 and R2, R4 in Eqn (8) is performed
over volumes of the first and the second ferromagnetic layers
respectively. The results of calculation of Eqn (8) depend on
the ratio between the lengths L, L2, LT �

����������
D=T

p
,

Lso �
����������
Dtso
p

and on the boundary conditions for Cooperons
and Diffusons, which are shown in Fig. 2c. Here Lso, tso are
the spin-orbit relaxation length and time, respectively, and D
is the electron diffusion coefficient in the N layer. In the case
of the `open' geometry of the N layer shown in Fig. 1a and
LT;Lso 4L > l; L;L2 4L1;L3, we have

hd�Ii jd�Ikli � 5� 27=2z�5=2�
32p9=2

X
I 20

�pFl�2
�pFL1�4di jdkl : �9�

Here X is a factor, which is of order unity when L � L2 4LT

and z�x� is the zeta-function. In different limiting cases we
have:

X �

�
L2

L

�4

; LT > L2 > L ,

L2L
3
T

L4
; L2 > LT > L .

8>><>>: �10�

It is interesting that in the case L � L2 < LT, Eqs (9), (10)
turn out to be independent of L. In the case L > LT the
expression for X acquires an additional exponentially small
factor exp�ÿL=LT�. In the case Lso > L the minimum of the
exchange energy corresponds to a parallel or antiparallel
orientation of the layer's magnetizations (y equals zero or
p). In the opposite limit Lso 5L we get the same formula as
Eqn (9) but without the factor di j dkl. This means that the
exchange interaction between the F layers is of the Dzia-
loshinski-Moria type and a minimum of the exchange energy
corresponds to a sample specific angle y� dn1; n2� distributed
randomly over the interval �0; p�. While deriving the results
presented above we neglected the sensitivity of the boundary
conditions for Cooperons and Diffusons shown in Fig. 2c to
the change ofmagnetization directions in F-layers. In the case
of the open sample geometry Fig.1a this is correct, provided
Ap3FL1=vF 5 1. To get an estimate for hd�Ii jd�Ikli in the
opposite limit one has to substitute EF for the factor
A�L1pF� in Eqn (5). For example, in the case
LT > L � L2 > Lso we have


d�Ii jd�Ikl
� � E 2

F�pFl�ÿ2 �
�h

t
: �11�

Here t is the elastic mean free path in themetal.Wewould like
to stress again that the origin of Eqs (9) ± (11) is the long range
correlation of the signs of Ii j�R1;R2� and Ikl�R3;R4� which
survive over distances much larger than l.

As is usual in the physics ofmesoscopicmetals [15, 16], the
external magnetic field changes the electron interference

pattern and thereby d�Iij, and y� dn1; n2� turns out to be a
random sample-specific oscillating function of the magnetic
fieldH. Another way to change the relative orientations of the
F-layers is demonstrated in Fig. 1b. Namely, y� dn1; n2� is a
random sample specific function of the order parameter
phase difference �w1 ÿ w2� in superconductors S1 and S2

shown in Fig. 1b. The reason for this is that some diffusive
paths connecting points 1 and 2 in Fig. 1b can visit super-
conductors (line `b' in Fig. 1b) and the corresponding
amplitude of the probability of traveling along these paths
acquires the additional phase �w1 ÿ w2� [17]. Another con-
sequence of the phase dependence of the exchange energy is
that the critical Josephson current of the device shown in
Fig. 1b depends on the angle y between the magnetizations of
the F layers.

The authors would like to acknowledge useful discussions
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Binational Science Foundation grant No. 94-00243.
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Coulomb effects in a ballistic
one-channel S-S-S device

D A Ivanov, M V Feigel'man

1. Introduction
Coulomb effects in several different types of three-terminal
devices consisting of an island connected to external leads by
two weak-link contacts, and capacitatively coupled to an
additional gate potential, have been extensively studied
during recent years [1 ± 3]. In the present paper we develop a
theory for a system consisting of two almost ballistic one-
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channel QPC's connecting a small SC island with two SC
leads. The fabrication of such a system might become
possible, due to recent technological progress [4 ± 6]. We
derive the dependences of the average Josephson current
across the system, and its fluctuations (noise power) as
functions of the SC phase difference between the leads a,
and of the electric gate potential Vg. We show that such a
system realizes a tunable quantum two-level system (pseudo-
spin 1/2) which may be useful for the realization of quantum
computers (cf. e.g. [7, 8] ).

