
Abstract. On introduction of gravitational acceleration into the
calculation of length and velocity scales, a set of dimensionless
parameters appears in themathematical model which enable the
behavior of convection and heat and mass transfer under chan-
ging gravitational conditions to be predicted. By directly simu-
lating the equations of motion and heat transfer, the
effectiveness of the proposed formulation of conservation laws
in treating such phenomena in liquids is demonstrated for both
isothermal and non-isothermal cases and under both terrestrial
and space conditions.

1. Introduction

The mere fact that the mass force coefficient in the equations
of motion decreases in the state of weightlessness does not
imply the decrease of convection in fluids. Given the external
micro-accelerations, Coriolis force, free fall acceleration
variations and other non-gravitational sources of motion
with changing direction, the motion in fluids is determined
by nonlinear interaction of the above mentioned weak forces.
Perhaps this is the reason why the experiments, for example,
in cosmic physical metallurgy, are not repeatable [1]. Thus,
accurate prediction of the behavior of liquid environments in
cosmic conditions is possible only provided that the complete
non-stationary three-dimensional problem is solved, and this
is presently a very complex computational task with no
currently known solution. In this respect, the primary goal is

the determination of the fundamental mechanisms of influ-
ence of the micro-accelerations and free fall conditions on the
fluid dynamics and the stability of the emerging flows. The
second important task is the determination of real media and
geometrical shapes tomodel the processes occurring in liquids
in cosmic conditions on the Earth. Creation of materials with
perfect predefined characteristics in space is possible only
provided the above stated problems are solved.

The Oberbeck ±Boussinesq system of equations is the
model most commonly used for description of the motion of
melts and other non-isothermal fluids. The specific character
of problems under consideration is that prediction of the
motion intensity inside the region, given the temperature
conditions on the region's boundary, is impossible in
advance. The level of convection and the structure of the
flow are determined when the non-linear equations of motion
and heat and mass transport are solved. (The same holds, for
example, for the rate of floating of drops and bubbles and the
character of the emerging flow.) This circumstance compli-
cates the dimensional analysis. Introduction of an external
value, characterizing velocity, may result in the appearance of
another parameter in addition tomany, already introduced in
the mathematical model. The usage of the Grashof number
for approximation of the predefined cosmic conditions by a
model medium on the Earth is impractical because of the
complex non-linear form of the Grashof number, containing
physical constants of the medium, the geometrical parameter
of the region and the temperature difference.

Based on the dimensional theory, the motion equations
in this article are reduced to a form with a minimal set of
dimensionless parameters of simple type. Then, there
appears a possibility to determine the character of changes
of convection and processes of heat and mass transfer,
corresponding to changing gravitational conditions in a
given environment, and to define the rules for setting
similar environments on the Earth and in space. Direct
calculations based on the equations of motion and heat and
mass transport prove that the theoretical assumptions are
correct.
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2. Dimensional analysis and the mathematical
model

Suppose that a liquid medium has the following parameters:
density r0, coefficient of dynamic viscosity m, surface tension
coefficient s0; and let g be the gravitational acceleration.
According to the dimensional theory [2], a medium with four
parameters is characterized by one dimensionless combina-
tion. In this case, the following combination appears:

M � m4g
r0s

3
0

:

The parameter Fi �Mÿ1, introduced byKapitza [3] and later
named the film number, is used for the investigation of
draining films of liquids. Powers of the number Fi (for
example, Fi1=11 in Ref. [14]) are used in the transition to
experimentally measurable functions in specific environ-
ments. The value M [5], referred to as the Morton number
[6], is used for the description of floating of bubbles in
different liquids. The introduction of special coordinates,
where the data for each medium is represented on a line with
the slope defined by M [7], makes it possible to generalize the
data for different media.

