
Abstract. The introduction of plasma-embedded magnetically
insulated current-carrying conductors into a plasma trap mag-
netic system radically increases the number of possible trap
designs. The present review focuses on the studies of b=1
Galateas conducted in the 1990s. Both general and design-
specific Galatea properties are discussed and for a number of
specific schemes analytical and numerical calculations are per-
formed. Experimental data on a number of electrical discharge
Galateas are presented.

1. Introduction

Suppression of convective instabilities is a necessary condi-
tion for efficient plasma confinement. Only when they are
suppressed can we look forward to suppressing different drift
instabilities and thus attain the classical transfer mode. As a
rule, convective instabilities are associated with plasma
diamagnetism. It is therefore unnatural from general con-
siderations to place a plasma in a magnetic field. Traditional
traps (with a plasma to magnetic field pressure ratio b < 1)
are operational because the path of a particle in a magnetic
field is a spiral and not just a Larmor circle. As a result, a
particle goes from a region with one magnetic field to a region
with another one (e.g. as in a magnetic bottle with Ioffe rods),
which can provide the particle confinement.

To radically suppress the confinement-prohibitive dia-
magnetic effect, the fields should be employed not as the
`habitat' of the plasma but as a `fence' enclosing the plasma
domain{. In this case, the diamagnetism becomes an assistant
instead of an opponent. And this would be the case for an
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{By convention, traps containingmagnetic field-free domains are referred

to as traps with b0 � 1 (see Section 2.3).



absolutely rigid and undistortable magnetic field. But the
magnetic field is deformable, and therefore the sharp
plasma ± field boundary proves to be stable only provided

�n0;H�H > 0 : �1:1�

Here n0 is the external normal to the plasma boundary. As a
consequence the connected plasma volume necessarily
appears to be `acute-angled' (Fig. 1a). This implies that the
configuration has gaps, its transverse dimension d being of the
order of the Larmor radius:

d0ri : �1:2�
All this has been well known since the mid-50s and has

been the subject of investigations conducted by Russian and
foreign scientists [1 ± 4]. However, the problem of gaps was
either totally ignored in these works or the estimates of their
width were too optimistic �d � re�. But the first experiments
with magnetic antibottles revealed that the actual gap widths
were close to the estimate (1.2). This practically denudes such
traps of the prospect of becoming reactors. Clearly a gapless
fence can only be made with retention of stability by closing
the acute angles to each other, as shown by the example of the
`Dublon' trap (Fig. 1b). But such closing is necessarily
performed by magnetic `sheaths' containing the separatrix,
which leans upon the principal plasma volume (PPV) on one
side and envelopes the current-carrying conductors on the
other. In consequence the plasma from the PPV spreads along
the separatrix to form plasma layers; following [5], they will
be referred to as `mantles.' The appearance of mantles
necessarily calls for the detachment of conductors, which
induce the magnetic configuration, from their base and for
their transformation to levitating plasma-immersed elements
with magnetic sheaths.

Following [6, 7], we shall refer to any traps (Fig. 1c)
containing plasma-immersed current-carrying conductors as
`Galateas' and to plasma-immersed conductors as `myxines.'{
The appearance of levitating myxines calls for three new

elements: `supporting coils' (1) to induce the myxine-support-
ing field, `locks' (2) to fix their relative position, and
`stabilizers' (3) to retain each myxine in its position.

By introducing the mantle into the plasma configuration,
we stopped the gaps. But in the mantles the curvature of the
magnetic field lines is unfavorable for stability. However, as
calculations show, it is not difficult to compensate for the
resulting tendency for the most dangerous hydrodynamic
instabilities by portions of force lines adjoining the region
where H! 0 (see Section 8).

In the foregoing we came to Galateas starting from the
problem of magnetic configurations, in which there is a zone
free from magnetic field with a magnetic gapless barrier
around the zone. This type of Galatea will be referred to as a
`Galatea with b0 � 1.' But there are a number of interesting
problems onGalateas with a nonzeromagnetic field �b0 6� 1�.

The simplicity of manipulating the magnetic fields of
Galateas was the reason why they were popular even at the
dawn of the conception of magnetic confinement. For
example, described in A D Sakharov's fundamental work [8]
was not the prototype of a tokamak but a Galatea. In the 50s,
a series of theoretical studies on Galateas was made, and a
number of configurations for these traps were proposed. The
investigation made by D V Orlinski|̄ [9] was presumably the
first attempt to devise and experimentally study a Galatea-
type system.

In the 60s and the early 70s, the interest in Galateas grew
steadily. Shown in Fig. 2 are the principal types of Galateas,
which became the object of theoretical and experimental
studies{ by the mid-70s: tokamak-like `levitrons' with
b0 < 1, Galateas with protective conductors �b0 � 1�, multi-
pole Galateas �b0 � 1�, and tornado Galateas with a fixed
myxine. At that time high-technology installations weremade
in the USSR, Western Europe, and the USA (Fig. 3). In
particular, these studies demonstrated the feasibility of
classical confinement, though in a relatively narrow para-
meter range [10].

b1 2
4
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a1 2 c

4
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3

Figure 1. From acute-angled configurations towards Galateas: (a) acute-angled simply (1) and doubly-connected (2) configurations; (b) the general view

and the cross section of the `Dublon' trap: 1 Ð levitating current-carrying conductors, 2 Ð the line of zero magnetic field, 3 Ð acute-angled PPV, 4 Ð

`mantle,' (c) to the definition of the notions `Galatea' and `myxine': 1Ð`supporting coil,' 2Ð`jammed'myxine, 3Ðmagnetic sheath of amyxine (MSM),

4Ð free myxines.

{A myxine (Myxine glutinosa) is a lamprey `relative' and resembles it.

Myxines possess an astonishing ability to make a knot of themselves.

{Only a small part of the existing publications, primarily in Russian, are

given in the figure captions. The preparation of a comprehensive review of

the contributions of individual authors is a task for special study.
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By the mid-70s, most of the research on Galateas was
terminated in connection with progress in tokamaks. The
research on Galateas remained unfinished and was not
brought to a logical end. Therefore, they are hard to
comment on today. For the most part they were grouped on
extremely low-b regimes (Fig. 3a). This stage of research on
Galateas in the USA was summarized in the review by
Yoshikawa [10]. The first sentence of the annotation to this
review says: ``Internal-conductor devices for low-b toroidal
confinement are reviewed.'' Hence it is clear that it was not
completely realized at that time that Galateas are required
primarily to obtain high b. More recently the situation
reversed: among the Galatea designs that appeared in the
60s, Galateas with b0 � 1 were the subject of investigation for
the longest. For example, the `levitating octupole' of
Wisconsin University (Fig. 3b) was operating as late as in
the mid-80s while the `Tornado' facilities in the Ioffe
Physicotechnical Institute (St. Petersburg) are still in service
[16] (Fig. 3c).

We are nevertheless convinced that the future may well lie
with Galateas{. In the long run, the magnetic systems in
traditional traps rest on the ground for two main reasons.
First, for simplicity. Magnetic suspension requires more
sophisticated devices. But now this no more presents an
impenetrable barrier, which is especially well exemplified by
the maglev train. Second, magnetic suspension requires either
superconductors or the use of variable magnetic fields to
induce the skin effect in supported elements. Inmany cases (in
particular, for the CNF purposes in the context of the
traditional approach) variable fields are unacceptable while
the superconductors of the classical type require costly
materials and special equipment. However, the situation is
now reversed in connection with the advent of high-
temperature superconductors and the technology for produ-
cing strips and wires around them. So, the technical complica-
tions and the inconveniences brought about by magnetic
suspension have been left in the past and in the near future
they will not even be taken into account. But then the
fundamental advantages of Galateas are brought to the fore.

In addition, it is pertinent to note that plasma traps with
b0 � 1 are required for the solution not only of the CNF

problem, but of a multitude of technical problems as well.
One of the first problems of this kind emerged in connection
with the demand for economic gas-discharge chambers
(GDC) for space propulsion devices. For this purpose, R
D Moor proposed covering the chamber surface with a
system of positive anodes, protecting them against the
penetration of electrons by an alternating magnetic field
induced by small-sized permanent magnets [19]. More
recently, systems of this kind came to be known as GDCs
with a peripheral magnetic field and gained wide acceptance
in the injectors for CNF etc. The plasma loss at the walls
was thus radically reduced, allowing the price per ion to be
cut by nearly an order of magnitude. `Crustal' systems with
a peripheral magnetic field are of prime interest for plasma
technology as workpiece processing `plasma baths.' Natu-
rally, the change-over to Galateas will only improve the
characteristics of such systems. Finally, the preparation of
myxine-like (magnetically protected) bodies allowing for
immersion in plasma will receive wide recognition in the
future. The case in point could be, in particular, autono-
mous magnetically protected diagnostic tools for major
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Figure 2. Classical Galatea types: (a) tokamak-like `levitrons' [8, 10]; (b)

multipole Galateas [4, 11 ± 14]; (c) `Tornado' [15, 16]; (d) traps with

protective conductors [1, 9] (S is the plasma source).
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Figure 3. Examples of classical Galateas: (a) spherator [10], (b) levitating

octupole [17], (c) `Tornado' [16].

{Our opinion is shared by many. In particular, since the late 80s a long

series of papers has appeared devoted to the `Dipole' Galatea proposed by

A Hasegawa (see Section 4.5).
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plasma devices (see Section 4.5) and, probably, probes for
the upper layers of the Sun.

This review covers the studies onGalateas conducted with
participation of the authors since the late 80s (see Section 2.4).
Three major features of these studies may be highlighted.
First, we consider not one or two specific configurations but
the fundamental possibilities offered by the use of levitating
myxines. As a consequence, we have proposed a number of
new Galatea configurations discussed below. Second, the
emphasis is made on Galateas with b0 � 1. Third, Galateas
are studied experimentally in electric-discharge modes.

2. General description of Galateas

2.1 `Magnetic vessels.' `Ideal' traps
One of indicators of the technical culture of a society is the
nature of vessels intended for product storage. The advent of
products with new features calls for the emergence of new
vessels. There is a concurrent process of reduction of the ratio
between the vessel material volume (mass) and the volume
(mass) of the stored product. The vessels are not only
reservoirs, but, as a rule, thermal (energy) barriers as well. A
striking example is furnished by the Dewar flask. The advent
of colliders can be regarded as the development of vessels for
fast moving single-velocity flows.

The CNF problem has posed the problem of confinement
of a hot plasma, a cloud of charged particles of either sign
moving with high velocities which differ widely. Various
configurations of plasma traps{ emerged Ð first, toroidal
and, later, open traps. Unfortunately, these plasma vessels
have a fundamental drawback. Here, the plasma is `mixed'
with the magnetic field (b < 1 and even b5 1). As a
consequence, the diamagnetism of Larmor circles provokes
convective instabilities. In this case, the magnetic field
occupies an unjustifiably large volume, whereas a magnetic
crust (`shell') at the periphery of the plasma volume would in
principle suffice to confine the plasma. This configuration
makes it possible to reduce the volume occupied by the
magnetic field by the factor ym � L=d. Here, L is the diameter
of the plasma volume and d is the thickness of the magnetic
crust.

However, it is not merely the smallness of the volume
occupied by magnetic field that makes `crustal' traps
(`magnetic vessels') attractive. They are extremely economic
as regards the field strength. It is evident from Table 1, which
gives the data obtained for b0 � 1, i.e. forH 2=8p � nkT.

Magnetic vessels can be considered as `ideal' traps. Of
course, every particular problem advances specific optimiza-
tion criteria. Therefore the concept of an ideal trap is to a
degree conventional. Nevertheless introducing this notion as
some ultimate reference point would be appropriate.

By an ideal trap is naturally meant a gapless crustal-type
trap (`magnetic vessel') that is stable with respect to convec-
tion and exhibits classical transfer of particles and energy.

In conventional gas dynamics, the suppression of convec-
tion is necessarily associated with classical transfer. In the
case of magnetic confinement, currents flow through the
plasma, which may result in the amplification of oscillations
of relatively small perturbations. The latter give rise to
convective cells capable of enhancing the transfer. Never-
theless, as indicated both by theory and experiment, when the
convection is suppressed, it is possible, as a rule, to attain
classical transfer by varying the plasma profile gradients. So,
the feasibility of ideal traps is not doubted and, as is evident
from the foregoing, these will be Galateas with b0 � 1.

A fusion reactor is a different matter. This is not merely a
trap for a plasma with `thermonuclear parameters.' First, it is
a trap to confine not only the hot `fuel' (plasma), but, for some
time, the charged reaction products as well. In addition to the
second confinement problem (confinement of the charged
reaction products), there are problems of `fuel' injection and
heating and of withdrawal of ash, i.e. reaction products.
Finally, a reactor should provide radiation shielding. All
this may force a divergence from ideal traps.

Nevertheless, there is hardly any doubt that Galateas will
play an important part in the solution of the CNF problem.
Their role will be especially important in going to hypertem-
perature reactors on D3He, DD, etc. since the synchrotron
radiation in Galateas with b0 � 1 is minimum. A considera-
tion of the complex of reactor problems is beyond the scope of
this review; however, some of them will be touched on below.

The low cost of Galateas. Today the development of
Galateas lags behind the corresponding development of
tokamaks, stellarators, and magnetic mirror traps. This lag
is often adduced as an argument against studies of Galateas.
Disregarded in doing so is their exceptional cheapness
stemming from design simplicity and efficient use of the
magnetic field in Galateas. As for magnetic suspension, it is
undoubtedly required for energy confinement times
tE 5 1 ms; for lower values, it is possible to dispense with
magnetic suspension. It should be taken into account (see
Section 9) that the convection suppression in Galateas makes
it possible to reduce the transfer to the classical level.
Hopefully, the road to laboratory versions of traps with
hydrogen plasmas of thermonuclear parameters (TTNP)
(n � 1014 cmÿ3, Ti � Te � 10 keV and tE � 1 s) may be
possible with highly modest means. Naturally, one-second
confinement times will require superconducting chords in
myxines. Assuming the field strength at the plasma-field
transition H � 104 Oe, we have the ion Larmor radius
ri � 1 cm and the diffusion coefficient for b � 1 and
Te � 10 keV

D? � c2

4ps0
� 10 cm sÿ1 : �2:1�

Here s0 is the Spitzer plasma conductivity. Therefore the
layer thickness through which the plasma can diffuse in one
second is d4 10 cm.

2.2 Three technical complications associated with Galatea
reactors [6]
Today it is still widely believed that the change-over to the
magnetic suspension involves severe technical difficulties.
Among these are: (i) devising the myxine suspension itself

{Clearly `trap' is an unfortunate term. Why then not call them `plasma

snares'?

Table 1.

Field strength, Oe Concentration, 1011 cmÿ3 Temperature, eV

10
100
1000

10000

1
10
100

1000

30
300
3� 103

3� 104
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with a radiation shield; (ii) release of the myxine-related
energy from the region of thermonuclear reactions; (iii)
sustaining the required temperature in the superconducting
myxine `chord.'

(1)When traps (no reactions) are dealt with, the latter two
difficulties are merely nonexistent while the first is greatly
simplified because the radiation shield is no more required.
Therefore, when evaluating the myxine mass, the mass of the
superconducting chord can be used as the basis. Considering
that the weight and the Ampere force acting on the super-
conductor are proportional to its volume (for a constant
current density), the equilibrium equation can be written in
the differential form

rg � 0:1 jSPH? : �2:2�

Here, r is the chord density, jSP is the current density in the
chord, A cmÿ2, and H? is the field strength of the external
magnetic field which sustains the myxine in the gravitational
field. Substituting the quantities r � 10 g cmÿ3,
jSP � 104 A cmÿ2, and g � 103 cm sÿ2 into (2.2), we find the
magnitude of the sustaining magnetic field

H? � 10 Oe : �2:3�
To state it in different terms, a magnetic field exceeding the
Earth's magnetic field by only slightly more than an order of
magnitude would suffice to suspend a myxine in the absence
of a radiation shield.

Now we briefly{ discuss the situation in the context of a
fusion reactor. In this case, the superconducting chord would
above all require shielding from the penetrating radiation.
Depending on the type of the reactor working substance and
the superconducting material, the shield thickness should be
of the order of

dm � 50ÿ80 cm :

For such a thickness, sustaining the myxine would require the
transverse magnetic field

H? � 150ÿ300 Oe :

If it is remembered that confining a thermonuclear plasma
(DT, ni � ne � 1014 cmÿ3, Ti � Te � 10 keV) for b0 � 1
would require a barrier field Hb � 104 Oe, the magnitude of
H? appears to be relatively low.

(2) The release of the fusion energy falling on a myxine
with a density of � 1 MW mÿ2 can be accomplished (in the
case of a DT mixture) by the thermal radiation of the surface
heated to T � 2000 K.

(3) Finally, sustaining the cryoregion temperature at
� 15 K when employing the classical Nb3Sn superconductor
or at � 70 K when employing new superconductors with a
nitrogen operating temperature level can be accomplished
either by cryogenerators built in the myxine or by cooling the
entire myxine periodically with the use of external coolers (see
Section 3.6).

So, there are no apparent serious problems of a technical
nature today prohibiting the development of myxines for
Galateas with an energy-passive or energy-producing plasma.

Clearly the situation withmyxines will only improve in the
future due to the inevitable increase of the operating

semiconductor temperatures and to the change-over to low-
flux neutron hypertemperature reactors.

2.3 The Galatea as a subject of theoretical studies
In the preceding section we emphasized a fundamental
feature of Galateas Ð the feasibility of gapless traps with
b0 � 1 in this class. Moreover, Galateas possess a series of
important properties, some of which are noted here.

