
Abstract. Some methodological aspects of the thermodynamics
of dielectrics are discussed. In particular, it is noted that in the
general case neither the electric displacement D nor the electric
field strength E can be taken as the thermodynamic parameter
defining the state of a polarized medium and that the electric
polarization P is the appropriate choice. The relation betweenD
and E as defined by the material equation of a medium is shown
to be valid only in the state of thermodynamic equilibrium and
hence is violated by fluctuations of P. In such an event, the
material equation of a dielectric is not an analogue of the
equation of state of the substance, which relates the pressure
to the volume.

1. Introduction

A systemwhich is a dielectric mediumpositioned in an electric
field E ex of external charges (the field of external charges in a
vacuum) is considered here from the thermodynamic point of
view. The conditions of thermodynamic equilibrium of such a
system are analyzed; in this case the state of the medium is
defined by the spatial distribution of the polarization vector
P�x�. Within the context of thermodynamics, such a system
may be associated with the `gas under a piston' system for
which p0 (the piston pressure on the gas) is taken as the
external pressure (as it is termed in thermodynamics); under
such an analogy, the polarization P is the counterpart of the
gas volume v, and the external field E ex corresponds to the
external pressure p0 (more precisely, ÿp0, see below).

This paper is primarily aimed at a thermodynamic
consideration of the `medium in an external field' system, a
consideration that would be exactly analogous to that used to
analyze the `gas under a piston' system. Our intention derives
from the fact that the approaches employed in the thermo-
dynamics of dielectrics frequently differ in form from the

standard scheme of the thermodynamic method. We shall
clarify this assertion.

1.The prime element of the thermodynamic consideration
is the expression for the work done on a system. If the work is
done quasi-statically and isothermally, it determines the
variation of the free energy of the system and, as follows
from the second law of thermodynamics, in the case of a
`system in a thermostat' the thermodynamic equilibrium
corresponds to minimality of the indicated quantity on a set
of states characterized by a temperature equal to the
thermostat temperature. In the case of interest, the work
done on the system is the work on the charges of the medium
itself, and the mutual displacements of these charges
determine the polarization vector P�x�. It is however of
importance that the charges of the medium are microscopic
objects, whereas the traditional construction of thermody-
namics is based on the concept of work done `by us', that is,
work done on the objects that can in principle be regarded as
macroscopic. As applied to the system in question, the `cost'
of such an approach appears to be the necessity of a
preliminary consideration of so-called extended systems (the
term is due to Leontovich [1]). In an extended system the free
energy is described by the known expression [2]:

F � 1

4p

�
E dD ; F tot �

�
F dx ; �1�

where dx � dx dy dz, and the superscript `tot' refers here and
below to the system as a whole{; in Eqn (1), the electric
displacementD and the fieldE are related to each other by the
static material equation

D � f �E; x� ; �2�
the dependence on x reflecting the possible inhomogeneity of
the medium. Expression (1) has the sense of the free energy of
a `medium� external charges' system because it arises as the
work done (quasi-statically and isothermally) on the external
charges (not the charges of the medium itself) whose
interaction with one another is altered by the presence of the
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medium. As to the free energy of the medium itself, it is
obtained by subtraction from F tot of the two summands
which have nothing in common with polarization as such, i.e.
the energy of the external-charge field E ex in a vacuum [2],
and the energy of interaction of this field with the polarized
medium [3 ± 6].

Another example of an extended (`less extended') system
is the system which can be identified as the `medium�
external field'. Its free energy is given by the expression

F � ÿ
�
PdE ex ; F tot �

�
Fdx ; �3�

which arises as the work done on the medium when it moves
(quasi-statically and isothermally) from infinity to a given
place in space, where there exists a fixed field E ex�x� [a field of
a rigid conglomerate of external charges, which corresponds
to a fixed r ex�x�] [3]. Formally, F is the volume density of the
quantity obtained by subtracting from F tot (1) the energy of
the external-charge fieldE ex in a vacuum [2]; the free energyV
of the medium itself is obtained by subtraction from F of the
interaction energy with the field E ex [3 ± 6]:

V � Fÿ �ÿE exP� : �4�

Apreliminary consideration of extended systems hampers
the analysis of some points in the general form. So, the well-
known investigations of thermodynamic stability of dielec-
trics (for which the notion of a free energy is the crucial point)
are always associated with a specific manner of the action on
the medium, which appears to be responsible for the form of
the obtained thermodynamic inequalities for the permittivity
(these inequalities express the stability of the medium under
fluctuations of P). It is true that in the scientific literature one
can also find studies of the general issues, in which the
minimality of F tot (1) is taken as the criterion of thermo-
dynamic equilibrium [2, 7, 8]. As has been noticed by
Kirzhnits [4], such an approach is not justified. Indeed, F tot

occurs as work done on external charges in the presence of a
medium, and therefore the minimality of this quantity
corresponds to an equilibrium spatial distribution of the
external charge relative to the medium [i.e. r ex�x�] rather
than an equilibrium state of the medium [i.e. the value of
P�x�] relative to a fixed distribution of the external charge.

