
Abstract. The characteristics of, and energy transfer mechan-
isms involved in, thermonuclear detonation are discussed. What
makes the fundamental difference between thermonuclear and
chemical detonation is that the former has a high specific energy
release and can therefore be employed for preliminarily com-
pressing the thermonuclear mixture ahead of the burning wave.
Consequently, with moderate (megajoule) initiation energies, a
steady-state detonation laboratory experiment with unlimited
energy multiplication becomes a possibility.

Dedicated to the memory of my first teachers
Yu B Khariton, Ya B Zel'dovich,

D A Frank-Kamenetski|̄

1. Introduction

In the early 1950s, the author was dispatched to the Arzamas-
16 nuclear center, which is presently known around the world,
and assigned to the theoretical group directed by
Ya B Zel'dovich and D A Frank-Kamenetski|̄. This was the
time when the first stage of the development of nuclear
weapons had been successfully completed, and rumours
were circulating about a more powerful weapon Ð an H-
bomb. Under the thick shroud of secrecy, various tracks to
this goal were tested, including Sakharov's well-known `layer
cake', which was described in detail in Priroda (Nature) [1].
Zel'dovich's group investigated a `refined', as one could say,
all-hydrogen version of the device that would not contain
heavy fissionable elements, in particular, a propagating
combustion in deuterium, a heavier hydrogen isotope. It

should be mentioned that this scheme would not have
ultimately translated into a real device, nor would it have
found a military application. Nonetheless, the range of
problems closely related to this model stimulated intense
physical research.

It is important, both with a view to establishing priority in
this field of research and irrespective of these considerations,
to declassify and publish the works by Ya B Zel'dovich and
other researchers of that period. Now, before the time is ripe
for this undertaking, let us briefly review the difficulties we
ran into. They turned out quite serious and almost insur-
mountable, as a result, the project was ultimately abandoned.

There is a widely known theorem formulated by
Yu B Khariton [2] which asserts that any exothermal
material is capable of detonating if its characteristic dimen-
sion is larger than a certain critical value. The rate of
thermonuclear reaction strongly depends on temperature. In
the process of energy release, some energy is lost as heat
transmitted through the outer surface, so the effective source
of energy can be described by the equation

q � q��T� ÿ qÿ�T� :

By equating the positive and negative sources, one can
calculate the characteristic temperature Tmax and subse-
quently derive the combustion time. On the other hand, the
plasma lifetime determined by its hydrodynamic expansion is
approximately expressed by the formula

tp � r

csound
� r����������

Tmax

p :

By comparing these two times, one can find the critical
dimension. There is an important note a propos. Since the
reaction rate is proportional to the material density r, the
similarity among different systems is based on the parameter
rr. This means that the dimensionless parameters, such as
burn-out, are functions of rr. In particular, the critical
dimension r � 1=r determines the mass capable of detonat-
ing: M � 1=r2 for a sphere and M � 1=r (g cmÿ1) for a
cylinder. The situation is very similar to the case of neutron-
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triggered fission chain reactions, since the basic physical
processes in systems of both types are controlled by the
same parameters: the generated energy is proportional to the
mass of materials, and the lost energy is proportional to the
area of the outer surface.

At the same time, in studying thermonuclear detonation
in deuterium, the researchers encountered another difficulty,
namely, an upper limit on the tube radius, which had not
arisen in the detonation of chemical explosives. Physically,
this limit was determined by the following process. It is well
known that a photon scattered by an immobile electron loses
a fraction of its energy, whereas its energy can increase if the
electron has a high energy and the photon is, on the contrary,
soft. These two processes, termed the direct Compton effect
and inverse comptonization{, lead, in the long run, to
thermodynamic equilibrium between the plasma composed
of particles and the electromagnetic radiation (planckization
of the radiation).

Since themain source of photons in a hydrogenmedium is
a very soft bremsstrahlung, there is an undesired energy drain
from particles to radiation. In order to limit this loss, the
designers have to reduce the tube diameter so that the photons
escape from it before they receive a considerable amount of
energy from electrons. This means that the tube radius cannot
be much larger than the Compton free path of the photons
(l � 5=r, r � 0:14 g cmÿ3 for liquid deuterium). All calcula-
tions indicated that the lower bound of the radius was very
close to the upper limit, and the entire system was highly
susceptible to parameters of secondary importance. For
example, the thickness and material of the wall surrounding
the liquid hydrogen had a considerable effect on the processes
inside. (An important fact that should be taken into account
to avoid confusion is that the existence of the upper limit on
the tube radius does not contradict Khariton's fundamental
theorem, since there is such a radius for deuterium at which
thermonuclear detonation will also be sustainable under
conditions of full thermodynamic equilibrium. The radius,
however, is so large that this configuration is of little practical
significance.)

Before ending this historical review, an effect should be
mentioned which Zel'dovich told me about in the early 1950s.
It was known by that time that the rate of the reaction between
deuterium and tritium nuclei is a factor of 100 higher than
between deuterium nuclei. The combination of two factors,
namely, the minimal electric charge of hydrogen (Z � 1) and
thehighrateof theD+Treaction, leads toasituationwhen the
reaction time is too short to establish a Planck distribution in
the radiation subsystem. As a result, the radiation effective
temperature remains relatively low, anda larger fractionof the
released energy is translated into the energy of particles.