2.3.1 Completeness of the Galatea set. As is known, from the
Fermi ±Chandrasekhar virial theorem it follows that equili-
brium static MHD configurations can be formed only in the
presence of nonmagnetic forces. Under laboratory condi-
tions, the only case in point is the elastic force of solids. In
Galateas the solids are relieved of the artificial limitations Ð
to rest on the ground and to touch the plasma only with one of
its sides (`the first wall').

Hence, while the set of traditional traps {T} is limited to
simply connected (open) and doubly-connected (toroidal)
traps, the Galatea set {G} is immense both topologically and
especially metrically. It is therefore safe to say that the
Galatea set includes the set of traditional traps as a very
special case:

fGg � fTg : �2:4�
Galateas open up fresh opportunities for solving, in

particular, the problem of large b on the metrical rather
than topological level and thus to devise traps with

bloc � 1 ;

i.e. magnetic vessels.
The inclusion (2.4) may seem to be an exaggeration but

this is not so. Some new Galatea configurations have been
obtained from traditional traps (Fig. 4). For instance, if the
circle of fast particles (electrons or ions) in Christofilos's

{For more detail, see Section 3.5.

dS

3

a

21

b c

Figure 4. `New' Galatea configurations: (a) solid-state analog of `Astron'

Ð Galatea-A: 1, 2 Ð vacuum magnetic fields respectively with one and

two zero points in the system axis, 3ÐGalatea-A with a simply connected

plasma volume, b0 � 1; (b) Stellarator-Galatea (Stega); (c) Galatea-Belt;

(d) diffusion-type Galateas with a weakly collisional plasma.
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`Astron' is replaced by a current-carrying conductor, we
obtain a Galatea-Astron, or Galatea-A (Gala). Its magnetic
configuration can be of three types (Fig. 4a) [20, 21]. One of
the present authors and V D Pustovitov proposed [22] a
Stellarator-Galatea (Fig. 4b), which constitutes merely a
torsotron; its primary coils do not rest on supports but are
suspended by the magnetic field of the locks. In consequence,
as the plasma flows along the separatrix, its mantle encloses
the principal conductors. The so-accomplished flooding of
the separatrix with the plasma would certainly improve the
stability of the plasma configuration and increase the
attainable magnitude of b. This is pointed out not only by
the general considerations given in Ref. [22], but by the first
calculation [23] as well. The possible change-over from the
MS Ioffe `Atoll' trap to a quadrupole trap is another example
of such a switch from a traditional trap to aGalatea. Galateas
can also form in a less trivial way. One example is theGalatea-
Belt [24] (Fig. 4c). It is a quadrupole trap wherein the azimuth
current flowing through the plasma is responsible for the
formation of a current sheath. This Galatea is considered in
detail in Section 8.

We therefore believe that the completeness of the Galatea
set opens up new avenues for the development of the general
theory of plasma confinement unrelated to the essentially
accidental limitation of the set of traditional traps, namely, to
the `resting-on-ground' condition imposed on all the coils.
And here developing the principles of classifyingGalateas will
presumably be the top-priority task.

2.3.2 Features of Galatea physics. Galateas differ essentially
from traditional traps regarding their design and the
processes involved. We emphasize the theoretically crucial
ones:

(1) multiple connectedness of the plasma volumes and, in
particular, the existence of `holes;'

(2) the existence of three blocks (plasma, field, solid-state
myxines with the electrodynamics of their own) rather than
two (plasma and field), requiring a self-consistent description.
In particular, both the plasma and the myxines should be in
equilibrium;

(3) the existence of magnetic field-free regions in Galateas
with b0 � 1 whose representation is inherently kinetic;

(4) on the whole, investigation of the stability of the `thin'
(plasma-field transition and mantle) layers calls for a non-
linear treatment in the kinetic approximation;

(5) the surface Galatea layers Ð magnetic vessels with
relatively thin transition layers and mantles Ð can in many
cases be treated as `tiles,' i.e. consisting of quasi-autonomous
blocks. This factor notably simplifies the studies on such
Galateas as compared, for instance, with tokamaks and
stellarators, in which the principal plasma volume is pierced
by infinite force lines.

2.3.3 Terminology. Prior to passing to the consideration of
specific issues, we define more precisely the meaning of some
terms used below. This has already been done for the two
opposite cases: the magnetic field in a vacuum �b! 0� and
the configurations with an abrupt plasma ± field transition
layer �b0 � 1� with thickness d5L, where L is the character-
istic transverse dimension of the principal plasma volume. In
the former case, the surface Cb � const (C is the magnetic
flux function), which separates the regions of plasma stability
and instability for b! 0 according to one or other stability
criterion (e.g. U � � Hÿ1 dl � min), will be referred to as the

`barrier surface.' If the configuration is toroidal, the line S (a
point in the r; z-plane) on the surface Cb where the field
strength is minimum, is given the name `saddle-point' and the
field strength

Hb � minH�Cb� �2:5�

is termed the `barrier field' by the given stability criterion for
b! 0. In principle, we would dowell to introduce the notions
of the `absolute maximum' S � and the `absolute barrier' H �b .
The former signifies the locus (unrelated to stability criteria)
of points where the magnetic field strength attains the
absolute minimum H �b over the entire set of lines connecting
the region with H � 0 at the center of the configuration and
the external space where H! 0.

In the case of configurations with an abrupt plasma-field
transition, the `plasma boundary' stands out, which can be
defined as the magnetic surface CG at which the plasma
pressure is PG � yP0. Here the quantity y � 0:5 and P0 is
the pressure in the principal plasma volume where H! 0.
Next we introduce the `barrier' surfaceCb according to one or
other stability criterion, as in the vacuum case. Needless to
say

CG 4Cb ; C > 0 :

Similarly to the vacuum case, we define the `saddle-point' S
and the `barrier field'Hb.

We now pass to defining the b parameter. Clearly this can
be done in several ways:

(1) Local b parameter:

bloc �
8pP
H 2

: �2:6a�

In the configurations with a steep profile it varies from� 0 to
� 1.

(2) The `boundary' bG for the principal plasma volume:

bG �
8pP0

H 2
G

����
y!0

: �2:6b�

In the case of a steep profile, bG � 1.
(3) The `separatrix' bs parameter:

bs �
8pP0

H 2
s

: �2:6c�

Here Hs is the maximum field strength in the separatrix [17].
(4) The `barrier' b parameter:

bb �
8pP0

H 2
b

: �2:6d�

The above-introduced conventional b0 parameter can be
identified with bG.

2.4 How we followed the path to Galateas
We have been on the road to Galateas since our presentation
entitled ``Stationary Plasma Accelerators and the Prospects
for their Application in Fusion Research'' [25] at the IAEA
Conference in Novosibirsk in 1968. In that presentation a
radically new, in a sense, configuration for a fusion reactor
was proposed in the form of a long solenoid, the plasma
heated to thermonuclear temperatures flowing along the
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solenoid (Fig. 5). In its most crude form, the system comprises
a high-current accelerator 1, a solenoid 2, and a receiver-
recuperator 3{. At the solenoid inlet a change-over occurs
from a supersonic to subsonic plasma flow attended by
heating to the required temperature. The convenience of
such a configuration is evident. But all the problems are
associated with the huge solenoid length. If we estimate the
plasma velocity in the solenoid at Vs � 108 cm sÿ1, the
minimum solenoid length L is given by the expression

L � VstE � Vs
A

n
: �2:7�

Here A � �ntE�min is the Artsimovich ± Lawson constant,
which is equal to 1014 s cmÿ3 for the D-T reaction. Assuming
that the plasma density in the solenoid axis is ns � 1016 cmÿ3,
we obtain tE � 10ÿ2 s and L � 10 km. To the density ns
selected above corresponds the magnetic field strength
Hs � 105 Oe. For the specified flight time t0 � tE � 10ÿ1 s,
the classical diffusion length is d �c� � 3 mm. Hence the jet
diameter will hardly change during the flight time if we put it
equal to ds � 4 cm. Under these conditions, the fusion energy
generated per meter of the jet will be P1 � 10 MW. The total
power of such a fusion reactor will amount to � 100 GW. If
the diameter of the first solenoid wall is Ds � 3 m, the power
density at the wall is� 1MWmÿ2. The conception of a flight-
tube reactor (`proletotron') can be implemented in many
ways. In particular, when pellets are injected into the center
of a previously `ignited' reactor, the injector can be removed.
The receiver of the outgoing plasma can be variously designed
etc. The conception of a flight-tube reactor is appealing and
many authors{ would revert to it, proposing one or other
version of the reactor. A realistic assessment of the proleto-
tron was once given by G I Budker: ``Such systems were
considered, in particular, byMorozov, Tak, and others. Since
no confinement or thermal insulation was intended, the
installation length would be of the order of several hundred

meters ... I would say that it is adequate for the problem of a
fusion power plant of commercially significant output power.
However, its modeling involves serious problems, and an
immediate launch of the construction of a full-scale facility
calls for exceptional courage on the part of the experimenter
and the financing organization'' [27].

Subsequently the conception advanced along two lines.
On the one hand, the investigation and the improvement of a
high-current quasistationary plasma accelerator was being
continued. A conceptual sketch was proposed in the
I V Kurchatov Institute of Atomic Energy [28 ± 30] as early
as the middle of 1959, and the experimental work on the
accelerator commenced in the Institute in 1960. In essence,
this accelerator is a magnetoplasmadynamic analog of the
Laval nozzle (gas dynamic nozzle), the working substance
being accelerated by the magnetic field pressure rather than
the gas kinetic pressure. The development of such an
accelerator proved to be a difficult task primarily due to the
difficulties associated with matching the electric field in the
accelerating channel and the field at the electrodes. Never-
theless they were overcome (Institute of Physics, Belarus;
Kharkov Institute of Physics and Technology, Ukraine;
Troitsk Institute for Innovation and Thermonuclear
Research, Russia) in the early 90s, and the first-generation
quasistationary high-current plasma accelerator (QHPA) was
placed in service in the design mode. The QHPA delivered
� 3 GW fluxes for a hydrogen ion energy of � 1 keV and a
pulse duration of � 100 ms. Naturally, the advent of such an
intense injector posed the problem of a trap design of `modest'
dimensions, which is nevertheless capable of withstanding the
`impact' of the QHPA plasma jet. Proceeding from a
proletotron, the idea of replacing the specularly reflecting,
magnetic cylindrical walls of the proletotron (Fig. 5a) with
magnetic walls that scatter particles `macrodiffusively' is
natural. Thus comes the configuration of an `extended
tornado' (Fig. 5b), i.e. a solenoid with an asymmetric
current-carrying helix inside it}. The asymmetry is required
to ensure that no particle parameter (integral) is conserved
during scattering by the magnetic walls. The lifetime of a
particle, which moves in this trap with rare volume collisions
and is chaotically, on average, scattered by the walls, is
determined by the diffusion time

tdif � L2
s

asVs
: �2:8�

Here as is the diameter of the magnetic channel. Putting
as � 3m, t dif � 10ÿ2 cm, andVs � 108 cm sÿ1 with allowance
made for the neutron shielding, we get

Ls � 200 m :

This length for a barrier field of � 100 kOe is acceptable for
full-scale experiments. If the neutron shield is rejected, we can
put as � 50 cm to get

Ls � 80 m :

This trap proves to be smaller in size of a magnetic volume
than the ITER. The term `Galatea' appeared precisely after
the conception of `Gega' came into being. The interest in just
the diffusion systems had certain historical grounds. Pre-

{A similar configuration was proposed by D L Tak at the same

conference.

{ In Ref. [26] Post described a version of a `proletotron' under the name

`linear collider' without reference to the papers by A I Morozov and D L

Tak.

3

a

2

1

S

bS

c
S

Figure 5. Traps with a moving plasma: (a) `proletotron' with high-energy

plasma injection: 1 Ð plasma source, 2 Ð solenoid, 3 Ð plasma receiver;

(b) diffusion trap with a helical `jammed' myxine (Gega); (c) sectioned

diffusion trap with randomizing cells of the Galatea-A type (Gabi).

} In Ref. [20] this trap received the name `Gelikon-Galatea' or, diminu-

tively, `Gega.' Gega, by the way, is a beautiful waterfall near the Ritsa lake

in the Caucasus.
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sumably the idea of such systems was first outlined in one of
A I Morozov's reports in the following form in the late 50s
(Fig. 5b). A trap will be termed a `randomizing cell' if it has
two end openings, through which particles can enter and exit
the trap, and has a `randomizing' capacity which implies the
following: once a particle enters the trap, it `forgets' which
end the entry was made through and can exit by either with
equal probability. If we prepare a chain of 2N� 1 randomiz-
ing cells, a particle placed in the center of the chain will remain
inside, on average, for the period

tN � t1N 2 : �2:9�

Here t1 is the lifetime in a single cell.
The GOL{ and ESPL traps were the first realizations of

diffusion traps [31]. In GOL, a dense plasma system,
randomization was accomplished by volume collisions. In
ESPL, a rarefied plasma system, randomization was caused
by the strong gradients of magnetic and electric fields. ESPL
is discussed in more detail in Section 9. In the late 80s, a
demand arose for the development of a trap for the QHPA.
Then, in addition to the diffusion Gega trap, a diffusion trap
termed bead Galatea, or Gabi was also proposed [20]. Here
the Galatea-A trap was implied as the randomizing cell
(Fig. 4a). The Gabi and Gega scales are commensurable.

At that time, in the early 90s, a decision was made to
exemplify the advantages of Galateas by an extremely simple
trap Ð a toroidal quadrupole Ð and to attempt to obtain a
relatively high-energy plasma by a direct discharge, as was
already done in the case of ESPL. Thus appeared multipole
electric-discharge traps (EDTs): first, EDT-M (`Avos'ka')
and then in 1998 the `Octupole' trap. These are considered
in Section 9, as are the experiments on a Galatea-A-type trap
performed in the electric-discharge mode. All these experi-
ments demonstrated the high efficiency of the Galateas with
b0 � 1.

In the early 90s, the Stellarator-Galatea and Galatea-Belt
configurations were proposed (Fig. 4).

3. Myxines in the absence of plasma (b=0)

3.1 The statics of myxines for b=0
As a rule, themagnetic Galatea systems should be so designed
that myxines remain in the equilibrium state even in the
absence of plasma. Thus arise the simplest problems of the
theory of Galateas Ð the statics of myxines and then their
stability for b � 0.

We commence with the statics of perfectly conducting
myxines. We need to solve the system of equations, which
includes the equation for the irrotational magnetic field and
the zero conditions on the forces and the torques acting on
each of Nmyxines:

Df � 0 ; �3:1a�

Mkg� 1

c

�
Vk

j�H dV � 0 ; �3:1b�

�
Vk

�
rkg�

1

c
j�H

�
� r dV � 0 : �3:1c�

Here f is the scalar potential of the magnetic field, rk is the
density, and Vk the volume of the kth myxine. The equili-
brium condition with respect to rotation (3.1c) is automati-
cally fulfilled when the system is axially symmetric. Mean-
while the center-of-gravity equilibrium condition (3.1b) calls
for special precautions. We illustrate this situation by two
simple examples.

3.1.1 Galatea-A. If the trap axis is directed vertically (Fig. 4a),
by action of gravity themyxine is displaced from themidplane
by a distance z without breaking the symmetry. This shift is
determined by Eqn (3.1b)

Mg � 1

c
2pRJmH ex

r �R; z� : �3:2�

HereH ex
r is the r-component of the `external' field (the field of

the mirror coils) and Jm is the current traversing themyxine. If
the myxine radius R5L, the distance between the magnetic
mirrors, the magnetic field in the vicinity of the myxine can be
described in the paraxial approximation [32]

f�r; z� �
�
H0�z� dzÿ r2

4
H 00�z� �

r 4

64
H 000 �z� � . . . �3:3�

Here H0�z� is the field in the system axis. From Eqn (3.3) it
follows that

Hr � ÿ rH 00
2
� . . . ; �3:4a�

Hz � H0 ÿ r2

4
H 000 � . . . �3:4b�

For simplicity of the following formulas we assume, putting
z5L, that

H0�z� � H00

�
1� z2

b21

�
: �3:5�

We substitute (3.5) and (3.4a) in Eqn (3.2) to obtain the shift:

z � ÿ Mgb21c

2pR2H00

1

Jm
� ÿ A

Jm
: �3:6�

We take the parameter values not too far removed from
reactor parameters and estimate the magnitude of z:

Jm � 5� 106 A ; H00 � 104 Oe ; b1 � 6 m ;

R � 2 m ; M1 � M

2pR
� 10 t mÿ1 : �3:7�

The magnitude of M1 was taken with allowance for the
radiation shielding (see Section 3.5). Substituting (3.7) into
Eqn (3.6) gives

z � 36 cm :

3.1.2 Quadrupole (Fig. 6a). Two myxines carrying current in
one direction are known to be nonequilibrium and are
forcefully attracted together for thermonuclear parameters.
For example, for a myxine separation 2a � 2 m and a current
J � 5� 106 A traversing the myxine, the attracting force per
unit length of the myxine is

F1 � 250 t mÿ1 :
{GOLwas proposed byG I Budker andDDRyutov independently of the

cited report and ESPL by V V Zhukov and A I Morozov.
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Clearly the myxines should be `relieved' with the aid of
external magnetic fields. Such fields can be induced by one
or several circular conductors. There are many versions. In
essence, they reduce to inducing a quasiuniform field at the
myxine surface whereby��

H 2

8p
n0z ds � 0 :

Here n0z is the z-component of the unit normal to the myxine
surface. This can be attained by placing either rigidly fixed
locks Ð `stretchers' with current in the same direction as in
the myxine or with current of the opposite direction Ð
`pushers' (Fig. 6b). In either case, the field inside the myxines
is enhanced and the field outside is attenuated. To quantita-
tively illustrate the resulting situation avoiding cumbersome
calculations, consider a quadrupole with a large aspect ratio
a � R=a4 1, when the field of myxines and locks can be
approximated by a field of straight lines. Assuming the locks
to be pushing out, it is easily verified that the myxines will be
in equilibrium with the proviso [7] that

Jf

Jm
� a2 � b2

4a2
; �3:8�

where b is the distance of the lock from the zero of the
magnetic field.

