
Abstract. A procedure for calculating antiferromagnetic reso-
nance (AFMR) frequencies is discussed in which a new form of
the magnetohydrodynamic equations is employed. As an exam-
ple, orthorhombic antiferromagnets with an orthoferrite-type
magnetic exchange structure are considered. The application to
antiferromagnets with other crystallographic and magnetic
structures is discussed.

1. Introduction

During recent years extensive research has been in progress in
the field of the dynamics of magnetic materials, especially
antiferromagnets whose symmetry allows weak ferromagnet-
ism of relativistic origin (against the background of a
collinear exchange magnetic structure). Some reviews, discus-
sions, and important old publications can be found inRefs [1±
10]. Various types of equations are used to describe the
motion of the magnetizations of the sublattices, starting
from those based on the equal-modulus approximation, in
which in the two-sublattice model the magnetizations meet
the conditions M2

1 �M2
2 �M 2

0 . Such equations are the well-
known Landau ±Lifshitz equations [11] as applied to two
magnetic sublattices of an antiferromagnet. These equations
have obvious limits when they are used to describe experi-
ments (this is especially true of regions near orientational
phase transitions [3]), so other phenomenological approaches
are employed (in these approaches the equal-modulus
property is not postulated). Examples are the Onsager
method of examining the linear dynamics originating in
nonequilibrium thermodynamics and the Lagrange formal-
ism of describing small oscillations of the dynamic variables
of themagneticmaterial [3, 5]. The advantage of the Lagrange

formalism is that the method allows a nonlinear general-
ization. Another example is the Andreev ±Marchenko form-
alism [2], whose popularity stems from the fact that it allows a
relatively simple description of extremely complex magnetic
systems, such as amorphous, multiple-sublattice, and
exchange-noncollinear magnetic materials.

Discussions of the different approaches to magnetic
dynamics, their features, advantages and drawbacks, and
interrelationships Ð can all be found in the papers we
mentioned earlier, although we believe that the problem
requires a more thorough unified interpretation. We plan to
do this in future papers. In this review, we primarily pursue
methodological goals and formulate a limited problem, i.e.,
we discuss another `variant' of spin-dynamics equations,
which we call the Vlasov ± Ishmukhametov equations{. We
compare these equations with the Landau ±Lifshitz equa-
tions, which are still the most widely used equations in
magnetic (spin) dynamics. In view of what we have just said,
we augment the Vlasov ± Ishmukhametov equations written
for a two-sublattice antiferromagnet in terms of the mechan-
ical (spin) densities S1�r� and S2�r� by the following equal-
modulus condition:

S2
1 � S2

2 � S 2
0 � const : �1�

In the case of the Landau ±Lifshitz equations, condition (1) is
a corollary of these equations (as the integral of motion),
while for the Vlasov ± Ishmukhametov equations this is not
so. On the other hand, the Vlasov ± Ishmukhametov equa-
tions allow for the anisotropy of the magnetomechanical
tensor ĝ � �hĝ=mB. The relationship between the magnetic
and spin densities is given by the equations M1 � ĝ1S1 and
M2 � ĝ2S2, where the specific form of the tensors ĝ1 and ĝ2
and the relationships between their components are deter-
mined by the crystallochemical symmetry and the exchange
magnetic structure (EMS) of the antiferromagnet (these
relationships follow from the invariance of these equations
with respect to the symmetry elements in the EMS code) [13,
20].
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{Weassume thatGolovenchits et al. [12] used similar equations when they

calculated the antiferromagnetic resonance (AFMR) frequencies for

NaNiF3 and YCrO3.



The result of comparing of the Vlasov ± Ishmukhametov
and Landau ±Lifshitz equations is somewhat unexpected: the
Landau ±Lifshitz equations written in terms of the spin
densities can be applied (after the scalar g factor has been
canceled out) to a magnetic material with an anisotropic g
factor if this factor is taken into account in the thermo-
dynamic potential via the Zeeman energy. Thus, in this
respect the Vlasov ± Ishmukhametov equations have no
advantages over the Landau ±Lifshitz equations, but in
some cases their use is preferable since the procedure of
calculating the vibration spectrum for the Vlasov ± Ishmu-
khametov equations proves to be simpler than that for the
Landau ±Lifshitz equations.

We also discuss some methodological aspects. In parti-
cular, we examine the problem of separating dynamic spin
variables in independent spin-wave representations, which
immediately makes it possible to separate the equations
corresponding to each normal mode for the magnetic phase
in question.

The approach based on the Vlasov±Ishmukhametov
equations is examined using, as an example, the calculation
of the AFMR frequencies for an EMS of the G type
characteristic of orthoferrites and some other orthorhombic
antiferromagnets (NaNiF3, in particular). What is important
is that in this approach all three possible mechanisms of weak
antiferromagnetism are taken into account: the antisym-
metric and symmetric Dzyaloshinski|̄ interactions and the
anisotropy of the g factor. We also compare the results
obtained through this approach with the experimental data
on NaNiF3 [12].

2. The Vlasov ± Ishmukhametov equations

In the case of a single-sublattice ferromagnet with an
anisotropic g factor, the equation of motion for S derived by
Vlasov and Ishmukhametov [14] has the following form:

_S� S � ÿ qF
qS

S 2 : �2�

Here F is the density of the thermodynamic potential
expressed in terms of the spin density. The anisotropy of the
g factor manifests itself in the expression for the Zeeman
energy.

