
Abstract. In amplifying media steady-state waves can travel
faster than the speed of light in vacuum without violating the
principles of special relativity. The possibility of generating
superluminal waves in induced elementary particle production
processes is discussed.

1. Introduction

The possibility of superluminal motion was extensively
discussed in the 1960s and early 1970s. A hypothesis of the
existence of superluminal particles called tachyons, was
suggested [1 ± 3]. In order to remain within the framework of
the special relativity theory, it was necessary to assume that
the tachyon rest mass is imaginary, im0. However, the
imaginary rest mass of tachyons did not cause anxiety
because it was believed that tachyons can only exist at
velocities u exceeding the speed of light in vacuum c0. In this
respect, the situation with tachyons is not exclusive because
such particles as photons and neutrinos cannot exist and
move at velocities less than the speed of light. For u > c0, the
observable tachyon mass is equal to

m � m0

�u2=c20 ÿ 1�1=2
�1�

i.e., it is always real.
Serious complications were caused by the causality

problem. Although the methods of reconciliation of the
existence of tachyons with the causality principle were witty
[2, 3], they have not been very successful. In addition,
attempts to observe tachyons experimentally have failed so
far. For this reason, the interest in the problem of tachyons, as
elementary particles, gradually ceased.

Meanwhile, in 1965 themovement of a physical object at a
superluminal velocity was observed. It was found that the
light pulse propagating in a laser-amplifier could have a
stationary shape and a velocity exceeding the speed of light
in vacuum [4 ± 7].

In 1974, paper [8] was published inwhich the superluminal
motion was related to the propagation of perturbations in
unstable media. The authors of Ref. [8] considered examples
of unstable media and, in particular, discussed paper [4]. The
concept of superluminal motion in unstable media was
further developed in paper [9]. In a recent paper [10], the
possibility of tachyon-like propagation of light in an amplify-
ing nonrelaxing medium of two-level atoms was discussed Ð
a case that absolutely coincides with the model discussed in
Ref. [8]. However, in Ref. [10] there are no references to
previous experimental and theoretical papers on light
amplification [4 ± 7] and to paper [8], which probably were
unknown to the authors [10]. Hence, one of the stimuli for
writing this paper is the desire to reconstruct the historical
connection of events and to discuss a number of details
related to the existence of tachyon-like waves in amplifying
media.

2. Superluminal radiation pulse
in an amplifying medium

In the early 1960s, after the advent of lasers, the problem of
generation of sufficiently powerful light pulses with durations
of the order of one nanosecond (10ÿ9 s) appeared. To do this,
a short light pulse was generated with the help of a so-called
master laser-oscillator, which should then be amplified by a
laser-amplifier [3 ± 6]. A schematic of the setup used for this is
shown in Fig. 1. The light pulse generated by the master
oscillator is split into two beams. The first, more powerful
beam propagates through the amplifier. The second beam
propagates in the air and serves as a reference for comparison
with the amplified pulse. Both these pulses are detected by
photodetectors whose output signals are fed to an oscillo-
graph for visual observation. It was expected that the velocity
of the pulse in the air would be greater than that of the pulse in
the amplifier. It was assumed a priori that not only the
intensity of the pulse propagating through the amplifier
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should increase but its shape should also change due to
nonlinear amplification. However, the actual experimental
result caused astonishment and some confusion among the
researchers. The shape of the pulse did not change during its
propagation in the amplifier. And the main paradox was that
the pulse propagated through the amplifier at a velocity
greater than the speed of light in vacuum. Processing the
results showed that the velocity of the light pulse in the
amplifier was greater than the speed of light in vacuum by
several times!

The confusion among physicists involved in these studies
was brief. Nobody has the slightest doubt of the principles of
the special relativity theory. That is why the correct answer
was found quite rapidly: indeed, if one does not doubt the
main principles of the theory of relativity, it immediately
becomes clear that the amplifying medium puts the joke on
the researchers.

The master laser-oscillator generates a light pulse with a
leading edge that rises in the initial stage as exp�t=t�. The
characteristic time t is determined by the parameters of the
master oscillator. Figure 2 shows the time-base sweep of the
light pulse generated by the laser-oscillator. Note the long
initial stage of the pulse. As a rule, the duration of this stage is
several tens of times longer than the duration of the pulse
kernel, which is usually measured at the pulse half-maximum.
This long initial stage is the leading edge of the pulse entering
the laser-amplifier. In the amplifier, photons representing
together the light pulse propagate at a velocity equal to the
speed of light in the amplifier medium, which is often called
the active medium.

In the active medium, along with amplification, processes
resulting in the loss of the light pulse energy can occur. For
this reason, the amplification is determined by the difference

between an increase in the concentration of photons at the
expense of the energy of the active medium and its decrease
caused by absorption.