The presence of the dimensionless parameter M, contain-
ing the basic physical constants of the medium (including g),
allows all the media to be ordered according to its value. For
instance, some well-known liquids (see Table 1): petroleum
oil, glycerin, water, mercury, melts of semiconductors, in
terrestrial conditions have values of M, decreasing from 178
to the order of 10ÿ15 respectively. The value M=0 corre-
sponds to the model of an ideal liquid with no viscosity, or
internal friction. Thus, even an elementary comparative
analysis by the value of M allows one to predict the dynamics
of flows in media. For instance, the melts of semiconductors
are placed at the bottom of Table 1, immediately above the
ideal liquid model. It is therefore natural to expect that
characteristics of flows in melts are closer to those in an
ideal liquid than, for example, to the characteristics of water
or petroleum oil flows. (This hypothesis was verified by the
generalization of the results of studies on bubbles and drops
floating up in different liquids [7].) If a formal passage to the
limit of ideal liquid model is taken into account, by viscosity
or by the Reynolds number, this fact, in turn, indicates the
increasing role of the external perturbations in melts of
semiconductors, since there is a possibility that the flows in
the boundary layer near a solid wall are unstable [8]. The later

becomes even more important for prediction of the behavior
of liquid media in cosmic conditions, modeled by a small
value of g. The value ofM for a specified liquid decreases with
decreasing value of g and thus the hydrodynamic properties
of this liquid approximate those of an ideal liquid.

Now consider the equations of motion. The Oberbeck ±
Boussinesq system of equations [9] proved to be efficient as
applied to the description of thermo-gravitational flows [10].
If the conventional method of conversion to dimensionless
variables based on region's diameter is 2L and velocity U is
used, the equations are:

qV
qt
� �VH�V � ÿH

�
P� z

Fr

�
�
�

Gr

Re2

�
Ynz �Reÿ1DV ;

divV � 0 ; �1�

qY
qt
� VHY � 1

RePr
DY ; �2�

qC
qt
� VHC � 1

Re Sc
DC ; �3�

and the dynamic boundary conditions on the free surface are

Pÿ 2

Re
nDn � 1

We
H� Pa ; �4�

2sDn �Mn

Re
HGY ; �5�

where t is the time,V is the velocity vector,P is the pressure,Y
is the temperature, and C is the concentration;

Gr � gbL3

n2
DT ; Re � UL

n
; Fr � U2

gL
;

We � r0U
2L

s0
; Mn � s0KsL

r0n2
DT

are the Grashof, Reynolds, Froude, Weber, and Marangoni
numbers respectively; Pr � n=KT, Sc � n=KC are the Prandtl
and Schmidt numbers; n, b, KT, KC, DT are the coefficients of
kinematic viscosity, temperature expansion, thermal conduc-
tivity, diffusion and the specific temperature drop respec-
tively; nz is a unit vector, directed against gravity, the z axis
being directed with gravity; s , n are the tangent and normal
vectors on the free surface; D is the tensor of strain; H is the
surface curvature; Pa � const is the pressure on the free
surface; and HG is the gradient along the free surface (it is

Table 1.

Number

position

Liquid T, �C r, g cmÿ3 n, cm2 sÿ1 s, din cmÿ1 Pr M

1

2

3

4

5

6

7

8

9

10

11

12

Glycerin

Petroleum oil

Glycerin

NaNO3

Glycerin

Water

GaSb

Water

GaAs

Mercury

Germanium

Ideal liquid

20

27.5

100

307

150

20

712

80

1238

15

937

Ð

1.259

0.866

1.21

1.89

1.147

1.0

6.03

0.97

5.3

13.61

5.51

Ð

11.75

0.67

0.107

0.0146

0.01

0.01

0.0038

0.0033

0.0032

0.00116

0.00135

0.0

59.4

20.7

54.2

116.6

48.8

72.8

454

62.6

530

487

600

Ð

104

� 50

102

9.24

10.0

7.1

0.05

2.2

0.07

0.028

0.017

Ð

178

1.45�10ÿ2
1.40�10ÿ6
1.90�10ÿ10
1.20�10ÿ10
2.54�10ÿ11
4.80�10ÿ13
4.32�10ÿ13
1.03�10ÿ13
3.86�10ÿ14
2.52�10ÿ15
0.0

1212 P K Volkov Physics ±Uspekhi 41 (12)



usually assumed that s � s0
�
1� Ks�YÿY0�

�
, Y0 is con-

stant). It is assumed that the rest of the boundary conditions
are given.