Note that Eqn (2), in contrast to the Landau ±Lifshitz
equation, has no constant of motion of the type
S2 � S 2

0 � const. If we require that such a constant of
motion exist, the variational problem of finding the uncondi-
tional extremum of the action J in Ref. [14] is replaced by a
conditional-extremum problem. The latter can be solved by
the Lagrange method (e.g., see p. 227 in Ref. [15]), in which
the density of the Lagrangian function L is replaced by
~L � L� l�S2ÿ S 2

0 �, where l � l�t� is an unknown function.
Accordingly, F is replaced by the function C �
F� l�S2 ÿ S 2

0 � and, instead of Eqn (2), we have the
following system of equations:

_S� S � ÿ qC
qS

S 2 ; S2 ÿ S 2
0 � 0 : �3�

On the other hand, we can immediately reduce the number
of independent dynamic variables in the action J by resolving
the condition S2 � S 2

0 with respect to one of these variables
and excluding this variable from J [15]. In this case, the
variational procedure in any (e.g., angular) independent

variables za, a � 1; 2, leads to equations of the type

� _S� S� � qS
qza
� ÿS 2

0

q~F
qza

: �4�

Here Si � Si�z1; z2� and
~F � ~F�z1; z2� � F

�
S1�z1; z2�;S2�z1; z2�;S3�z1; z2�

�
:

In the case of a two-sublattice antiferromagnet, we write
an equation of type (2) for each sublattice and, instead of
usingS1 andS2, we introduce the spin vectors of ferromagnet-
ism �MM� and antiferromagnetism �K� with the formulas

MM� S1 � S2 ; K� S1 ÿ S2 :

We then have the following system of equations:

_MM�MM� _K� K� ÿ qF
qMM�MM

2 � K2� ÿ 2
qF
qK
�K � MM� ;

_MM� K� _K�MM � ÿ2 qF
qMM�K � MM� ÿ

qF
qK
�MM2 � K2� : �5�

These equations ignore the equal-modulus condition (1),
i.e., they are similar to Eqn (2) for a ferromagnet. Of course,
we can attempt to find the AFMR frequencies by solving
system (5). This, however, would require incorporating in our
studies all the problems of magnetic dynamics mentioned
earlier and the problem of the ground state with allowance for
a finite magnetic susceptibility wk 6� 0 (along the vector K).
We would be forced to compare the calculations based on (5)
with those obtained in the Onsager and Lagrange approaches
and also in the model with K2 � const (see Ref. [3]) to allow
for longitudinal vibrations and relaxation, etc. All this, of
course, is important, but we limit ourselves to the problems
formulated in the introduction. Here, in deriving the equa-
tions of motion, we are forced to impose extraneous
constraints (1), which after the introduction of the relative
vectors m �MM=2S0 and l � K=2S0 assume the form

m2 � l 2 ÿ 1 � 0 ; m � l � 0 : �6�
As a result, instead of (5) we have the following system of

equations:

_m�m� _l� l � ÿ qC
qm

;

_m� l� _l�m � ÿ qC
ql

; �7�

where the function

C � F� l1�m2 � l2 ÿ 1� � l2�m � l� �8�
contains two additional unknown functions l1�t� and l2�t�,
and Eqns (7) together with (6) must be considered as a united
system of equations. Strictly speaking, a factor equal to
�2S0�ÿ1 must appear on the right-hand sides of Eqns (7), but
we have incorporated it into the potential F, so that the latter
has the dimension of frequency (sÿ1).

As in the case of a ferromagnet, we can immediately
reduce the number of equations by introducing the indepen-
dent variables za, a � 1; 2; 3; 4:

ÿ q~F
qza
� qm

qza
� � _m�m� _l� l� � ql

qza
� � _m� l� _l�m� : �9�

Here, ~F � F
�
m�z1; z2; z3; z4�; l �z1; z2; z3; z4�

�
.
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Let us now compare Eqns (6) and (7) with the Landau ±
Lifshitz equations for an antiferromagnet, which can be
written in terms of the vectors of total magnetization
M �M1�M2 and total antiferromagnetism L �M1 ÿM2:

_M � ÿg
�
M� qF

qM
� L� qF

qL

�
;

_L � ÿg
�
M� qF

qL
� L� qF

qM

�
; �10�

where g is the scalar magnetomechanical ratio. If we
introduce the spin densities S1�M1=g and S1 �M1=g,
Eqns (10) for the variables m � �S1 � S2�=2S0 and
l � �S1 ÿ S2�=2S0 assume the following form:

_m � ÿ
�
m� qF

qm
� l� qF

ql

�
;

_l � ÿ
�
m� qF

ql
� l� qF

qm

�
: �11�

Equations (11), as Eqns (7), do not incorporate the
magnetomechanical ratio explicitly; it enters into F only
through the Zeeman energy. What is interesting is that Eqns
(11) can be obtained from Eqns (7) (provided that conditions
(6) are met) by performing simple algebraic transformations
after vector multiplication of both equations by m or l.

But does the aforesaid imply that the Landau ±Lifshitz
equations in the form (11), obtained as a corollary of Eqns (7)
and (6), allow for the anisotropy of the g factor to the same
degree?