In Section 2, the free energy V of a polarized medium is
determined through the work done directly on the charges of
the medium itself; although these charges are microscopic
objects, it is their displacements relative to one another that
determine the thermodynamic parameter P�x� of the med-
ium. The addition to V of the interaction energy with a fixed
external field E ex yields the free energy of the `medium in an
external field' system, and the requirement of the minimum
total value of this quantity in the equilibrium state under
arbitrary variations of P�x� leads to the thermodynamic
inequalities for the permittivity [9] (see Section 3). These
inequalities characterize the medium as such because their
form does not depend on the way in which the medium is
affected.

2. The remark to follow concerns the erroneous inter-
pretation of the material equation (2) for a dielectric as a
direct analogue of the equation of state in thermodynamics
proper. The latter equation relates the pressure and the
volume (for a given temperature):

p � p�v� ; �5�

and holds not only for equilibrium, but for nonequilibrium
states as well. We shall illustrate this assertion on an example
of the `gas under a piston' system, for which an external
parameter is p0 (the piston pressure on the gas) which is fixed
by the mass of the load lying on the piston. Let the external
pressure p0 (the mass of the load lying on the piston) change
instantaneously; the state of the system becomes non-
equilibrium (after which the nonequilibrium process of gas
density evolution begins). However, in view of the rapid
change of p0, the p and v values have not got enough time to
change, and hence the relation of these quantities, given by
the equation of state (5), holds true. The situation is different
with the material equation of a dielectric, which refers to
equilibrium states only. Indeed, let an external field E ex

change instantaneously (it is r ex that changes; to make sure
that the procedure is correct, see the footnote{); the state of
the system becomes nonequilibrium [after which the non-
equilibrium process of evolution of the polarization P�x�
begins]. In view of the rapidity of the E ex variation, the
polarization P�x� does not have enough time to change, and
therefore the depolarizing field of themedium, which is due to
the polarization charge with volume density ÿdivP, remains
unchanged. As a result, we have: the field E (equal to the sum
of the external and depolarizing fields) undergoes a change
(equal to the variation of E ex), while the polarization P
remains unaltered. Thus, on a set of arbitrary nonequili-
brium states the E and P values are in no way correlated with
each other, i.e. there exists no relation between them,
including consequently the relation between E and P
specified by the material equation (2) with the substitution

D � E� 4pP : �6�

In Section 3, thematerial equation of a dielectric is derived
as the condition of thermodynamic equilibrium of the
`medium in an external field' system, namely, as the extrem-
ality condition of the total free energy of the above-mentioned
system. This condition defines the relation of the equilibrium
value of the polarization with a fixed external field (which is
an analogue of the relation between the equilibrium value of
gas volume and a fixed external pressure), from which after
identity transformations one obtains a material equation of
the form (2).

3. Another remark regards the choice of the thermody-
namic parameter (generalized coordinate) specifying the state
of a polarized medium. Instead of the polarization P the
electric displacement D (or the field E) is frequently taken as
such a parameter. In Section 4 it is shown that different states
of the medium [i.e. different values of the polarization P�x�
whose functional is the total free energy of the medium] may
correspond to one and the same values of D�x� [the same as
E�x�]. Consequently, in the general case neither the electric

{ If the current j responsible for the variation of r is longitudinal

�rot j � 0�, the right-hand side of the equation

rotH � 4p
c

j� 1

c

qE
qt

vanishes and neither the magnetic field nor the radiation occur; according

to the electrostatic equations, the fieldE `obediently' follows the variations

of r. As concerns the infinitely rapid change of r, the procedure does not
contradict the fundamental principles of relativity theory because charge

motion does not necessarily cause mass motion [15] and, moreover, we

mean a preliminary prepared experiment and not therefore the propaga-

tion of a signal.
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displacement D nor the field E can be taken as parameters
identifying the state of a polarized medium.

The thermodynamic consideration of the `medium in an
external field' system undertaken in this paper corresponds to
the case of `conventional' electrodynamics without spatial
dispersion. From the phenomenological point of view this is
the case where the material equation (2) is a spatially local
relation, i.e. f is an arbitrary function rather than a functional.

2. Free energy of a polarized medium

The primary element of a thermodynamic consideration is the
expression for elementary work on a systemwhose state in the
general case is specified by the temperature T and a certain set
of parameters fag. In the case under consideration, the system
is a polarized medium and fag � P; proper thermodynamic
parameters like volume will not be written down for the sake
of brevity. The elementary work on the system is correspond-
ingly the work on the charges qi of the medium itself, whose
displacements dri determine the vector dP.