The large number of dimensionless parameters in Eqns
(1) ± (5), their positions the non-linear equations and the
complexity of the Gr and Mn numbers do not allow
verification of the predictions without solving the problem.
However, if L and U assume the form

L �
�

s0
gr0

�1=2

� ds and U �
�
s0g
r0

�1=4

;

t � L

U
t 0 �

�
ds
g

�1=2

t 0 ; �6�

then the dimensionless parameters, the analogues of the
Reynolds, Grashof and Marangoni numbers, assume the
following form:

Re �
�
s30r0
gm4

�1=4

�Mÿ1=4 � Reg;

Gr � bDTRe2g; Mn � KsDTRe2g : �7�

The Prandtl and Schmidt numbers do not change, We � 1,
Fr � 1. Thus, the coefficient of the mass force in Eqn (1) is
essentially simplified and the form of the other coefficients
allows the prediction of the properties of the solutions under
changing gravitational conditions.

From the point of view of the dimensional theory [2], the
introduction of g into the definition of specific size and
velocity is a legitimate operation. Moreover, this particularly
allows valuable qualitative assumptions to be made about the
influence of different parameters with respect to changing
value of g. Note that the physical patterns remain invariant.
The principal advantage of using the parameters (7) is the
character of the appearance of g in the dimensionless
parameters and, further, in the coefficients of the motion and
heat and mass transfer equations. Now g appears only in the
complex with the physical constants of a medium in Reg, and
the parameter Reg takes the position of theReynolds number,
that is, it appears in terms with the higher derivatives in Eqns
(1) ± (3).

With allowance made for the character of appearance of
the parameter Reg in the equations, the association between
Reg and the number M verifies the preliminary qualitative
assumptions about the hydrodynamic properties of different
fluids and their comparative closeness to themodel of an ideal
liquid. Another important implication is that now it becomes
rather easy to distinguish subclasses of similar physical
phenomena. The necessary and sufficient condition for
similarity of two physical phenomena is the equality of the
numerical values of all their dimensionless combinations [2].
Taking into account the Prandtl and Schmidt numbers and
assuming that the geometry of the region is given, one may
conclude from Eqns (7) that the equality of numbers UÃ , bDT,
KsDT, Pr, Sc is necessary and sufficient for the similarity of
the two phenomena.

3. Numerical calculations

All the model calculations are made using the program
package COGMA [11]. The resources of this program
package are sufficient to make practically all calculations for
two-dimensional stationary and non-stationary isothermal

and non-isothermal flows in a given region. It also allows a
number of tasks to be solved under the assumption that the
free surface is flat. Thus, the resources of this package are
more than sufficient for illustration of the principal conclu-
sions of this article.

In the COGMA package the motion equations are solved
relative to the vorticity and stream function. To avoid the
necessity of retrieving the solutions corresponding to a given
medium, the equations are solved in a dimensional form.
Conversion of the flow characteristics to a dimensionless
form, calculation of dimensionless parameters and compar-
ison of the solutions for different media are made immedi-
ately after the numerical solutions are obtained. The accuracy
of calculations was verified on themodel tasks by calculations
made on a sequence of refining meshes. Based on the
experimental data, a mesh of approximately 8000 cells,
evenly distributed along the axes, was chosen. This proved
to be sufficient for calculation of flows with a Reynolds
number greater than 1000. More than three points were in
the boundary region near a solid wall.

The numerical solutions were compared by matching the
flow patterns (isolines of the temperature and stream
functions) and were controlled at the maximal and minimal
values of the stream function.

4. Classes of invariant physical phenomena

The equality of numbers M for two similar physical
phenomena means that if one considers a liquid in terrestrial
conditions, and the same liquid in cosmic conditions, their
behaviors are not similar. This means that a liquid medium
behaves differently in free fall condition, i.e. it becomes a
different medium. Strange as it seems, this fact follows from
the laws of conservation (1) ± (3). (If the characteristic
geometry and velocity are chosen according to Eqns (6), the
Froude number is identically equal to one, therefore the
pressure is invariant with respect to the gravitational
conditions. In other cases the equality of the Froude
numbers should be required additionally, leading to the
same result.) The equality of the Prandtl and Schmidt
numbers is also a fundamental condition for the similarity
of two media. It is further assumed that these conditions hold
for all specific cases.

4.1 Similarity of the isothermal processes
For the isothermal flows in different liquids, the system (1),
(2) reduces to the Navier ± Stokes equations. In this case,
according to Eqns (6), M is the only parameter remaining in
the equations of motion. The necessary and sufficient
condition for similarity of two media is the equality of the
numbers M, provided there is equality of the other geome-
trical and kinematic parameters.