Notice that the locks-pushers have the advantage of
reducing the `toroidal' effect, i.e. the radial displacement of
the magnetic field zero for a finite aspect ratio. At the same
time they reduce the working trap volume. We may readily
check that the requisite configuration vanishes completely for
Jf 5 Jm. So, in this case the force relief of myxines and the
current compensation �Jf � Jm�, which is important for the
reduction of the toroidal effect, are incompatible. Clearly, in
practice priority should be given to force relief. It is evident
from the aforesaid that locks can impair the confinement
ability of Galateas. Here we restrict the discussion to the two
above examples. Several other examples of the statics of
myxines for b � 0 are considered in Refs [33, 34]. For b 6� 0,
the equilibrium of myxines will be discussed in Sections 6
and 8.

3.2 The stability of myxines for b=0
Three major classes of problems on the stability of myxines
for b � 0 are recognized: (i) determination of the instability
increments developing in unstabilized but equilibriummyxine
systems; (ii) development of active systems with feedback to
suppress instabilities; (iii) development of self-stabilized
systems with stable myxine positions.

The problems of the first class for Galatea-A and the
quadrupole are considered in the next section. This simple
type of Galatea is of practical interest at the initial stage of
research when, on the one hand, the operation is not hindered
by rigid myxine fixing and, on the other, the development of a
superconducting complex is for some reason disadvanta-
geous.

Systems with feedback were used in Galateas in the 60s
and the 70s. The Yoshikawa spherator, which dates back to
that time, with the specified myxine stabilization system is
shown in Fig. 3a. But stabilization by feedback is hardly
optimum for systems with b0 � 1. This is caused by a strong
field rearrangement on filling the trap with plasma, which is
associated with a significant change of the forces acting on the
myxines. Moreover, when the systems with feedback are
operating, the magnetic field undergoes `coarse' changes
which may markedly affect the plasma confinement. Finally,
such systems are, in a way, too `technical' and are inevitably
represented by cumbersome theoretical models. Therefore we
do not dwell on them here and restrict the discussion to the
self-stabilized magnetic systems of stationary Galateas.
Considered below as universal stabilizing elements are super-
conducting screens Ð cases of fairly simple form. We
emphasize immediately that we are concerned only with the
fundamental aspects of the problem. The stabilizing role of
the screen is clear from Fig. 6c depicting the quadrupole. We
first introduce the fundamental scale for the angular oscilla-
tion frequency of screen-enclosed myxines Ð the levitation
frequency. To do this, we consider the oscillation of a straight
conductor with mass M1 per unit length carrying a direct
current J, which is placed above a perfectly superconducting
plane. The following condition defines the height h0 at which
the conductor is in equilibrium:

M1g �
2J 2

m

2h0c2
: �3:9�

If the conductor is disturbed from equilibrium, its oscillations
are described by the equation

M1
d2h

dt 2
� J 2

m

hc2
ÿM1g : �3:10�

Linearizing (3.10) gives the usual equation for small-ampli-
tude pendular oscillations

d2 ~h

dt 2
� g

h0
~h � 0 ; h � h0 � ~h ; �3:11�

with the angular frequency of levitation oscillations equal [33]
to

OJ �
�����
g

h0

r
�

����������������
J 2
m

c2M1h
2
0

s
: �3:12�

It will be seen below that this frequency, within a factor � 1,
shows up in all systems with screens.

3.3 The dynamics of myxines in systems without
stabilization
At the initial stage of experimental research on Galateas,
unstable systemswith a relatively small increment gF such that

SF � gFtE > 1 �3:13�

1 a

2

b 3 c

Figure 6. Mechanics of myxines in a quadrupole: (a) nonequilibrium

system of two myxines 1, (b) equilibrium but unstable system of myxines

with rigidly supported locks 2, (c) stable configuration of myxines in a

transversely profiled superconducting case 3.
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may be of interest. Here tE is the characteristic plasma
confinement time, e.g. with respect to energy. In addition to
criterion (3.13) which characterizes the Galatea configuration
lifetime, a role of practical importance is played by the
parameter

SJ � gJtE ; �3:14�

where gJ is the damping decrement for the current in myxines,
if they are made of conductors with a finite conductivity.

3.3.1 Deformation of a Galatea structure in the absence of
screens. If the myxines can be regarded as perfect conductors,
their dynamics in the general case are determined by the
Lagrange function [2, 35]

L �
X
k

MV 2
k

2
�
X
k; a; b

Ik�a;b�Ok�a�Ok�b�
2

ÿ
X
k

LkJ
2
k

2c2
ÿ
X
i>k

Mik Ji Jk
c2

ÿ
X
k

1

c
F e

k Jk : �3:15�

Here 14 k4N are themyxine numbers,Lk are the induction
coefficients which we assume to be functions of the myxine
coordinates qk (qk is the collection of the center-of-mass
position and the orientation of the normal to the myxine
plane n0k),Mik aremutual inductances dependent on all qk and
all n0k,F

e
k�qi; n0i � are the magnetic fluxes of extraneous sources

of magnetic field, I ek�a; b� are the components of the tensor of
moment of inertia of the kth myxine, and Ok�a� are the
components of the angular velocity. Even in the axially
symmetric case the system has a total of 5N geometric
coordinates and 6N velocities. To this we should add N
values of current in the myxines. Now we restrict ourselves
to a simplified consideration of Galatea-A and a straight
quadrupole with locks.

Myxine dynamics in Galatea-A. Here three kinds of shifts
from equilibrium are possible: along the z-axis, the radial
direction r, and the inclination of the myxine plane. Consider
each perturbation separately, assuming them to be linear, and
approximating the magnetic field of the supported mirror
coils by formulas (3.4) and (3.5).

(1) In the linear approximation, the myxine motion along
the z-axis is described by the equation

M1
d2z

dt 2
� ÿM1g� Jm

c
Hr � ÿM1g� Jm

c
�ÿR�H00

z

b2
: �3:16�

Hence it follows that z � z� ~z, with the expression (3.6) for z
obtained above, and that the oscillations of ~z proceed with the
angular velocity

oz � 2

����������������
JmRH00

cb2M1

r
: �3:17�

With the data (3.7) we find oz � 8 sÿ1; hence the oscillation
period � 1 s.

(2). The radial myxine shift x builds up exponentially in
time, which is due to the radial dependence of Hz. The force
acting on amyxine shifted, for definiteness, along the x-axis is

F � ÿRJm
c

�
cos y 0Hz

ÿ
r�y 0�; z�dy 0 : �3:18�

Here y 0 is the polar angle whose vertex is at the center of the
displaced myxine. To this angle corresponds the distance

r �
�������������������������������������������
x2 � R2 � 2Rx cos y 0

q
� R� x cos y 0

to the trap axis. Substituting this quantity in expression
(3.18), forHz we obtain

Hz � H0 ÿ R2 � 2Rx cos y 0

2
H 00 ; �3:19�

and, consequently,

F � RJm
c

xRpH 00 �
JmH00pR2

cb2
x :

So, the radial shift is described by the equation

d2x
dt 2
ÿ JmH00R

2cM1b2
x � 0 : �3:20�

Hence we find the growth increment x

gF �
����������������
JmH00R

2cM1b2

r
� oz���

2
p : �3:21�

We notice that this quantity is close to the angular frequency
of oscillations in z. Clearly the radial shift can be stabilized if
H 00�0� < 0 but then the shift along the z-axis becomes
unstable.

(3) The case of plane rotation is more complicated.
Qualitatively, if in the vicinity of the z � ÿz plane for r � R
the magnetic force lines lie in the sphere to a good
approximation, the orientation of the myxine plane is in
indifferent equilibrium. If the magnetic surface in the region
involved can be approximated by an ellipsoid flattened along
the z-axis, the orientation of the myxine plane is stable.
Conversely, if the approximating ellipsoid is extended, the
orientation is unstable.

Myxine dynamics in a quadrupole with locks. A rigorous
analysis of the dynamics of two toroidal myxines in a
quadrupole system with locks involves a treatment of ten
equations, the forces between the conductors appearing to be
elliptic functions. This is an unwieldy procedure and therefore
we restrict ourselves to a simple model by assuming that the
myxine planes are not inclined while the aspect ratio is high.
Then, with obvious reservations, we can consider the
oscillations of two straight myxines in the presence of two
straight locks (3.8). We denote the vector radii of the former
by r1 and r2 while the latter by xb and �ÿxb� to write the
following system of equations:

M1
d2r1
dt 2
� 2Jm Jf

c2
r1 ÿ xb

�r1 ÿ xb�2
� 2Jm Jf

c2
r1 � xb

�r1 � xb�2

ÿ 2J 2
m

c2
r1 ÿ r2

�r1 ÿ r2�2
;

M1
d2r2
dt 2
� 2Jm Jf

c2
r2 ÿ xb

�r2 ÿ xb�2
� 2Jm Jf

c2
r2 � xb

�r2 � xb�2

ÿ 2J 2
m

c2
r2 ÿ r1

�r2 ÿ r1�2
: �3:22�

Assuming the equilibrium condition (3.8) to be fulfilled and
the currents traversing the conductors to be constant, in the
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linear approximation we obtain

M1
d2n1
dt 2
� 4Jm Jf

a2 � b2
n1 ÿ

2J 2
m

c2
n1 ÿ n2
a2 � b2

;

M1
d2n2
dt 2
� 4Jm Jf

a2 � b2
n2 ÿ

2J 2
m

c2
n2 ÿ n1
a2 � b2

: �3:23�

Here n1 � r1 ÿ ay0 and n2 � r2 � ay0; Jm and Jf are taken
positive since their signs are accounted for by the signs of the
terms in the right-hand side. Evidently, in the general case the
myxine positions are unstable. Indeed, we add together Eqns
(3.23) to obtain the equation of center-of-mass motion

M1
d2

dt 2
�n1 � n2� �

4Jm Jf
a2 � b2

�n1 � n2� : �3:24�

Hence it is clear that accidental center-of-mass displacements
grow in time with the increment

g �
�������������������������

4Jm Jf
M1�a2 � b2�

s
: �3:25�

Obviously, the qualitative conclusion that the myxine center-
of-mass positions are unstable would still stand for a finite
aspect ratio.

3.4 The fall of myxines with a finite conductivity
in Galatea-A
If the myxine in a vertically mounted Galatea-A is discon-
nected from the power supply, for a finite resistance RO the
current traversing the myxine decays gradually and the
myxine falls down.

As it falls, the myxine cuts the external field and the
changes of current obey the equation

JmRO � ÿ L

c2
dJm
dt
� 2pR

VzHr

c
: �3:26�

If the current decays sufficiently slowly, the myxine position
can be treated as quasi-equilibrium. Then, from Eqn (3.6)

Vz � dz
dt
� cMgb21

H002pR2

d

dt

1

Jm
� ÿ a

J 2
m

dJm
dt

;

a � cMgb21
H002pR2

; Jm < 0 : �3:27�

With (3.4), we have

Hr�z;R� � ÿRH 00�z�
2

� ÿRH00
z
b21

� ÿRH00

b21

a

Jm
� ÿ cMg

2pR
1

Jm
: �3:28�

The following equation results for the decay of the current
carried by the myxine:

L

c2
dJm
dt

�
1ÿ c2

L

aMg

J 3
m

�
� ROJm � 0 : �3:29�

Evidently, owing to the fall of myxines in the field of magnetic
mirrors, instead of the conventional induction coefficient L

there appears an effective one

Leff � L� c3�Mg�2b21
H002pR2

1

jJmj3
� L

�
1�Mgjzj8p

LH 2
J R

2

p
2

�
;

HJ � 2p Jm
cR

: �3:30�

Putting L � 2pRy, where y � 1, we obtain a sufficiently
descriptive expression

Leff � L

�
1�Mgjzj

WJ

�
; �3:31�

where

WJ � H 2
J

8p
4yR3

is the energy scale of the magnetic field induced by the current
through the myxine.

Equation (3.29) is readily integrated:

ÿROc
2

L
t � ln

Jm
J0
� c2aMg

3L

�
1

J 3
m
ÿ 1

J 3
0

�
: �3:32�

While the conventional induction coefficient plays an
important part at the initial stage of current decay, the
induced one does so late in the process. In this case, the
current decays not exponentially but by the law

Jm�t� � J0

�
1

1� At

�1=3

; A � 3RO

Mga
; �3:33�

where J0 is the initial current in the myxine. If time is
expressed in terms of the dimensionless quantity
t � �c2RO=L�t, as is clear from Eqn (3.32) the J=J0 ratio is a
function of t and the dimensionless parameter

K � c2aMg

3LjJ0j3
: �3:34�

3.5 The dynamics of ideal myxines inside superconducting
screens
The oscillations of perfectly conducting myxines in a vacuum
volume surrounded by a superconducting screen reduces to
the solution of Eqn (3.1) with the boundary conditionHn � 0
at the screen surface. As a rule, the calculation of 3-D fields
and the inclusion of their impact on the myxine dynamics are
required. In the general case this problem can well be solved
by the existing codes and computers. Meanwhile, it is
instructive to have relatively simple analytical models, even
though they provide a coarse approximation to the reality.
Certain of the methods of analytical treatment of this
problem are considered in Refs [33, 34]. We outline one of
them.

A simple technique for calculating myxine oscillation
models termed the `hose' approximation was proposed in
Ref. [33]. This approximation rests on the two assumptions:
(i) the screen is a toroidal tube with a large aspect ratio, i.e.
a � R=a4 1; (ii) the minor cross section of the torus is a
circle. When these conditions are met, any portion of the
torus as long as several minor diameters can be regarded as a
straight cylinder while the portion of the myxine inside it as a
straight conductor drawing a current directed along the axis
of the straight cylinder. Since the screen is assumed to be
perfectly conducting, the magnetic field near an arbitrary
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pointP lying in the torus axis can be represented as the field of
two currents, viz. the conductor itself carrying current J and
its image with current ÿJ located at a distance

q � a2

x2
n �3:35�

from the center of the tube cross section. Here a is the minor
torus radius.

Now we can write the general expression for the force
acting on a myxine element ds located inside the toroidal
screen{. The radius vector of this element can be written as
r�y� � r0�y� � n�y; t�, where parameter y determines the point
in the axial line of the torus corresponding to the position of
the element of interest in the absence of a shift �n � 0�.

Clearly the force exerted by the myxine image on the
element involved is

dF � ÿ 2Jm
c2

n?
a2 ÿ x2?

ds : �3:36�

Here n? is the shift component normal to the torus median
line. Integration of (3.36) gives the expression for the force
acting on the entire myxine,

F � ÿ 2J 2
m

c2

�
y
ds

n?
a2�y� ÿ x2?

: �3:37�

Here n? � nÿ s0�n; s0� and s0 � dr0=ds is the unit vector
tangent to the hose axis.

A similar formula can be derived for the torque acting on
the myxine and causing its plane to oscillate.

We highlight three specific examples of the use of formula
(3.37) to calculate the oscillations of conductors inside
superconducting screens.

Straight current-carrying line in a straight tube. In this case
from (3.36) follows

M1
d2n

dt 2
� 2Jm

c2
n

a2 ÿ x2
� 0 :

If jnj5 a, harmonic oscillations occur with the levitation
frequency

O �
����������������
2J 2

m

c2M1a2

s
: �3:38�

This expression differs from the frequency defined by formula
(3.12) by a factor � 1.

An annular myxine in a torus of circular section. Let the
major radius Rm of the myxine torus be equal to the median
torus radius R0. If the myxine shifts along the z-axis
conserving the orientation of the plane, the oscillation
frequency will be given by Eqn (3.38) as before. If the myxine
shifts along the x-axis, i.e. remaining in the z � 0 plane, the
oscillation frequency will decrease by the factor

���
2
p

and be
equal to

O � �
����������������

J 2
m

c2a2M1

s
: �3:39�

Oscillations of two myxines of different radius with current
in one direction, lying in one plane (the `Dublon' configuration),
and located inside a toroidal screen with minor radius a. In this
case, two factors compete: on the one hand, the myxines tend
to `stick together' owing to the attraction of the currents
flowing in one direction but, on the other, they are repelled
from the screen. The analysis of linear oscillations of such a
system conducted in Ref. [33] revealed that the configuration
is stable if the ring separation

D � R2 ÿ R1 5 a ;

but unstable in the opposite case.

3.6 Parameters of a myxine designed for a reactor
To be clear in one's mind what the Galatea reactors may look
like, it is instructive to estimate the design parameters of a
myxine in the context of a reactor. These parameters were first
estimated inRef. [36]. The estimates yielded reasonable values
but were not too well substantiated. Therefore we present the
results of Ref. [37] in which the myxine radiation dynamics
were neatly calculated on the basis of the ITER code [38].