To envision more clearly what occurs with the light pulse
propagating in the amplifier, imagine that we observe the
pulse with the help of a device moving at the speed of light in
the amplifyingmedium. If themedium inwhich the light pulse
propagates had been transparent, we would have seen a pulse
invariant in time and distributed over the concentration of
photons in space as a motionless picture (Fig. 3, curve 1).
However, because the medium amplifies light, the number of
photons at each point varies with time. In the initial region of
the pulse where the concentration of photons is not too large,
the amplification is proportional to their concentration
(linear amplification). In the region where the concentration
of photons is sufficiently large, the amplification is weaker
than that proportional to the concentration. Finally, in the
region where the energy content in the medium is substan-
tially depleted due to its transfer to the light pulse, the
concentration of photons even decreases. In this region, the
medium loses the ability to amplify light and can only absorb
it. Absorption is virtually always proportional to the
concentration of photons. Figure 3 (curve 2) shows the
immobile light pulse amplified in its leading edge and
weakened in its trailing edge. But what has the amplifying
medium done? It as if has moved the pulse forward! Since the
device moves at the speed of light, while the pulse has moved
forward relative to the device during the observation time, it
means that the pulse propagates at a velocity exceeding the
speed of light! It is this phenomenon that has been observed
by experimentalists in the experiments described above. We
see that there is no contradiction to the theory of relativity,
because the photons themselves are only moving at the speed
of light. Simply, due to amplification the concentration of
photons that come out earlier proves to be higher than that of
photons escaping later. In this case, the pulse envelope, or in
particular its maximum, propagates at a superluminal speed
rather than the photons. The pulse is as if rolling over the
advanced leading exponential edge. The superluminal `shift'
also provides the stability of the propagating wave.

Once the mechanism of superluminal propagation of the
light pulse has been perceived, the main problems of the
experiment were solved. The matter is that the pulse
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Figure 1. Schematic of the setup for amplification of short light pulses: (1)

master laser-oscillator; (2) beamsplitter that splits the beam from the

master oscillator into two beams; (3) mirror; (4) amplifier; (5) oscillo-

graph.
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Figure 2. Shape of the pulse from amaster oscillator. The concentration of

photons is plotted against time in relative units.
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Figure 3. Light pulse in an amplifier in a coordinate system moving at the

speed of light. The quantities are plotted along the axes in relative units.

Curve 2 is obtained from curve 1 by increasing (due to amplification) some

regions (the upward arrows) and decreasing (due to absorption) other

regions (the downward arrows).
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maximum, by rolling over its leading edge, should finally
approach the pulse onset. From this moment on, it should be
amplified and shortened. However, because of the rather long
leading edge, a long amplifier length may be required for the
pulse maximum to reach its starting point. The pulse can
reach the end of the amplifier before approaching its starting
point. In fact, this takes place in the experiments discussed at
the beginning of the paper. For this reason, to solve the
problem of increasing the pulse energy and shortening its
duration, its long leading edge was cut off with the help of a
special shutter. Figuratively speaking, the path over which the
pulse could roll with superluminal velocity was cut off. The
pulse with the cut-off leading edge propagates in the amplifier
medium at the speed of light, is saturated by the energy (is
amplified), and shortens [5, 6]. However, the generation of a
powerful and short laser pulse is a special topic, which is
beyond the scope of this paper.

3. Propagation velocity of the superluminal pulse

Let us calculate the propagation velocity of the superluminal
wave. Experiments have shown that the superluminal wave
propagates as a whole, its shape being unchanged. This means
that the maximum of the pulse propagates at the same
velocity as its low-intensity parts. For this reason, we will
perform calculations for the low-intensity part of the leading
edge of the pulse where linear amplification takes place. Let
us denote the required velocity by u and consider two points
separated by a small spatial interval Dz (see Fig. 3). The time
in which an object propagating at the velocity u passes this
interval is equal to Dt � Dz=u. As was already noted, the light
pulse is at rest in the coordinate system under study but it is
amplified due to the interaction with the active medium. In
the linear region, the increase DI� in the concentration of
photons at the point z0 caused by amplification during a short
time interval Dt is proportional to the length of this interval
and the concentration of photons I�z0� at this point:

DI� � KcI�z0�Dt : �2�

Here, K is the linear (differential) gain and c is the speed of
light. Similarly, the decrease DIÿ in the concentration of
photons caused by absorption is

DIÿ � ÿacI�z0�Dt ; �3�

where a is the linear (differential) absorption coefficient. The
total relative change in the concentration of photons at the
point z0 for time Dt is

DI
I�z0� �

DI� � DIÿ
I�z0� � �Kÿ a�cDz : �4�

As noted above, the leading edge of the light pulse emerging
from the laser increases in time as exp�t=t� in the region of low
concentration of photons. The relative change in the con-
centration of photons during the short time interval Dz=u is
equal to Dz=ut. For this reason, the number of photons at the
point z0 at the moment t� Dt will be equal to the number of
photons at the point z0 ÿ Dz at the moment t, if
KcDt � Dz=ut. The pulse appears shifted by the distance Dz
for the time Dt (see Fig. 3). This means that the rate of its shift
in the moving coordinate system chosen by us is Du � Dz=Dt.
The total velocity of the superluminal wave in the laboratory

coordinate system is u � c� �Kÿ a�cut, or

u � c

1ÿ �Kÿ a�ct : �5�

Expression (5) shows that for the values of parameters
when

0 < �Kÿ a�ct < 1 ; �6�

u can be noticeably higher than the speed of light. The velocity
of the superluminal wave depends both on the parameters of
the amplifier via its gain and the parameters of the master
oscillator via its characteristic time t. By varying t, one can
control the pulse propagation velocity without changing the
parameters of the amplifying medium.

Consider a numerical example for illustration. Assume
that the gain K � 0:003 cmÿ1, a � 0:001, and t � 2:5� 10ÿ8 s.
Such values of parameters can be quite easily obtained in the
experiment. The speed of light in the amplifier material is
2� 1010 cm sÿ1 (the refractive index of the material is
assumed to be 1.5). In this case, according to Eqn (4), the
pulse propagation velocity exceeds the speed of light in the
amplifier material by a factor of 11 and the speed of light in
vacuum by a factor of 7.3. By selecting parameters, other
values of the propagation velocity of the maximum of the
light pulse can be also obtained.