Consider a two-dimensional case and a flow in a cavity
with a moving upper cover as an example. Suppose that the
medium is a melt of germanium in terrestrial conditions
(position 11 in Table 1). The height of the cavity is 1 cm, its
width is 1.1 cm, and the velocity of the cover is 0.55 cm sÿ1.
The form of the flow in this case is shown in Figure 1. The
minimal value of the stream function is ÿ0:065 cm2 sÿ1; its
maximal value of 0.00027 cm2 sÿ1 is reached in the corner. It
follows from Eqns (6) that U � 18:07 cm sÿ1, L � 0:333 cm,
then the dimensionless velocity of the cover is 0.03, the
dimensionless value of the stream function in the vortex is
ÿ0:0108.
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Consider water (position 6 in Table 1) as a second
medium. Assuming g � 0:097 cm sÿ2, the M numbers are
equal for these two media. For this value of g, we calculate
U � 1:63 cm sÿ1 for water from Eqns (6) and, multiplying
this value by 0.03, we obtain the value 0.05 cm sÿ1 for the
velocity of the cover. Considering the value of L for water
(27.39 cm for the given g), the height and width of the cavity
are 82 cm and 90 cm. For these parameters the flow has the
same form as shown in Fig. 1. The minimal value of the
stream function in vortex is ÿ0:485 cm2 sÿ1, its value in the
corner is 0.0019 cm2 sÿ1, and the dimensionless value of the
stream function in the vortex coincides with the correspond-
ing value for the melt of germanium.

Calculation of the Reynolds and Froude numbers for
these cases results in the correspondingly the same values of
448 and 0.00028 respectively (accurate to the round-off errors
of the cavity width calculation for water). Therefore, the
above-considered flows are similar.

At the same time, a flow in the melt of germanium in a
cavity of the same size, but for g � 0:097 cm sÿ2, has the same
form, intensity and Reynolds number (calculated using the
vorticity and stream function). However, these two flows of
melts of germanium are not similar, since they have different
Froude numbers.

4.2 Similarity of flows in a closed region with a heated
lateral wall
Considering the non-isothermal environments, it is necessary
to solve Eqns (1) ± (2). Regarding Eqns (6), they contain as
many as three dimensionless parameters. The definition of
similar environments in this case requires the equality of the
Prandtl numbers. Therefore, in order to do the calculations,
we set a corresponding coefficient of thermal conductivity for
one of the media. Then the necessary and sufficient condition
for similarity of the two media is the equality of the numbers
M and bDT.

Assume that the parameters of the first medium corre-
spond to a melt of germanium (position 11 in Table 1), and
the parameters of the second medium correspond to water
(position 6 in Table 1) with a modified coefficient of thermal

conductivity. Consider a flow in a closed region with a
rectangular section and stationary solid walls of the same
size as considered in the previous section. The equality of M
numbers is ensured by selection of proper values of g. Assume
that the lateral walls are isothermal and the temperature of
the right wall is 20 �C higher than of the left. The distribution
of temperatures on the lower and upper boundaries is set
linear. Given these parameters, a free convection develops in
the melt and the liquid begins to rotate counter-clockwise
(Fig. 2). The maximal value of the stream function in the
vortex is 0.455 cm2 sÿ1 (theminimal isÿ0:00027 cm2 sÿ1 in the
corners), its dimensionless value is 0.076. The velocity reaches
its maximal value (1.43 cm sÿ1) on the axis of symmetry at a
distance of approximately 0.14 cm from the horizontal walls.

Based on the similarity requirement, the temperature
contrast for water should be 10 �C (b � 0:0002 for water,
b � 0:0001 for germanium). Calculation of the flow and
temperature fields for this temperature difference and
geometry results in flow types, analogous to that shown in
Figure 2, with a maximal value of the stream function of 3.38
cm2 sÿ1 and a minimal value of ÿ0:00189 cm2 sÿ1 in the
corners. Thus, the dimensionless value of the stream function
is 0.076, i.e. the same as for the melt of germanium. The
maximal value of the velocity is 0.129 cm sÿ1.

Calculation of the Reynolds and Froude numbers using
the maximal velocity and the Grashof number for the
considered flows results in practically the same values of
1162, 0.0019, and 1:43� 106 respectively. Therefore, the
equality of the dimensionless parameters of the two phenom-
ena proves them similar.