The calculations were performed for a demonstration
reactor with an operating cycle of 1000 s. In doing so it was
assumed that a neutron flux with intensity P1 � 1MWmÿ2 is
incident on the myxine surface and that a Nb3Sn-based
composite is employed as the superconductor. The major
objective of the calculations was to choose the shielding
parameters in such a way as to provide the superconducting
state for 1000 s for relatively modest dimensions. Since the
operating cycle is limited to a short period, a three-region
radiation-accumulative myxine design was proposed. The
outer (red) region should intercept 5 95% of the energy
incident on the myxine. In a time 4 100 s, this region
inevitably will be heated up to a temperature 5 1700 K and
will begin to release the major part of the incident energy in
the form of thermal radiation. In the optimized model this
region is made of tungsten, which not only ensures its
resistance to high temperature, but notably reduces the
inward radiation flux owing to the high (60%) fusion-
neutron albedo as well.

The next (gray) region operates in the accumulativemode,
i.e. it does not release heat anywhere but is continuously
heated by the radiation throughout the operating cycle. In
consequence, � 10ÿ5 of the energy incident on the myxine
surface throughout the operating time reaches the cryoregion
(blue region) located at the myxine center. The cryoregion,
too, operates in the accumulative mode. Selected as the
coolant in Ref. [38] was a hydrogen sludge (at a melting
temperature of hydrogen of 14 K) containing equal volumes
of liquid and solid phases. The energy penetrating the
cryoregion goes first to melt the ice and later to heat the
liquid hydrogen to its vaporization temperature (� 17 K for
atmospheric pressure).

Next, the regions were assumed to be separated from each
other by a multilayer vacuum-screen insulation and, in a few
places, held together by firm, relatively low-section heat
insulators.

Several versions of the 15-layer shielding were calculated
in the context of the above configuration, with the additional
conditions that the myxine's magnetic sheath thickness was
50 cm and H � 104 Oe at its external boundary. The
optimization goal was to lower the myxine price and
minimize its dimensions, the layer thicknesses serving as the

{ In principle, it is not necessary that the axial line of the screen be a circle

in the reasoning conducted.
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optimization parameters. One of the best compositions thus
found is given in Table 2.

Its integral characteristics per linear meter are as follows:
external diameter 1.7 m, mass 27 t mÿ1, current in the
superconducting chord � jSP � 1:2� 104 A cmÿ2�
Jm � 6:6 MA, transverse magnetic field to support the
myxine H? � 400 Oe.

The myxine operation scenario is simple. Prior to the
operating cycle the myxine rests on the supports with tubes
for the coolant, its regions are properly cooled, and the
required field is induced in the superconducting chord. Then
the transverse magnetic fieldH? begins to build up and raises
the myxine to the operating position. On completion of the
operating cycle, the myxine goes down to rest on the same
supports, which contain cooling systems and power sources
inside, and the cycle is repeated.

4. Magnetic sheaths of myxines

By a magnetic sheath of myxines (MSM) is meant a domain
with field and plasma, which is bounded by the solid myxine
surface on one side and by the separatrix of the magnetic field
on the other. Clearly there are two characteristic situations:
either a portion of the separatrix borders on a volumewithout
a field or the entire separatrix is contiguous with a strong
magnetic field. An openMSMwill be referred to in the former
case and a closed one in the latter.

Consider the equilibrium, the stability, and the heat
transfer only in an open MSM assuming in addition that the
MSM radius bm < Rm, where Rm is the major myxine radius.

The pattern of the processes in a MSM differs notably
from that in the vicinity of the first wall of a tokamak or a
stellarator. This is related to the two circumstances: the
increase in the field strength in the MSM as the myxine is
approached, which efficiently provides the hydrodynamic
plasma stability, and the absence of the diverting layer to
intercept the impurities going from a solid surface to the
principal plasma volume{.

Here we restrict ourselves to hydrodynamicMSMmodels
and the inclusion of the simple convective Rosenbluth ±
Longmire ±Kadomtsev instability (RLK). This restriction
arises primarily from the fact that the problems of kinetics

and sophisticated instabilities are, as a rule, completely
reconsidered after experiments, as indicated by a wealth of
experiments on plasma systems and, mostly, traps for the
CNF. Therefore such a priorimodels are of little significance.
Nevertheless, below we give the familiar references to the
papers relevant to this topic but not touched upon in this
review.

4.1 Plasma equilibrium in an MSM
The fundamental feature of anMSM plasma configuration is
the existence of a temperature difference between its external
boundary and the myxine surface. In consequence, a current
is maintained in the MSM owing to thermal diffusion, which
causes the pressure to decrease towards the myxine surface.
Even though this fact was noted by A D Sakharov [8], we
present its derivation here because we are concerned with its
generalizations, too.

Simplest is the case of axial symmetry and a single
poloidal magnetic field. We will restrict ourselves to this
case because it holds the greatest interest for us.

Assuming the plasma to be quasistatic, we have two
equations of motion [39]

HPi

en
� E� 1

c
�ViH � � R ;

ÿ HPe

en
� E� 1

c
�VeH � ÿ R ; �4:1�

where

R �
�
jk
sk
� j?
s?

�
ÿ 0;71 nHkkTe ÿ 3

2

n

oete

�H;HkTe�
H

: �4:2�

Directing the x-axis normal to the magnetic surfaces, the y-
axis along the symmetry (azimuth) direction, and the z-axis
along H, we obtain the y-component of the second equation
of (4.1) in the form

jy

s
� 3

2

n

oete

q
qx

kTe : �4:3�

We took into account that qPe=qy � 0, Ey � 0, and Vex � 0.
Substituting (4.3) in the MHD equilibrium equation

HP � 1

c
� j;H � ;

which follows from (4.1), we get

q
qx

n�Ti � Te� � 3

2
n
qTe

qx
: �4:4�

If it is assumed that Ti � Te � T, we have [8]

nT 1=4 � ym � const : �4:5�

Putting at the outer MSM surface n0 � 1014 cmÿ3 and
T0 � 10 keV, for a plasma temperature T1 � 1 eV near the
myxine surface we have the plasma density nm � 1015 cmÿ3.

However, in the general case Ti 6� Te, and if it is assumed
that Te=Ti � o � const, instead of (4.5) we obtain

nT �1ÿo=2�=�1�o� � const : �4:6�

Table 2.

Layer thickness, cm Material Absorbed energy density,
W cmÿ3

15
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Hydrogen sludge
Nb3Sn
Hydrogen sludge
Water
Stainless steel
Stainless steel
Stainless steel
Water
Stainless steel
Stainless steel
Stainless steel
Water
Tungsten
Tungsten
Tungsten

1:82� 10ÿ3

8:39� 10ÿ3

2:11� 10ÿ3

3:97� 10ÿ3

1:56� 10ÿ2

3:02� 10ÿ2

1:06� 10ÿ1

4:52� 10ÿ2

1:67� 10ÿ1

2:63� 10ÿ1

8:38� 10ÿ1

4:30� 10ÿ1

2:08� 100

2:35� 100

5:38� 100

{ In the future, one might expect the development of myxines enclosed by

magnetic layers to capture impurities and direct them inside the myxine.
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Hence, in the case of cold electrons �o � 0�
P � const : �4:7�

If the electron temperature increases, theT-dependence of the
plasma density becomes progressively weaker and for o � 2
vanishes completely. For o > 2 the dependence of n on Ti

qualitatively changes its manner.
We make two remarks to conclude: (i) in the derivation of

formulas (4.5) and (4.6) it was assumed that electrons do not
cut the magnetic surfaces. However, in Section 9 the traps in
`electric-discharge' modes are considered. In this caseVex 6� 0
and, accordingly, formulas (4.4) ± (4.6) break down; (ii) under
the MSM conditions, the relationship between n and T just
obtained automatically provides the stability of the magneto-
plasma configuration with respect to hydrodynamic convec-
tion. This is evident from the RLK stability criterion

q
qC

PU g 5 0 ; �4:8�

where U � � Hÿ1 dl is the specific volume of the magnetic
force tube and C is measured from the myxine surface.
Inequality (4.8) is the condition for the increase of the
entropy of a unit mass of plasma with distance away from
the myxine.

For an estimate, we take the field of a straight conductor
to obtain

U / c

2Jm

r2

2
: �4:9�

Combining (4.8) and (4.9), for g � 5=3 we obtain

q
qr

T 3=4r10=3 > 0 : �4:10�

This condition is knowingly fulfilled with a reserve since T
increases with distance from the myxine.

4.2 Thermal conduction in an MSM
The classical thermal conduction in MSM was considered in
Ref. [40]. We outline the major results of this work.

The complete set of equations for an axially symmetric
MSM configuration is of the form [39]

D�C � ÿ dP�C�
dC

; �4:11a�

Ti � Ti�C� ; Te � Te�C� ; �4:11b�

div Ki?HTi � Qi ; �4:11c�

div Ke?HTe � Qe ÿ j 2y
s
� S ; �4:11d�

jy
s
� 3

2

1

eoete

�
H

H
;HkTe

�
y
: �4:11e�

Here

Ki? � 2nkTi

Mo2
i ti

; Ke? � 4;66
nkTi

mo2
ete

;

ti � 3

4

���
p
p �����

M
p

Le 4
�kTi�3=2

n
; te � 3

4

���
p
p ����

m
p
Le 4

�kTe�3=2
n

; �4:12�

L is the Coulomb logarithm, and the quantities Qi and Qe

respectively are

Qi � 3m

M

nk

te
�Te ÿ Ti� ;

Qe � ÿQi ÿ an2
��������
kTe

p
; a � const :

The last term in Qe allows for bremsstrahlung radiation.
System (4.11) is very complex. However, regarding our

calculations as an estimate, it is easily verified that in the first
approximation the magnetic field can be viewed as a vacuum
field, the ohmic heating and the electron heat transfer can be
neglected, and the temperatures of ions and electrons can be
taken to be equal. In consequence, the problem reduces to the
solution of one equation

div�K?HT� � an2
����
T
p

: �4:13�

In view of Eqn (4.5), it can be written as

div�K?HT� � ay2 : �4:14�

4.2.1. Planemodel.First consider the planemodel, when n and
T are functions of the Cartesian x-coordinate and the
magnetic field H � const. The characteristic dimensional
parameter determining the solutions of Eqn (4.14) is the
quantity A�:

A2
� �

8
���
p
p

Le2c2

3a

�����
M
p

: �4:15�

Then

Ki? � A2
�ay

2

H 2T
: �4:16�

For a deuterium plasma,

A� � 5� 105 Oe cm : �4:17�

With this parameter Eqn (4.14) in the one-dimensional case
can be written as

d2

dx2
lnT � H 2

A2�
� 1

L2�
: �4:18�

Hence it follows that

T

T1
�
�
T1

T0

�x=L

exp

�
x2 ÿ Lx

2L2�

�
: �4:19�

It is assumed that the temperature is equal to T0 at the
boundary with the plasma volume and to T1 at the myxine
surface �x � L�.

For arbitrary T0 and T1, the resulting dependence T�x�
turns out to be nonmonotonic and has a minimum for

xmin � L

2
ÿ L2

�
L

ln
T1

T0
:

Naturally, we are concerned with the mode wherein the
heat flows only in one direction, viz. towards the myxine. The
inequality xmin 5L should therefore be fulfilled. Assuming
theMSM thickness to beL � xmin, we obtain the relationship
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between L and T1=T0:

ln
T0

T1
� L2

2L2�
:

This formula is used to obtain L, putting T0 � 104 eV,
T1 � 10 eV, H � 104 Oe and taking the value of (4.17) for
A�. Then

L � A�
H

��������������
2 ln

T0

T1

r
� 190 cm : �4:20�

This is a relatively large value, which has evidently been
overrated because the magnetic field value taken here is
minimum for a reactor and the quasicylindrical field
geometry in the vicinity of the myxine is not taken into
account. Moreover, in real plasmas a certain amount of
impurities with Z > 1 (e.g. a-particles) are always present to
notably decrease A� and, consequently, L.

4.2.2. Axisymmetric case. In the axially symmetric case
equation (4.14) can be integrated along the force lines
�C � const� to give the equation for the temperature

d

dC

�
1

T

dT

dC

�
r2

dl

H

�
� 1

A2

�
dl

H
: �4:21�

This equation can be integrated in the general form in
quadratures

T � T0 exp

�
ÿc
�C
C0

��
r2

dl

H

�ÿ1
dC

� 1

A2�

�C
C0

dC
�
r2

dl

H

�ÿ1 �C
C0

dC
�
dl

H

�
: �4:22�

A specific calculation using formula (4.22) for a reactor on
D3He was considered in Ref. [40]. As shown in the paper, for
n0 � 4� 1014 cmÿ3, T0 � 50 keV, H0 � 40 kOe,
T0=T1 � 104, L � 20, and the MSM thickness L � 70 cm,
the thermal flux vanishes at a distance of 50 cm from the
myxine surface.

So, in the region between xmin and L a cold plasma occurs
with specific features of its own, which we do not consider
here.

To conclude, estimates of the synchrotron radiation flux
at the myxine reveal that its intensity is low [40].

The equilibrium and the heat transfer in the MSM was
considered in the context of a kinetic model in Refs [41, 42].

4.3 The MSM thickness
The actual MSM thickness will be determined by many
factors: the flows of charged particles at the myxine surface,
the thermal plasma conductivity in the MSM, the design
considerations, the dynamics of impurities proceeding from
the myxine surface etc. Here we highlight two criteria.

Heat transfer length. As shown earlier, for an MSM
thickness L � 1 m the classical heat flux transferred by
particles is `depleted' by `pure' bremsstrahlung alone. If it is
considered that the bremsstrahlung power is proportional to
Z 2, there is little doubt that LMSM � 1 m is sufficient to
suppress the heat transfer to the myxine surface.

Shielding from fast charged reaction products. The neces-
sity of shielding is compelling. As a case in point, consider the

D-T reaction. The resulting a-particles have energies
� 4 MeV. Considering that they are decelerated by elec-
trons, which is not attended by strong scattering, about two
Larmor circles (deformed owing to the nonuniformity of the
magnetic field) can be adopted as the natural MSM shielding
thickness. The Larmor radius of an a-particle in the field
H0 � 104 Oe is ra � 40 cm. In accordance with the thickness
of the radiation myxine shielding (bm � 80 cm) stated in
Section 3.6, we can assume that H1 � 20 kOe near the
myxine surface. So, by this criterion, too, the MSM thickness
can be taken to be LMSM � 1 m. It is not improbable that the
actual MSM thickness will prove to be of the order of � 0:5
m.

4.4 The `Dipole' Galatea trap
Previously, myxines were spoken of as elements of complex
magnetic systems. However, a single myxine in an `infinite'
space, too, can be a plasma trap. Such traps are, in particular,
planetary magnetospheres with their radiation belts. In this
case the plasma confinement owes its stability to the
fulfillment of the entropy growth criterion (4.8) when
moving to the periphery. It was precisely these astrophysical
considerations that prompted A. Hasegawa to come up with
the idea of a myxine trap, which was termed `Dipole' [18].
Subsequently, a relatively large number of theoretical papers
were devoted to it [43 ± 45]. This trap is conceptually some
extreme version of the Galatea-A depicted in Fig. 4a.

Under laboratory conditions, the dimensions of the
region occupied by the magnetic field are limited by the
values nG and TG at the external field boundary or, more
precisely, by the difference in the specific volume of the
magnetic force tube from UG at the external boundary to U0

in the region of maximum parameters

U g
G 5

P0U
g
0

PG
: �4:23�

If it is considered that the P0=PG ratio should be at the level
� 107ÿ108 and that

UG / x4G ; U0 / R 4
m ; �4:24�

we obtain

xG / 10Rm : �4:25�

Here xG is the external radius of the field boundary for z � 0.
It was precisely this scale xG that was indicated in Ref. [44] in
which the authors considered the configuration of a possible
fusion reactor. The diameter of the region occupied by the
field was estimated at 60 m. For details, the reader is referred
to the cited papers considering at greater length the
processes, schematic reactor designs, and a rocket propul-
sion system based around a `Dipole' trap [45]. Here we only
highlight the configuration of a laboratory model of this
Galatea [46], which is contemplated for construction in the
foreseeable future (Fig. 7). The parameters of this facility are
as follows: current drawn by the myxine is 1.24 MA, the
myxine radius 0.34 m, the high-energy plasma volume 0.2 m3,
the total plasma volume 15 m3, the (equilibrium) tempera-
ture 1 keV, the hot-electron temperature 250 keV, the plasma
density 1013 cmÿ3, and the parameter b � 10%. The plasma
will be produced through electron heating by microwave
techniques.
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4.5 MicroGalateas, or myxine probes
The feasibility of employing current-carrying rings as carriers
of diagnostic tools to probe the interior of large plasma
volumes, e.g. large tokamaks, was considered in a series of
papers [47 ± 49]. These rings were termed `microGalateas'
despite the fact that the term `myxine probe' (MP) used
hereafter is more adequate. Below we consider three groups
of issues: (i) the features of myxine probe operation in a
plasma volume; (ii) thermomagnetic processes when employ-
ing a ring made of a finite-conductivity material, (iii)
perturbation of the structure of the tokamak magnetic field
by the myxine probe field.

Bearing in mind theMP injection into a tokamak it would
be reasonable to employ a diamagnetic orientation of theMP
with respect to external field H0 in order to minimize the
dimensions of the perturbation region, which is assumed in
the subsequent discussion (Fig. 8a).