Apparently, the situation is similar to that encountered in
the derivation of the equations of motion in the Onsager
approach [3, 5] with allowance for the magnetocrystalline
anisotropy. The latter is taken into account only in the
thermodynamic potential, while the kinetic equations in
these equations are written in the isotropic (exchange)
approximation.

Finally, we note that Eqns (11) are derived directly from
the variational principle if from the start we write L in terms
of the spin densities Si �i � 1; 2�, assuming all along that the
only variations dSi that are realized are those perpendicular to
Si, i.e., �Si � dSi� � 0.

The answer to the question posed above is yes. This is also
corroborated by the fact that the results of calculations of
AFMR frequencies via Eqns (11) with allowance for the
anisotropy of the g factor (through the Zeeman energy)
agree perfectly with the results obtained in Ref. [13] from the
spin Hamiltonian by the second quantization method.

The important difference between theVlasov ± Ishmukha-
metov equations and the Landau ±Lifshitz equations [even in
the form (11)] is that the equal-modulus conditions (6) do not
follow from Eqns (7) but are equations augmenting (7), so
that, strictly speaking, only (7) together with (6) can be
considered to represent the Vlasov ± Ishmukhametov equa-
tions.

It is this system of equations [or the equivalent system (9)]
that is used below. A specific feature of the system is that it
simplifies calculations of the AFMR frequency spectrum.We
use this example to demonstrate the effectiveness of the
Vlasov ± Ishmukhametov equations. In the linear theory
(which is needed in our reasoning), the right-hand factors in
the vector products on the left-hand sides of Eqns (7) can be

immediately replaced by their steady-state (equilibrium)
values m�0� and l �0�. On the right-hand sides, it is enough to
isolate in F the terms F2 quadratic in the independent
dynamic variables Dm � mÿm�0� and Dl � lÿ l �0�. Finally,
as shown below, for each vibration mode (there are two such
modes in the model if we ignore dissipation), we need only
calculate two derivatives (with respect to two independent
variables) of F2. But first we must isolate the dynamic
variables corresponding to each of these two modes.

3. The spin-wave representation

The calculation of the natural vibration frequencies is much
simpler if for the ground state (`phase') considered here we
know, a priori, how the dynamic (`vibrational') variables are
distributed among the modes. Generally speaking, this
problem can be solved by using the theory of representations
of the magnetic group, which describes the symmetry of the
magnetic structure involved [16, 17]. Unfortunately, it is
impossible to explain this theory here, but for the particular
case of an antiferromagnet of an orthorhombic symmetry the
conclusions of the theory can be exposed with extreme clarity.
There are reasons to believe that the results can be generalized
to crystal systems of higher symmetries, such as tetragonal
and trigonal antiferromagnets (see the summary at the end of
the paper).

To solve this problem, we turn to the well-known table
that lists the possible transformations of the components ofm
and l [7, 13, 18], bearing in mind that we are dealing with a
two-sublattice model with an EMS of type G with an
antiferromagnetism vector G � l � �S1ÿ S2� S3ÿ S4�=2S0.
This table corresponds to the space group Pbnm � D 16

2h for
ions in the 4b position, which is characteristic of, say, iron in
orthoferrites. A reduced variant of this table, which does not
include rare-earth ions and in which the two other antiferro-
magnetic vectors for ions in the 4b position are zeros
A � C � 0 (which leads to the two-sublattice approxima-
tion), has the form

Table 1 lists the results of the action of the elements of the
crystallochemical symmetry group on the components of m
and l: �1 corresponds to conservation of the component's
sign, and ÿ1 to the reversal of the sign. The components
belonging to one row (they are transformed in the same way
when the symmetry elements act on them) form the
irreducible representations �G1ÿG4� of the group Pbnm. To
each representation there corresponds a particular orienta-
tional state (`phase' in Refs [7, 17]); it is specified by the
components of m and l transformed according to this
representation, while the other components of the given
phase are zeros. For instance, for the phase G1, this is the
state with l k Y and m � 0; for the phase G2, this is the state
with l k Z and m k X; etc. The rightmost column in Table 1
lists, for each phase, the magnetic symmetry group (which

Table 1.

Gn �1 21x 21y 21z Basis

functions

Magnetic

group

G1

G2

G3

G4

�1
�1
�1
�1

�1
�1
ÿ1
ÿ1

�1
ÿ1
�1
ÿ1

�1
ÿ1
ÿ1
�1

ly
mx lz
my

lx mz

mxmymz

mxm
0
ym
0
z

m 0xmym
0
z

m 0xm
0
ymz
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does not change the components of the vectors in a row) in
terms of symmetry planes. The symbol m 0 stands for the
planes augmented by the time-reversal operation{. Bearing in
mind thatmi � �1 � 2i �i � x; y; z�, in the case at hand (where �1
is also a symmetry element in the magnetic group) we define
the magnetic groups in terms of the 2i axes with the same
arrangement concerning the primes (one must distinguish
between the symmetry planes with the labels x; y; z and the
corresponding components of m).

We now classify the six oscillation variables Dmi, Dli
�i � x; y; z� for all four phases G1;2;3;4 into such sets that each
set corresponds to one of the normal vibration modes of the
phase under consideration. In the literature (e.g. see Refs [16,
17]) such a set of variables is called the spin-wave representa-
tion of the magnetic group of this phase. An obvious
indication that a variable from Dmi, Dli belongs to the spin-
wave representation is the invariance of the equations of
motion (see below) written only for these variables (with all
the other variables being identically zero) with respect to the
magnetic group of the corresponding phase.