In particular, if the polarization is generated by the
external field E ex (the field of external charges in a vacuum),
the elementary work done by this field in unit volume is given
by the expression

dA � 1

O

X
i

�qiE ex� dri ; �7�

where the summation is taken over the charges of the
medium, contained in a physically infinitesimal volume O.
As mentioned above, we restrict our consideration to the case
of `conventional' electrodynamics without spatial dispersion,
which from the microscopic point of view corresponds to the
situation where the microscopic parameters of the substance,
including displacements dri of charged particles, change
radically only at distances appreciably exceeding the char-
acteristic dimension of the microscopic structure of the
substance (the radius of the `effective region', the radius of
the molecular action, etc. [10]); the latter is called the size of
the spatial dispersion and for dielectrics coincides in order of
magnitude with the interatomic distance a0 [2, 10]. Note [10]
that the well-known procedure of averaging over a physically
infinitesimal volume is mathematically correct only if this
condition holds. The polarization vector will then be specified
by the relation

P � 1

O

X
i

qiri ; �8�

with allowance for which expression (7) for the elementary
work assumes the form

dA � E ex dP : �9�
In view of what has been said, the polarization defined by Eqn
(8) meets the condition����HPP

����ÿ1 4 a0 ; �10�

which has, accordingly, the sense of intrinsic consistency of
the macroscopic description of the medium, which ignores
spatial dispersion. Drawing the analogy with the `gas under a
piston' system, we see that an analogue of (9) is the expression

dA � ÿp0 dv ; �11�

the comparison of which with (9) implies the following
correspondence formulae:

P$ v ; E ex $ ÿp0 : �12�

If the polarization in a medium is due to a quasi-static and
isothermal increase of E ex, the work done on the medium will
determine its free energy for which, with allowance for (9), we
obtain

V �
�
E ex dP ; V tot �

�
V dx : �13�

The expression written for V with allowance made for (3) is
identical to expression (4) which occurred in the preliminary
consideration of the extended `medium� external field'
system.

A distinguishing feature of dielectric thermodynamics is
the presence of long-range (electromagnetic) forces. A
manifestation of this is, in particular, the dependence of the
free energy of a homogeneously polarized body on its
geometrical form. We shall consider a dielectric ellipsoid of
unit volume. The medium will be thought of as homogeneous
(the material equation (2) does not involve the dependence on
x), but generally anisotropic and nonlinear; then the polariza-
tion P in a homogeneous external field E ex is also homo-
geneous. The field E ex in sum with the proper (depolarizing)
field of the ellipsoid

E dep
i � ÿ4pniPi ; i � x; y; z �14�

(there is no summation over i; ni are depolarizing factors of
the ellipsoid, and nx � ny � nz � 1) yields the field E in the
medium. Accordingly, for E ex we have

E ex
i � Ei � 4pniPi ; i � x; y; z : �15�

Let the polarization of the ellipsoid be created by a quasi-
static and isothermal increase of E ex. Substituting (15) into
the first relation (13), we obtain

V�P� � V0�P� � 2p�nxP 2
x � nyP

2
y � nzP

2
z � ; �16�

where

V0�P� �
�P
0

E�P 0� dP 0 ; �17�

and E � E�P� is the material equation of the medium in the
form of the relation between E and P, determined by (2) with
the substitution of (6). In the expansion (16), the dependence
on the type of the medium is given by the summand V0 (17);
the dependence on the sample shape is given by the
depolarizing factors ni which are expressed in the well-
known manner through the ratios between the lengths of the
ellipsoid axes. The quantity V0 is the free energy of the
`needle' type of ellipsoid polarized along its axis (the x-axis):
the substitution of nx � 0 and Py � Pz � 0 into (16) yields
V � V0.

Note that since the work of a force does not depend on the
physical nature of the force, the calculation of V by formula
(13) corresponds to a particular mode of generating polariza-
tion, namely, by means of an electric field. If the polarization
is created by an extraneous force (`by hand'), then V0�P�
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appears (by definition) as work done by this force in unit
volume in the creation of homogeneous polarization inside
the `needle' along its axis [11]. Indeed, if we mentally divide a
homogeneously polarized ellipsoid into needles parallel to P
(Fig. 1), then the first term in (16) corresponds to the work on
polarization of these needles and the second term corresponds
to the work against the depolarizing field ÿ � E dep dP (where
E dep is given by expression (14)) common for the whole
sample.

If the medium is homogeneous, the quantity V0�P� is the
free energy of a homogeneously polarized infinite medium.
Tomotivate this assertion, one should divide themedium into
needles (or, which is the same, into infinite cylinders) parallel
to P and take into account that E dep � 0 (because of the
absence of a polarization charge: ÿdivP � 0) and no
additional work is done against the depolarizing field. If the
medium is inhomogeneous, this case can be interpreted as a
variation of the type of the medium from point to point with
V0 depending explicitly on the spatial coordinate:

V0 � V0�P; x� : �18�

The quantity V0�P; x� can be taken [instead of the
material equation (2)] as a primary element in the phenom-
enological description of the medium; it is either defined
phenomenologically (for example, in the form of a power
series in the spirit of the Landau theory) or is calculated from
microscopic considerations.