What occurs with the light pulse if �Kÿ a�ct > 1 or
�Kÿ a�ct < 0? In the first case, the amplification is so high
that the maximum of the amplification wave appears at the
very onset of the pulse and shifts oppositely to the direction of
pulse propagation. In the second case, the above discussion
has no meaning because the medium is absorbing as a whole
rather than amplifying.

4. Mathematical model of a laser and
superluminal stationary waves{

The quantitative features of the propagation of the super-
luminal wave can be described using the following quite
simple model of the resonance interaction of light with
matter. Assume that the interaction of the matter with the
field has an electric nature. Then, the propagation of the
electromagnetic field in the matter can be described by the
wave equation for the electric component E�r; t� of the
electromagnetic field:

q2E�r; t�
qt 2

ÿ c20H
2E�r; t� � 2ac0

qE�r; t�
qt

� ÿ4p q2PT�r; t�
qt 2

; �7�

where PT�r; t� is the polarization of the amplifier medium.
The latter can be naturally divided into two parts, P0�r; t� and
P�r; t�. The quantity P�r; t� describes the polarization of
atoms that are directly responsible for amplification in the
amplifier medium (working atoms). These atoms are in the
excited state and resonantly interact with the radiation field.
For the description of this quantity, a dynamic model is
required, which will be considered below. The quantity
P0�r; t� describes the contribution to the polarization from
the rest atoms of the medium whose concentration, as a rule,
is much higher than that of the working atoms. This part of

{Here, the information reported is well known to specialists in the field of

laser physics. However, the author do hope that this paper will be of

interest to a wider scope of readers.
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the polarization can be considered quasi-equilibrium and can
be described by the relation

P0�r; t� � ŵ0E�r; t� : �8�
For our further purposes, the operator ŵ0 can be assumed
constant. The total polarization of the medium, taking into
account the Lorentz correction for the local field, proves to be
equal to [11]

PT�r; t� � w0E�r; t� �
e0 � 2

3
P�r; t� ; e0 � 1� 4pw0 : �9�

Finally, Eqn (6) takes the form

q2E�r; t�
qt 2

ÿ c20
e0

H2E�r; t� � 2ac0
1

e0

qE�r; t�
qt

� ÿ4p e0 � 2

3e0

q2P�r; t�
qt 2

: �10a�

The most popular model for the description of the
dynamics of polarization of working atoms is the so-called
two-level approximation. In an atom interacting with the
field, only two energy levels with the transition between them
resonant with the frequency of the acting field are considered
(the working levels). It can be shown [11 ± 13] that the
polarization P�r; t� of the atoms is described by the equations

d2P

dt 2
� 2

t2

dP

dt
� o2

0P � ÿ2o0
jmj2
�h

NEL ; �10b�

dN

dt
� 1

t1
�NÿN �0�� � J�t� � 2

�ho0
EL

dP

dt
; �10c�

where t2 is the relaxation time of polarization determining the
width of the spectral line; t1 is the relaxation time of the level
population; o0 is the frequency of the transition between
working levels of atoms; and m is the matrix element of the
corresponding dipole moment. Equations (10b, c) contain the
field acting on the particle (local field), which is related to
Maxwell's field in Eqn (8) by the expression [11]

EL�r; t� � e0 � 2

3

�
E�r; t� � 4p

3
P�r; t�

�
: �11�

One can see that Eqns (10b, c) contain, along with the
polarization, the dynamic variable N, which represents the
difference of populations of working levels of the active
medium, which are resonant with the frequency of the
electromagnetic field. N �0� is the population difference of
working levels in the absence of pumping. In the thermo-
dynamic equilibrium state, N �0� is determined by the
Boltzmann distribution. As was mentioned, to obtain
amplification, it is necessary (but not sufficient!) that the
population of the upper working level was higher than that of
the lower level, i.e., the population difference should be
positive. This requires pumping of the system resulting in
transitions of atoms from the lower energy level to the upper
level. The pumping is described by the term J�t�. Equations
(10) contain all the fundamental information on the laser
operation and propagation of the light pulse through the
amplifier. The reader can find additional information in the
paper ``Laser'' and other papers on lasers in the Physical
Encyclopedia [14].

The system of Eqns (10) is widely applied as a model of a
laser for studying the dynamics of quantum oscillators and
amplifiers [12 ± 22]. These references are far from a complete
bibliography on this topic.

Relations between the parameters entering the equations
allow one to analyze them by the method of `slow variable
complex amplitudes'. In the case of the amplification wave,
the field and polarization are represented as a plane wave{:

E�r; t� � A�z; t� exp�k0zÿ o0t� ;

P�r; t� � 3

e0 � 2
B�z; t� exp�k0zÿ o0t� ; k0 � o0

c
; �12�

where A�z; t� and B�z; t� are slow functions of time and
coordinate as compared to the rapidly oscillating exponen-
tial. The population differenceN�z; t� should also be assumed
the slow function of the coordinate and time. The procedure
of substitution of Eqn (11) into Eqns (10) is presented in
detail, for example, in Refs [11, 14, 16, 17]. As a result, the
following system of equations is obtained

qA
qt
� c

qA
qz
� ~acA � ibB ;

c � c0����
e0
p ; ~a � a����

e0
p ; b � 2po0

e0
; �13a�

qB
qt
� 1

t2
B � ÿi ~m2

�h
NA ; ~m2 � jmj2

�
e� 2

3

�2

; �13b�

qN
qt
� 1

t1
N � ~J�t� � i

2�h
�AB � ÿ A�B� ; ~J � J�N �0�

t1
:

�13c�

We neglected the term 4p�e0 � 2�m2NB=�9�h� in Eqn (13b) as
compared to the term B=t2. In laser media commonly used in
amplifiers of powerful light pulses, the ratio of these terms
does not exceed 0.01.