Similarity of flows can be observed not only in the case of
isothermal lateral walls. If there is a linearly distributed
temperature difference on the lateral walls (there is a vertical
temperature difference), then the flows remain similar for the
above defined geometry of the region and the temperature
difference on one of the horizontal walls.

4.3 Similarity of flows in a region with a heated lower wall
Consider a rectangular region, filled with liquid. The upper
and the lower walls are isothermal, the temperature of the
lower wall is higher than that of the upper. The temperature
distribution over the lateral walls is set linear. The liquid is in
a state of unstable equilibrium, and a faintest perturbation
results in the development of motion. The character and type
of the flow depend on the temperature difference, geometry of
the region and the medium. A one-vortex flow with stagnant
zones in the corners develops in the regions with close values

Figure 1. Structure of the flow in a cavity with a moving upper cover.

a b

Figure 2. Structure of the flow (a) and temperature field isolines (b) in a

closed region with isothermal vertical walls with different temperatures

(the Prandtl number is small). The flow detaches from the walls in the

corners on Fig. 2a.
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of width and height and a moderate temperature drop. For
symmetry reasons, the vortex can rotate in any direction with
the same intensity and flow structure.

Assume that the section of a region is the same as in the
previous case, namely a rectangle with height of 1 cm and
width of 1.1 cm, and the liquid is a melt of germanium. The
temperature of the lower wall is 20 �C higher than of the
upper. The structure of the steady-state flow and the
temperature distribution in the region are shown in Figure 3.
The liquid rotates counter-clockwise and has stagnant zones
in the corners. Calculation of the Reynolds number using the
maximal velocity (about 1.07 cm sÿ1 at a distance of 0.25 cm
from the lower wall) and width results in a value of the order
of 870. The flow stabilization time is of the order of 60 s.

Like in the previous case, consider the water with a
modified thermal conductivity coefficient as a second
medium, with a region geometry of 82 by 90 cm, and
gravitational conditions, ensuring the M number for water
to be equal to the M number for germanium in terrestrial
conditions.

The temperature difference between the lower and upper
wall, necessary for similarity of these flows, is 10 �C.
According to calculations, the flow structure is similar to the
structure shown in Fig. 3a, with the reverse rotation direction.
Moreover, the temperature field changes with the flow and is
a mirror image of the field shown in Fig. 3b. The Reynolds
number is equal to 870, and the maximal value of velocity is
ÿ0:097 cm sÿ1 at approximately 19.5 cm from the lower wall.
The stabilization time is very large, approximately
� 2:1� 105 s.

Conversion of the maximal and minimal values of the
stream function to a dimensionless form according to Eqns
(6) results in equal absolute values of 0.059. The ratio of the
maximal value of the stream function to its minimal value is
also the same for each flow and is equal to 70. Therefore, these
two flows are similar.

If there is an additional horizontal temperature difference
on one of the walls, then the flows remain similar, if this
temperature difference satisfies the condition stated in
Section 4.2. In this case the flows become similar with respect
to the rotation directions too. Note the significant decrease of
the stabilization time for both gravitational conditions if
there is a horizontal temperature difference. For the media
in terrestrial conditions the stabilization time reduces by a
half for a horizontal temperature difference of 2 �C; in cosmic
conditions it reduces by an order. The flow intensity increases
if a horizontal temperature difference is introduced. For the
cases considered the Reynolds number is equal to 950.

4.4 Similarity of flows with free and thermo-capillary
convection
A free surface is another source of motion in liquids; the
intensity of this motion is determined by the temperature
gradient on the free surface. In this case an additional
necessary condition for the similarity of two flows is the
equality of the values KsDT. However, for the temperature
difference specified by bDT, this equality is possible only for
certain values of Ks. Provided that the environment and the
region geometry are the same as described in Section 4.2 and
the free upper surface is flat, the flow structure and the
temperature distribution for this case are shown in Fig. 4
(Ks � 0:000166 for germanium; in calculations the value of Ks
for water was assumed to be 0.000333). The flow structure is
bi-vortex: the upper vortex is induced by Marangoni convec-
tion, and the lower by free convection, caused by the heated
lateral walls. The motion intensity in the lower vortex
(cmax � 0:069) is somewhat less than in the case with no free
surface and a solid upper boundary (Fig. 2). This is a result of
counteraction of the thermo-capillary convection that devel-
ops on the free surface independently, inducing a counter-
clockwise rotation of liquid. The vortex motion induced by
Marangoni convection generates intensive motion in the
surface layer with the maximal velocity value (u � 0:354) on
the surface. This value is 4.5 times greater than the maximal
velocity in the lower part of the flow. The temperature
distribution in this case has a layered structure.