Let us turn to the general case, when the medium (either
an infinite medium or a finite sample) is polarized in an
arbitrary inhomogeneous way. Suppose the polarization is
generated by an extraneous force (`by hand') so that its
current value is equal to

P 0�x� � aP�x� ; �19�

where P�x� is its final value, and a grows infinitely slowly
from zero to unity. Since the process is quasi-static, the fieldE
is described by the static Maxwell equations

divD � 4pr ex ; rotE � 0 ; �20�

which are known to be equivalent [with allowance made for
(6)] to the Coulomb law

E �
�
r tot�xÿ n� n

x3
dn � r tot � x

x3
; �21�

where the symbol `�' implies a convolution of two functions,
and r tot is the total charge density equal to the sum of
densities of the external and polarization (induced) charges:

r tot � r ex � r in ; r in � ÿdivP : �22�

Substituting (22) into (21), we come to{

E � �r ex ÿ divP� � x

x3
: �23�

In our case r ex � 0 and the field E, which is described by (23)
and has the sense of a depolarizing field, is equal to

E dep � ÿdivP � x

x3
�24�

[in the particular case of a homogeneously polarized ellipsoid,
ÿdivP is a d-function on the ellipsoid boundary, and (24) has
the form of Eqn (14)]. Since E dep specified by (24) is a linear
functional of P�x�, after the substitution of (19) we have for
its current value

E dep 0 �x� � aE dep�x� : �25�

We shall mentally divide the medium into infinitely small
needles which at each point of the medium are parallel to P.
The work on polarization of these needles per unit volume
corresponds to the summand V0, and the work against the
depolarizing field common to the entire medium corresponds
to the summand which, with allowance made for (19) and
(25), is equal to

ÿ
�P
0

E dep 0 dP 0 � ÿE depP

�1
0

a da � ÿE depP

2
:

Finally, for the total free energy as a functional of P�x� we
arrive at

V tot�P�x�� �
��

V0�P� ÿ E depP

2

�
dx ; �26�

where E dep is a functional of P�x� specified by (24); the
additional dependence of V0 on x [see Eqn (18)] corresponds
to the case of an inhomogeneous medium.

It is noteworthy that as distinct from the case of
thermodynamics proper, the free energy of a medium, given
by the integrand of (26)

V � V0�P� ÿ E depP

2
; �27�

is not a function, but a functional of its thermodynamic
parameter [E dep is the functional ofP�x� defined byEqn (24)].
This fact reflects the long-range character of electromagnetic
forces and as applied to a homogeneously polarized ellipsoid
it manifests itself in the dependence of its free energy on its
geometrical form [see formula (16) which can be derived by
the substitution of (14) into (27)].

Let us now proceed to the situation when a given
polarization P�x� is generated (quasi-statically and isother-

x

y

P

Figure 1. Homogeneously polarized dielectric ellipsoid is divided into

`needles' parallel to the polarization vector P.

{Being an integral relation, Eqn (23) is equivalent to the differential

Maxwell equations (20) (in which D is given by (6)) together with the

boundary conditions at infinity. More precisely, the latter equations are

written on the basis of relation (23).
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mally) in a medium which is already in a fixed external field
E ex�x�. The work done on the charges of the medium then has
the meaning of the work done on the `medium in an external
field' system. The force field which polarizes the medium in
the presence of a fixed E ex is either an external electric field
complementary to the one already existing (this is the role that
the field E ex played above when it was complementary to the
fixed zero external field) or else it may be a field of extraneous
forces of nonelectromagnetic nature. The elementary work
done on the charges of the medium and determining the
change of its free energy dV is the sum of the elementary
works of the force field dA polarizing the medium and the
fixed external field E ex dP [see Eqn (9)]; accordingly, for dA
we have

dA � dVÿ E ex dP :

Integrating this expression over P (assuming E ex to be fixed)
and bearing in mind that dA determines the free energy
variation dW of the `medium in an external field' system, we
are led to

W � Vÿ E exP : �28�

Substituting (27) into (28) and integrating the latter expres-
sion over the volume occupied by the medium, for the total
free energy of a `medium in an external field' system we have

W tot�P�x�� �
��

V0�P� ÿ EdepP

2
ÿ E exP

�
dx ; �29�

where E dep is the functional of P�x� given by (24); the
additional dependence of V0 on x [see Eqn (18)] corresponds
to the case of an inhomogeneous medium.