After many years, this effect was detected in experiments.
By measuring the Doppler spread of 14-MeV neutrons
generated in the DT mixture during an explosion, a record
temperature of above one billion degrees was registered.

Chemical and thermonuclear detonations have much in
common. As long as their similarity holds, many calculation
techniques are directly translatable from one field of research
into the other. On the other hand, there are considerable
differences, in addition to the conspicuous difference between
their caloric values. Inwhat follows, wewill largely discuss the

DT reaction, which proceeds at the highest rate. It is the
deuterium-tritium mixture that allows one to minimize the
diameter of the detonation pinch. Only along this line of
development does a transition from military to peaceful
utilization of thermonuclear detonation become plausible,
when the energy needed to trigger the reaction is somewhere
near the level acceptable for a `laboratory' experiment.

It has turned out that a self-sustaining reaction occurs at
rr5 0:35 g cmÿ2. Hot plasmawith a temperature of the order
of 10 keV is controlled by a variety of energy transfer
mechanisms, including hydrodynamic detonation, electronic
thermal conductivity, energy transfer by charged a-particles
and neutrons, and radiation effects. In different conditions
different processes dominate; in particular, in an infinite
medium, most of the released energy can be transported by
neutrons, which take up 80% of the energy generated in the
reaction D� T! a� n. In pinches of the smallest radius, on
the contrary, the contribution of neutrons to the `forward'
transfer of energy is insignificant because the pinch for them is
transparent (the neutron free path ln � 5=r is a factor of
several tens longer than the pinch radius). As was mentioned
above, in pure hydrogen the radiation transfer is also
insignificant. The energy transfer by a-particles is also
inefficient owing to their small free path, as compared with
that involved in the electronic thermal conductivity. In
essence, the competition between two process is important:
the Jouguet ± Zel'dovich hydrodynamic detonation and high-
speed (thermoconducting) combustion.

The energy loss to radiation emitted through the side
surface is usually insignificant in chemical detonation,
whereas in thermonuclear detonation one cannot neglect
this loss of energy in the most interesting cases. For
example, under certain conditions the energy lost to a-
particles, rather than the plasma expansion, determines the
critical radius. Some problems of thermonuclear combustion
waves were discussed in Refs [4, 5].

2. Jouguet ±Zel'dovich's hydrodynamic
detonation

Conceptually, all problems of detonation, including energy
losses, were comprehensively described in the monograph [6].
Below is an alternative derivation of the formula for the
detonation velocity, which is fairly simple and easily under-
standable. It is based on the equations of a planar, steadily
propagating detonation in the dimensionless form in the
reference frame moving with the detonation front:

ru � 1 ; r � �r0� ;
p� ru2 � 1 ; u � �D� ;

g
gÿ 1

p

r
� u2

2
� 1

2
� E ; p � �r0D2� ; E � �D2� :

The function E � � q dt � � z0 �q� ÿ qÿ�Dÿ1 dz is the energy of
the effective source. Its approximate shape is shown in Fig. 1
(the origin z � 0 is in the detonation front plane).

The characteristic feature of function E�z� is its peak,
whose existence is attributed to the fact that the energy
released by the positive source decays as a result of burn-
out. All the released energy is transferred, in the long run,
from the reaction zone through the side walls, thus we have
the limiting formula Ez!1 � 0. Therefore, the correct
boundary condition for all the hydrodynamic parameters,
namely, the pressure, temperature, and longitudinal velocity

{ This effect has been studied by many researchers, including

Ya B Zel'dovich, A S Kompaneets, and others. An updated analysis of

the problem can be found in the monograph by V L Ginzburg [3].
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v � 1ÿ u, is that they should all become zero at long
distances from the front.

By resolving the equation system, we obtain

u � 1

g� 1

h
g�

������������������������������
1ÿ 2�g2 ÿ 1�E

q i
:

On the shock front, where z � 0, E � 0,
uf � �gÿ 1�=�g� 1�, the lower sign should be taken. In the
limit z!1,E again becomes zero and u � 1. This is possible
only on the branch with the upper sign. Consequently, a way
should be found for a transition from one branch to another.
One can easily find out that the only possibility is to set the
expression under the radical sign to zero at the peak, where
E � Emax. Hence, we obtain 2�g2 ÿ 1�Emax � 1, or in the
dimensional form

D2
J � 2�g2 ÿ 1�Emax :

The resulting formula is in accord with Jouguet's well-
known expression for Emax � E0, which is equal to the fuel
caloric value, and is similar to corresponding formulae in the
monograph [6].

Note that the equality E � Emax holds at the point where
q��r;T� � qÿ�r;T� and, at the same time, at the Jouguet
point, where the density is known �rJ � �g� 1�=g�. Thus, the
equation under consideration can be used in determining the
temperature at the Jouguet point. Given the temperature, one
can easily calculate the speed of sound and the detonation
velocity:

D � g� 1

g
c�Tmax� :

The numerical value of Emax can be employed in calculating
the effective width of the reaction zone. One should keep in
mind that, although the reaction is not terminated at the
Jouguet point, it does not change our calculations of D
because this zone of energy release is outside the region
where perturbations have a notable effect on the shock front.