Despite the relative simplicity of the system of Eqns (13), it
can be analyzed in detail only numerically. Numerical
calculations [7] show, in complete agreement with experi-
ments, that under certain conditions a light pulse propagating
in the amplifying medium acquires a stationary shape:

A�z; t� � A�x�; B�z; t� � B�x�;

N�z; t� � N�x�; x � tÿ z

u
;

where u is the unknown propagation velocity of the pulse. In
this case, Eqns (13) take the form�

1ÿ c

u

�
dA

dx
� ~acA � ibB ; �14a�

dB

dx
� 1

t2
B � ÿi ~m2

�h
NA ; �14b�

dN

dx
� 1

t1
N � ~J�t� � i

2�h
�AB � ÿ A�B� : �14c�

{ In the case of the laser-oscillator, the active medium is placed into a

cavity, and the field and polarization are usually represented by a series in

eigenfunctions of the cavity.
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If the pulse is stationary, then its parts where the field is strong
propagate at the same velocity as the low-intensity parts of
the pulse. In the low-intensity region of the pulse, Eqns (14)
can be linearized. In equation (14c), the term
�i=2�h��AB � ÿ A�B� can be neglected because it represents a
product of two small quantities. Then, this equation can be
immediately solved, and its stationary solution at constant
pumping isN � ~Jt1 � N0. The substitution of this value ofN
into Eqn (14b) yields a system of two linear equations,
because N0 is a constant:�

1ÿ c

u

�
dA

dx
� ~acA � ibB ;

dB

dx
� 1

t2
B � ÿi ~m2

�h
N0A : �15�

By representing the solution of system (15) in the form

A � C1 exp
x
t
; B � C2 exp

x
t
; �16�

we obtain the characteristic equation relating the character-
istic rise time of the pulse leading edge with the gain, and the
pulse propagation velocity:

1

t

�
1ÿ c

u

�
� ~ac ÿib

i
~m2

�h
N0

1

t
� 1

t2

��������
�������� � 0 ; �17�

or

u � c

1ÿ �Kt=�t� t2� ÿ ~a
�
ct
; �18�

where K � b�~m2=�h�t2N0 is the differential gain of the weak
field. One can see that the more consistent theory leads to an
expression for the propagation velocity of the amplification
pulse coincident with Eqn (5), if t2 5 t. The factor t=�t� t2�
can be interpreted as follows. Themodel of the active medium
described by Eqns (10b, c) yields the Lorentzian spectral
shape of the gain with the characteristic width 1=t2. This
means that different spectral components of the amplified
pulse have different gains. The shorter the pulse duration t,
the broader its spectrum. Because the amplification decreases
with increasing detuning of the spectral component of the
pulse from the resonance frequency of the amplifying
medium, the average value of the gain decreases with
decreasing t, which is reflected in Eqn (17).

The shape of the propagating pulse depends on whether
the pumping is continuous or the amplification is produced
by a short pumping pulse. Upon continuous pumping, the
amplitude of the wave increases exponentially in the linear
part of the leading edge and asymptotically tends to a
stationary value. In the case when ~ac=�uÿ c�4 tÿ11 , the
amplitude may exhibit oscillations (Fig. 4). The time interval
between the first and second peaks is determined by the
pumping intensity. In systems analogous to the one studied
in Ref. [3], this interval exceeds the duration of the first peak
by many orders of magnitude. For this reason, the oscillatory
shape of the superluminal wave was not observed in
experiments. In the case when ~ac=�uÿ c�5 tÿ11 , the ampli-
tude tends continuously to a stationary value (Fig. 5) and is

described by the implicit expression

A2

�rÿ 1ÿ A2=A2
s �r
� A2

0 exp
2x
t
; �19�

where A0 is the starting value of the field, As � �~m=�h� ���������t1t2
p

is
the so-called saturating amplitude of the field, and r � K=~a.
The characteristic rise time of the exponential leading edge t is
not determined by parameters of the amplifier, being an
additional external parameter. It is specified by the shape of
the leading edge of the amplified wave, which, by entering the
amplifier from outside, `paves' a path for the superluminal
wave. Therefore, the superluminal wave cannot be created in
a uniformly excited amplifier due to spontaneous emission of
photons. It can only appear in the case of an exponential
leading edge of the pulse. If the leading edge increases more
slowly than an exponential, the pulse accelerates till it reaches
the stationary shape. If the shape of the leading edge is steeper
than exponential (for example, a Gaussian), the pulse
propagates at the speed of light, its intensity increasing and
duration shortening [6].

It is obvious that to obtain amplification, the condition
r > 1 should be satisfied. If r exceeds unity only slightly, then
expression (18) allows one to write the wave shape in the
explicit form

A2�x� � A2
0

�rÿ 1� exp�2x=t�
1� �A2

0=A
2
s � exp�2x=t�

: �20�
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Figure 4. Oscillatory shape of the superluminal wave.
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Figure 5. Smooth shape of the superluminal wave.
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The study of the stability of the stationary value shows
that in the region of parameters satisfying the relations

a > b� 1 ; r >
a�a� b� 3�
aÿ bÿ 1

; �21�
where

a � act2
u

uÿ c
; b � t2

t1
;

the wave propagation becomes random [19]. This is an analog
of the random lasing in a laser-oscillator. Random lasing in
lasers was first predicted in papers [20, 21] and at present is
studied in detail, both theoretically and experimentally [14,
21]. The first relation in inequalities (21) requires quite large
absorption coefficient of photons. The laser-amplifier differs
from the laser-oscillator in that the efficient absorption in the
amplifier can be controlled by the propagation velocity of the
superluminal wave. Figure 6 shows an example of the random
mode. To emphasize the random nature of the process, Fig. 6
shows variations in the amplitude and phase.