Of course, it is desirable to classify the variables Dmi, Dli
according to mode before dealing with the equations of
motion. There exists a law that enables this to be done. Let
us take the phaseG2�mxlz� for example. The variablesDmi,Dli
can be divided into two triples, G12�Dly;Dmx;Dlz� and
G34�Dmy;Dmz;Dlx�. The variables in each triplet are selected
from the rows G1 and G2 (or G3 and G4) in such a way that the
product of the results of the action of the elements of the
magnetic group mm 0m 0 of the phase G2 on the variables
belonging to these rows (a) are the same and (b) coincide with
the results of the action of the elements of the crystallo-
chemical group on the basis functions represented in rowG2 of
Table 1. Schematically this can be expressed by the following
chain of equalities{:

�� ÿ ÿ� � �� � �� � �ÿ ÿ �� � �ÿ � ÿ� � �� ÿ ÿ� ;

where `pluses' and `minuses' correspond to a transformation
of the basis functions that is induced by the elements m and
m 0, respectively (the functions remain the same or reverse
their sign).

The two sets of variables that obey this rule, G12 and G34,
form the spin-wave representation corresponding to the two
normal modes for the phase G2�mxlz�. The representation
G34�Dmy;Dmz;Dlx� corresponds to the quasiferromagnetic
mode (mode 3), for which the vector m precesses about the
X axis, so that this mode is excited by a variable field
ho ? m0 k X. Another normal mode, G12�Dmx;Dly;Dlz�,

corresponds to vibrations Dm that are longitudinal with
respect to m�0� k X and is excited by a field of the same
direction. This is the quasiantiferromagnetic mode (mode 4).

Reasoning in a similar manner, we can use this rule to
identify the spin-wave representation for the phase G4�lxmz�
with the symmetry m 0m 0m, a case that is most often
encountered (structure G, state l k X) in orthoferrites. The
natural modes are the quasiferromagnetic mode
G23�Dlz;Dmx;Dmy� (mode 1) and the quasiantiferromagnetic
mode G14�Dly;Dlx;Dmz� (mode 2).

The phase G3�my� belongs to the ferromagnetic structure
with m k Y. In this case, the spin-wave representations that
satisfy the above rule correspond to the modes G13�Dly;Dmy�
andG24�Dmx;Dlz;Dlx;Dmz�. However, the first mode must be
excluded in view of the adopted equal-modulus conditions
(6).

The situation with the antiferromagnetic phase G1�ly�,
which in contrast to G2 and G4 has no weak ferromagnetism,
is somewhat different. Themagnetic groupmmm of this phase
coincides with the crystallochemical group. Hence, the spin-
wave representation of mmm can be generated by the basis
functions of any one row in G1ÿG4. This is quite obvious,
since these are the rows that realize the representations of the
crystallochemical group, with this group coinciding in this
case with the magnetic group. The oscillations corresponding
to the rows G1 and G3 are not realized, again because of the
equal-modulus conditions. Hence, there are only two possi-
bilities: G2�Dlz;Dmx� and G4�Dlx;Dmz� (we note again that
here all the representations are spin-wave).

Our analysis of the spin-wave representations for orienta-
tional states (phases) of an EMS of typeG refers to a situation
in which there is no field H, since, generally speaking, for
H 6� 0 the symmetry of the system changes. Several cases are
exceptions, however. In these cases the vector H is directed
along specific symmetry axes and does not violate the initial
symmetry of the phase. Here, one must bear in mind thatH is
transformed in the same way as the spin (or magnetic) density
m. Among such cases are the phases G2�mxlz� and G4�lxmz� if
H is applied along X k 21x and Z k 21z, respectively.

Below we examine the case where the field H breaks the
symmetry, and this leads to a mixture of the initial modes
(with unbroken symmetry): the case of phase G1�ly� with
H k Y. The point is that, according to its transformation
properties, Hy lands not in the row G1 of Table 1 but in the
row G3 with my. It is with this case that we begin our
calculation of AFMR spectra. The reader will be able to
judge how much simpler the calculations based on Eqns (6),
(7) or (9) are (provided that we have specified the spin-wave
representations beforehand) compared to calculations based
on the Landau ±Lifshitz equations (even if one ignores the
anisotropy of the g factor in the latter).

4. Thermodynamic potential
and AFMR frequencies

For the initial density, we take the well-known thermody-
namic potential density [13, 18]

F � 1

2
Em2 � 1

2
Kal

2
x �

1

2
Kcl

2
z ÿ da�lxmz ÿ lzmx�

ÿ ds�lxmz � lzmx� ÿ hx�mx � t1lz�
ÿ hymy ÿ hz�mz � t3lx� : �12�

{Note that there are several misprints at this point in Refs [7, 18] and other

papers, which obviously migrate from paper to paper. More than that, the

notation also differs: m 0 � m. To avoid misunderstanding, the symmetry

planes in Table 1 are equipped with indices of the normals to the planes (x,

y, or z); although the order �xyz� in which these labels follow is the

common one, it is the same as for the crystallochemical elements (see Ref.

[19]). Bearing all this in mind, below we discard the normal label on the

symmetry plane m.