3. Supersonic combustion

In chemical reactions, energy is transferred from atom to
atom via collisions. Since the particle velocity in the process of
diffusion cannot be higher than the atomic thermal velocity,
which is, in turn, of the order of the sound velocity, the
thermoconducting combustion in a chemically reacting
medium is always slow (subsonic). The velocity of an agent
transmitting heat in a high-temperature ionized plasma

(electrons, photons, etc.) can be much higher than the
thermal ion velocity, and the detonation front velocity can
be higher than the speed of sound: D > c � DJ. It is clear on
the intuitive level that the role of gas-dynamic processes in
this case is less important. It directly follows from Euler's
equation that

du

dt
� D

du

dx
� 1

r
dp

dx
;

Du � p

r
� c2 ;

u2

c2
� c2

D2
� D2

J

D2
:

It is clear that the ratio between the kinetic and thermal
energy reduces with increasingD. Therebywe obtain a unified
model of the subsonic and supersonic combustion based on
the heat (transfer) equation. In this section, we will generalize
the widely known Zel'dovich ±Frank-Kamenetski|̄ (ZFK)
formula [7] for the combustion rate with a view to taking
account of thermal losses.

The steady-state thermal conductivity equation

qe
qt
� D

de
dx
� d

dx

�
K
dT

dx

�
� q�T�

(where e is the internal energy and K is the thermal
conductivity, which is a function of temperature) reduces to
a first-order equation if the coefficients K and q are not explicit
functions of the coordinate:

Q � Q
dQ

de
� q0�e� :

The quantityQ � Dÿ1K dT= dx is proportional to the thermal
flux, q0 � Kq=�D2 de= dT� is a generalized source, and T and e
are related to one another via the specific heat. On the leading
edge e! 0, q! 0. Suppose that q0 � en. It is clear that at
n < 1 a local self-ignition takes place, i.e., (D!1) rises from
zero to a finite value in a finite time interval. For n > 1 and
e! 0 the source intensity is low, and the solution in this limit
is Qje!0 � e.

Suppose that q0 is a fast increasing function of e. Then
most of the energy is released in a narrow region of the
maximal value e � emax. But at the maximal temperature the
flux Q � 0. After rejecting the term with the specific heat in
the equation, we obtain the solution

Q2 � 2

� emax

e
q0 de :

The integral is little affected by a change in the lower
integration limit, and we can set e! 0. On the other hand,
the solution should be joined to another solution in the region
q0 � 0, Q � e � emax. With all this taken into account, we
have a solution in the dimensional form

D2 � 2

e2max

�Tmax

0

Kq dT ;

where emax is assumed to be equal to the caloric value.
The reasoning and result are in full agreement with the

logic of Zel'dovich and Frank-Kamenetski|̄, who suggested
this formula for determination of the combustion front
velocity in chemical reagents.

z

E0

E

Emax

Figure 1.Effective energy yield as a function of coordinate (the dashed line

corresponds to zero energy losses, qÿ � 0).
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As concerns thermonuclear combustion, some modifica-
tions in the equations are necessary. In the DT reaction, the
derivative of the reaction rate with respect to temperature
drops abruptly beyond a temperature of 10 to 15 keV,
whereas the temperature deriving from the caloric value is
much higher. With due account of the burn-out, the reaction
rate can even drop with the temperature. If the source
intensity is not a monotonic function of temperature, and
this may be the case if thermal losses are taken into account,
the ZFK formula applied directly can lead to a paradoxical
result, namely, the detonation velocity may drop with
increasing caloric value. In order to get out of this impasse,
let us analyze the shapes of integral curves of the original
equation at different values of D. At large D the sought-for
temperature tends to infinity, at small D it has a peak and
turns to zero at a finite distance x. Obviously, the physically
justified and limiting value of the velocity is that separating
these two solutions. In other words, we need a solution such
that at e � emax both Q and Q dQ= de, and consequently
q�emax�, simultaneously become zero. Then the equality
q� � qÿ determines the maximal temperature. It is clear that
this condition is identical to the rule that applies to the gas-
dynamic detonation. (Note also that the limiting solution is
nothing but a `solitary wave', which has come into fashion
recently.)