We note that the `medium in an external field' system
differs from that identified in the Introduction as the
`medium� external field' system. For the latter system, the
thermodynamic parameter (the generalized coordinate) is the
distance between the medium and the rigid conglomerate of
external charges or, which is the same, the distribution E ex�x�
in the volume occupied by the medium; correspondingly, the
distribution P�x� and along with it the total free energy F tot

[see Eqn (3)] of this system turn out to be functionals of
E ex�x�. On the contrary, to the `medium in an external field'
system corresponds a fixed mutual position of the medium
and the conglomerate of external charges and, therefore, a
fixed distribution E ex�x� in the volume occupied by the
medium; the thermodynamic parameter of such a system is
the distribution P�x� whose functional is W tot (29). We shall
emphasize thatW (28) coincides with F defined by (4) only for
equilibrium P values.

3. The material equation of a dielectric
and the thermodynamic inequalities
for permittivity as conditions
of thermodynamic equilibrium
of a `medium in an external field' system

Considering amedium (an infinite medium or a finite sample)
in an external field, we shall distinguish in it a physically
infinitesimal ellipsoid whose characteristic dimension L
satisfies the inequalities

a0 5L5

����HPP
����ÿ1 : �30�

Fulfillment of the left inequality leaves us within the frame-
work of a macroscopic description of the medium, while
fulfillment of the right inequality allows us to assume this
ellipsoid to be homogeneously polarized and to apply the
corresponding formulae of Section 2; the possibility for the
double inequality (30) to hold is provided by the condition of
disregard for the spatial dispersion (10). The field external to
the indicated ellipsoid, E ex, is the field which, when extracted
from the medium, would occur in the cavity thus formed; E ex

in sum with Edep (14) gives the field E and is hence defined by
(15). Thermodynamic equilibrium of the `dielectric ellipsoid
in a homogeneous external field' system (a particular case of
the `medium in an external field' system) corresponds to
minimality of the quantity

Uÿ T0Sÿ E exP ; �31�
whereU is the internal energy of the ellipsoid, S is its entropy,
and T0 is the temperature of the surrounding medium. We do
not present the proof of this because it repeats literally the
proof known from thermodynamics [12], where the expres-
sion for elementary work has the form (11) instead of (9) and
where instead of (31) the minimum quantity is

Uÿ T0S� p0v ; �32�

where v is the volume of a small part of the medium, and p0 is
the pressure external relative to this part. Minimality of the
quantity (31) over an entire set of states implies its minimality
over any of its subsets, including that corresponding to
constant values of temperature T (which is equal to the
temperature of the thermostat whose role is played by the
part of the medium surrounding the ellipsoid) and of
thermodynamic parameters proper (which are not written
explicitly). Putting T0 � T in (31) and omitting the thermo-
dynamic part proper in the free energy Uÿ TS, we come to
the quantity

W � Vÿ E exP ; �33�

which is the free energy of a `medium in an external field'
system [see Eqn (28)]. The necessary conditions of the
minimum ofW have the form

�dW�T � 0 ; �d2W�T 5 0 : �34�

As concerns the medium as a whole, or more precisely the
`medium in an external field' system, one can readily show in
an analogous manner that thermodynamic equilibrium
corresponds to fulfillment of the following conditions for
the first and second variations of the total free energy W tot

(29):

�dW tot�T � 0 ; �d2W tot�T 5 0 : �35�

After the substitution of (33), the first of the conditions
(34) yields

E ex � dV�P�
dP

: �36�

Substituting here E ex (15) and V (16), we obtain a material
equation in the form of a relation between E and P:

E � dV0�P�
dP

; �37�
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the additional dependence of V0 on x [see Eqn (18)]
corresponds to the case of an inhomogeneous medium. This
is the general notation of thematerial equation in terms of the
quantityV0�P�which, asmentioned in Section 2, can be taken
(instead of the material equation) as a primary element in the
phenomenological description of a medium. Notice that the
material equation can of course also be obtained in the
general form, that is, from the first condition (35).

A material equation in the form (37) was first written by
Ginzburg [13] for a ferroelectric:

in the isotropic case we have

V0 � ÿ a

2
P 2 � b

4
P 4 �a > 0; b > 0� ; �38�

and the material equation takes the form

E � �ÿa� bP 2�P : �39�

A material equation in the form of a relation between D
and E can, with allowance made for (37) and (6), be given
parametrically (P is the parameter):

E � dV0�P�
dP

; D � dV0�P�
dP

� 4pP : �40�

When (37) and (6) are involved, the tensors of the inverse
electric susceptibility and permittivity are as follows:

aÿ1ik �
qEi

qPk
� q2V0

qPi qPk
; �41�

eik � qDi

qEk
� dik � 4paik : �42�

We shall emphasize that a material equation appears as a
thermodynamic equilibrium condition, and therefore for
nonequilibrium P�x� values the relation between D and E
specified by this equation turns out to be violated. This was
mentioned in the Introduction where it was also noted that a
material equation can be regarded as an analogue of the
functional relation between the equilibrium value of the gas
volume v and a fixed external pressure p0. Indeed, in
thermodynamics proper, over a set of states characterized by
a temperature equal to the thermostat temperature �T � T0�,
Eqn (32) assumes the form