4.5.1. Some estimates.Theminimummagnitude of the current
through the MP required for magnetic shielding from the
plasma is close to Jmin � �5=p�H0a, where a is the major
radius of the ring. Putting the medium diameter of the ring
section b � �2=3�a, we find the characteristic current density
jmin � 5H0a. So, even for H0 � 15 kOe and a � 3 cm this
density jmin � 25 kA cmÿ2 notably exceeds that typical of
`cold' superconductors �� 10 kA cmÿ2�. That is why we will
be oriented to cooled copper as the conductor, with the
external field H0 � 15 kOe, and a � 2ÿ3 cm.

Let the MP-enclosing separatrix be a sphere of radius rs,
bz be the z-dimension of the ring equal to 2b, and a � 2 cm.
The plasma configuration near the MP may be considered as
being stable because the specific volume of magnetic force
tubes decreases rapidly as the MP surface is approached.
Assuming the transfer to be classical and oete !1, we find
the density of the heat flux towards the MP surface [47]{

q � ÿnD qTi

qn
; D � r2iH

ti
: �4:26�

Here n is the normal to the surface and ti is a quantity of the
order of the ion±ion collision time. Assuming the parameter
differences across the shielding layer l to be constant, we can
write

q � kTin
D

l
: �4:27�

In experimental conditions (H0 � 104 Oe, Ti � Te � 102 eV,
l � 1 cm, n � 1013 cmÿ3) we have q � 0:5� 105 erg cmÿ2.

So, during the MP time of flight through the plasma
volume (tf � 0:1 s), about Q � qtf � 1:5� 10ÿ3 J will be

3.
0
m

4.5 m

1 3

2

Figure 7. Schematic of a laboratory model of the `Dipole' Galatea trap:

1 Ð levitating ring (1.24 MA), 2 Ð supporting coil (0.3 MA), 3 Ð hot-

electron plasma.
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Figure 8.Myxine probe: (a) initial magnetic configuration near the myxine

probe, (b), (c) perturbation of the magnetic surfaces of the quasitoroidal

tokamak magnetic field.

{Taking into account the estimative nature of the accompanying calcula-

tion, we do not consider the surface layer structure.
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released per 1 cm2 of the surface, which is nearly 106 times
smaller than is required to initiate noticeable material
evaporation. Thus it is possible to do without the magnetic
shielding at all. However, this possibility is of little interest for
`reactor' applications of MPs.

It is advantageous to freeze the field in an MP in the
uniform external magnetic field. In consequence, both inside
the ring and in the volume the field will have the same value
H1 � �1:5ÿ2�H0. Upon entry into the tokamak field, the
intrinsic field `blankets' the MP, moving the external field
away. The disruption of the frozen-in field begins at the outer
side of the ring and passes two stages: first the current
penetrates into the volume of the ring and then the current
in the ring decays. As shown in Ref. [47], the total current
decay time at the first and second stages is tJ � 0:5 s.

So, the estimates suggest that it is possible to develop
magnetically isolated autonomous probes (MPs) around
cooled copper. In the future, the use of superconductors will
dramatically simplify the preparation of MPs. Clearly,
mastering the MP technology will open up new avenues for
the operation of large-scale plasma volumes.

4.5.2. Thermomagnetic processes in a ring with finite con-
ductivity. Consider the mathematical model of the following
physical process [48]. A conducting ring with a toroidal
magnetic field is placed in a uniform external magnetic field
parallel to the ring axis. The current induces a poloidal field
which encloses the ring and is separated from the external
field by a separatrix surface. In time, the current in the ring
decays owing to the ohmic resistance and the intrinsic
magnetic field is attenuated. In consequence, the external
field approaches the ring and penetrates it eventually to
become uniform over all space.

If the axis of the current ring is adopted as the z-axis of the
cylindrical �r; y; z� coordinate system (Fig. 8a), the problem
becomes two-dimensional and axially symmetric: the mag-
netic field has only two poloidal components Hr and Hz.
Inside the ring, the time evolution of the magnetic field is
described by the diffusion equation, which can be expressed in
terms of magnetic flux functionC as

qC
qt
� c2

4ps�T� D
�C ;

D� � r
q
qr

�
1

r

q
qr

�
� q2

qz2
: �4:28�

Here s is the conductivity of the ring material (copper)
dependent on the temperature T, which varies in time
according to the equation

rCp
qT
qt
� j 2

s�T� ; �4:29a�

j � jy � ÿ c

4pr
D�C : �4:29b�

The term in the right-hand part of (4.29a) arising from
thermal conduction has been omitted: estimates show that
its role is insignificant compared with the Joule heating. The
heat capacity Cp is also temperature-dependent. The expres-
sions for s and Cp are specified by the tables{ and are

interpolated by polynomials in the temperature range of
interest.

The magnetic field in vacuum is described by the equation

D�C � 0 : �4:30�

At the vacuum± conductor interface themagnetic field, viz.C
and the normal derivative qC=qn, is bound to be continuous.
The constant externalmagnetic fieldHr � 0,Hz � H0 is given
at `infinity' or

C � H0r
2

2
; r; z!1 : �4:31�

For t � 0, the prescribed magnetic field is uniform and is
directed in opposition to the external field: Hr � 0,
Hz � H1 < 0. Then the field at infinity changes in a short
time to assume the constant value (4.31). This change
corresponds to the transition of the ring from the chamber,
where the magnetic field is frozen in it, to the plasma volume
to be probed. The initial ring temperature is assumed to be
equal to T � 20 K across the section.

A long series of calculations was conducted for copper
rings of different cross sections (round, elliptic, square) [48]. If
the ring section diameter is small relative to the diameter of
the ring itself, the results for the rings with variously shaped
cross sections differ insignificantly. As one of the main
calculation results, we present the empirical formula for
estimating the time it takes for the magnetic field separatrix
to approach the ring and touch its surface:

ts � 2

H0

abh

5b� h
: �4:32�

Here a is the ring radius, b and h are its halfwidth and
halfheight (cm), and H0 is the external field strength (kOe).

4.5.3. Structural changes of the toroidal magnetic field induced
by a point-like magnetic dipole.Although the magnetic field of
the toroidal plasma configuration will flow around the
magnetic MP-produced cavity, the existence of this cavity
will nevertheless cause the structure of the magnetic surfaces
to change. Here we consider a model problem of the
perturbation of symmetric magnetic field H0 induced by an
asymmetrically immersed point-like magnetic dipole [49].
Instead of the torus, we consider a straight cylinder with
identical ends. Considering that the characteristic ratio
between the major R0 and minor r0 radii of the tokamak
torus is � 3, the cylinder length is taken to be

L � 6pr0 : �4:33�

The unperturbed magnetic field is prescribed as

H
�0�
y � hH0

r

r0

�
1ÿ r2

2r20

�
; H �0�z � H0 � const ; �4:34�

where h � 2H
�0�
y =H0jr�r0 is a parameter.

The magnetic field of an MP is approximated by the field
of a dipole with moment m0 aligned with the z-axis. The
magnitude ofm0 is related to the current J0 carried by the ring
and its medium radius a by the expression

m0 � J0
c

pa2 :{Handbook of a Chemist Vol. 1 (Moscow, Leningrad: Gostekhteorizdat,

1963).
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The dipole magnetic field is conveniently given by the scalar
potential

Fm � m0
q
qz

1

r
: �4:35�

Here r is the distance from the dipole �xm; ym; zm� to the point
under consideration. From here on the relative magnitude of
the dipole field will be characterized by the dimensionless
parameter

w � m0

H0r
3
0

� pJ0a2

cH0r
3
0

: �4:36�

To ensure the identity of the cylinder ends, the magnetic
field should be periodic. For this purpose, consider an infinite
chain of cylinders of length L each containing a dipole.
Instead of (4.35), in the calculations we use the sum

Fms�x� �
XN
n�ÿN

Fm�x; xm; ym; zm � nL� : �4:37�

Our estimates indicate that it will suffice to limit the
summation in (4.37) to N � 2. The stated problem reduces
to the solution of the system of equations

dr

dz
� Hr

Hz
;

r dy
dz
� Hy

Hz
; H � H�0� �Hm �4:38�

in themultiply repeated interval �ÿ3p; 3p� in z. For each force
line, the intersection points with the z � 0 plane are noted.
The numerical integration of (4.38) was accomplished by the
fourth-order Runge ±Kutta method.

In the absence of the dipole, the magnetic force lines wind
around the embedded cylinders and rotate through the angle

dy � 6ph
�
1ÿ r2

2r20

�
for the length L � 6pr0. Accordingly, the rotation number
m � dy=2p changes from m�r � 0� � 3h to m�r0� � 3=2h. In
this case, there is a family of concentric circles in the z � 0
section passed through the cylinders.

The existence of perturbations significantly changes this
simple picture. This is due to the fact that the magnetic
surfaces formed by periodic force lines, i.e. the lines with
rational rotation numbers m � n=m (n is the number of
circuits in azimuth and m the number of periods in z
following which the force line closes to itself), are not
conserved under the perturbation. They split to form a
filamentary structure or collapse altogether. As this takes
place, in the z � 0 plane a chain ofmmagnetic islands appears
in lieu of a circle. With a strong perturbation, the island
structure may collapse to form a chaotic layer.

The calculations were made for three versions of the
parameters h and w: (1) h � 0:1, w � ÿ0:01 (Fig. 8b); (2)
h � 1=30, w � ÿ0:01; (3) h � 0:1, w � ÿ0:001 (Fig. 8c). The
structure of magnetic islands and their reconstruction with
increasing perturbation were considered. Flow around the
cavity occupied by the dipole field is inherent in all the
versions. The cavity center is close to the dipole center
�xm � 0:5r0�. According to the calculations, the resonances
most pronounced in the first version (Fig. 8b) are those with
m � 1=4, 2=7, and 3=11. The resonance with m � 4=15 is

noteworthy. It is on the verge of regeneration of an elliptic
point to a hyperbolic one with a jump, i.e. is imbedded in the
stochastic layer. This layer is shown schematically in Fig. 8b.
In the second case, significant splitting occurs for m � 1=11
and 1=12, i.e. as in all other instances the greatest changes are
experienced by the rational surfaces located close to the
dipole region. Inherent in the third version (Fig. 8c) was a
notable attenuation of the same resonances as in the first one.
A more than twofold decrease of the dipole cavity is
noteworthy.

As also evidenced by the calculations, in the case that
r0=a � 10, i.e. when the radii of the plasma cylinder and the
myxine probe differ by an order of magnitude, the perturba-
tion may be thought of as being small.

5. Certain kinetic effects in Galateas

Due to the existence of plasma ± field transition layers in
Galateas for b0 � 1, whose thickness can be commensurable
with the ion Larmor radius ri, in many cases there is a need to
analyze both the dynamics of individual particles and the
kinetic models for the equilibrium and the stability of plasma
configurations. Some of the issues are considered in this
section.

5.1 Co- and counter-collisions of charged particles
with a magnetic barrier [50]
Consider a simple model of amagnetic barrier in the form of a
step in which the field for x > 0 is aligned with the z-axis
(Fig. 9a). Let a charged particle (e.g. an ion) with velocity
V0 � �V0x;V0y� be confronted by the barrier at point A. If
Hz > 0 and V0y < 0, the Lorentz force points toward the
x < 0 domain, and so the particle describes an arc smaller
than a semicircle to exit from the field region with velocity
V1 � �ÿV0x;V0y� at point B.

Now, if the same particle with velocity V1� � ÿV1 is
directed to point B, it will traverse quite another path and
describe an arc greater than a semicircle. This path difference
is due to the fact that the Newton ±Lorentz equations are not
invariant under change of the sign of time.

The collision of the first particle depicted in Fig. 9a will be
termed a `co-collision' while the particles experiencing it in the
given context will be termed the `co-particles.' The collision of
the second particle will be named the `counter-collision' and
such particles the `counter-particles.'

The existence of two types of collisions can have a
profound effect on the plasma confinement in traps. This is
amply manifested in open axisymmetric traps with a poloidal

r

r

zz

C4 0

D4 0
C4 0 C5 0C5 0

D4 0

C5 0

D4 0
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A H

B
1

2

a b c
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D5 0

Figure 9. Co- and counter-collisions of particles with a magnetic barrier:

(a) co-collisions 1 and counter-collisions 2; (b) collisions with a magnetic

barrier in amagnetic antibottle; (c) collisions with a barrier in aGalatea-A.
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magnetic field: magnetic antibottles and Galateas-A. In the
specified cases, the generalized angular momentum

MrVy � e

c
C � D � const �5:1�

is conserved and the motion in r and z can be represented as
the motion in the field with the effective potential

U � 1

2Mr2

�
e

c
CÿD

�2

: �5:2�

The magnetic field in the central part is taken to be zero and
here we can put C � 0. Now consider some region of the
magnetic barrier where we putC > 0 for definiteness. Then, a
particle for whichD < 0 cannot penetrate through the barrier
since the potential U monotonically increases outside.
However, ifC and D are opposite in sign, the potential has a
dip forC � D which can capture particles.

Consider a magnetic antibottle more closely (Fig. 9b). In
this trap, in the plasma-surrounding barrier the direction of
the magnetic field changes and so does the sign of C.
Therefore, regardless of the sign of the momentum D, an
escape channel appears in the potential contour (`charge
pattern') U�r; z;D� either to the left or to the right of the
radial slit. To be captured in the channel, a particle should
have a longitudinal (along the continuous boundary line)
velocity component directed to the axial trap exit. Referring
to Eqn (5.2), as r decreases the height of the channel walls
increases and the particle is captured. Whether it escapes
through the axial mirror or not is determined by the mirror
ratio w � Hmax=H� (Hmax is the magnetic mirror field andH�
is the field at the point of capture).

So, there are two factors that cause a particle to leave the
magnetic antibottle: the existence of the capture channel and
the `appropriate' components (across and along the channel)
of the particle velocity after its entry. It is precisely these
factors that cause the effective areas of the axial openings,
permitting the particles to escape the trap, to be unexpectedly
large:

S ax / 2pRrmin : �5:3�
HereR is the maximum radius of the plasma volume and rmin

is the ion Larmor radius in the mirror.
The case of Galatea-A is more complicated. Here the

plasma boundary also consists of two elements, viz. the
myxine surface Sm and the `general' magnetic surface S0

(Fig. 9c) at which C is opposite in sign. However, the Sm

surface does not go beyond the plasma volume. Therefore, for
those particles whose angular momentum D is of the same
sign (let it be positive) as C at the myxine surface, the
existence of a capture channel in the potential pattern U is
not associated with particle loss.

But when confronted by the `general' barrier, these same
particles turn out to be co-particles for which there is no
escape channel. Therefore the effective escape cross section
for them is

S co / pr2min : �5:4�

The situation reverses for particles with D < 0. They are
co-particles for the magnetic sheath of a myxine and counter-
particles for the general magnetic sheath. Therefore

S con / 2pRri : �5:5�

From the above discussion it follows: if a Galatea-A is filled
with a non-magnetized plasma, the particles with DC0 > 0
(C0 is the magnitude ofC near the axis) are first to escape the
trap. After that, the plasma of particles with DC0 < 0 will
remain in the trap volume. This plasma rotates and the
particle escape from the trap drops sharply. This is asso-
ciated not only with the reduction of the escape cross section
by the factor R=ri, but with the rotation-induced particle
extrusion from the axial region as well. However, the plasma
rotation may induce a poloidal magnetic field in its volume
and cause the trap to transfer to a class of traps with an
azimuth volume current. What occurs in reality remains
unknown.

5.2 A class of equilibrium kinetic configurations [51]
Today there is no way to calculate three-dimensional
equilibrium Galatea configurations along with ion and
electron distribution functions of a sufficiently general form.
However, kinetic models of equilibrium configurations can be
constructed with relative ease for axisymmetric systems with
poloidal magnetic fields and quasi-equilibrium electron and
ion distribution functions. In this case, the quasi-equilibrium
implies that two conditions are fulfilled. First, collisions are
infrequent and in the first approximation the Vlasov equation

V
q fi; e
qx
� 1

mi; e

�
ÿHF� 1

c
V�H

�
q fi; e
qV
� 0 �5:6�

may be thought of as holding good. Second, the system is
studied over time periods t > tmix, where tmix is the phase-
volume mixing time, which is the time of forgetting the
adiabatic invariants. It is assumed that tmix is no greater
than ti; i, the ion-ion collision time.

In this case, the particles forget their initial conditions and
we can write

fi � Fi

�
MV2

2
� eF;MrVy � e

c
C
�
� Fi�E i;Pi� ;

fe � Fe

�
mV2

2
ÿ eF;mrVy ÿ e

c
C
�
� Fe�Ee;Pe� : �5:7�

Here Fi; e�E i; e;Pi; e� are, in principle, arbitrary functions to be
prescribed from specific considerations. If they are given,
from the Maxwell equations

DF � ÿ4pe
�
� fi ÿ fe� dV ; �5:8a�

D�C � ÿ 4pe
c

�
Vy� fi ÿ fe� dV ; �5:8b�

D� � r
q
qr

1

r

q
qr
� q2

qz2
;

it is possible to find the electric and magnetic fields and thus
calculate the configuration completely.

However, the assumption of quasineutrality simplifies the
problem substantially. Then,�

Fi�E i;Pi� dV �
�
Fe�Ee;Pe� dV �5:9�

and it is possible to determine the relationship

F � F�r;C� : �5:10�
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Hence it follows that the magnetic force lines under the given
assumptions are, to the r-dependence, equipotential while the
plasma density also depends only on r and C. Substituting
(5.10) into (5.8b) reduces the problem to one equation of the
Grad ± Shafranov type

D�C � ÿQ�r;C� : �5:11�

Examples of the numerical solution of this equation are given
in Section 7.

We complement the aforesaid by three remarks concern-
ing the transition layer itself, with the assumption that it is
stationary and can be thought of as being one-dimensional.