2. Model of a one-channel nearly ballistic S-S-S junction
Consider a small superconducting island connected to two
external superconducting leads by one-channel nearly ballis-
tic quantum point contacts [9, 10] (see Fig. 1). Following [9]
we assume that each contact is much wider than the Fermi
wavelength so that the transport through the constriction
may be treated adiabatically, but much smaller than the
coherence length x0 � �hvF=pD (where vF is the Fermi
velocity, D is the superconducting gap).

Our assumption of low temperature is that the average
number of one-electron excitations on the island is much less
than one. Then they cannot contribute to the total charge of
the grain andwemay restrict our Coulomb blockade problem
to the evolution of the superconducting phase only. The
condition of low temperature is then T < D= log�Vn�0�D�,
where V is the volume of the grain, and n�0� is the density of
electron states at the Fermi level.

We neglect phase fluctuations in the bulk of the island and
describe the whole island by a single superconducting phase w.
At a fixed value of the phase on the island, the spectrum of
each of the two junctions consists of the two Andreev states
localized on the junction and the continuum spectrum above
the gapD [10]. The energies of the Andreev states lie below the
gap:

E��df� � �D
����������������������������������
1ÿ t sin2

�
df
2

�s
; �1�

where df is the phase difference at the contact, and t is the
transmission coefficient. We set the superconducting phase
on one of the leads to be zero; the phase on the other lead a is
assumed to be fixed externally. Then the total Josephson
energy of the two contacts is (Fig. 2):

U�w� � U1�w� �U2�aÿ w� ; �2�
where Ui�df� � Eÿ�df�.

The potential of the grain Vg determines the balance
between electrostatic energies E�Q� � �Qÿ VgC�2=2C for
different charges Q on the grain. C is the capacitance of the
grain. We shall further assume that the capacitance C is not
very small, so the charging energy EC � �2e�2=C5D.

The adiabatic Hamiltonian for the double junction looks
like this:

H�a;N� � U�w� �U�aÿ w� � EC
�pw ÿN�2

2
: �3�

Here N � VgC=2e is the rescaled dimensionless gate voltage,
and a is the superconducting phase difference at the external
leads. The number of Cooper pairs at the grain pw is the
momentum conjugate to w, �w; pw� � i.

We must comment on the applicability of the adiabatic
approximation (3), which implies that the contacts follow
their ground states and that transitions between Andreev
levels (and to the continuous spectrum) are negligible. In the
small backscattering limit r � 1ÿ t5 1 the contacts spend
most of the time far from the resonance points df � �p (the
probability of finding the phase differences at the contacts
close to the resonant value is exponentially small at T=D,
EC=D5 1), and therefore the gap in the excitation spectrum is
always of order D, except in processes of phase tunneling.
Thus, at the bottom of the potential well of (2) wemay neglect
non-adiabatic transitions because j _wj � ECjpw ÿNj5D.
However, during phase tunneling processes, the phase w
must cross a point where the gap in the single-contact
excitations (1) collapses. We shall see that Coulomb effects
are described precisely as phase tunneling processes. There-
fore we need a more careful treatment of phase tunneling,
which we develop below.

3. Breakdown of adiabatic behavior in a single
superconductive quantum point contact
In a ballistic quantum point contact at t � 1 the spectrum of
Andreev states (1) has a level crossing point at df � p. At this
point, the left and right Andreev states have equal energies,
but in the absence of backscattering (t � 1) the transitions
between them are impossible. Therefore, we expect that the
ideal ballistic contact cannot adiabatically follow the ground
state as the phase df changes, but remains on the same left or
right Andreev state as it passes the level-crossing point
df � p. Now we study the crossover from this limit to the
opposite adiabatic limit and find the crossover scale for the
reflection coefficient r.