F� p0v ; �43�
where F � Uÿ TS is the free energy of the gas{. In
equilibrium state, the minimality of this quantity corre-
sponds to the condition

p0 � ÿ
�
qF
qv

�
T

; �44�

which relates the equilibrium value of v to a fixed p0.
Obviously, an analogue of (44) is relation (36) [see Eqn (12)]
which, after identity transformations, just gives the material
equation (37).

As to the equation of state of matter (5), relating the
system volume not to the external pressure p0 but to the

pressure p of the gas itself, it is valid, as mentioned in the
Introduction, both for equilibrium and nonequilibrium
states. Its analogue in the thermodynamics of dielectrics is
the relation between the polarizationP and the internal forces
acting on the charges of themediumon the side of themedium
itself; so, in the framework of the oscillator model, these are
forces acting, firstly, on the side of oscillator `springs' and,
secondly, on the side of the so-called acting field from which
the external field E ex is subtracted.

We shall now proceed to an examination of the thermo-
dynamic stability of dielectrics [9]. A significant contribution
to the comprehension of this issue wasmade byDAKirzhnits
[4 ± 6] who systematically considered the various ways of an
electromagnetic affecting a medium; it was shown in
particular that in the presence of spatial dispersion the
longitudinal (relative to k) permittivity can take on negative
values. The indicated papers were concerned with linear
(homogeneous, isotropic) media; we are on the contrary
dealing with the opposite case of arbitrary nonlinear
(inhomogeneous, anisotropic) media, but without spatial
dispersion. The latter corresponds to fulfillment of condition
(10), which allows consideration of physically infinitesimal
homogeneously polarized volumes.

The thermodynamic stability of a physically infinitesimal
ellipsoid mentally distinguished in the medium is governed by
the second condition (34) which, after the substitution of (28),
means that the quadratic form�

q2V
qPi qPk

�
T

dPi dPk

is nonnegative. In this case, for the eigenvalues (e.v.) of the
tensor �q2V=qPi qPk�T we have

e:v:

�
q2V

qPi qPk

�
T

5 0 : �45�

Let the ellipsoid be so chosen that in the coordinate system
connected with its major axes the tensor q2V0=qPi qPk is
diagonal; then the tensor q2V=qPi qPk, whereV is specified by
(16), appears to be diagonal, too. Substituting (16) into (45),
we obtain three inequalities for the eigenvalues of the inverse
electric susceptibility tensor (41):

aÿ1ii �
q2V0

qP 2
i

5 ÿ 4pni �46�

(there is no summation over i), each of which expresses
stability under fluctuations of the corresponding component
Pi. Since stability of themedium as awhole implies stability of
all the ellipsoids distinguished mentally in it, the choice of the
strongest inequalities in (46) corresponds to the resulting
conditions of stability; in view of ni 5 0, the latter inequal-
ities are due to an alternate choice of needle-shaped ellipsoids
parallel to the coordinate axes �ni � 0�:

aÿ1ii �
q2V0

qP 2
i

5 0 �47�

(there is no summation over i). These inequalities imply that
the eigenvalues of the inverse electric susceptibility tensor aÿ1ik

(41)

e:v:

�
qEi

qPk

�
T

5 0 �48�

{The quantity F� p0v can be obtained as work done quasi-statically and

isothermally on a gas at a fixed external pressure p0. This quantity is

accordingly the free energy of the systemwhich could be identified as a `gas

under external pressure' (an analogue of the `medium in an external field'

system).
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are nonnegative. Accordingly, the eigenvalues of the electric
susceptibility tensor aik itself are negative too, and for the
eigenvalues of the permittivity tensor eik (42) we therefore
have

e:v:

�
qDi

qEk

�
T

5 1 : �49�

Our derivation of thermodynamic inequalities, as is seen
from the derivation itself, involves the case of anisotropic and
nonlinear media; it also however includes the case of
inhomogeneous media because the ellipsoids distinguished
in the medium were assumed to be infinitesimal and their size
was hence assumed to be much smaller than the characteristic
size of inhomogeneity of the medium. We shall also notice
that such thermodynamic inequalities can also be obtained in
the general form, i.e. from the second condition (35).

Notice that the inequalities (49) are analogous to the well-
known thermodynamic inequality�

qp
qv

�
T

4 0 : �50�

Indeed, the inequalities (49) arise as a result of identity
transformations of the conditions (45) whose analogue in
thermodynamics proper is the inequality �q2F=qv2�T 5 0 [see
Eqn (12)] which, with allowance made for (44), looks like�

qp0
qv

�
T

4 0 ; �51�

where p0 and v are related to each other as in Eqn (44). At
equilibrium p � p0, and (51) takes the form (50).