(1) In this case, the magnetic field can have two
components:

H � ÿ0;Hy�x�;Hz�x�
�
:

Now the Vlasov equations can be solved in the general case
and have three integrals

Ei; e � mi; eV
2

2
� eF ;

P �y�i; e � mi; eVy � e

c
Ay ; P �z�i; e � mi; eVz � e

c
Az ; �5:12�

so that f � F�E;P �y�;P �z��.
(2) The system of Maxwell equations

d2F
dx2
� ÿ4pe

�
� fi ÿ fe� dV ;

d2Ay; z

dx2
� ÿ 4pe

c

�
Vy; z� fi ÿ fe� dV �5:13�

given Fi; e and the quasineutrality condition, determines the
ultimate relationship

F � F�Ay;Az� �5:14�

in the general case and reduces to two equations for Ay and
Az.

When the transition layer is considered in a system with
only the poloidal field, Az � 0, as in the axisymmetric case,
the treatment reduces to the solution of the simple equation

d2Ay

dx2
� Q�Ay� : �5:15�

(3) In principle, the potentials of the force lines can be
determined either by electrodes (see Section 9.1) or by ion
beams, which deliver one or other charge. If the potential
F�x� is assumed to be given, for a known function Fi�Ei;Pi� it
is possible (for simplicity assuming the magnetic field to be
poloidal) to write the equation for Ay in the quasineutrality
case:

d2Ay

dx2
� ÿ4pe

��
VyFi dV� Ex

H

�
Fi dV

�
: �5:16�

Clearly different distributions can be prescribed. We note the
isodrift mode among them, when E=H � const or F � KAy.
In this case, all transition-layer electrons drift with a common
velocity.

5.3 Flow stability in the multipole Padalka plasma guide
[52, 53]
The problem of plasma stability in traps, as shown by the vast
CNF research experience, can be solved efficiently only with a
close relationship between experiment and theory. In line with
this statement, we now consider the paper by V G Padalka et
al. in which the stability of the plasma flow in a multipole
plasma guide was studied experimentally. The research was
based on the criteria of stability [10] with respect to
permutational instability for plasmas in multipole traps. The
theoretical treatment was performed in the context of kinetics
though with a large number of assumptions (a linear
approximation, an absence of electric fields in the unper-
turbed state, the drift nature of the particle motion, a
Maxwellian ion distribution etc.). Eventually two stability
criteria were obtained, i.e. the existence of two plasma
confinement barriers was established. These owe their
existence, first, to the minimum of the specific volume of
magnetic force tubes

U �
�
dl

H
;

qU
qn

< 0 ; �5:17�

and, second, to the minimum of the path length of a force line

L �
�
dl ;

qL
qn

< 0 : �5:18�

The latter criterion signifies the existence of force lines with a
peak average strength �H � � H dl=

�
dl of the magnetic field.

The first criterion was obtained with the proviso that kzri 5 1
and the second with the inverse inequality. Here kz is the wave
vector component along the direction of symmetry and ri the
ion Larmor radius. One would expect criterion (5.18) to be
valid with the existence of a zero of the magnetic field. This
was clearly demonstrated by V G Padalka with the plasma
guides, which constituted either a system of two conductors
drawing current in one direction and spaced 12 cm apart (a
quadrupole plasma guide) or a system of four conductors also
carrying current in one direction (an octupole plasma guide).
The conductors measured 160 cm in length, and the current
was 10 kA (Fig. 2d).

Preparatory to the experiment, a calculation was per-
formed of the functionsU�C� andL�C� or, which is the same,
the functionsU�x� and L�x�, where x is the coordinate of the
force line C measured along the line drawn from the system
center through the midpoint between the conductors
(Fig. 10a, b). Referring to the figure, the region enclosed by
barrier U is broader than that enclosed by barrier L.

The plasma source was a pulse gun delivering a � 1:5-m-
long hydrogen plasma flux with density� 1013 cmÿ3, velocity
� 4� 106 cm sÿ1, and the temperatures Ti � Te � 10 eV.
Prior to the pulse the chamber was pumped to � 10 Torr.

The oscillations were studied using single and double
probes. In the process ne, Te, the potential F, and the electric
field strength E were measured. The equipotential feature of
magnetic force lines was verified. The oscillograms (Fig. 10c),
which were recorded by two probes separated by 90�, clearly
demonstrate the synchronism of the oscillations at different
points in a common force line. After that, the oscillograms of
the oscillations of plasma parameters at different distances
from the axis were recorded (Fig. 10d).

Next the auto- and cross-correlation dependences were
monitored for different modes. They revealed that the typical
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correlation lengths under the conditions at hand were
lc � 1:5 cm and the corresponding time was tc � 1 ms.

With knowledge of the plasma parameters, it is possible to
calculate the diffusion coefficients: classical

D cl
? �

mc2k�Ti � Te�
e2H 2tei

�5:19�

and Bohm diffusion coefficient

DB
? �

ckT

16eH
: �5:20�

Plotted in Fig. 10e are the magnitudes of these coefficients as
well as of the coefficients calculated from the correlation
measurements employing the formulas

D?�1� � c2
h ~E 2i
H 2

tc ;

D?�2� � ÿ c

HjHHj h~n
~Ei : �5:21�

It is clear that the transfer is classical in the limits
0 < x < x�Lmin�. Then, for x > x�Lmin� the diffusion is
enhanced to eventually attain the Bohm level.

6. 2-D problems with an abrupt plasma ± field
transition

Interest in the equilibrium problems of ideal plasmas is
traditional for plasma theory. The first analytical treatment
of equilibrium plasma configurations with b � 1 and the
derivation of the stability criterion were performed by
S I Braginski|̄ and B B Kadomtsev [1]. Some general
properties of equilibrium states and the independent deriva-
tion of their stability criteria were set forth in the classical
papers by Berkovich, Grad, andRubin [2, 3]. As is known, the
principal result is simple: the interface should be concave
toward the plasma.

There is one more circumstance that attaches much
importance to the studies of such systems. V D Shafranov
pointed out that the MHD equilibrium equations

HP � 1

c
j�H ; j � c

4p
rotH ; divH � 0 �6:1�
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Figure 10. Stability of flow in an octupole plasma guide: (a) magnetic force lines �C � const� in a straight octupole; (b) dependences ofU � � Hÿ1 dl and
L � � dl on C; (c) oscillograms of the plasma potential in an octupole plasma guide. The probes are located in one force line (x � 65 mm) and are

separated by 90� in azimuth. The calibration in time was accomplished by a 250 kHz signal, the current drawn by the rods was 9.3 kA, z � 105 cm; (d)

oscillograms of the plasma potential in the octupole plasma guide at different distances from the system axis: a Ð x � 46 mm, b Ð x � 50:6 mm, c Ð

x � 55 mm, dÐ x � 60 mm; (e) magnitude of the plasma diffusion coefficient D? at different distances from the system axis.
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are formally equivalent to the equations of stationary motion
of an ideal incompressible liquid

�vH�v � ÿHP
r
; div v � 0 ;

and therefore studies of configurations with b � 1 are
simultaneously studies on some fluid dynamics problems.

Analytical methods are efficient only for plane symmetry
problems. Presented below is an analytical treatment of
several simple magnetic field ± plasma systems in which a
resting ideal plasma free ofmagnetic field occupies some finite
volume in space and is confined by the surrounding magnetic
field [55, 56].

6.1 Plane figures of equilibrium
Consider the formulation of the problem of plane equilibrium
geometries of ideal plasmas �s � 1� embedded in the
magnetic field of rectilinear currents. The plasma configura-
tion is in this case a body of constant sectionD (D is the region
in the plane with Cartesian x; y coordinates to be determined)
extending along the z-axis. The electric currents j�r� and
magnetic field H�r� are prescribed outside the plasma region
(in vacuum). The two-dimensional property and the plane
symmetry imply in this case that

q
qz
� 0 ; j � ÿ0; 0; j�x; y�� ; H � ÿHx�x; y�;Hy�x; y�; 0� :

We introduce themagnetic potentialA�x; y�with the relation-
ships Hx � qA=qy and Hy � ÿqA=qx to obtain for the
vacuum

DA � ÿ 4p
c

j�x; y� ; �x; y� 62 D ; �6:2�

where D � q2=qx2 � q2=qy2 is the Laplace operator.
This equation should be complemented by the boundary

conditions at the plasma surface and at infinity. Since the
normal component Hn of the magnetic field is continuous at
the plasma ± vacuum boundary andH � 0 inside the plasma,
Hn � 0 at the plasma surface, i.e. the magnetic field is tangent
to the plasma boundary qD, and therefore the first condition
becomes

A � const ; �x; y� 2 qD :

The second is the equilibrium condition. If the plasma
pressure P�x; y� � P0 � const in D, we have

H 2

8p
� 1

8p

�
qA
qn

�2

� P0 ; �x; y� 2 qD : �6:3�

Here n is the normal to qD. Condition (6.3) signifies that the
modulus of themagnetic field is constant along the boundary.

The third condition can be obtained as follows. We
integrate the equation rotH � 4p=cj over the D region to
obtain�

qD
Ht dt �

�
qD

qA
qn

dt � 4p
c

Jp : �6:4�

Here Jp is the total current traversing the plasma. Condition
(6.4) is equivalent to some condition at infinity. If, for
instance, the total current traversing the vacuum region is J,

we get

A � ÿ 2�J� Jp�
c

lnR ; R2 � x2 � y2 ; R!1 : �6:5�

Problems of similar structure have long been the subject of
study in the hydrodynamic theory of incompressible ideal-
fluid jets. It will suffice to mention the classical monographs
[57, 58]. However, it is pertinent to note that the flow
configurations studied in the theory of jets are of no
particular interest for plasma physics (presumably, the
reverse is equally true).

Evidently, the case of a single current of the form j�x; y� �
j0d�xÿ x0�d�yÿ y0� (a singlet) is logically and physically
simplest. But equally evident is that no equilibrium config-
urations occupying a finite spatial region (in the x; y plane)
exist in the magnetic field of a singlet.

The simplest though nontrivial system of currents that
produces a magnetic configuration with a zero point and
separatrices not going to infinity is a superposition of two
currents equal in magnitude and sense (a doublet),

j�x; y� � J0
�
d�xÿ x0�d�y� � d�x� x0�d�y�

�
: �6:6�

The currents flow through the points ��x0; 0�, the zero point
is at the origin. Consider this case in greater detail.

First, we rewrite the initial problem in new terms. The
units of length, electric current, and magnetic field will
respectively be x0, J0, and H0 � �4p=c�x0J0. In the new
terms we have

DA � ÿ�d�xÿ 1�d�y� � d�x� 1�d�y�� ; �x; y� 62 D ;

A � const ; �x; y� 2 qD ;���� qAqn
���� � h ; �x; y� 2 qD ;�

qD

qA
qn

dt � g : �6:7�

The problem (6.7) has two dimensionless parameters

h � c
������
P0

p
x0������

2p
p

J0
; g � Jp

J0
; �6:8�

whose significance is obvious (in particular, it is easily seen
that b � h2).

The methods developed in the theory of ideal-fluid jets
make it possible to obtain a complete solution of this
problem. The procedure is discussed at length elsewhere [55,
56]. Here we restrict ourselves to only the principal definitions
and introduce the required notation. The x; y-plane is
considered as the plane of the complex variable z � x� iy.
The exterior of region D (as yet unknown) is conformally
mapped onto the exterior of a unit circle in the plane of the
complex variable t. In doing this, let the points z � �1 (the
points of current location) go over respectively into the points
t � �t1 �Im t1 � 0, t1 > 1�.

We introduce the complex potential of the magnetic field
F�z� � j� iA, where qj=qx � Hx, qj=qy � Hy. According
to Eqns (6.7), ImF � const at qD. Also, we define the
function z�z� by the relationship

z�z� � 1

h

dF

dz
� 1

h
�Hx ÿ iHy� : �6:9�

Then from Eqns (6.7) we obtain
��z�z��� � 1 for z 2 qD.
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Next we construct the functions F and z of variable t:
F�t� � F

ÿ
z�t�� (by the method of images) and z�t� � z

ÿ
z�t��

(in the construction of this function, a special method is used
involving analytic continuation of a meromorphic function
along the arc in which its modulus is constant), where z�t� is
the above-specified conformal mapping z! t (yet to be
constructed). In consequence we obtain

F�t� � 1

2pi

�
ln
�tÿ t1��t� t1�t 2�g
�tt1 ÿ 1��tt1 � 1� � 2 ln t1

�
;

z�t� � ÿi t 2t 21 ÿ 1

�t 2 ÿ t 21 �t
: �6:10�

It is easily seen that for jtj � 1 the following holds:
ImF�t� � const,

��z�t��� � 1. However, in accordance with
Eqn (6.9) we have

z�t� � 1

h

�
zÿ1�t� dF

dt
dt : �6:11�

With Eqns (6.10) and (6.11) we obtain

z�t� � 1

h
P�t; t1; g� ; �6:12�

where

P�t; t1; g� � 1

2p
tÿ31

�
�2� g�t1tÿ �t 41 ÿ 1� t1t

t 2t 21 ÿ 1

� �1� g� t
4
1 ÿ 1

2
ln

t1t� 1

t1tÿ 1

�
: �6:13�

The initial problem has two parameters, h and g, but z�t� in
Eqn (6.12) depends on the auxiliary quantity t1. To exclude it,
we invoke the `normalization' condition z�t1� � 1, which
gives

d�t1; g� � P�t1; t1; g� � h : �6:14�

The latter relationship makes it possible, in principle, to
determine the dependence t1 � t1�h; g�. Mapping (6.12)
yields the complete solution, if it exists, to the problem and,
in particular, the shape of the figure of equilibrium

w�y� � z
ÿ
exp�iy�� ; 04y4 2p : �6:15�

We first consider the case of g � 0 (the total current in the
plasma is zero). The function d0�t1� � d�t1; 0� is plotted in
Fig. 11a. Some of the features of this function are noteworthy:

d0�t1� � 1

2p

�
1ÿ 2�t1 ÿ 1� ln�t1 ÿ 1�� ; t1 5 1 ;

d0�t1� � 1

pt1
; t1 !1 :

The function d0�t1� peaks at t1 � tmax � 1:2, assuming the
value d0�tmax� � hmax � 0:22. The following conclusions can
readily be drawn from Fig. 11a: (1) for h > hmax, the solution
of the problem does not exist; (2) two solutions exist for
1=2p � h0 < h < hmax; (3) for h < hmax there exists a single
solution. The examples of equilibrium geometries are given in
Fig. 11b ± d, with t1 varying from 1.01 to 2.0.

So, no equilibrium plasma geometry exists for
h > hmax � 0:22. For h � hmax, the figure has convex

(unstable) and concave (stable) portions of the boundary.
For h0 < h < hmax there are two solutions. If we follow the
figure proceeding along the right branch of the curve in
Fig. 11a, both the x- and y-dimensions of the figure decrease
as parameter h decreases. For sufficiently small h the figure
has only concave boundaries. If we proceed by the left branch
of the curve from h � hmax, with decreasing h the figure
dimension in x decreases (tends to zero as h! h0) while the
dimension in y increases (tends to two as h! h0). For h! h0
the figure is as if ruptured at zero and connected by spinodes
enclosing the currents.

The above problem of the properties of equilibrium
plasma geometries in the field of a doublet (6.6) is, on the
one hand, most elementary but, on the other, sufficiently
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Figure 11. (a) Plot of the d�t1� function. (b ± d) Examples of the figures of

equilibrium for different values of the t1�h� parameter.
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universal because it describes in fact the properties of the
figures of equilibrium in the vicinity of any nondegenerate
zero of the magnetic field.

The natural extensions and complications of the doublet
problem are the problems with three (a triplet), four (quartet)
etc. currents flowing in one direction and located at the
corners of a regular triangle, quadrangle etc. We describe
the principal qualitative features of these cases but do not give
detailed calculations here. It can be inferred that with
increasing the number of currents: (i) tmax decreases; (ii) h0
and hmax increase; (iii) hmax ÿ h0 decreases. So, the greater the
number of currents, the higher the critical value hmax, the
narrower the h-parameter range whereby a two-valued
solution exists, and the broader the h range whereby the
figure has only concave boundaries.

Now we revert to the general case when the total current
flowing through the plasma is nonzero �g 6� 0�. Here the
situation is more complicated and a wholly satisfactory
representation is possible only in the plane of two parameters
t1, g [56]. Themain results in this case are as follows.When the
plasma current flows in the same direction as the currents
flowing along the conductors �g > 0�, a solution of the
problem exists if the h parameter satisfies the conditions
hmin < h < hmax, where hmin and hmax are functions of g. But
when the plasma current and the external current are
oppositely directed �g < 0�, for g smaller than gmin � ÿ0:3
no stationary equilibrium configurations exist, no matter
what the h parameter value may be (i.e. whatever the
pressure). Examples of equilibrium geometries for different
values of h and g are given in Fig. 12. In particular, for not-
too-high values of the h parameter and a sufficiently large
value of g the resulting configuration has the appearance of
an arbitrarily thin current sheath lying in the �x; z� plane. Its
horizontal dimension is limited by the conductor separation.

We have considered systems in which the magnetic field is
induced by the currents flowing in one direction and has only
closed separatrices. When differently directed currents are
admitted, the simplest system of interest is the system of four
currents, with the direction changing in checkerboard order.
This system (it would be natural to identify it as a quadrupole
if the total current is zero) is well known in connection with
research on antimirror traps. An important quadrupole's
distinction from the doublet etc. is that now the separatrices
go to infinity. Here we briefly consider (for the sake of
completeness of information) the main results that were
obtained for this system employing the method used above.