Let us turn again to the original equation and transform it
to the integral form, which is convenient for iteration as
e! 0:

Q � eÿ
�e
0

q0
Q

de ;

Q0 � e ; Q1 � eÿ
�e
0

q0
Q0

de and so on :

At the same time, at e � emax we haveQ � q0, and this allows
us to use the simplest interpolation:

Q � Qe!0 ; e < e0 ,
q0 ; e > e0 ;

�
where 0 < e0 < emax is a certain intermediate number. By
letting e! emax, we obtain

1 � 1

e0

� e0

0

q0
Qje!0

de � 2

e0

� e0

0

q0
e
de :

In the latter equation, the simple expression Q � e, which is
the upper estimate, has been used. In order to offset, in a
sense, this high estimate and obtain a correct asymptote for a
d-source (the ZFK solution), a numerical factor of 2 has been
introduced. Since the solution sought among all physically
sensible solutions is that with the highest velocity, we obtain a
procedure for the determination of e0. The ultimate formula
in the dimensional form is

D2 � max
�T0�

�
2

e�T0�
�T0

0

qK
e�T� dT

�
:

This formula is approximate, and its adequacy should be
checked by analyzing specific examples. For a step-function
source (e � T, K � 1)

q�T� �
0 ; T < T0 ,
1 ; T0 < T < 1 ;
0 ; T > 1

(

the equation solution has the form

T � Q� q0 ln
q0 ÿQ

q0 ÿ T0
; q0 � q

D2
:

At T � 1, Q � 0, and this yields the transcendental relation-
ship q0 ln�q0=�q0 ÿ T0�� � 1, which is equivalent to
T0 � �1ÿ exp�ÿD2��=D2.

In Table 1 the exact solution (D2), the solution by the ZFK
formula [ID2 � 2�1ÿ T0�], and the solution obtained using
the suggested procedure:

D2 �
2

T0e
; T0 <

1

e
;

2 ln
1

T0
; T0 >

1

e
:

8>><>>:
are compared.

There is another example. Onemay prescribe a solution of
the original equation and derive an expression for the source.
In particular, if

Q � T�1ÿ Tk�m ;

then

q0 � T�1ÿ Tk�m
n
1� �1ÿ Tk�mÿ1��mk� 1�Tk ÿ 1

�o
:

Calculations of D2 by approximate formulas should be
compared with unity:

m � 1 ; ID2 � k

k� 2
; D2 � 2k� 1

2k� 2
;

m � 2 ; ID2 � k2

k� 2
;

D2 � max

�
2

�
2xÿ 6k� 5

2k� 1
x2 � 6k� 4

3k� 1
x3 ÿ 2k� 1

4k� 1
x4
��

x�Tk

:

For k!1, all the formulas yield correct values. At small
k the discrepancy is considerable:

k � 1 ; m � 1 ; ID2 � 1

3
; D2 � 0:75 ;

k � 1 ; m � 2 ; ID2 � 1

6
; D2�x � 0;5� � 0:73 ;

k � 2 ; m � 2 ; ID2 � 1

3
; D2 � 0:81 :

In all the tested examples, the suggested method for
calculating the front velocity proved more accurate over a
wider range of parameters.

Table 1.Combustion rates calculated by different methods:D2 is the exact
solution, ID2 is the ZFK solution, and D2 is the solution obtained by the
suggested procedure.

T0 D2 ID2 D2

1
0.91
0.79
0.63
0.43
0.2
0.1

0
0.2
0.5
1
2
5
10

0
0.18
0.42
0.78
1.14
1.6
1.8

0
0.19
0.47
0.92
1.7
3.7
7.4
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4. Heat release and compression

As was noted above, the similarity in thermonuclear systems
is controlled by the parameter rr, but not the material density
and characteristic dimension taken separately. An important
property of the thermonuclear detonation, as compared with
the chemical one, is the enormous compression ratio of the
matter, which is caused by the much higher energy release in
the nuclear reaction than in chemical reactions. In normal
detonation, thematerial is compressed on the shock front by a
factor of �g� 1�=�gÿ 1�. Nuclear detonation leads to
compression ratios of several hundreds.

The material is prepared for triggering the reaction not
only by the transmitted heat, but also by the strong com-
pression, which makes the medium reactive. In order to
visualize the process using a specific example, imagine a
volume divided into two sections. The first section contains a
ball-shaped thermonuclear target. Driven by an external
source of energy Es (laser), the target is compressed and
explodes, and the energy E released in the process propagates
through both sections. The target is so small that is does not
confine neutrons, therefore, about 80% of the energy is lost
completely. Suppose that half of the remaining 20% is the
inefficient kinetic energy of the target fragments blown apart.
The remaining 10% of the energy is distributed between the
two sections, but, since the first section is `hotter', assume that
this energy is distributed in the proportion 2:1. If there is a
similar target in the second section, it takes up a fraction of
about 1% of the total energy released by the first target,
proportionally to its surface. Although this estimate is far
from accurate, it is clear that there is a minimal energy gain
K � E=Es in the first target, which is of the order of 100 so
that, if K5Kmin, the ignition conditions in the second target
should be no less favorable than in the first. Thus, there is a
possibility of doubling the released energy by building a more
complex structure (namely, adding the second section with a
target). But, once this configuration has proved to be efficient,
it can be extended by adding a third, fourth, etc. ball and using
the energy of the previous explosion for triggering the next.
After exploding a sufficiently large number of balls after the
initial triggering process, one obtains a specific steady-state
detonation, which can propagate not only in the longitudinal,
but also in the transverse direction. In order to distinguish this
type of detonation, let us label it by TD, which means
transverse detonation.