Calculation of the flows in a melt of germanium for the
given geometry with a free upper boundary gives fundamen-
tally different results for different values of g. TheMarangoni
and free convection in terrestrial conditions form a system of
vortices from the free surface downward with decreasing
intensity (for different melt heights). In cosmic conditions
there is only a one-vortex or two-vortex flow. Identical one-
vortex flows with close minimal values of the stream function
can develop only in thin melts [12]. In this case the
stabilization time of flows in cosmic conditions is 20 to 70
times greater than in terrestrial conditions.

4.5 Similarity by the Prandtl number
The Prandtl number notably influences both the structure
and character of the flows. In all the above considered
calculations the coefficient of thermal conductivity for water
was changed so that the Prandtl numbers for water and for
germanium were equal. With this change the flows in water
were similar to the flows developing in a melt of germanium.
The estimates for water with an unchanged Prandtl number
and for germanium with a changed coefficient of thermal

a b

Figure 3. Structure of the flow (a) and temperature field isolines (b) in a

closed region with isothermal horizontal walls with different tempera-

tures. There are stagnant zones in the corners of Fig. 3a (not shown).

a b

Figure 4. Structure of the flow (a) and temperature field isolines (b) in a

region with an open upper boundary and isothermal vertical walls with

different temperatures. The Prandtl number is small.
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conductivity (so that its Prandtl number is equal to that for
water) give practically equal temperature fields and oscilla-
tory non-stationary behavior of the velocity field (for the case
with heated lateral walls in Section 4.2) (Fig. 5). The maximal
dimensionless value of the stream function is of the order of
0.0016 in both cases. The non-stationary deviations of the
maximal value of the stream function reach a value of the
order of 0.000015. Comparison of the maximal value of the
stream function with estimates for a small Prandtl number
indicates a notable decrease of motion intensity.

The flow is concentrated near the solid boundaries of the
region, the motion in the center of the region is very weak and
its velocity is 50 times less than the maximal velocity in the
area with non-stationary fluctuations. There are no stagnant
zones in the corners. The maximal value of velocity reaches
0.00373, the Reynolds number reaches a value of the order of
55. The temperature field reflects all the peculiarities of the
flow and is fundamentally different from the case with a small
Prandtl number. If the Prandtl number is small, the
temperature field is layered and its isolines are curved along
the flow direction. If the Prandtl number is large, a vertical
stratification of the temperature field, relative to the gravity,
forms in the extensive central region. The cold layers are
placed lower than the warm layers. There are thin areas with
large temperature gradients near the walls.

The structure of the flow and the temperature field for the
parameters specified in Section 4.4 (Fig. 4) but with Pr � 7:1,
are shown in Fig. 6. The size of the vortex induced by
Marangoni convection essentially increased. However, the
maximal value of velocity on the free surface slightly
decreased, u � 0:344. In the lower region the free convection

produces essentially weak motion, as compared to the flow in
Fig. 4, with a maximal velocity approximately 20 times less.
The temperature fields are very different. The intensive
motion in the Marangoni vortex area creates a region with
an evenly distributed temperature. If the motion is weak, in
the region of influence of the free convection the temperature
field is stratified in its bottom part and is close to the
temperature field, shown in Fig. 5. In the upper-left corner
with more intensive motion there is a region with evenly
distributed temperature.

5. Practical recommendations on usage
of the model media

The two flows considered in Section 4.1, the melt of
germanium in terrestrial conditions and water on the space
station ``Mir'' [12], are similar, given corresponding geome-
trical proportions. Therefore, the flows in an opaquemedium,
such as a melt, can be observed, carrying out a corresponding
experiment with water in cosmic conditions. A more interest-
ing example is modeling the behavior of a melt of germanium
in cosmic conditions with a medium under terrestrial
conditions. Such modeling becomes possible if the number
M for the medium in terrestrial conditions is 3 to 5 orders less
than for germanium.