Let the currents with j � 1 be located at the points z � z1
�jz1j � 1� and z � z4 � ÿz1 while the currents with j � ÿ1 at
the points z � z2 � z�1 and z � z3 � ÿz�1 (the asterisk signifies
complex conjugation). The points in the t plane are t1, t2 � t �1 ,
t3 � ÿt �1 , and t4 � ÿt1. Then the complex potential of the
magnetic field as a function of t is given by the following
expression:

F�t� � 1

2pi

�
ln
�tÿ t1��t� t1��t1tÿ 1��t1t� 1�
�tÿ t �1 ��t� t �1 ��t �1 tÿ 1��t �1 t� 1� � 2 ln

t �1
t1

�
:

�6:16�

Constructing the z�t� function (the quadrupole's total current
and dipole moment are equal to zero) gives

z�t� � �t
2�
1 t 2 ÿ 1��t 21 t 2 ÿ 1�
�t 2 ÿ t 21 ��t 2 ÿ t 2

�
1 �t 3

: �6:17�

After rather lengthy calculations we obtain Eqn (6.12), where

P�t; t1� � jt1j4 ÿ 1

pi�t 21 ÿ t 2
�

1 �

� �t 21 ÿ t 2
�

1 �2
jt1j8

t� t 41 ÿ 1

2t 41

t

t 21 t
2 ÿ 1

� t 4
�

1 ÿ 1

2t 4
�

1

t

t 2
�

1 t 2 ÿ 1
� 3t 41 ÿ 7

4t 51
ln

t1t� 1

t1tÿ 1

� 3t 4
�

1 ÿ 7

4t 5
�

1

ln
t �1 t� 1

t �1 tÿ 1

� jt1j4
t 21 ÿ t 2

�
1

�
t 41 ÿ 1

t 71
ln

t1t� 1

t1tÿ 1
ÿ t 4

�
1 ÿ 1

t 7
�

1

ln
t �1 t� 1

t �1 tÿ 1

��
: �6:18�

Next we restrict ourselves to the case of a symmetric
quadrupole, when x1 � y1. Analyzing (6.18) leads to the
following conclusions.

The solution of the problem for the quadrupole does not
exist if h > hmax � 0:31. For h4 hmax, a unique solution
exists. The figure boundaries (its general view is well known)
are always concave. With increasing h, the dimensions of the
figure increase, and for h � hmax the ultimate figure of unit
size in x and y (in our units x1 � y1 � 1=21=2 � 0:7) is
realized.

More complex systems can comprise currents of different
sense and magnitude located at arbitrary points. Separatrices
going to infinity and closed ones may exist simultaneously.
The large number of parameters and the complex geometries

ÿ1 0 1 x

1

y

0

ÿ1

t1 � 1:01; h � 1:0; g � 5:0

ÿ1 0 1 x

1

y

0

ÿ1

tt11 �� 11::11;; hh �� 00::1177;; gg �� ÿÿ00::22

ÿ1 0 1 x

1

y

0

ÿ1

tt11 �� 11::55;; hh �� 00::2299;; gg �� 00::55

ÿ1 0 1 x

1

y

0

ÿ1

t1 � 1:5; h � 0:59; g � 2:0

ÿ1 0 1 x

1

y

0

ÿ1

tt11 �� 22::00;; hh �� 00::1122;; gg �� ÿÿ00::22

Figure 12. Examples of equilibrium geometries for a nonzero plasma

current �g 6� 0�.
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of the vacuummagnetic field hinder the efficient implementa-
tion of the above analytical approach even in the two-
dimensional case.

6.2 The force between the conductors (myxines)
In connection with the above-given exact solutions of several
problems on equilibrium geometries, we can pose the problem
of the force of interaction between the conductors in the
presence of a plasma.We consider this issue by the example of
the doublet problem for g � 0 [59]. Dimensional quantities
will be used here.

Let Bm be the magnetic field strength induced at the point
x � x0, y � 0 (the position of the right-hand conductor) by
plasma currents and by the current of the left-hand con-
ductor. From Eqns (6.9) ± (6.13) we obtain Bm � �0;By�,
where

By � phJ0
cx0t

2
1

�t 41 ÿ 1� : �6:19�

Hence it is evident that the force f acting on a section of the
right-hand conductor of length L is determined by the
following equalities:

f � � fx; 0� ; fx � ÿ J0L

c
By � ÿ pJ 2

0Lh

c2x0t
3
1

�t 41 ÿ 1� : �6:20�

In the absence of plasma, this force is given by the expressions

f 0 � � f 0x ; 0� ; f 0x � ÿ
J 2
0L

c2x0
: �6:21�

Analyzing Eqns (6.20) and (6.21) suggests the following. The
force of attraction of the myxines in the presence of a plasma
is always smaller than in a vacuum. With stable configura-
tions (concave figure boundaries), the force of attraction is
attenuated more strongly, the greater the h parameter value.
However, the force of attraction vanishes only for t1 ! 1� 0,
i.e. for an unstable plasma configuration shielding the
myxines completely.

7. Axisymmetric configurations

7.1 Equilibrium configurations in the hydrodynamic
approximation
With axial symmetry, the MHD equilibrium equations (6.1)
for ideal plasmas reduce (e.g. see Ref. [60]) to one scalar
Grad ± Shafranov (GSh) equation for the magnetic flux
function C. In the cylindrical coordinate system �r; y; z� we
have

C �
�r
0

Hz � 2pr dr ; Hr � ÿ 1

2pr
qC
qz

; Hz � 1

2pr
qC
qr

:

�7:1�

The electric current density will be considered to have only an
azimuth component �jr � jz � 0, jy 6� 0� and, consequently,
the magnetic field is poloidal �Hy � 0�. Let jex�r; z� denote the
given distribution of external azimuth currents. Then theGSh
equation takes the form:

ÿ D�C � 8p2r
c

jex�r; z� � 16p3r2
dP

dC
;

D�C � r
q
qr

1

r

qC
qr
� q2C

qz2
; �7:2�

where P�C� is some prescribed function determining the
dependence of the plasma pressure on the magnetic field.

We pursue the goal to obtain from Eqns (7.2) some
axisymmetric analogs of the analytic solutions for plane
systems (doublet, quadrupole) to start with. The correspond-
ing vacuum fields are induced by two turns with the currents
flowing in one direction (magnetic bottle) in the first case or
with oppositely directed currents (magnetic antibottle) in the
second. Let the whole system be placed in a perfectly
conducting cylinder with radius Rmax and length 2Zmax.

We go to the units of measurements well suited for the
problem: the radius Rc of the current-carrying turn serves as
the unit of length, the characteristic magnitude of the current
density j0 in the turn as the unit of current, the characteristic
pressure value P0 as the unit of pressure, and the quantity
8pR3

c j0=c as the unit of C. In these units Eqns (7.2) become:

ÿr q
qr

1

r

qC
qr
ÿ q2C

qz2
� r jex�r; z� � br2

dP

dC
; �7:3�

with the dimensionless parameter

b � c2P0

4pR2
c j

2
0

: �7:4�

In view of symmetry the treatment of Eqn (7.3) is
restricted to a halfcylinder 0 < z < Zmax.

In what follows three configurations of the vacuum
magnetic field are studied: (1) a magnetic antibottle
(Fig. 13a), (2) a magnetic bottle (Fig. 13b), (3) Galatea-A
(Fig. 13c). Plotted in each drawing of Fig. 13 are, from top to
bottom, the vacuummagnetic field, the field in the presence of
the plasma, and the plasma pressure.

The boundary-value problems for equation (7.3) will be
solved approximately, employing the finite difference
method. We use a uniform square grid and the standard
five-point difference approximation of the second-order
elliptic differential operator D�. The resulting system of
nonlinear equations is solved by iterations, i.e. the solution
of the difference boundary-value problem is in fact found by
the relaxation of the solution of the transient problem for a
heat conduction-type equation. The longitudinal-lateral
scheme was used (e.g. see Ref. [61]).

The function jex�r; z�, which determines the distribution of
external azimuth currents, is defined as follows:

jex�r; z� � exp

�
ÿ�rÿ rc�2 � �zÿ zc�2

r20

�
� jb exp

�
ÿ�rÿ rb�2 � z2

r20

�
:

In this formula, the points �rc; zc� and �rb; 0� specify the
positions of the `point-like' currents and the r0 parameter
determines the `spread' radius for these currents (for the first
two configurations jb � 0).

The results of calculations in the case of a magnetic
antibottle are presented first. The boundary conditions:
C � 0 at all boundaries. The geometric parameters:
Zmax � Rmax � 2, zc � rc � 1, r0 � 0:2. The P�C� function
was so selected that the plasma was located primarily near the
zeros of the magnetic field and along the separatrices. That is
why the following function form appears to be natural:

P�C� � exp

�
ÿC2

a2

�
: �7:5�
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So, P � 1 for C � 0 and decays with increasing C. We will
seek to obtain the minimum a parameter.

Shown in Fig. 13a are the lines of equalC (magnetic field
lines) for b � 0 (the vacuum configuration), for b � 0:0003
and a � 0:002, and the lines of equal P�C�. As is evident, in
the presence of the plasma the magnetic field backs off the
plasma region boundaries. The transition from P � 1 to
P � 0 occurs in a rather thin layer which can be treated as
the plasma ± vacuum boundary.

Now consider the case of a magnetic bottle. Here the
choice of the P�C� function is not that evident. Figure 13b
displays the results of calculations of the vacuum configura-
tion �b � 0� (the boundary conditions: qC=qz � 0 for z � 0,
0 < r < Rmax, and C � 0 at the remaining boundaries). The
vacuum magnetic field has a separatrix corresponding to
C � Cs � 0:02. We therefore select P�C� in a form some-
what different from Eqn (7.5):

P�C� � exp

�
ÿ�CÿCs�2

a2

�
: �7:6�

Also plotted in Fig. 13b are the lines of magnetic field and
pressure for b � 0:0005 and a � 0:001. The formation of the

region, where C � Cs, near the zero of the magnetic
(vacuum) field is clearly visible. In this region P � 1, i.e. it is
occupied by the plasma.

Qualitatively, the figure of the region (more exactly, the
section of the region by the r; z plane) occupied by the plasma
resembles the figure of equilibrium for a doublet (see Fig. 11).
However, there is a significant distinction. Since the line
C � Cs bypasses the current region, the plasma region now
surrounds the current and closes into itself in thin bridges
around it.

And, finally, the third configuration (Galatea-A). In this
case it would be convenient to add complexity to the
formulation of the problem. Let a uniform longitudinal field
Hz0 be imposed on the magnetic field of three turns. Then the
boundary conditions imposed onC are as follows: qC=qz � 0
(left boundary), C � 0 (lower), C � pr2Hz0 (right),
C � pR2

maxHz0 (upper). Now solving (7.3) with b � 0 we so
select the current jb in the middle turn and the magnitude of
the longitudinal field Hz0 that the vacuum field has a
separatrix bypassing the middle current and going into the
system axis near the point r � z � 0. The parameter values
jb � ÿ0:5 andHz0 � 0:0006 provide the required geometry of
the magnetic field. The remaining parameters assume the
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Figure 13.Distributions of the vacuummagnetic field, the magnetic field, and the plasma pressure for a magnetic antibottle (a), a magnetic bottle (b), and

Galatea-A (c) in the �r; z� plane.
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values: Zmax � Rmax � 2, zc � 1:5, rc � 1, rb � 0:75, and
r0 � 0:1. Then, with P�C� of the form (7.5) (the separatrix
goes into the axis, where C � 0), we increase b.

The magnetic field and the pressure are shown in Fig. 13c
for b � 0:00003 and a � 0:0002. The plasma occupies the
region near the axis and, in the form of a thin envelope,
bypasses the central current (the myxine). In our opinion, it is
precisely this type of configuration that holds the greatest
interest today as regards pure theory and applications.

7.2 2-D stationary plasma configurations
The hydrodynamic models do not represent the structure of
transition layers whose thicknesses are of the order of the ion
Larmor radius in the cases of primary interest. Any con-
sideration of such layers calls for a kinetic description of the
ion and electron dynamics or at least for hybrid models, when
ions are described kinetically and electrons in the context of
hydrodynamics. Initially such layers were treated in the one-
dimensional approximation. Noteworthy here is the Chap-
man ±Ferraromodel for the interaction of the solar windwith
the Earth's magnetosphere [62]. A comprehensive analysis of
one-dimensional collisionless kinetic configurations is given
in Ref. [51]. A series of two-dimensional transition layers was
calculated in Ref. [4].

Following [63] (also see Section 5.2) here we make an
attempt to describe the general approach to the construction
of consistently kinetic stationary configurations. To do this,
we need the stationary kinetic equations for electrons and
ions and the Maxwell equations:

v
q fi
qx
� e

M

�
E� 1

c
� v;H �

�
q fi
qv
� 0 ;

v
q fe
qx
ÿ e

m

�
E� 1

c
� v;H �

�
q fe
qv
� 0 ;

�7:7�

rotH � 4pe
c

�
v� fi ÿ fe� dv ;

divH � 0 ; E � ÿHF ; �7:8�

DF � ÿ4pe
�
� fi ÿ fe� dv : �7:9�

As in Section 7.1, we consider stationary axisymmetric
plasma motion in a cylindrical coordinate system �r; y; z�
assuming the magnetic field to be poloidal and the electric
currents to be toroidal:

H � �Hr; 0;Hz� ; j � �0; j; 0� :

Then the equation for the magnetic flux function can be
written in the following form:

D�C � ÿ 4pr
c

j ;

D�C � r
q
qr

1

r

qC
qr
� q2C

qz2
: �7:10�

In equations (7.10), j � jex � jpl, where jex � jex�r; z� is a
given distribution of external currents and jpl is the current
density in the plasma. Depending on the model adopted for
plasma representation, Eqns (7.10) can now be closed in
different ways. If, for instance, the MHD model of the
plasma equilibrium is used, the task reduces to the Grad ±
Shafranov equation with jpl � 8p2r qP=qC (see Section 7.1),
where P�C� (the plasma pressure) is a given function.

In the consistent kinetic description of ions and electrons,
for the plasma current we obtain by definition

jpl � e

�
V#� fi ÿ fe� dv : �7:11�

Then Eqns (7.7), (7.9), and (7.10) make up a complete self-
consistent set of equations.

The assumption that the plasma is quasineutral simplifies
the problem substantially:�

fi dv �
�
fe dv : �7:12�

In essence, (7.12) serves as an additional equation to
determine the potential F in lieu of Eqn (7.9). The closed set
of equations is nowmade up by Eqns (7.7), (7.10), and (7.12).

The general solution of Eqns (7.7) is represented by
arbitrary integrals of electron and ion motion in stationary
electric F and magnetic C fields. The complete collection of
these integrals can be found only through a self-consistent
problem solution. Under the circumstances (two-dimensional
axisymmetric case), two integrals always exist. They are the
integrals of energy and generalized angular momentum for
ions and electrons:

E i �MV2

2
� eF ; Pi �MrV# � e

c
C ;

Ee � mV2

2
ÿ eF ; Pe � mrV# ÿ e

c
C : �7:13�

Let the functions fi � fi�E i;Pi� and fe � fe�Ee;Pe� be
given. Then the expression for F as a function of r and C
can be obtained from Eqn (7.12):

F � F�r;C� : �7:14�

From (7.11) we obtain the expression for jpl as a function of r
andC:

jpl � jpl�r;C� : �7:15�

So, in the kinetic case the problem reduces to the solution of
one nonlinear elliptic equation

D�C � ÿ 4p
c

r
�
jex�r; z� � jpl�r;C�

�
: �7:16�

Now consider the hybridmodel. The dynamics of ions are
determined by their distribution function fi � fi�E i;Pi� as
before while electrons obey the hydrodynamic equation of
motion. Assuming an infinite conductivity and a zero electron
mass, the equation can be written as

HPe � en

�
E� 1

c
�Ve;H �

�
� 0 : �7:17�

Let us assume that Pe � Pe�n�. We introduce the functions
W�n� � � dPe=n, electron enthalpy, and FT � Fÿ �1=e�W,
the thermalized potential. From Eqn (7.17) it follows that
FT � FT�C�. The expression for the azimuth electron
velocity is also easily obtainable:

Ve � cr
dFT

dC
� Ve�r;C� : �7:18�

November, 1998 On Galateas ì magnetic traps with plasma-embedded conductors 1075



Now let the functions FT�C� and fi�Ei;Pi� be prescribed.
Then the current jpl is calculated as follows.

We have the relationships

n �
�
fi�Ei;Pi� dV � n�r;F;C� ; F � FT�C� � 1

e
W�n� :

With these, F and n are expressed as functions of r andC:

n � n�r;C� ; F � F�r;C� : �7:19�

Next we calculate the azimuth component of the ion current

ji � e

�
Vy fi�Ei;Pi� dV � ji�r;C� �7:20�

and, finally, the plasma current

jpl�r;C� � ji�r;C� ÿ en�r;C�Ve�r;C� : �7:21�

Once again, the problem reduces to the solution of one
equation of the type (7.16). OnceC�r; z� has been determined
from it, we find n, F, Pe, etc. as functions of r and z.

The equation resulting in the context of both the kinetic
and hybrid approaches resembles the Grad ± Shafranov
equation. However, with the GSh equation prescribing only
one function P�C� of one variable would suffice (in the
presence of only the poloidal field) while two functions are
required now Ð fi�E i;Pi� and fe�Ee;Pe� in the context of the
kinetic model or fi�Ei;Pi� and FT�C� in the hybrid one.