For this purpose we consider a simplified system: a small
superconducting grain connected to only one superconduct-
ing lead by a nearly ballistic single-channel Josephson
junction. As before we assume that the reflection probability
r5 1 (almost unity transmission), that the charging energy
EC 5D and that the temperature is sufficiently low to
prohibit single-electron excitations on the grain.

S S S

Figure 1.Double-contact S-S-S system.

a=2 p p� a=2 p� a w0

V1�a�

U�w�

V2�a�

Figure 2. Potential U�w�.
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To probe the degree of adiabaticity, we study the periodic
dependence of the ground state energy E0 on the gate voltage.
Because of the weakness of charging effects, this dependence
will be sinusoidal:

E0�N� � e cos�2pN� ; �4�

and we are interested in the amplitude e of these oscillations,
which provides a good measure of adiabaticity in the phase
dynamics. Since we are restricting our attention to low lying
excitations, it is only necessary to include the two Andreev
levels on the junction. As in the discussion in the previous
section, the dynamic variable is the phase on the grain, the
potential term is the Josephson energy of the Andreev levels,
and the kinetic term is the charging energy. The final form of
the Hamiltonian including both Andreev levels is:

H�w� �D
ÿ cos

w
2

r1=2 sin
w
2

r1=2 sin
w
2

cos
w
2

0B@
1CA� 1

2
EC

�
i
q
qw
ÿN

�2

: �5�

Here w is the phase difference across the contact, and r is the
reflection coefficient. Obviously, the eigenvalues of H�w� at
EC � 0 reproduce result (1).

This Hamiltonian loses its validity at the top of the upper
band at w � 2pn, where the upper Andreev state mixes with
the continuous spectrum. However, the probability of the
phase w reaching the top of the upper band of H�w� is
exponentially small at EC 5D (smaller than the tunneling
probability). The adiabatic-diabatic crossover is determined
by the properties of the system near the minimal-gap point
w � p. Therefore, we may neglect the transitions to the
continuous spectrum at w � 2pn. There are two opposite
limits of the problem: small and `large' reflection. At zero
reflection, the Hamiltonian splits into lower and upper
components. Within each component the potential is peri-
odic with period 4p. As explained above, we must neglect the
next-nearest-neighbor tunneling via the top of the bands.
Therefore, the potential minima ofH�w� are disconnected and
cannot tunnel to each other, e � 0. In the opposite limit of
`large' reflection the gap opens in the spectrum of Andreev
states, and the system adiabatically follows the lower state.
We can replace the two-level Hamiltonian H�w� by its lowest
eigenvalue and arrive at the quantum-mechanical problem of
a particle in a periodic potential. The quasiclassical limit of
this problem is solved in textbook [16]. In our notation the
answer reads as follows:

ead � const
����������
ECD

p
exp�ÿScl�; where

Scl � B1

������
D
EC

r
ÿ 1

4
log

D
EC
�O�1� �6�

is the classical action connecting two adjacent minima (or
more precisely the two return points). The numerical constant
B1 is of order one (at r! 0, B1 � 4:69� 1:41r log r� . . .).

To study how the adiabaticity is destroyed it is useful to
introduce the dimensionless `coherence factor' f�r� defined by
e � f�r�ead, where ead is the amplitude of oscillations of the
ground-state energy derived in the adiabatic approximation.
The perturbation theory with respect to virtual non-adiabatic
transitions shows [15] that the first correction to the
coherence factor looks like 1ÿ f � �1=r� ������������

EC=D
p

, which
allows an estimate of the crossover scale rad �

������������
EC=D

p
.