In contrast to laser-oscillators, the random mode in laser-
amplifiers has been studied inadequately due to the compli-
cated theoretical model (equations in partial derivatives) and
experimental difficulties. The most substantial experimental
problem is to suppress amplified spontaneous emission
(superluminescence) in an active medium with sufficiently
high gain. This can be achieved by adding to the active
medium the particles absorbing resonantly at the same
frequency as the working atoms. The atoms added at a low
concentration should have a large absorption cross section, so
that they can suppress amplification of spontaneous pertur-
bations [23, 24]. At the same time, the additional atoms will
not prevent the development of perturbations with suffi-
ciently large amplitudes, because the absorption will saturate
at comparatively low radiation intensities due to the large
cross section.

The model with saturable absorption contains the addi-
tional term a1=�1� sA2� in Eqn (14a), so that (14a) trans-
forms to the equation�

1ÿ c

u

�
dA

dx
�
�

~a� a1
1� sA2

�
cA � ibB : �14a 0�

Equations (14b, c) remain unchanged. Numerical integration
of the system of Eqns (14a0, b, c) yields the result presented in

Fig. 7. One can see that after some time the wave is
interrupted despite continuous pumping. Although the wave
duration depends on the starting value of the amplitude, it has
a random nature. This result, being unexpected at first glance,
is explained as follows. One can easily see that the system (14)
has a nonzero solution, if the field amplitude and polarization
simultaneously vanish at somemoment. In the randommode,
the radiation field and polarization vanish from time to time.
Nevertheless, this does not stop the process, because the
polarization and the field do not vanish simultaneously{.
However, in the model with saturable absorption, generation
may be suppressed not only due to simultaneous vanishing of
the field and polarization but also due to the simultaneous
decrease in the absolute value of their amplitude below the
critical value determined by the saturable absorber. Such a
situation arises sooner or later, so that the development of the
process ceases.

Attempts to obtain an analytic solution to Eqns (14) for
pulsed pumping have failed. The numerical study of Eqns (13)
shows [7] that under conditions (6) a stationary pulse is
generated, as demonstrated in Fig. 8.

An analytic solution can be found, if the absorption in the
active medium of the amplifier is neglected and the relaxation
processes are assumed to be slow compared to the pulse
duration. The pulse propagation in such a medium satisfies
Eqns (13), in which J � 0, a � 0 and 1=t1 � 1=t2 � 0. In this
case, solutions of Eqns (13a, b) can be obtained in the analytic
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ÿ7.5

10 20 30 30 z

Figure 6. Random shape of the superluminal wave (a � 3, b � 1, r � 22).

{ If the spontaneous radiation is taken into account, the development of

the process will not stop completely; however, it will be delayed in time.

2 4 6 8 10 12 14 z

7.5

A

5.0

2.5

0

ÿ2.5

ÿ5.0

ÿ7.5

Figure 7. Random shape of the superluminal wave in a medium with

saturable losses (a � 3, b � 1, r � 22, a1 � 30, s � 1000).
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Figure 8. Passage of the pulse to the stationary propagation mode.
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form:

B � ÿiN0~m sinc ; N � N0 cosc ;

c � ~m
�h

�x
ÿ1

A�x 0� dx 0 : �22�

By using (21), Eqn (12a) can be transformed to the form

d2c

dx2
� 1

t2
sinc ;

1

t2
� u

uÿ c
b

~m2

�h
N0 : �23�

This equation is well known in soliton theory [25]. If t2 is
positive, the equation has a solution in the form of a solitary
stationary pulse:

A�x� � 2�h

~mt
sech

x
t
: �24�

This means that the stationary solitary pulse can propagate in
the amplifying medium �N0 > 0� only at a superluminal
velocity �u > c�. One can see that the pulse propagation
velocity is closely related to the time t characterizing its
duration. It can be written in the explicit form:

u � c

1ÿ Kct2=t2
: �25�

Expression (25) can be obtained from expression (18) by
neglecting absorption in the activemedium and assuming that
t5 t2.

The pulse described by expression (24) has an interesting
property. It can be easily calculated that

c�1� � ~m
�h

�1
ÿ1

A�x� dx � 2p : �26�

For this reason, the pulses (24) are called 2p-pulses. Their
feature is that during propagation in the medium they do not
change its state. Indeed, one can see from Eqns (22) that the
differenceN in populations of the energy levels first decreases
with increasing c and becomes negative: the front part of the
light pulse `takes' all the energy stored in the active medium
region of pulse propagation. Then, this energy is returned
back into the active medium. Numerical studies [7, 26] have
shown that single 2p-pulses are unstable in the amplifying
medium. Upon entering the amplifying medium, a pulse with
the area somewhat smaller than 2p transforms into two
pulses: a stationary superluminal 2p-pulse and a stationary
p-pulse following the first pulse. However, these details do
not change the essence of the problem under study.