We shall specially point out the case of an isotropic
medium: V0 � V0�P�. The material equation (37) and the
inverse electric susceptibility tensor aÿ1ik (41) have the form

E � E�P�P
P

; E�P� � dV0�P�
dP

; �52�

dEi

dPk
� dE�P�

dP

PiPk

P 2
� E�P�

P

�
dik ÿ PiPk

P 2

�
; �53�

where we have used the relations

qP
qPi
� Pi

P
and

qPi

qPk
� dik :

The quantities dE=dP and E=P have the sense of long-
itudinal and transverse (relative to the vector P) inverse
electric susceptibilities, respectively. The conditions (48) as
applied to the tensor (53) imply feasibility of the inequalities

dE�P�
dP

5 0 ;
E�P�
P

5 0 ; �54�

of which the first expresses stability of the medium under
fluctuations of the absolute value of the polarization vectorP,
and the second specifies the same property depending on its
direction.

It is particularly noteworthy that the second condition
(54) establishes co-alignment of the vectors E and P (the
material equation (52) gives only their collinearity). From
this, with allowance made for (6), it follows that the vectors E
and D are also aligned in one direction.

We shall illustrate what has been done with an example of
an isotropic ferroelectric for which V0 is given by Eqn (38).
We shall locally (at a given point of the space) choose the x-
axis to be collinear to the vectorP. Then thematerial equation
(39) and the stability conditions (54) have the form

Ex � �ÿa� bP 2
x �Px ; �55�

dEx

dPx
5 0 ;

Ex

Px
5 0 : �56�

Graphically, (55) is given by the well-known loop shown in
Fig. 2. Its portion M0N fails to meet the first condition (56)
[13, 14]. However, a still larger portion AM0NB is forbidden
by the second condition (56) which expresses stability under
fluctuations of the direction of the vector P. The latter fact
means that no hysteresis is observed in an isotropic ferro-
electric. Physically, this corresponds to the absence of an
energy barrier between states with opposite orientations of
the vector P (rotating without a change of the absolute value,
this vector goes around the energy barrier `along the valley').
Note that all this equally refers to an isotropic ferromagnetic
which is the magnetic analogue of an isotropic ferroelectric.

4. The thermodynamic parameter of a dielectric

The state of a polarized medium is specified by the spatial
distribution of the polarization vector P�x� whose functional
is the free energy of the medium, which is the crucial point in
the analysis of conditions of thermodynamic equilibrium. In
spite of this, the field E (or electric displacement D) is
frequently taken as the thermodynamic parameter (general-
ized coordinate) of the medium. Obviously, such an
approach is rightful only under condition that the polariza-
tion P can be expressed in terms of the field E (or electric
displacement D). In the general case this however is
impossible. Indeed, this can be attained using a material
equation, but the latter does not suit the purpose because it
refers to equilibrium states only. Consequently, one should
use relation (23) specified by the Maxwell equations and
valid for both equilibrium and nonequilibrium states. This
relation is however `irreversible' because P�x� cannot be
expressed in terms of E�x� in the general case: the solenoidal
(transverse in the k-space) component of the polarization

Ex0

Px

A

M

P0

P1

ÿP1

ÿP0

B

N

Figure 2. Material equation of an isotropic ferroelectric in the form of a

relation between E and P. The portion M0N corresponds to states

unstable `in the absolute value', and the portion AM0NB to those

unstable `in the direction'; P0 �
��������
a=b

p
, P1 �

��������������
a=�3b�p

.

December, 1998 Methodological aspects of the thermodynamics of dielectrics 1225



P�x� does not contribute to the divergence and is not thus
determined by the E�x� value.

We shall illustrate our assertion with an example of a thin
(infinitely thin in the limit) plate homogeneously polarized in
the absence of an external field; the equality r ex � 0
corresponds to this condition and (23) takes the form of
formula (24) which, when applied to the case under con-
sideration, has the form (14), where nx � 1, ny � nz � 0 (the
x-axis is orthogonal to the plate faces):

Ex � ÿ4pPx ; Et � 0 ; t � �y; z� : �57�
The same relations written for the electric displacement D (6)
look as follows:

Dx � 0 ; Dt � 4pPt ; t � �y; z� : �58�

From (57) and (58) it is seen that the polarization P cannot be
expressed in terms of E alone or D alone except in the
particular cases of `x-consideration', where it is expressed in
terms of the field [see the first relation in (57)], and `t-
consideration', where it is expressed in terms of the electric
displacement [see the second relation in (58)].