Consider now the limit of weak backscattering (r5 rad),

take the unperturbed wavefunction to be the ground state of
the Hamiltonian with zero r (at a given wavevector N), and
then compute the first-order correction in r1=2 to the energy:
the wavefunction is of `tight-binding' type and is generated by
the `ground-state' wavefunctionsCi localized in the potential
minima (diabatic terms):

e � 2


CijH12�w�jCi�1

� � 2r1=2D
�
dwC�i �w�Ci�1�w� sin w

2
:

�7�

Here the (normalized) wavefunctions Ci and Ci�1 are the
ground-state solutions for different potentials (ÿD0 cos�w=2�
and D0 cos�w=2�) and the overlap integral (7) has a saddle
point at the minimal-gap point w � p, which reduces the
effective region of integration to jwÿ pj4 �EC=D�1=4. The
normalization of the quasiclassical tail of the wavefunctions
Ci�w� yieldsC�w � p� � exp�ÿScl�w � p�� (up to a numerical
factor independent of EC=D). Thus we obtain

e � r1=2D
�
EC

D

�1=4

exp�ÿScl� ; �8�

i.e. f�r� � �r2D=EC�1=4, which confirms that the crossover
scale for reflection probability is given by rad �

������������
EC=D

p
.

4. Josephson current
Suppose that the backscattering in each of the contacts is
larger than the adiabatic crossover scale rad found in the
previous section. Then we may use the adiabatic model (3) to
compute the low-energy spectrum of the double junction and
the Josephson current as a function of the phase difference
across the junction a and of the gate voltage N. Even if the
reflection in the contacts is smaller than the adiabatic
crossover scale, we may account for non-adiabatic effects by
using the `coherence factors' discussed in the previous section.

Accepting the simplifying condition EC 5D allows us to
treat the Coulomb term in the Hamiltonian perturbatively.
First, neglecting the Coulomb term, we obtain a classical
system on the circle in the potential (2) with two minima.
Weak backscattering in the contacts only smoothes out the
`summits' of the potential, but leaves the bottom of the
potential practically unchanged. The energies of the two
minima are V1�a� � ÿ2Dj cos�a=4�j and V2�a� �
ÿ2Dj sin�a=4�j (see Fig. 2). At zero temperature, our classical
system prefers the lowest of them. Thus the energy of the
S-S-S system in the absence of the Coulomb term is given
by E�a� � ÿ2D cos�a=4� for ÿ p < a < p. Differentiat-

ÿp 0 p a

I�a�

Figure 3. Josephson current. The dotted line shows smearing of the

singularity due to the Coulomb term.
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ing this energy with respect to the phase a gives the
Josephson current I�a� � 2e�qE�a�=qa� � D sin a=4 for
ÿp < a < p. Notice that the current has large jumps at
the points of level crossing a � p� 2pn. Qualitatively this
picture is very similar to the case of a single S-S ballistic
junction [6, 9, 10], but the shape of the current-phase
dependence I�a� is different.

The singularities at a � p� 2pn are smeared out by the
level mixing due to quantum tunneling between two potential
minima. Due to the shift in the `angularmomentum' byN, the
wave functions in the two potential wells acquire an
additional factor exp�iNw�. This results in a relative phase of
the two tunneling amplitudes of 2pN. The net tunneling
amplitude (defining the level splitting) may be written as

H12�N� � Dg�N� � D
�
g1 exp�ipN� � g2 exp�ÿipN�

�
; �9�

where g1 and g2 are the two amplitudes of phase tunneling in
the two different directions. Below we assume that these
amplitudes are computed at the level-crossing point a � p,
where they are responsible for level splitting.