Equations (10a, b) represent the model of the so-called
homogeneously broadened line, when the spectral parameters
of the medium are only determined by the relaxation time of
polarization t2. In practice, media with inhomogeneously
broadened lines are more often encountered in which the line
broadening is determined not only by relaxation but also by
the scatter of the resonance frequencies of individual working
atoms. In gases, the inhomogeneous broadening is deter-
mined by the dependence of the resonance frequency on the
atom velocity caused by the Doppler effect. In solids, this
broadening is determined by a small scatter of frequencies of
working atoms caused by different shifts of different atoms
relative to crystal sites. In the case of the inhomogeneously
broadened spectral line, Eqns (10) are modified to the system

qA
qt
� c

qA
qz
� ib

�
B�O; t�g�O;o0� dO ; �27a��

q
qt
� i�Oÿ o0�

�
B�O; t� � ÿi ~m2

�h
N�O; t�A�t� ; �27b�

q
qt
N�O; t� � ~J�O� � i

2�h

�
A�t�B ��O; t� ÿ A��t�B�O; t��:

�27c�

Here O indicates the frequency of a working atom. Analysis
[26] showed that a solitary stationary wave (24) is the solution
of this system of equations. However, the characteristic time t
appears in the first power in the expression for the propaga-
tion velocity of the superluminal pulse:

u � c

1ÿ Kct
: �28�

This can be interpreted as follows. In deriving expression (28),
the inhomogeneous linewidth was assumed to be appreciably
greater than the spectral width of the pulse determined by the
reciprocal value of t. For this reason, the total spectrum of the
pulse is amplified virtually uniformly with the gain K.

The energy of the electromagnetic field contained in the
superluminal wave can be related to its propagation velocity.
For example, the energy per unit area of the cross section of
the 2p-pulse propagating in an ideal medium with the
inhomogeneously broadened spectral line is

W �
�
E 2

8p
dz � 2�ho

N0

Do
u2

uÿ c
: �29�

Note here that the 2p-pulses, by returning the medium to the
initial state, can propagate without changing their intensity
even in a resonantly absorbingmedium{. It follows fromEqns
(23) that in this case their propagation velocity is less than the
speed of light. For this reason, a detailed analysis of the
propagation of 2p-pulses in an absorbing medium is not the
subject of this paper. More detailed information on this topic
can be found in Ref. [26].

In Ref. [9], the spectrum of weak excitations was studied
corresponding to the linearized system of equations describ-
ing an amplifier without losses and relaxation:

qA
qt
� c

qA
qz
� ibB ;

qB
qt
� ÿi ~m2

�h
N0A : �30�

The characteristic equation of this system is

�oÿ o0�2 ÿ �kÿ k0��oÿ o0� � o2
R � 0 ;

o2
R � b

~m2

�h
N0 : �31�

The relation between the frequency o and the wave number k
determined by this equation is shown in Fig. 9. The branches
for positive and negative values of kÿ k0 correspond to `slow'
and `fast' excitations, respectively. Their propagation rate at
the merging point of the upper and lower branches is
completely determined by the parameters of the system and is

{The case in point is the resonance part of the amplifier medium. As for

the non-resonance absorption described by the coefficient a, it should

either be absent (an ideal medium) or very weak.
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u � o
k
� c

1ÿ oR=o0
: �32�

This differs from the propagation rate of the solitary
stationary wave. The velocity of the latter depends on the
differential gain K of the medium, whereas oR /

���
K
p

. The
superluminal wave with small amplitude, which is determined
by the branches of the left dispersion curve, has competitors.
In the interval

ÿoR < c�kÿ k0� < oR ; �33�
the waves of weak perturbations have complex frequencies
and increase in time. The wave with k � k0 has the maximum
growth decrement. Its complex frequency iso � o0 � ioR, so
that the wave increases in time proportionally to exp�oRt�. In
time, it will suppress superluminal excitations of small
amplitudes. In contrast to the small-amplitude excitations,
the above-considered solitary stationary superluminal waves
are stable.

Of interest is the dispersion relation for weak perturba-
tions in media with inhomogeneously broadened spectral
lines:

�oÿ o0� ÿ �kÿ k0� � ipo2
Rg�o;o0� : �34�

This corresponds to the linearized system of Eqns (27) [under
the condition that the form factor of the inhomogeneous
broadening g�O;o0� has no poles]. As the form factor, a
Gaussian

g�O;o0� � 1���
p
p

Do
exp

�
ÿ�Oÿ o0�2
�Do�2

�
�35�

with an inhomogeneous linewidth Do is often used. It follows
from Eqn (34) that in the case of an inhomogeneously
broadened line, only weak increasing perturbations exist,
whereas stationary weak perturbations are absent altogether.

5. Parametric decay of photons in a nonlinear
medium and superluminal waves

It is clear that resonantly amplifying media are not unique in
the field of generation of superluminal stationary waves. They
can be found in almost any processes where the induced
amplification plays the decisive role. In optics, these pro-
cesses include induced Brillouin scattering, stimulated
Raman scattering, Rayleigh scattering, induced temperature
and enthalpy scattering, and other processes in nonlinear

media [14]. In this section, we consider the process of
parametric decay of photons in a nonlinear medium.