It is of importance to notice that both the field E and the
electric displacement D can however be taken as thermo-
dynamic parameters in a whole number of cases. In view of
what has been said above, these are cases where the material
equation `works', that is, the P�x� values are equilibrium. We
are then dealing with states which are equilibrium in the
parameter P but generally nonequilibrium in other para-
meters, including thermodynamic ones proper. An example
may be the situation when we are interested in the equilibrium
distribution of the external charge with respect to the
medium, which corresponds to minimality of F tot (1) (see
Introduction). The set of competing states corresponds here
to the various distributions of the external charge r ex�x�,
which are assumed to be created quasi-statically. This means
that over the indicated set of states the distributions P�x� are
equilibrium [and are each time associated with the corre-
sponding distributions r ex�x�]; accordingly, the material
equation of the medium holds, which allows, in turn, the
expression of P in terms of both E and D.

5. Conclusions

The thermodynamic consideration presented above is based
on the concept of work done directly on charges of the
medium itself; although these charges are microscopic
objects, it is nonetheless their spatial displacements that
determine the state of a polarized medium. Such a construc-
tion corresponds in form to the standard scheme of the
thermodynamic method and is exactly analogous to that
used in thermodynamics proper; it does not appeal to a
preliminary consideration of the extended systems, which, as
mentioned in the Introduction, is due to the desire to deal
exclusively with macroscopic objects.

The state of a polarized medium is governed by the spatial
distribution of the polarization P�x�which in the general case
cannot be expressed in terms ofD or E alone; in other words,
different distributions P�x� may correspond to identical
distributions D�x� and E�x�. Thus, neither the electric
displacementD nor the field E can in the general case identify
the state of a polarized medium.

It should be stressed that theMaxwell equations in noway
restrict the possible values of polarization, that is, the set of

competing states correspond to all possible distributions
P�x�. The role of the Maxwell equation comes down to only
a specification of the field E�x� [and also the electric
displacement D�x�] which corresponds to a given P�x�.
Indeed, thermodynamics considers only such nonequili-
brium states that can be generated in an equilibrium
manner, i.e. quasi-statically (infinitely slowly); accordingly,
on a set of arbitrary nonequilibrium states the static Maxwell
equations (20) hold, which are equivalent to the Coulomb law
(23):

E � �r ex ÿ divP� � x

x3
:

The Coulomb law just allows the determination of the field
E�x� corresponding to a given (arbitrary) P�x�.

In the approach presented, instead of the material
equation the expression for the free energy of a homoge-
neously polarized infinite medium, V0�P�, was taken as the
primary element of the phenomenological description of a
dielectric; this quantity is either defined phenomenologically
(for instance, as a power series in the spirit of the Landau
theory) or is calculated frommicroscopic considerations. The
total free energy V tot�P�x�� of the medium (an infinite
medium or a finite sample) polarized in an arbitrary
inhomogeneous way is written in the general form in terms
of this quantity. An addition to V tot of the interaction energy
with a fixed external field gives the total free energy
W tot�P�x�� of the `medium in an external field' system, and
as follows from the second law of thermodynamics, this
quantity assumes the minimum value in the equilibrium
state. This minimum value is mathematically expressed by
the conditions dW tot � 0 and d2W tot 5 0. The former
determines the material equation of the medium, which
appears to be written in the general form in terms of V0�P�;
occurring as the equilibrium condition, the material equation
refers therefore to equilibrium states only, which means, in
particular, that it is not an analogue of the equation of state of
matter in thermodynamics proper. The latter condition
determines the thermodynamic inequalities for permittivity,
which express stability of the medium under fluctuations of
the polarization P. In application to the `conventional'
electrodynamics without spatial dispersion, these are the
following inequalities: for an arbitrary (inhomogeneous,
anisotropic, nonlinear) medium the eigenvalues of the
permittivity tensor are greater than or equal to unity; these
inequalities are an analogue of the well-known thermody-
namic inequality �qp=qv�T 4 0which expresses stability of the
medium under fluctuations of its volume.

In the particular case of an isotropic medium, stability
under fluctuations of the direction of the vector P corre-
sponds to co-alignment of the vectors E and P; accordingly,
the vectors E andD � E� 4pP are also co-aligned. What has
been said implies, in particular, the prohibition of the
existence of states with a spontaneous field E (for D � 0) in
isotropic media: the equality D � E� 4pP � 0 implies
counter-alignment of the vectors E and P. Another illustra-
tion of co-alignment of E and P may be the absence of
hysteresis in an isotropic ferroelectric (it can be shown that
this assertion also holds for the magnetic analogue of an
isotropic ferroelectric, i.e. for an isotropic ferromagnetic).

The author is thankful to AM Ignatov, V PMakarov and
A A Rukhadze for fruitful discussions of the results. This
work was sponsored by the Russian Foundation for Basic
Research (project No. 96-02-16256-a).
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