{ Incidentally, since the presence of the prime inm 0 has the same effect on

both factors in each product in this chain of equalities, instead of the

elements of the magnetic group we can use in this situation the crystal-

lochemical elements. This is even simpler, since the results of the action of

the latter elements are listed directly in Table 1, while for the magnetic

elements we must also allow for the change in sign related to the presence

of the prime in m 0. In the next section, we discuss the differences that

emerge when the invariance of the equations of motion is inspected (when

the crystallochemical or magnetic symmetry is used).
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Here, the antisymmetric and symmetric parts of the Dzya-
loshinski|̄ interaction, da and ds are written explicitly and we
have introduced the following notation: hi � giiHi,
t1 � gxz=gxx, and t3 � gzx=gzz. All constants in (12), like hi,
have the dimension of frequency (sÿ1). The quantities t1 and
t3 account for the off-diagonal components of the anisotropic
g factor �gijmB � gij�h� for an antiferromagnet with a structure
of type G in the two-sublattice approximation in an
orthorhombic crystal with Pbnm symmetry. In (12) we have
partially allowed for conditions (6).

Let us first assume that H � h � 0. Then for the phase
G1�ly� there are two normal modes corresponding to the spin-
wave representations G2�Dmx;Dlz� and G4�Dmz;Dlx�.
Accordingly, for the first mode we should put mz � lx � 0
and for the second, mx � lz � 0. Moreover, in both cases
my � 0 and ly � l

�0�
y � 1. All this implies that for the mode G2

there remain only two independent variables, for which we
can take, say, z1 � mx and z2 � lz. Similarly, for G4 there
remains only a pair of equations with z1 � mz and z2 � lx.
According to (9), for G2 we have

_mx � ÿ
�
Kclz � �da ÿ ds�mx

�
;

_lz � Emx � �da ÿ ds�lz ; �13�

and for mode G4,

_mz � Kalx ÿ �da � ds�mz ;

_lx � ÿEmz � �da � ds�lx : �14�

The search for the solutions of these equations in the form
/ exp�ÿiot� leads us to AFMR frequencies of the form

o2
1 � EKc ÿ �da ÿ ds�2 ; �15�

o2
2 � EKa ÿ �da � ds�2 : �16�

The motion of the vectors l and m amounts to their
rolling in the XZ plane. More precisely, l is deflected in the
direction Z �X� for the first (second) mode while m emerges
(simultaneously) in the perpendicular direction X �Z�. The
first mode is excited by a variable field ho k X and the
second, by a variable field ho k Z. Respectively, the finite
component of the magnetic susceptibility is wxx�o� or
wzz�o�.

If we apply a fieldH k Y, these twomodes mix. Due to the
occurrence in F of a term of type

ÿhymy � �mxlx �mzlz�hy ; �17�

all four variables lz, lx, mz, and mx are coupled. Here we have
allowed for the second condition in (6) and assumed that
ly � l

�0�
y � 1. Under these circumstances, Eqns (9) lead to the

system

_mx � ÿ
�
Kclz � �da ÿ ds�mx � hymz

�
;

_mz � Kalx ÿ �da � ds�mz � hymx ;

_lx � ÿ
�Emz ÿ �da � ds�lx � hylz

�
;

_lz � Emx � �da ÿ ds�lz � hylx : �18�

The solution of this system determines a new pair of AFMR
frequencies:

o2
� �

1

2

�E�Ka � Kc� ÿ 2�d 2
a � d 2

s �
�� h2y

�
�
1

4

�E�Ka ÿ Kc� ÿ 4dads
�2

� 2h2y
�E�Ka � Kc� ÿ 2d 2

a

�)1=2

: �19�

Naturally, at hy � 0 Eqns (19) again become (15) and (16).
The vectors m and l now precess about h k Y, and the
precession cones are elliptic rather than circular. The bases
of the cones corresponding to m and l point in the same
direction for one mode and in opposite directions for the
other. The finite components of the magnetic susceptibility
are wxx�o�, wzz�o�, wxz�o�, and wzx�o�.

To establish some features of the adopted approximations
and the role of the equal-modulus conditions (6), we follow
(with the same detail) the calculation of AFMR frequencies
for one more phase. Let this be phase G4�lxmz� in a field
H k Z. The reader will recall that such a field does not alter
the magnetic symmetry of the phase G4 and its spin-wave
representations G23�Dlz;Dmx;Dmy� and G14�Dlx;Dly;Dmz�.

We begin with the mode G23. For this mode, we must put,
in the linear approximation, Dlx � ly � Dmz � 0 and isolate
in the spin-wave representation the quadratic form F2 in the
variables lz,mx, andmy from F given by (12). Note, however,
that in view of the equal-modulus conditions (6), dynamic
parts lx and mz (which are determined by terms quadratic in
the above spin-wave variables) also contribute to F2. At this
stage we use, by way of an example, the Lagrange method of
multipliers. Here, the sought correction to F2 from Dlx and
Dmz is

DF2�Dlx;Dmz� �
�
qF
qlx

�
0

Dlx �
�
qF
qmz

�
0

Dmz

� ÿ2l1�l0Dlx �m0Dmz� : �20�
The derivatives are taken at the point of equilibrium with
l
�0�
x � l0 and m�0�z � m0 and are represented in (20) in
accordance with the definition (8) for C and the equilibrium
conditions �qC=qlx�0 � �qC=qmz�0 � 0 as follows:�

qF
qlx

�
0

� ÿ2l1l0 ;
�
qF
qmz

�
0

� ÿ2l1m0 : �21�

These two equations together with (12) can be used to
determine l1 and m0:

2l1 � �da � ds�m0l0 � hzt3l0 ÿ Ka ;

m0 � �da � ds�l0 � hz
E ÿ Ka

: �22�

Next, using (6) and the condition m2
0 � l 20 � 1, we find that

ÿ2�l0Dlx �m0Dmz� � m2
x �m2

y � l 2z ; mx � ÿm0

l0
lz :

Substituting these relationships and l1 into Eqn (20), we
obtain at the following expression for the total quadratic form
F2 � F2�mx;my; lz� � DF2�Dlx;Dmz� in terms of the indepen-
dent dynamic variables z1 � lz and z2 � my:
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F2 � 1

2
E
�
m2

y �
�
m0

l0

�2

l 2z

�
� 1

2
�Kc ÿ Ka�l 2z

� 1

2

m0

l0

��da � ds�m2
y � �3ds ÿ da�l 2z

�� 1

2

hz
l0

t3�m2
y � l 2z � :
�23�

Now it is convenient to use the linearized variants of Eqns
(9). There will be only two such equations, which correspond
to two finite derivatives qF2=qlz and qF2=qmy. The resulting
equations are

_myl0 � lz

�
Kc ÿ Ka � Em2

0 ÿ
m0

l0
�da ÿ 3ds� � hz

l0
t3

�
;

_lzl0 � ÿmyE : �24�

In deriving Eqns (24), we consistently ignored, in the
right- and left-hand sides, the terms of order Ka=E, �m0=l0�2,
and hzt3=E (small in comparison to unity) in the coefficients
of lx and my. Here it was assumed that l 20 � 1, so that l0 may
have different signs (l0 � �1), depending on the sign and
value of the constants da, ds, and t3.

Clearly, Eqns (24) are indeed invariant under transforma-
tions of both the crystallochemical and magnetic symmetries.
In the first case, this is due to the fact that, according to Table
1, the function Dlz � lz is transformed as the product of
Dmy � my by l

�0�
x � l0, and my is transformed as the product

lzl
�0�
x (the time derivative plays no role here). As for the

magnetic group m 0m 0m of the G4�lxmz� phase, its elements
act only on the variables of the spin-wave representation G23

remaining in Eqns (24), i.e., lz and my. Here we must bear in
mind that the presence of the prime in the symmetry planem 0

leads to a change of sign in the time derivatives _m and _l (since
the prime stands for the time-reversal operation t! ÿt). As a
result, the right- and left-hand sides of the equations are
transformed in the same way.

The solution of Eqns (24) with allowance for m0 in (22)
yields the following expression for the frequency of the
quasiferromagnetic mode 1:

o2
1 � E�Kc ÿ Ka� � 4ds�ds � da�

� ~hz�da � 5ds � Et3� � ~h 2
z ; �25�

where ~hz � hzl0.
We see that (25) coincides almost perfectly with the

formula obtained in earlier work (e.g., see Refs [12, 13]), the
only difference being that (25) contains l0 as a factor of hz,
which ensures the validity of the formula in both states:
l0 � �1 and l0 � ÿ1. If we now write the formula for the
total magnetization [7, 13],

Mz � 2gzzS0�m�0�z � t3l �0�x � �
2gzzS0

E
��da � ds � Et3�l0 � hz

�
;

�26�

we see that the latter case �l0 � ÿ1� occurs if
da � ds � Et3 < 0.

Here we would like to mention the specifics of calculating
the AFMR frequency for the second mode G14�Dlx;Dly;Dmz�
of the same phase G4�lxmz�. We can immediately go over to
independent oscillatory variables. For these we take ly and
Dmz, while Dlx is again excluded via the equality Dlx �
ÿ�l 2y � 2m0Dmz�=2l0, which follows from (6). However, the
second term �� Dmz� provides a contribution to F2 propor-

tional to �da � ds�m0�Dmz�2 (via the Dzyaloshinski|̄ interac-
tion), which enters together with the exchange term E�Dmz�2
and can be discarded as a small term. The final result is

o2
2 � EK �a � ~hz�da � ds � Et3� ; �27�

where

K �a � ÿKa � �da � ds�2
E :

Reasoning along similar lines, we can calculate the
AFMR frequencies for the modes G34�Dlx;Dmy;Dmz� (mode
3) and G12�Dmx;Dly;Dlz� (mode 4), which correspond to the
phase G2�mxlz�, when H k X. However, there is no need to
proceed with actual calculations in this case. The point is that
the phases G4 andG2 are very similar: the second phase can be
obtained from the first by rotating m�0� and l �0� through 90�

about the Y axis (together with the field H). If we carefully
examine the potential F in (12), we see that the spectrum for
the phaseG2 (the frequencieso3 ando4) can be obtained from
the spectrum for the phase G4 (the frequencieso1 ando2) if in
(25) and (27) we do the following substitutions: z! x,
Kc
! Ka, da ! ÿda, and t3 ! t1. As a result, we have

o2
3 � E�Ka ÿ Kc� � 4ds�ds ÿ da��
� ~hx�5ds ÿ da � Et1� � ~h 2

x ; �28�
o2

4 � EK �c � ~hx�ds ÿ da � Et1� ; �29�

where K �c � ÿKc � �ds ÿ da�2=E and ~hx � hxl0 with l �0� k Z,
and again l0 � l �0�z may be either �1 or ÿ1.