Below estimates for such a configuration are given. A tube
contains balls of radius r with equal separations between
them, and the separation between neighboring ball centers
h � 4r. If the time of the process is controlled largely by the
ball compression time, the detonation front velocity is,
obviously, D � 4v, where v is the compression velocity.
Suppose that the ball structure is the simplest. A thin shell
from a heavy material with mass M contains a hydrogen
mixture (DT) with mass m. Initially the shell is imparted a
kinetic energy E0 �Mv2=2, which is, in turn, 1=K of the
energy released by one target (K equals, as was mentioned
above, approximately 100). If the shell remains thin through-
out the compression process, its entire kinetic energy is
translated into the energy of the gas inside the shell:

AmTf � E0 ;

where A � 1015 erg gÿ1 keVÿ1 is the speciéc heat, and Tf is
the énal gas temperature at the maximal compression.

The compression ratio df of the lighter material is derived
from the assumption that entropy is brought by a shock wave
with the particle velocity V equal to the initial shell velocity.
For a one-atom gas, �g � 5=3� df � 4�M=m�3=2. If the ratio
M=m is too high, one should take into account the energy of
shell compression, since it is no longer thin. Then

AmTf � SE0 ;

df � 4

�
SM

m

�3=2

;

where S is the fraction of energy transmitted to the gas.
In solving the equation of state for a `cold' shell, p � Bdg

h

(where dh � rh=r0h is the compression ratio), we directly
derive, from the energy conservation and equality between
the pressures in the hot gaseous core and shell, the relation-
ships

1 � S� nS 5�gÿ1�=2g ;

n � 1

gÿ 1

�
4B

Ar0hTmaxdmax

�1=g� dmax

4

�5=3�
8

3

rof
roh

��gÿ1�=g
;

where Tmax � E0=Am and dmax � 4�M=m�3=2 are the tem-
perature and compression at S � 1, i.e., without taking
account of losses in the shell.

For typical values of the constants (g � 2:5, B � 1012) we
have

n � 0:5

�
dmax

1000

�5=3�
Tmax

10

dmax

1000

�ÿ2=5
:

The fraction of losses is expressed fairly accurately by the
formula

S � 1

�1� n�2=3
:

If liquid hydrogen is contained in a shell from a heavy
material (such as gold), S � 0:5 atM=m � 80 and df � 1000.
In addition to the inefficient energy consumption on the shell
compression, the efficiency is also limited by breaking of the
spherical symmetry of compression.

Typical values of the parameters are

m � 10ÿ3 g; df � 800 ; Tf � 6 keV; K � 70 ;

M � 5� 10ÿ2 g; r0 � 1mm; v � 2� 107 cm sÿ1;

E0 � 1 MJ ; D � 103 km sÿ1:

The problem is closed and the dimensions are selected
using the condition K � 100, which is necessary for self-
sustaining propagation of combustion from one ball to
another. The energy gain K, in turn, depends on the ball
mass m (or dimension r0), compression velocity, and whether
the triggering condition is satisfied, i.e., a certain temperature
T � 6 keV is achieved and rr � 1 g cmÿ2, which is sufficient
for the required burn-out level (Z � rr=6).

The reasoning presented above is not fully self-consistent,
namely, the separation between ball centers has not been
specified. I hope that the reader clearly understands that some
details are omitted for simplicity. For example, the neutron
heating caused by previous ball explosions can play a
significant role. Its intensity is higher, the smaller the
separation between ball centers. When the balls are located
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closer to one another, it is more difficult to organize a
configuration that would ensure spherically symmetrical
compression of the balls. On the other hand, if the separation
between balls is too large, there is toomuch `idle' space, which
leads to additional energy losses. The full optimization of the
design requires fairly accurate and cumbersome calculations
[8]. At the same time, it seems interesting to consider another
limiting case obtained through a transition to a continuous
configuration, namely, the `cylinder-within-a-cylinder'
scheme.

Thus, suppose that a cylinder of radius rout and with an
infinitely long side wall from a heavy material contains
another cylinder of radius r0, which is composed of a thin
heavy shell of mass M (g cmÿ1) per unit length and a DT gas
mixture of mass m per unit length inside the shell. The space
between the two cylinders is filled with a light material, such
as Be, which is transparent for radiation.

A fraction of the released energy propagates in the form
of radiation through the light material in the gap between
the cylinders and forms a jet downstream of the reaction
zone. This energy, traveling ahead of the front, preliminarily
compresses the thermonuclear fuel. In this case, two regimes
can be realized. The first is conceptually similar to that of
isolated balls, when the high temperature needed to ignite
the mixture is generated by compression, i.e., the front
velocity is controlled by the transverse compression (TD
regime).

The process, however, can develop in a different manner,
when the energy propagating along the gap compresses but
does not ignite the mixture. Since the cylinder has a simply
connected configuration, the heat (high temperature) needed
to trigger the reaction is transmitted along the inside cylinder
by a hydrodynamic or heat-conducting mechanism. This
detonation is almost identical to the natural one, the only,
albeit very important, difference being that the material
density is much higher than that of common solids. Since
the latter regime combines both the longitudinal and
transverse motion, let us dub it longitudinal-transverse
detonation (LTD).