The amplitudes g1 and g2 obey the asymptotes derived in
the previous section (except for numerical factors):

g1;2 � f�r�
�
EC

D

�1=4

exp

�
ÿ B2

������
D
EC

r �
5 1;

exp

�
ÿ B2

������
D
EC

r �
5 1 ; �10�

where B2 � 1 is determined by the classical action connect-
ing the two potential minima (at r5 1,
B2 � 1:45� 2:20r log r� . . .). For the best observation of
Coulomb oscillations, g1 and g2 must be of the same order,
but not very small. In the ideal case g1 � g2 � g the total
amplitude g�N� � 2g cos�pN�. The characteristic scale for
the r-dependence of B2 is dr �

������������
EC=D

p
, therefore for g1 and

g2 to be of the same order, the transparencies of the two
contacts must differ by no more than

������������
EC=D

p
.

Here we should comment on the difference of our result
(9), (10) from the normal two-channel system discussed in
[2]. In the normal system the two tunneling amplitudes
multiply, and the net ground-state energy oscillations are
proportional to r ln r at small r. In the superconducting
system, the external leads have different superconducting
phases, and the tunneling in the two contacts occurs at
different values of the phase on the grain. Therefore, the
tunneling amplitudes add with some phase factors and give
the asymptote of

��
r
p

at r! 0. In fact, the oscillations in the
superconducting system will be proportional to r (similarly
to the normal system [2]) in a different limit Ð at the phase
difference a � 0, when the potential U�w� has a single
minimum and a single barrier.

The hybridized energy levels in the vicinity of a � p are
given by the eigenvalues of the 2� 2 Hamiltonian

H�a;N� � V1�a� H12�N�
H12�N� V2�a�

� �
: �11�

Diagonalization (and expanding near a � p) gives the two
energy levels:

E1;2�a;N� � ÿD
" ���

2
p
�

����������������������������������
�aÿ p�2

8
� g2�N�

s #
: �12�

Differentiating the energy of the lowest level E1 over a, we
find the Josephson current (cf. Fig. 3):

I�a� � eD���
2
p pÿ a�������������������������������������

�aÿ p�2 � 8g2�N�
q : �13�

The width of the crossover at a � p depends periodically
on Vg: jaÿ pj � jg�N�j. At a nonzero temperature these
Coulomb effects will compete with the smearing by tempera-
ture so that the width of the singularity at a � p is given at
nonzero temperature T5D by jaÿ pj � max�g�N�;T=D�.
Therefore, in order for Coulomb effects to dominate the
thermal fluctuations, we must have T4gD.

5. Supercurrent noise
Now we calculate the low-frequency spectrum of the fluctua-
tions of the Josephson current in our model. We shall be
interested in frequencies much lower than the oscillator
energy scale

����������
DEC

p
, thus we consider only transitions

between the eigenstates of the reduced ground-state Hamilto-
nian (11). We also assume that the temperature is lower than����������
DEC

p
, then wemay disregard the excited oscillator states and

the internal noise in the contacts (discussed in [11 ± 13, 17]).
Obviously, under these assumptions we can observe current
fluctuations only in the close vicinity of the resonance point
a � �p, where the energies (12) of the two low-lying states are
close to each other. We expect to observe two peaks in the
noise spectrum Ð one at zero frequency (due to the thermal
excitations above the ground state), and the other at the
transition frequency jE1 ÿ E2j (from the off-diagonal matrix
elements of the current operator). In this section we compute
the integral weights of these peaks and postpone the
discussion of their width (determined by dissipative pro-
cesses) until elsewhere.

Firstly, we shall discuss the zero-frequency peak. In our
approximation it is just the thermal noise of a two-level
system with Hamiltonian (11). The spectral weight is then
given by a simple formula:

S0�a;N;T� � hI 2i ÿ hIi2 � I 2�a;N�
cosh2�E1 ÿ E2�=2T

:

Substituting I�a;N� and E1;2�a;N� from the previous section,
we obtain the noise intensity near the resonance:

S0�a;N;T� � D2

2

b2

b2 � g2�N� cosh
ÿ2
�
D
T

����������������������
b2 � g2�N�

q �
;

�14�
where b � �aÿ p�=2 ���

2
p

. For the effect of the Coulomb
interaction to be observable, the temperature must be smaller
than the Coulomb gap: T4gD. At constant T and N, the
noise decreases exponentially as a goes away from its critical
value a � p, and at a � p the noise is suppressed in the
interval jaÿ pj < g�N� (Fig. 4).