Radiation propagating in a nonlinear medium can be
transformed in such away that instead of the photon flux with
frequency o0 two new photon fluxes with frequencies o1 and
o2 appear, their sum being equal to the initial frequency:
o0 � o1 � o2. Such a process is called parametric decay. If
o1 � o2, the process is called degenerate, and it satisfies the
equations [27]

qA1

qt
� u1

qA1

qz
� ÿg1A0A

�
1 ; �36a�

qA0

qt
� u0

qA0

qz
� ÿg0A2

1 : �36b�

Here, g0 and g1 are constants determined by the nonlinear
susceptibility of themedium andA0 andA1 are the amplitudes
of the initial and transformed waves. The fields themselves
have, obviously, the form E0 � A0 exp

�
i�k0zÿ o0t�

�
and

E1 � A1 exp
�
i�k1zÿ o1t�

�
. These equations have a solution

of the form of a stationary soliton-like wave [27]:

A1 � A1c sech
x
t
; A0 � A0c tanh

x
t
; x � tÿ z

u
: �37�

The parameters of this wave are related by the expressions�
1ÿ u0

u

��
1ÿ u1

u

�
� g0g1A

2
1ct ;

�
1ÿ u1

u

�
� g1A0ct :

�38�

These relations yield, in particular, expressions for the
propagation velocity u and amplitude of the soliton-like
wave:

u � u1
1ÿ gtu1A00

; A2
1c �

u1 ÿ u0 � g1tu1u0A00

u1g0
A00 : �39�

Here, A00 is the amplitude of the wave with frequency o0 at
the entrance to the nonlinear medium. One can see that the
velocity of a soliton can significantly exceed not only the
group velocity u1 but also the speed of light in vacuum. If
u0 > u1, for the soliton-like superluminal wave to appear, the
amplitude of the initial wave should exceed the threshold
value determined by the condition of positivity of the
expression for A2

1c. The parametric soliton has much in
common with the 2p-pulse in the resonantly amplifying
medium. However, a substantial difference is that there is a
strict correlation between the duration and intensity of the 2p-
pulse, whereas such a correlation is absent in the parametric
soliton.

6. Superluminal emission of radiation

Propagation of a superluminal wave should be accompanied
by radiation of additional electromagnetic waves. The
mechanism of their emission in many respects resembles the
mechanism of emission of Vavilov ± Cherenkov waves.
However, in contrast to the Vavilov ±Cherenkov effect, the
emission under study does not require slowing down of the
phase speed of light in themedium, because the velocity of the
superluminal wave can appreciably exceed the speed of light
in vacuum. It is reasonable to call radiation emitted within the
framework of the mechanism of superluminal waves `super-
luminal radiation'.

ÿ4 ÿ2 2 4
c
kÿ k0
oR

4

oÿ o0

oR

2

0

ÿ2

ÿ4

Figure 9. Dispersion curves of weak perturbations in an amplifying

medium with uniform amplification of the line.
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The Hertz vector potential for superluminal radiation
waves should satisfy the equation

q2P�r;j; z; t�
qt 2

ÿ c2H2P�r;j; z; t�

� gBT�r;j; x� exp�i�k0zÿ o0t�
�
;

g � 4p
e0 � 2

3e0
; �40�

where

E � c2 grad divPÿ q2P
qt 2

; H � c2
q
qt

rotP : �41�

In equation (40), r and j are the transverse coordinates of the
wave.

So far we have neglected transverse dependences of the
field and polarization, assuming that they are described by
plane waves. In the following calculations, the presence of the
transverse dependence of polarization is of fundamental
importance.

Assuming that the fields are cylindrically symmetric and
independent of the azimuthal coordinate, we represent the
Hertz vector for superluminal radiation waves in the form

P�r; z; t� �
X1
n�1

�
Pn�p; t�J0�qnr� exp�ipz� dp ;

BT�r;j; x� �
X1
n�1

�
B
�n�
T �O�J0�qnr� exp�ÿiOx� dO ; �42�

where qn � an=a, an is the nth root of the zero Bessel function,
and a is an undetermined quantity having the dimensionality
of length. It follows from Eqn (4) that

q2Pn�p; t�
qt 2

� c20�p2 � q2n�Pn�p; t�

� guB�n�T �O� exp
�ÿi�O� o0�t

�
; p � k0 � O

u
: �43�

Equation (43) has the obvious solution:

Pn�p; t� � gu

c2�p2 � q2n� ÿ �O� o0�2

� B
�n�
T �O� exp

�ÿi�O� o0�t
�
: �44�

Thus, the wave with the wave vector kn �k2n � p2 � q2n� has the
frequency O� o0. For the superluminal radiation wave to
split from the main wave, by deviating from the direction of
its propagation, it is necessary that

O� o0

c
> p � k0 � O

u
:

This immediately yields the condition u > c required for the
appearance of the superluminal radiation wave. It follows
fromEqn (44) that radiation with qn 6� 0 does not exist for the
plane superluminal wave. For this reason, the appearance of
the superluminal radiation wave is closely related to the finite
transverse dimension of the superluminal wave. This circum-
stance is not a special feature of the case under study: in a
transversely uniform electron beam, the Vavilov ±Cherenkov
radiation is also absent.

We will perform further calculations by assuming that the
superluminal radiation wave is a weak perturbation of the
process of propagation of the superluminal wave. Then, the
polarization in Eqns (40), (42) ± (44) can be considered
specified. In the case of the 2p-pulse, the field of the
transversely uniform wave is described by an analytic
expression (24). In order to use this expression in calculations
of the transversely finite wave, we will assume a P-like
dependence of the wave amplitude on the transverse coordi-
nates{. In this case,

B�r; x� � w0
2�h

~mt
sech

x
t
; r4 a ;

0 ; r > a ;

8<: �45�

B�r; x� � ÿi~mN0 sinc � ÿ2i~mN0 sech
x
t
tanh

x
t
; r4 a ;

0 ; r > a :

(
�46�

Now, the quantity a appearing in Eqns (42) acquires the
meaning of the transverse dimension of the superluminal
wave. In accordance with this{

B
�n�
0 �O� � 2w0

�h

~m
1

anJ1�an� sech
pOt
2

; �47�

B �n��O� � ~mN
1

anJ1�an� F�Ot� ;

iF�Ot� � G
�
3� iOt

2

�
G
�
1ÿ iOt

2

�

ÿ G
�
3ÿ iOt

2

�
G
�
1� iOt

2

�
; �48�

where G�z� is the Euler gamma function. The function F�x� is
shown in Fig. 10. The poles of expression (44) determine the
set of emitted frequencies:

On � c2

2

a2n
a2o0

u

uÿ c
: �49�

{A P-like cross section solution is not a self-consistent wave, so that

further calculations represent only estimates.