Which of the two regimes is realized depends on the
specific configuration (the ratio between rout and r0, the wall
thickness of the inside cylinder, the density and nature of the
material in the gap between the cylinders). In our opinion, the
LTD regime is the most efficient, but, at the same time, its
implementation requires the finest tuning of the parameters.
Undoubtedly, there is a wide range of parameters where both
these regimes are possible. In reality, the regime with the
higher velocity is set up.

4.1 Closure of the solution in time
By taking a specific example, let us try to understand
characteristic features of cylindrical detonation and outline
the reasoning leading to determination of the propagation
velocity. Note that the front propagation is possible only at
rr > 0:35 g cmÿ2 [8].

All numerical estimates will refer to rr � 0:4 g cmÿ2, i.e.,
we will investigate a regime with a certain margin of
thermodynamic parameters. The combustion efficiency is set
to Z � 0:2, and the detonation velocity (without matching) to
D � 2� 108 � 20 (the time unit is 10ÿ7 s, the energy unit 1014

erg). Let us assume, by the symmetry condition, that
M=m � 10, then the limiting compression ratio
dmax � 4�M=m�3=2 � 125 (or approximately 11 in terms of
radius).

Finally, from the condition �rr�max � �rr�0d1=2max � 0:4, we
derive the inside cylinder radius r0 � 0:18 cm.

4.2 Cross section of the double cylinder

rh is the density of the heavy shell (M) and the outside shell
(rh � 20 g cmÿ2);
rg is the density in the gap (it is determined by the condition
that evaporated matter of the walls do not close the gap);
D is the relative shell thickness, atM=m � 10 D � 0:05 (5%);
rin is the inside radius of the outer cylinder;
rin=r0 is an optimization parameter.

4.3 Temperature inside the gap
The total caloric value of the DT fuel is q0�3:4�
1018 erg gÿ1� 3:4� 104, in terms of the energy carried by
a-particles (qa � 6:8� 103). With due account of the reaction
efficiency Z � 0:2, the released energy is e � 1:4� 103m
(m � 2� 10ÿ2 g cmÿ1).

In what follows, we assume that the energy is, in the long
run, distributed over the cross section, and the established
temperature is determined by the specific heat. Then

ADTmT� AmaxMT� AgMgT� SsT 4 � e
2

where S � pr2in is the cross section area. The thermal
capacities are denoted by A, and the last term on the left is
the energy per unit length lost to radiation. On the right-hand
side of the thermal balance equation, we have arbitrarily
introduced the factor 1/2 to take account of non-uniformities
in the temperature distribution and losses to the kinetic
energy of matter. The calculations are listed in Table 2.

In the left-hand upper corner of Table 2 the radiation
energy dominates, and in the right-hand lower corner the
material specific heat is most important.

4.4 Evaporation of walls
If the material density in the gap is sufficiently high, the wall
motion in the process of evaporation is impeded. In this
approximation, the thermal conductivity equation

�Ar�h
qT
qt
� q

qx

�
lc

3

q sT 4

qx

�
can be solved as described below. A `cushion' of evaporated
matter whose pressure equals that of its environment (the
layers are `sakharized') is formed between the gap material
and the heavy wall: �Ar�h � �Ar�g. The `cushion' thickness
increases with time, as if a thermal wave travels through a
preprocessed heavy matter with a `sakharized' density.

0 r0

r0 � 0:2 rh rhrg

rin 1r0�1� D�DT

Table 2. Temperature Tg (keV) at the point of energy release as a function
of density rg in the gap and the ratio between the radii of the outer (rin) and
inner (r0) cylinders.

rg

rin=r0

1.5 2 3

0.5
1
2

2.4
2.25
2.15

2.0
1.9
1.6

1.55
1.3
0.95
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Automodeling considerations apply to the free path
expressed by a power function l � aTn=rm, and an exact
solution can be found. Let us resort to simpler dimensionality
considerations, which are sufficient for estimates.

The flux is given by

q � ÿ lc

3

q sT 4

qx
�
�
ac

3t

�1=2

�sT 4�1=2�ArT�1=2h

�����������
4

4� n

r
Tn=2

rm=2h

;

and the evaporation length

x � qt

�ArT�h
:

By substituting numerical values (which have to be
refined, as amatter of fact), we obtain the following estimates:

a �10ÿ3 ; t�10ÿ8 s � 0:1 �in units of 10ÿ7�; n�3 ; m�1 ;

�Ar�h�10rg; q � 6:5T 4 �in units of 1021�; x

t
� 0:65

T 3

rg
:

The latter parameter is the growth rate of the evaporated
layer. From the viewpoint of gap filling, it should be
compared with the total velocity of the matter driven by
shock:

vs:w: �
���������������������
3

4

2

3

10rgT
r0h

s
� �rgT�

1=2

2
:

The gap does not change with time under the condition
vs:w: > x=t or T 2:5=r3=2g < 0:8.