Naturally, if at H � 0 the phase G4�lxmz� is the stable
state, the phase G2�mxlz� can be attained only as a result of an
orientational phase transition of the spin flop type, a
transition caused by a fairly high field H5Hsf applied
along the axis X k ls of the initial phase. Generally speaking,
this may be either a second-order phase transition or a first-
order phase transition (the latter case occurs when there is
anisotropy of the fourth order or higher). If there is a second-
order phase transition (more precisely, two second-order
phase transition points: one at H � 0 and the other, after
the spin flop has been completed atH � Hsf), in the latter case
the field H � Hsf can be found by putting to zero expression
(28) for o2

3. This equation yields the following solution for
~hsf � gxx ~Hsf:

~hsf � ÿ 1

2
�5ds ÿ da � Et1� �

�
1

4
�5ds ÿ da � Et1�2

� �E�Kc ÿ Ka� ÿ 4ds�ds ÿ da�
��1=2

: �30�

The sign in front of the root is chosen such that hsf is positive,
which, clearly, depends on the choice of the sign of l0.
Incidentally, the expression in square brackets is positive
only if the initial phase G4 is stable (at H � 0), so that on the
whole the expression with the square roots is larger in
absolute value than the remainder.

All the transformations that we have done so far in
connection with the structure G can be performed in a similar
manner for the structures A and C by using the full table of
transformations for all the basis functions G, A, and C and
again passing to the two-sublattice model [7, 13, 18]. For
instance, if we are dealing with the structure A, we must put
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G � C � 0. Note, finally, that the aforesaid can also be
applied to rare-earth orthoferrites RFeO if the frequency of
transitions of the rare-earth ionR proper is much higher than
the AFMR frequency of the iron subsystem [7]. Then we may
assume that the paramagnetic R subsystem instantaneously
follows the Fe subsystem, so that by minimizing over the
variables of the R subsystem and excluding it, we arrive at an
effective thermodynamic potential of type (12) in which,
however, the coupling constants E, K, etc. are renormalized
by theR ±Fe interaction. What is interesting here is that even
if the g factor of the Fe subsystem is isotropic, the effective g
factor (the tensor ĝ) is anisotropic, since terms similar to t1
and t3 in (12) emerge. Of course, the use of the equal-modulus
model in this case becomes problematic.

5. An example that uses
the Vlasov ± Ishmukhametov equations

In the previous sections, we examined a variant of the
equations of the magnetic dynamics of antiferromagnets [the
Vlasov ± Ishmukhametov equations (6), (7) or (9)] that
presents certain advantages when one has to calculate the
AFMR frequencies. First, Eqns (7) make it possible to
automatically allow for the anisotropy of the g factor,
including the effective g tensor related to the interaction of
the ions in the 4b position and the rare-earth metal ions.
Second, these equations are much more convenient for
practical calculations, since they lead to results much faster,
especially if one separates, in advance, the dynamic variables
with respect to the spin-wave representations of the magnetic
group of the ground state under consideration. We use the
term `variant' since the Landau ±Lifshitz equations in the
form (11) for the spin densities are obtained from (7) with
allowance for (6) via simple algebraic transformations. These
advantages of the Vlasov ± Ishmukhametov equations will be
demonstrated by employing the example of an orthorhombic
antiferromagnet with a structure of type G. Some features of
the calculation method will also be discussed.

Expression (12) for the thermodynamic potential enables
us to account for all three possible mechanisms of weak
ferromagnetism: the antisymmetric and symmetric Dzya-
loshinski|̄ interactions and the anisotropy of the g factor. It
would be interesting to apply the results to a specific
antiferromagnet in which (we hope) all three mechanisms
manifest themselves. For such an antiferromagnet, we take
NaNiF3 (TN � 150K). This antiferromagnet has the required
symmetry of type G and the phase G4�lxmz� in the ground
state in a zero magnetic field H. This example will also
demonstrate the importance of the sign of l0 (�1 or ÿ1).

The AFMR in this antiferromagnet has been studied both
theoretically and experimentally [12], and this includes the
study of the orientational phase transition from state lxmz to
state lzmx, a transition induced by a field H k X. The
magnitude of the field at which this transition terminates,
Hsf, is given by formula (30){.

As noted earlier, the formulas for the AFMR frequencies
and the field Hsf are expressed in terms of energy constants
whose dimension is that of frequency (sÿ1). To compare them
with the experimental data (and the formulas of other
researchers), we must introduce effective fields. For the case

of the frequencieso3 (28) ando4 (29) and the fieldHsf (30), we
introduce the following fields and constants:

2HE � Egxx
� 4200 kOe; HA � Ka ÿ Kc

gxx
� ÿ1:1 kOe;

HDa � da
gxx
� 162 kOe; HDs � ds

gxx
� 12 kOe;

t1 � t3 � ÿ0:012 ;
2HEt � ÿ50 kOe; g � �hgxx

mB
� �hgzz

mB
� 2:14 : �31�

Here, in addition to specifying the fields, we also list their
values found from the experimental data on AFMR at
T � 77 K [12]. Clearly, the most important constant for
weak ferromagnetism, as in orthoferrites [7, 18], is da, the
antisymmetric exchange constant. Nevertheless, the contribu-
tion of the anisotropy of the g factor to the appropriate terms
in (28) and (30) amounts to about 30%. Note, however, that
these estimates do not take into account the measurement
errors specified in Ref. [12], which in some cases may exceed
10%.