The interplay between these two factors results in a strong
dependence of the peak value of the noise on the potential of
the grain. The peak value of the noise maxa S�a;N;T� is
plotted against N in Fig. 5. Most favorable is the case of
identical contacts, when g1 � g2 � g and, therefore,
g�N� � 2g cos�pN�. In this case, when cos�pN�5T=gD
(small gap limit) the noise takes its maximal value S � D2=2.
In the opposite limit of a large gap (cos�pN�4T=gD) the
noise decreases exponentially:

S � D2

�
T

Dgj cos pNj exp
�
ÿ 4

Dgj cos pNj
T

��
:
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The noise has a sharp peak at the resonance point cos pN � 0,
where two levels on the grain with different electron numbers
have equal energies. Now we turn to the noise peak at the
interlevel frequency o12 � jE1 ÿ E2j � 2D�b2 � g2�N��1=2. In
our approximation of a two-level system such a noise is
temperature independent, and its weight is determined
purely by the off-diagonal matrix element:
So12
� 1=2

��h1jIj2i��2. A straightforward computation for the
Hamiltonian (11) gives (for a � p):

So12
�a;N� � D2g2�N�

4�b2 � g2�N�� : �15�

This result contrasts the corresponding noise intensity in
the single quantum point contact (found in [11 ± 13, 17]),
where the corresponding noise intensity So is temperature-
dependent, because that system has four possible states (or,
alternatively, two fermion levels).

6. Conclusions
We have developed a theory of Coulomb oscillations for the
Josephson current and its noise power via the S-S-S system
with nearly ballistic quantum point contacts. The period of
Coulomb oscillations as function of the gate potential is
V0

g � 2e=C. These oscillations arise from the quasiclassical
tunneling of the superconducting phase on the grain and are,
therefore, exponentially small in

������������
EC=D

p
. In addition, we

predict a crossover from adiabatic to diabatic tunneling at the
backscattering probability rad �

������������
EC=D

p
. For backscattering

below rad, the amplitude e of the Coulomb oscillations is
proportional to the square root of the smallest (of the two
contacts) reflection probability

��������
rmin
p

. This contrasts the case
of a normal double-contact system [18] where e is propor-
tional to the product

��������
r1r2
p

.
The average Josephson current-phase relation I�a� is

shown to be strongly non-sinusoidal and roughly similar to

that known for a single nearly ballistic QPC, in the sense that
it contains a sharp `switching' between positive and negative
values of the current as the phase varies via a � p. A new
feature of our system is that it is possible to vary the width of
the switching region da by the electric gate potentialVg; in the
case of equal reflection probabilities r1 � r2 this electric
modulation is especially pronounced, da / j cos�pCVg=2e�j.
The noise spectrum of the supercurrent is found to consist
mainly of two peaks: the `zero-frequency' peak due to rare
thermal excitations of the upper level of the system, and
another one centered around the energy difference o12

between the two levels. The widths of these peaks are
determined by the inverse life-time t of the two states of our
TLS, which is due to electron-phonon and electromagnetic
couplings. Both these sources of level decay are expected to be
very weak in the system considered, but the corresponding
quantitative analysis is postponed for future studies, so we
presented here the results for frequency-integrated (over those
narrow intervals � 1=t) noise power.

The S-S-S device with almost ballistic contacts represents
a new type of a system which may be used as a realization of
an artificial `spin 1/2' Ð an elementary unit for quantum
computations. In comparison with normal Josephson sys-
tems with tunnel junctions which were proposed for use in
adiabatic quantum computations [8], the advantage of our
system is that it may operate at considerably higher values of
the Josephson critical currents; moreover, the current-phase
characteristics of such a system are almost universal in the
sense that they are determined mainly by the microscopic
parameters of the SC materials and only weakly depend on
the specifics of the contact fabrication.
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