In the estimates to follow, we assume

Tg � 1:4 ; rg � 2 ;
rin
r0
� 2:2 :

The flux of radiation emitted by a black body is

q b:b: � 1024T 4 � 103T 4 �in units of 1021� ;
and the ratio a � q=qb:b: � 6:5� 10ÿ3 � 10ÿ2 is the wall
reflectivity, which is a helpful auxiliary parameter to be used
in what follows.

4.5 Compression time
We have determined all the characteristic values of para-
meters. In particular, the pressure in the gap compressing the
inside cylinder pin � 5rgTg � 14, the average velocity of the
shellMmotion is �v � �pinm=r0M�1=2 � 2:6, and the compres-
sion time (in terms of the inside cylinder radius) is determined
by the formula ts =r0 � 0:4. Finally, we can derive the
maximal compression temperature from energy considera-
tions:

Tmax � pin
ADTr0

� 7 keV :

The resulting temperature is sufficiently high to ignite the
DTmixture (even though a fraction of the energy is lost to the
shell compression). In reality, the reaction ignition time is
derived directly from the solution of the equation (see also
Ref. [9])

ADT
dT

dt
� qa

1

tDT
;

where qa is the caloric value in terms of a-particles, 1=tDT is
the thermonuclear reaction rate, which can be expressed over

a temperature range of 1 ± 5 keV by a power function:

1

tDT
� 2y4rDT ; y � T

10
:

Hence follows the flash duration required to increase the
temperature to infinity, when the flash is triggered by the
initial temperature y0:

tfl � 5

3

ADT

qarDTy
3
0

� 1

400

1

rDTy
3
0

:

This time should be compared to the hydrodynamic time
during which the DT mixture compression is near its
maximum:

thydro � 0:5
rmin

v
:

The profile factor of 0.5 is derived from the exact solution
and corresponds to a reaction rate equal to half the maximal
value.

Let us assume that a flash has been triggered if tfl < thydro,
i.e.,

200�rr�0y3
�v

> 1 ; or y3 >
1

30
�y > 0:3 ; T > 3 keV� :

Thus, we have come to the conclusion that, at certain
parameters of materials, a TD regime triggered by compres-
sion can be realized. The `natural' detonation velocity is
unessential if it is lower than that of induced detonation.

4.6 Problem of outside thermal conductance
or propagation of heat in the gap

The heat equation in the gap is

Agrg
qT
qt
� ÿAgrgD

dT

dx

� d

dx

�
K
dsT 4

dx

�
ÿ a

c

4
sT 4 2p�rin � rout�

p�r2in ÿ r2out�
:

The thermal conductivity in the gap

K � lc

3
� 2�rin ÿ rout�c

3

is virtually independent of the material filling the space
between the cylinders and is fully determined by the
geometrical factor (the geometrical photon free path is ten
times as small as the particle free path).

The heat equation does not contain an insignificant term
due to the radiation heat capacity, and this allows us to
transform the equation to the fully dimensionless form:

ÿ dy
dy
� y4 � d2y4

dy2
;

y � x

x0
;

x0 �
�����
4

3a

r
�rin ÿ rout� ;

T 3
0 �

AgrgD=c

sa1=2
;

y � T

T0
:

On the leading edge y � ÿ dy4= dy � 0. The numerical
calculation is terminated at y � ymax (see Section 4.3, where
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the temperature in the gap is determined). By substituting
q � ÿ dy4= dy, we obtain the first-order equation

q� 4y7 � q
dq

dy
:

At y! 0, q � y. Without introducing a large error, we can
set q � y on the left of the equation:

q
dq

dy
� y� 4y7 ; q2 � y2 � y8 ;

y �
�
dy4

q
� 4

3

�y
0

dy3�������������
1� y6

p � 4

3
ln
ÿ �������������

1� y6
p

� y3
�
:

For the parameters selected previously, Tg � 1:4, rg � 2,
and rin=r0 � 2:2, we determine at variousD the length x=r0 of
the radiation zone along the gap (ahead of the combustion
front) and its duration t=r0 � x=�Dr0� (see Table 3).

By comparing the last column in Table 3 with the
compression time tc=r0, we find that the propagation velocity
D � 40 is really much higher than the combustion velocity: at
�rr�c � 0:4D � 20. The aim of our approximate analysis was
to outline the procedure of the closure of our problem in time
and to estimate numerical values that could be used in the first
iteration of a detailed numerical calculation.

It is clear that the problem could be closed at a slightly
lower energy release (somewhere in the range
0:35 < rr < 0:4) and D � 30, i.e., we have a margin with
respect to the moment of maximal compression.

An important point, however, is that, owing to multiple
constraints, the problem of the `cylinder-within-the-cylinder'
configuration can be solved only numerically on modern
high-performance computers, and this solution has not been
completed as yet. On the contrary, the configuration with
multiple balls has been fully analyzed theoretically, moreover,
it has been tested in an experiment, although its scale was far
from that affordable in laboratory conditions.