Another possibility for practical usage of similar flows is
the selection of a model medium on the Earth with close
numbers M (for example, positions 7 and 8 in Table 1). Then
the geometry of the regions are set (in this case the regions
have close dimensions). Then it is possible to study the
hydrodynamic flows in the model environment 8 (water)
and to make predictions of the character of flows in a melt
of semiconductor 7. An analogous experiment can be carried
out on a space station, thus allowing information to be
obtained about the behavior of melts in cosmic conditions.
Comparison of experiments carried out in terrestrial and
cosmic conditions will allow the influence of cosmic condi-
tions on the development of flows to be determined.

These recommendations also relate to the non-isothermal
types of flow considered in Sections 4.2 through 4.5. In this
case, however, the modeled environment should have a
Prandtl number corresponding to the liquid being investi-
gated. Further, if the region has a free surface, the values of Pr
should also correspond for both environments.

6. Conclusions

The suggested form of the motion and heat and mass
transport equations allows the character of convection and
heat and mass transport to be predicted if the gravitational
conditions change. If the coefficient of the mass force in the
equations of motion decreases, the hydrodynamic properties
of the liquid shift toward the properties of the ideal liquid.

A simple form of dimensionless parameters allows the
classes of similar phenomena in different media to be singled
out. The stabilization time of similar flows varies in different
media and gravitational conditions. The stabilization time of
flows is usually greater for smaller values of g.

Note that all the dimensionless parameters of similar
flows coincide. This fact was verified by calculations made
for the phenomena determined by the parametersM (or Reg),
bDT, KsDT, Pr. The calculated values of the Reynolds,
Grashof, Weber, and Froude numbers turned out to be
equal for the liquids considered.

a b

Figure 5. Structure of the flow (a) and temperature field isolines (b) in a

closed region with isothermal vertical walls with different temperatures

(the Prandtl number is large). There are no stagnant zones in the corners of

Fig. 5a.

a b

Figure 6. Structure of the flow (a) and temperature field isolines (b) in a

region with open upper boundary and isothermal vertical walls with

different temperatures (the Prandtl number is large).
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An attempt to determine the similarity of media by the
Grashof number failed. For example, given a medium
(germanium in a closed region) and assuming the Grashof
numbers be equal (the temperature difference increases and
the value of g decreases proportionally), we obtain the flows
of the same typewith the same intensity (by themaximal value
of the stream function) and equal Reynolds numbers.
However, these flows are not similar since the Froude
numbers for them are different. Considering flows with
equal Grashof numbers, but in regions with different
geometry and values of g, we obtain flows of the same type
with equal Reynolds and Froude numbers, but the different
Weber numbers. Thus, the equality of the Grashof numbers
does not imply similarity for the considered classes of flows.
Since the Rayleigh number is a product of the Grashof and
Prandtl numbers, the equality of the Rayleigh numbers,
generally speaking, does not imply the similarity of physical
phenomena. In order to make this conclusion, a number of
problems were calculated and all the above-mentioned
dimensionless parameters were computed after determina-
tion of the specific velocity of the flow. The approach
suggested in this article allows the similarity of two environ-
ments to be determined more easily and without actually
solving the equations even if the gravitational conditions
change.

Inequality of the Froude numbers for stationary flows
with the same structure and Reynolds numbers influences the
character of the stability of the flows, relative to small
perturbations, and the development of non-stationary pro-
cesses in the liquid.

Comparison of a flow between heated vertical walls and a
flow induced by a heated lower wall in a region with the same
temperature drop on the opposite walls indicates that they
differ in both the intensity of the stationary flow and the
stabilization time. The flow between two heated lateral walls
is better developed and has a shorter stabilization time. The
presence of even a small horizontal temperature difference
notably accelerates the stabilization of the flows if the lower
wall is heated.

Examination of flows induced by gradients of admixture
concentration in the melt and on the free surface, in the case
when the gravitational conditions change, is analogous to the
above-considered non-isothermal cases. The character of the
flows, considering large Schmidt numbers (or diffusive
Prandtl numbers), can be estimated based on the calculations
made for the large Prandtl numbers.

It was assumed that the physical and thermo-physical
parameters of liquid environments do not depend on the
gravitational conditions. In general, it is necessary to
investigate the influence of the gravitational conditions on
the coefficients of momentum, heat and mass transport in
liquids. The fact that the number M, characterizing liquid
media, changes with changing gravitational conditions gives
grounds for such investigation.
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