{Note the interesting fact that the Fourier transform of a hyperbolic

secant is also a hyperbolic secant.

1 2 3 4
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F 2
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Figure 10. Plot of the function F 2�Ot�.

December, 1998 Superluminal waves in amplifying media 1207



The calculation shows that the intensity of components rather
rapidly decreases with increasing n. For this reason, the first
component with

O1 � 2:88
c2

a2o0

u

uÿ c
�50�

dominates in the field of the superluminal radiation wave.
One of the features of the Vavilov ±Cherenkov radiation

is that it is emitted within a comparatively narrow cone
located at an angle to the direction of propagation of the
emitting particle. For radiation with frequencyo, the angle is
determined by the expression [28]

cos y � c0
u

1

n�o� ; �51�

where n�o� is the refractive index of the medium in which the
emitting particles propagate. The parameters of the radiation
cone are determined by the dependence of the refractive index
on the frequency. In the case under study, the analogous angle
is determined by the expression

sin yn � qn
kn
: �52�

For n � 1 and k0 � 105 cmÿ1, we obtain y1 � 0:14�.
The superluminal radiation waves originating with q 6� 0

can be amplified at the expense of the energy accumulated in
the amplifier medium if the frequency of these waves lies
within the amplification band. The calculation of the
amplification involves calculation of the polarization pro-
duced in the amplifying medium by the superluminal
radiation wave.

To calculate the superluminal radiation wave in the case
of parametric decay of photons, the polarization described by
expression (45) should be used with the quantity 2�h=�~mt�
replaced by A1c.

All the calculations performed in this paper are valid only
when the amplitude of the superluminal radiation wave is
small compared to the amplitude of the superluminal wave.
Otherwise, it is necessary to study the appearance of the
superluminal wave and the superluminal radiation wave as a
unified process. This rather time-consuming computational
problem is beyond the scope of the present paper.

7. Superluminal waves in amplifying media
and physics of elementary particles

The emission of the superluminal radiation wave shows that
the superluminal wave is not simply a kinematic effect related
to the movement of the pulse envelope in the amplifying
medium. The superluminal wave can be manifested as a
physical object and it is quite reasonable to call it the optical
tachyon. Nevertheless, superluminal motions in amplifying
(unstable) media represent a collective process, in contrast to
the initial concept of a tachyon as one of the elementary
particles. It would be of interest to consider the problem of
superluminal motions in the physics of elementary particles
from the point of view of amplifying media and the results
discussed above. If some particle can decay during its
propagation into particles of another type, then the beam of
initial particles represents an unstable amplifying medium.
Optical tachyons are a direct consequence of induced emission
of photons. They can appear when the probability of

stimulated transitions in a process exceeds that of sponta-
neous transitions (or is, at least, noticeable above the back-
ground). It follows from the known relation between the
probabilities of stimulated and spontaneous transitions that
stimulated transitions begin to dominate over spontaneous
transitions if the spectral density of bosons generated in a
process exceeds the spectral density of their possible states in
the phase space. For this reason, optical tachyons may
originate in processes involving many particles. The density
of states in the phase space increases with the energy of
particles. Particles with zero rest mass have the lowest
density of states (Fig. 11). From this point of view, a neutrino
would be an interesting object. However, a neutrino, being a
fermion, cannot be directly used to stimulate the process. But
perhaps a stimulated process involving two neutrinos rigidly
coupled in phase is possible? This is suggested by the process
of parametric decay of photons described above. Upon
degenerate parametric decay, a pair of completely identical
photons differing by a constant phase are born in each
elementary decay event. This pair is often called a biphoton.
The corresponding electromagnetic wave is in the so-called
squeezed state [29 ± 31]. Similarly to the parametric process of
photon decay, a pair of strongly correlated neutrinos created
in some process could be called a `bineutrino'. Could a
bineutrino be an inducing agent, and if so, under what
conditions? This question requires special consideration.
Similarly, an electron ± positron pair forming a positronium
could play the role of an inducing agent in processes of
creation of pairs.

In processes of the type of parametric decay of photons,
the laws of conservation of angular momentum and momen-
tum should be satisfied [27, 32]. For this reason, the phase
volume of spontaneously created photons will decrease with
increasing degree of coherence of the wave of initial photons,
i.e., with decreasing scatter of the initial photons over their
wave vectors and frequencies. The same should be valid for
creation processes of bineutrinos (and other particles), if their
creation is not accompanied by the appearance of additional
particles that expand the phase volume of the possible final
states. By choosing the reaction and its conditions, it can
probably be provided that stimulated processes play an
important role in the densities of created particles achievable
in nature.

0 0.01 0.02 0.03 0.04 E 0.05

gm=g0

600
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Figure 11. Ratio of spectral densities of states in the phase space for

particles with nonzero �gm� and zero �g0� rest mass. The kinetic energy

plotted on the horizontal axis is normalized to the rest energy of a particle

with nonzero rest mass.
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