5. Stability and possible applications

Another advantage of detonation under conditions of
compression is its stability (in chemical detonation, the
stability is ensured by the full burn-out of fuel), which is
achieved if a simple condition is satisfied. Any compressing
system passes through three stages: implosion, termination of
motion at the moment of maximal compression, and
expansion, i.e., its motion directed outwards. It can be stated
that a propagation process is stable if it takes place at a stage
immediately before the maximal compression. In other
words, since the optimal combustion conditions are realized
at the maximal compression, this regime cannot be fully
implemented in real conditions, and one should scale down
the reaction parameters, i.e., a certain power margin is
needed.

Suppose that a deviation has occurred at some place, and
there the energy release is lower than on average. This means
that the radiation energy transmitted to the next section is
lower than expected. Hence, a flash is triggered there with a
delay and at a higher compression, since the ignition is largely
controlled by the temperature. The LTD regime is analysed in
similar terms, because the temperature drops when the
released energy decreases, alongside the flame propagation
velocity along the inside tube. The stabilizing factor is that the
released energy increases with the density, therefore, if the
energy release is lower at some point, it increases in the
downstream region, and the instability is averaged out.

In a tube containing a lot of balls with a sufficiently large
separation between them, the compression of a ball is largely
controlled by the previous one, but if they are set closer to one
another, the effect of other balls becomes notable. The
stability of this configuration is higher since a deviation of
one ball is averaged out by others. For this reason, it seems
that a continuous tube should have the highest stability.

A stable detonating system has a positive energy balance,
and it can be used for efficient energy generation. Once a
reaction is initiated, the generated energy can be arbitrarily
high. According to our estimates, the required triggering
energy is several megajoules. This conclusion indicates that
inertial systems have considerable advantages over magnetic,
stationary devices. The most feasible ignition sources are,
undoubtedly, lasers since their technology is most advanced.
We reiterate, however, that a power margin is necessary. At
the same time, a margin over the threshold energy yield,
which is needed to offset various deviations (tolerances in the
system design), can be used in designing really exotic
configurations.

The point is that this margin would allow one to exploit
not only cylindrical structures, but also tapered configura-
tions, whose flare angle is proportional to the power margin.
But, irrespective of the margin value, the released energy
should double sooner or later, and it will be possible to
conduct energy through two channels. Thus, a network of
energy generating tubes with a two- or three-dimensional
configuration can be constructed.

Now the closing remarks. We would like to end this paper
in the same key as we began it. The released energy per unit
length in a tapered system increases exponentially with the
distance. At some point the energy is so high that it can trigger
not only the DT reaction, which requires the relatively rare
tritium, but also other reactions, first the DD or D3He
reaction, then more exotic ones. Note that the issue of
neutron-free reactions has been mooted in literature many
times [10]. The point is that the reactions which are easier to
realize are not quite `clean'. They generate intense neutron
flows, and 14-MeV neutrons from the DT reaction can
interact with almost all materials via the (n, 2n), (n, g), (n, p)
and other reactions. So, one cannot completely get rid of
induced radioactivity, but can only limit it by selecting
construction materials. This factor is the more significant as
the neutron yield in reactions with hydrogen isotopes is a
factor of five higher than in nuclear fission (in this context, it
is appropriate to recall the neutron bomb). So, let us discuss
neutron-free reactions. One widely known example is

11B� p! 3a :

A remarkable feature of this reaction is the absence of
radioactive species among its initial and final components. It

Table 3.Detonation velocity as a function of various parameters

D T 3
g =T

3
0 x=r0 t=r0

20
30
40
50

2.28
1.52
1.14
0.91

28.9
22.3
18.0
15.1

1.44
0.74
0.45
0.3
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is inconceivable how short-range a-particles interacting with
walls could generate radioactive materials with a notable
yield. One can even say that this reaction, whose product is
helium, a noble gas, is more environmentally friendly than
chemical reactions. In this context, one could possibly treat
such an explosion as an improved version of a chemical
reaction, rather than a nuclear one, since it does not produce
radioactive species.

In addition to this reaction, there are more interesting
examples:

6Li� p!3He�4He ;

9Be� p! 24He�D ;

a�6Li :

�
These reactions are even faster than that involving boron,
nonetheless, their rates are three to four orders of magnitude
(depending on the temperature) lower than that of the DT
reaction. Since the plasma lifetime should be proportional to
the reaction time, one needs a larger dimension of the reaction
zone or, to be more accurate, the optical thickness

rr � 1

�1=t�r
:

Calculations indicate that, with the exception of the DT
reaction, nuclear fusion cannot be performed in laboratory
conditions. Moreover, the rate of exotic reactions more
strongly depends on the temperature. Therefore, a more
rational approach to their triggering is in adding small
quantities of deuterium and tritium:

Li6H1ÿx�DT�1=2x ; x4 0:1 :

If such amixture is compressed to a density of only 100 g cmÿ3,
the reaction is impractical (the consumption of tritium is
hundreds of kilograms and the output energy is equivalent to
tens of megatons of TNT). But if the density can be scaled up
to 1000 g cmÿ3, the required amount of tritium can be reduced
to 100 g and the output scales down to tens of kilotons.

It is probable that such explosive devices, whose under-
lying idea is credited to Yu BKhariton, Ya B Zel'dovich, and
D A Frank-Kamenetski|̄, might be useful in limiting the
technological impact on the environment.
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