The only verification of the fact that the theoretical results
agree with the experimental data in this case can be carried out
if we calculateHsf by (30), whichwas not used in obtaining the
data listed in (31).The formofF specified in Eqn (12) implies
that in the statewith l k Z (in a fieldHx 5Hsf) theminimum in
the energy (for da > 0 and m�0�x > 0) corresponds to l �0�z �
l0 � ÿ1, so that we must put a `minus' in front of the root in
(30) (bearing in mind that the first term on the right-hand side
of Eqn (30) is positive and smaller than the second in absolute
value). As a result, we find that Hsf � 15:4 kOe, which is in
satisfactory agreement with the experimentally observed
value of order 15 ± 20 kOe [12] if we allow for the fact that
the accuracyofmeasurements is onlymoderate (a large spread
of the points nearHsf).

We believe that this example shows that there is great
potential for AFMR studies via the Vlasov ± Ishmukhametov
equations in applications.

6. Summary

We would like to conclude this review with several remarks
that make it possible to substantiate the usage of the results in
the majority of exchange-collinear antiferromagnets, includ-
ing other (uniaxial) crystal systems most often studied by
researchers.

First, as noted earlier, a structure of type A or C can also
be examined by this method. Clearly, if we write the codes [13,
20] of all three antiferromagnetic structures, we see that they
differ only in one respect, i.e., the even symmetry axis 2��� in
these structures are the 2x and 2z axes, respectively, while for
the structure G such an even symmetry axis is 2y (to the
purpose, for this reason it would be more logical to call it a
structure of type B). In all the cases the remaining two
symmetry axes are called odd symmetry axes{. This means
that the thermodynamic potential F, the spin-wave variables,
and all subsequent results for the structures A and C can be
obtained from similar quantities for the structureG by a cyclic
permutation of the coordinates x, y, and z.

{Golovenchits et al. [12] give an entirely different formula for Hsf (the

origin of the ideas on which their derivation was based is hazy, to say the

least).

{The reader will recall that a symmetry element is said to be even if it

couples spins belonging to lattices with the same direction (in the exchange

approximation) of spin densities, and odd if it couples sublattices with

opposite directions of spin densities.
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Moreover, the above formulas for the AFMR frequencies
(usually in the limits of the bilinear approximation forF) lead
to results, which are simply partial cases of these formulas, for
some antiferromagnets of uniaxial crystal structures (whose
point group incorporates the subgroup with the symmetry
mmm characteristic of orthorhombic antiferromagnets).
Here, sending the Z axis along the principal axis, we must
first rewrite the above results by introducing the substitutions
x! y! z in a structure in which the even symmetry axis is 2z
(i.e., a structure of type C). Then for structures with even
principal axes [4z���, 3z���, or 6z���] we must, in accordance
with the formulas of this review, put Kc � Ka, ds � 0, and
t1 � ÿt3. At the same time, for the structure with the code
�1���4z�ÿ�2x�ÿ� we must put Ka � Kc, da � 0, and t1 � t3.
For the structure �1���4z�ÿ�2x��� [or 2d�ÿ�], we must first
rotate the system of coordinates through 45� about theZ axis,
so that the weakly ferromagnetic invariant mxlx ÿmyly
(characteristic of these structures) could become mxly �mylx
[13].

Here we must note that the separation of the dynamic
variables Dl and Dm in the modes done in Section 2 remains
valid for the cases of crystal structures discussed above only if
we allow for an appropriate transformation of coordinates.
The point is that in the simple geometrical situations
discussed in this paper such a separation is possible only
because the natural modes can be separated into quasiferro-
magnetic and quasiantiferromagnetic.

The specific calculations discussed in this paper were
based on the potential F being linear in m and l. However,
neither the equations themselves [(6), (7) or (9)] nor the spin-
wave representations change if F incorporates higher-order
terms (of the fourth or higher order). Such terms must simply
be included in the picture when we find the quadratic formF2

in the independent oscillatory variables Dm and Dl corre-
sponding to the mode under consideration.

Several remarks concerning relaxation in the equations of
motion are in order. In our discussion we ignored relaxation.
However, it may be the reason not only for the broadening of
the AFMR line. It may also transform equal-modulus
equations (of the Landau ±Lifshitz type) into unequal-
modulus equations [6] and lead to the existence of an
additional (relaxation) mode [3]. But on the whole, as is
known [4], the problem of relaxation terms in the equations
of magnetic dynamics is even more complicated than the
problem of the type of the dissipation-free equations
themselves. And there seems to be no reason why for the
Vlasov ± Ishmukhametov equations this problem should be
solved differently than for other equations of motion. Hence,
in accordance with the goals formulated in the introduction,
we ignored the problem of relaxation terms in this paper.

A final remark. In this review we centrally discussed
symmetric EMS's ��1! �1����, but of course Eqns (6) and (7)
can be applied to other magnetic structures Ð centrally
antisymmetric or without symmetry center at all Ð in which
a magnetoelectric effect may occur.

The authors are grateful to M I Kurkin for useful
discussions and interest in the work. Financial support was
given by the Russian Foundation for Basic Research (Grant
96-02-16489).
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