The main physical complication associated with the
treatment of Eqn (7.16) is that the form of these function is
not easily selected a priori. It may well be that some `test
firing' would be required to obtain the required configura-
tion. To conclude the general discussion concerning the
approach proposed for calculating kinetic and hybrid
axisymmetric configurations, we emphasize that only config-
urations with a poloidal field can be studied to advantage in
the framework of this approach.

Next we commence considering Eqn (7.16) with the
hybrid model intending to realize the `crustal'-type config-
urations with b � 1 and the transition layers with thicknesses
of the order of an ion Larmor radius.

7.3 The hybrid model [64]
Consider (also see Section 7.1 and Fig. 13b) the configuration
of a vacuummagnetic field induced by two circular turns with
current J0, radius rc, and separation 2zc. In Section 7.1 such a
configuration was studied on the basis of the Grad ±
Shafranov equation.

To determine the right-hand part of Eqn (7.16), we should
specify the functions fi�Ei;Pi� � f �E;P�, FT�C�, and Pe�n�.
For simplicity the electrons are assumed to be isothermal, i.e.
Pe�n� � Ten,Te � const. Accordingly,W�n� � Te ln n. In this
case, the functions n�r;C� and F�r;C� in Eqns (7.19) are
defined explicitly and analytically.

The ion distribution function is given by the following
expression:

f �E;P� / exp

�
ÿ E
Ti
ÿ �P ÿ P0�2

D2

�
; �7:22�

whereTi � const,D � const, andP0 � const are parameters.
As in Section 7.1, we assume that the entire system is

placed in a perfectly conducting cylindrical casing with length

2Zmax and radius Rmax, and that the system as a whole is
symmetric with respect to the z � 0 plane. Then Eqn (7.16) is
solved in the region 04 z4Zmax, 04 r4Rmax.

The boundary conditions on C are as follows: C � 0 for
r � 0, r � Rmax, and z � Zmax; qC=qz � 0 for z � 0. We also
note here the normalization conditions. It is assumed that
F�0; 0� � 0. Then, from the definition of FT�C� and in view
of the condition C�0; 0� � 0 it follows that n�0; 0� �
exp
�ÿeFT�0�=Te

�
. Since Eqns (7.7) and (7.17) are homo-

geneous respectively in f and n, we can put n�0; 0� � 1, and
therefore FT�0� � 0.

Next we use `dimensionless' units of measurements. The
new units are rc (the unit of length), Ti=e (the unit of
potential), J0=pr2c (the unit of current density),
C0 � 4pJ0rc=c (the unit of C), and H0 � C0=r

2
c (the unit of

magnetic field).
Under the specified assumptions, the functions n�r;C�

and F�r;C� are written as

n�r;C� � b�r�ÿ1=�2�1�a�� exp
(
ÿ 1

1� a

�
FT�C� ÿ n2j2

0

� n2
�Cÿ j0�2

b�r�
�)

; �7:23�

F�r;C� � 1

1� a

�
FT�C� ÿ a

2
ln b�r� � an2j2

0

ÿ an2
�Cÿ j0�2

b�r�
�
; �7:24�

where b�r� � 1� m2r2 and the dimensionless parameters a, b,
n, m, and j0 are expressed as follows in terms of the
dimensional quantities involved in the statement of the
problem:

a � Te

Ti
; b � 8pT0

H 2
0

; n � eC0

cD
;

m �
�����������
2MT
p

D
rc ; j0 �

cP0

eC0
: �7:25�

The significance of these quantities is rather clear. For
instance, the characteristic ion Larmor radius is ri � m=n.
Notice that the explicit dependence of n�r;C� and F�r;C� on
the r-coordinate vanishes for m! 0.

With Eqns (7.23) and (7.24), we obtain the expression for
the current jpl:

jpl�r;C� � ÿbr
�

n2

b�r� �Cÿ j0� �
1

2

dFT

dC

�
n�r;C� : �7:26�

It remains to determine one more functional problem
parameter, viz. the thermalized potential FT�C�. It is
assumed to be of the form:

FT�C� � q0�Cÿ 2q1�C ; �7:27�
where q0 � const and q1 � const are parameters. The
problem definition is now complete.

The problem was solved numerically employing the
technique outlined briefly in Section 7.1. A long series of
calculations was performed with different values of the
parameters (7.25) and (7.27). According to the calculations,
there exists a great qualitative diversity in the behavior of the
stationary solutions in the model under consideration. In
particular, this is true both of the density distributions and of
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the resulting magnetic field configurations. One legitimate
question is: are there such solutions among the solutions in
the context of this model that are close, as regards their
qualitative features, to the solutions obtained in the context of
the GSh equation for the same configurations of the vacuum
magnetic field? The cases in point are the solutions wherein
the plasma is localized near the separatrices of this field.

The vacuum magnetic field is depicted in Fig. 14a for
Rmax � 2, Zmax � 2, rc � 1, and zc � 1:5. In the C � 0 axis,
C � Cs � 0:092 corresponds to a separatrix.

The C-dependences of jpl�r;C� and n�r;C� are rather
complex, and therefore it is not easy to envision even the
qualitative features of behavior ofC�r; z� associated with the
solutions of Eqn (7.16). The situation becomes somewhat
simpler when the magnetic field configuration is qualitatively
similar to the configuration of the vacuum field. This
condition is assumed to be fulfilled.

Here we consider the results of two calculations in which
the configurations of interest were realized in two different
ways. Roughly speaking, in the first case this was accom-
plished through electrons and in the second one through ions.

We begin with the first version. Let j0 � 0. A considera-
tion of the n�r;C� function prompts theFT�C� function form
itself and the magnitudes of its parameters. For the plasma
density to be maximum forC � Cs and to drop sharply with
distance away from the C � Cs line, FT�C� should be at a
negative minimum, sufficiently large in modulus, forC � Cs.
Let q1 � Cs. Then FT�Cs� � ÿq0C2

s . If q0 is a sufficiently
large quantity, the desired density distribution can be
expected.

Let a � 1, b � 0:01, n � 0:1, m � 0:1, and q0 � 5� 102. If
the pertinent magnetic field (Fig. 14b) is compared with the
vacuum field, we notice that qualitative changes show up only
in the domains near the separatrix of the vacuum field. It is as
if the magnetic lines of force move apart near the separatrix.

The density distribution (levels of the n�r; z� � n�r;C�r; z��
function) is given in Fig. 14c. The density peaks near the zero
of the vacuum magnetic field and in the region adjacent to its
separatrix. The minimum density values are attained in the
system axis, at the side and end walls of the cylindrical casing,
and in the domain enclosing the external current. Qualita-
tively, the pattern is similar to what was obtained on the basis
of the GSh equation (see Section 7.1).

We now turn to the second case. Let j0 6� 0, and let the
electrons be immobile (for simplicity): FT�C� � 0. A con-
sideration of formulas (7.23) and (7.26) suggests the following
conclusions. For the density to be maximum for C � Cs as
before, it is required that j0 � Cs and that the parameter n be
sufficiently large. Let a � 1, b � 0:01, n � 25, m � 0:1, and
j0 � Cs � 0:092. The magnetic field in this case is virtually
the same as in the first version. The pressure distribution is
given in Fig. 14d. As before, the pressure is maximumnear the
separatrix. The electron current is zero and, consequently, the
result is entirely due to the ion current.

In the first (electron) case, the characteristic ion Larmor
radius is ri � m=n � 1. In the second (ion) case ri � 0:004.
The way to obtain the required configuration of the solution
in the `mixed' case, when the electron and ion currents are of
the same order of magnitude, is rather clear.

To gain a clearer view of the ion confinement mechanisms
in the cases considered above (ultimate, in a sense), there is
good reason to analyze the distribution of the potential
F�r; z�. In the region adjacent to the external current
�zc � 1:5� the potential has a maximum in the first case and
a minimum in the second. Hence, the ion confinement in the
first case is primarily electrostatic in nature.

7.4 The kinetic model
Now consider briefly an example of how the general approach
to the studies of axisymmetric stationary configurations, set
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Figure 14. Distribution [in the �r; z� plane] of the vacuum magnetic field (a), the magnetic field (b), and the plasma pressure in the hybrid model (the

electron case) (c), the hybrid model (the ion case) (d), and the kinetic model (e).
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forth in Section 7.2, is employed when the kinetic model is
used both for electrons and for ions.

From the quasineutrality condition (7.12) we have

ni�r;F;C� � ne�r;F;C� :

Hence we find the potential F�r;C� as a function of r and C.
Substituting it into the expressions for the electron and ion
currents, we obtain the azimuth plasma current as a function
of r andC:

je; i�r;C� � �e
�
Vy fe; i�Ee; i;Pe; i� dV

����
F�F�r;C�

;

jpl�r;C� � je�r;C� � ji�r;C� : �7:28�

We specify the distribution functions for either component, as
in Eqns (7.13) and (7.22), with parameter values of their own
(Ti; e � const, Di; e � const, and Pi; e0 � const):

fe; i�Ee; i;Pe; i� / exp

�
ÿ Ee; i
Te; i
ÿ �Pe; i ÿ Pe; i0�2

D2
e; i

�
: �7:29�

With this selection of the functions, the calculations yield the
following expressions for the required functions (we use the
same units of measurements as in Section 7.3):

F�r;C� � 1

1� a

�
n2i j

2
i ÿ n2ej

2
e �

1

2
ln

be�r�
bi�r�

� n2e
�C� je�2

be�r� ÿ n2i
�Cÿ ji�2

bi�r�
�
;

n�r;C� � bi�r�ÿ1=�2�1�a�� be�r�ÿa=�2�1�a��

� exp

(
an2e
1� a

�
j2
e ÿ
�C� je�2

be�r�
�

� n2i
1� a

�
j2
i ÿ
�Cÿ ji�2

bi�r�
�)

;

je�r;C� � ÿben2e
r

be�r� �C� je� n�r;C� ;

ji�r;C� � ÿbin2i
r

bi�r� �Cÿ ji� n�r;C� ; �7:30�

in which the following dimensionless parameters appear [also
see Eqn (7.25)]:

be; i �
8pTe; i

H 2
0

; ne; i � eC0

cDe; i
; me; i �

������������������
2me; iTe; i

p
De; i

rc ;

je; i �
cPe; i0

eC0
; a � be

bi
; �7:31�

where be; i�r� � 1� m2e; ir
2.

Here we consider the results of only one calculation made
for the same vacuum configuration as in the case of a hybrid
model. Let

be; i � 0:01 ; ne � 0:01 ; ni � 25 ; me � 0:01 ;

mi � 0:1 ; je � 0 ; ji � Cs � 0:092 : �7:32�

Shown in Fig. 14e is the pressure distribution corresponding
to this set of parameters. Evidently, if no significance is
attached to some quantitative details of these distributions,
the general qualitative pattern of plasma distribution is the
same as for the hybrid model, i.e. we arrive once again at a
`crustal'-type configuration with a sharp plasma ± vacuum
boundary.

8. Galatea-Belt

8.1 Basic diagram
A natural extension of the family of classical toroidal
multipole traps, in which only `diamagnetic' currents flow
(i.e. the net azimuth current through the �r; z� plane is zero),
are configurations in which an azimuth current exists. A
configuration of this kind is sketched in Fig. 4c. It has
received the name Galatea-Belt. In appearance, it resembles
a toroidal quadrupole with a central core, the reversal of
magnetization of which gives rise to an azimuth current in the
plasma. If the magnetic field induced by the current is
commensurable with the magnetic field of the conductors
inducing the initial quadrupole field, there appears a `current'
sheath often termed `neutral.' Consequently, the plasma in a
toroidal system assumes the configuration of a tapeÐa `belt,'
its mantles being engaged with the myxines.

A Galatea-Belt offers a number of obvious advantages:
(1) this is a system with b0 � 1; (2) the plasma in the belt can
heat up well since the plasma layer thickness is relatively
small, which increases its resistance and enhances the Joule
heat release for the same azimuth current; (3) when the
azimuth current decays, the plasma configuration is not
disrupted but transforms into a simple multipole configura-
tion; (4) numerous experiments to be mentioned below are
indicative of the high stability of the current sheaths; (5) an
installation with a belt is free of longitudinal magnetic field
coils, which notably decreases the trap mass, corrects the
overload of the diverter plates, and simplifies the pellet
injection.

Along with these advantages, a system with a belt has
some disadvantages. Noteworthy among them are the
following: (1) when the core magnetization is reversed, the
induced electromotive force acts not only on the plasma but
on the myxine as well, and appropriate `matching' will
probably be required; (2) as is known, there is hardly any
skin effect in a tokamak owing to the self-rearrangement
property of its configuration whereas in a belt it may arise,
substantially complicating the problem of ohmic heating.

Needless to say, other advantages and disadvantages of
the belt-type trap may show up in its practical implementa-
tion. However, there is little doubt that this configuration
deserves closer study.

8.2 A brief note on the current sheaths
An interest in current sheaths was first displayed by
astrophysicists in connection with the problem of solar
flares. A significant contribution to the solution of the
problems arising in this context was made by S I Syro-
vatski|̄: he instituted experimental studies of these sheaths
supervised by A G Frank [65 ± 67].

A sectional view of the TS-3 experimental facility is shown
in Fig. 15a. A magnetic field of quadrupole geometry was
induced by a system of straight current-carrying conductors
located outside the chamber. The field varied virtually
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linearly with distance inside the chamber (D � 10 cm):

H � h�y; x; 0� ; jHj � hjrj : �8:1�

The field gradient was variable between the limits h � 0:4 ±
3 kG cmÿ1. The initial plasma in the magnetic field was
produced by an auxiliary theta-discharge which accom-
plished the breakdown of a neutral gas (helium or argon)
filling the chamber at a pressure of 3� 10ÿ3ÿ5� 10ÿ2 Torr.
The initial plasma concentration was ne � 1014ÿ1015 cmÿ3.
The electric current along the zero line of the magnetic field
was generated by applying a pulsed voltage across two mesh
electrodes introduced near the chamber ends; the electrode
spacing filled with plasma was 40 cm. The halfperiod of the
current through the plasma was T=2 � 4:4 ms and the peak
current Iz � 30ÿ60 kA. The halfperiod of the magnetic field
was Tm=2 � 400 ms.

As follows from the experiments conducted in Ref. [66],
the excitation of the electric current in the plasma directed
along the zero line of the magnetic field gives rise to the
formation of a plane current sheath in 0.3 ± 1 ms, which
separates the oppositely directed magnetic fields. The char-
acteristic lateral sheath dimensions are: width 2Dx � 6 ± 9 cm,
thickness 2Dy � 0:6ÿ1 cm, electric current density in the
vicinity of the zero line jz0 � 5ÿ8 kA cmÿ2; the magnetic field
component tangent to the sheath (for x � 0, y � Dy � 0:6ÿ1
cm) was, as a rule,Hx � 5ÿ6 kG. It was determined that the
current sheath width 2Dx, i.e. the largest of the two sectional
dimensions, and the near-surface magnetic field Hx close to
the middle of the sheath satisfy the simple theoretical
relationships

Dx �
������
4Iz
ch

r
; �8:2�

Hx 4 hDx �
���������
4Izh

c

r
�8:3�

over a broad range of experimental conditions. Hence, in the
quadrupole magnetic field with a zero line a plasma config-
uration forms with b � 1, where

b � 8pne�Te � Ti= �Zi�
H 2

x

: �8:4�

Under typical conditions, within the current sheath
ne � 1016 cmÿ3 and Te � Ti= �Zi � 50 eV. In this case, inside
the sheath Ti > Te (Ti � 30ÿ100 eV, Te � 10 eV).

The unexpected result obtained in the studies of the
structure of magnetic fields of current sheaths and the
electron concentration distributions was that the sheaths
were found to be highly stable relative to the tearing
instability growth. Indeed, the structure of the magnetic
field, the distribution of electric current, as well as the
uniform (along the sheath width) distribution of electron
concentration remained virtually constant for a relatively
long time period of the order of several microseconds, even
though the reciprocal of the increment of the resistive tearing
instability growth was �1ÿ2� � 10ÿ7 s in the context of the
experiments under review.

There is good reason to attempt to use these properties of
the current sheaths, which are formed in magnetic fields with
zero lines, in the development of new magnetic traps with
b0 � 1. The first experiments with the belt configuration were
conducted employing the UP-1 facility (Fig. 15b), similar to

TS-3, with the current-carrying conductors placed inside the
vacuum chamber. The facility and the results obtained are
described comprehensively in Section 8.4. Here we emphasize
that there is a significant distinction between the configura-
tions of the TS-3 andUP-1 facilities. If the direction of the TS-
3 discharge current is reversed (with retention of direction of
the current through external conductors), the current sheath
will only rotate through 90�. Doing this on the UP-1 facility
would cause a significant rearrangement of the configuration
(Fig. 15b). If the current Jp through the plasma is aligned with
the current through the myxines, the operating mode will be
termed the `a-mode.' If the currents are in opposition, the
mode will be termed the `b-mode.' We are concerned
primarily with the a-mode because in this case the region of
zero magnetic field is larger and more stable.

8.3 Static belt models
8.3.1 Formulation of the problem.Planemodels of the belt with
a d-like plasma-field transition layer were considered in
Section 6. Now we construct the MHD models on the basis
of the GSh equation [68]. However, this way of constructing
static models has a fundamental disadvantage Ð it requires
that the magneto-baric function P�C� be specified a priori. It
is clear that the form of these functions is actually determined
only through the configuration formation. In doing this we
will nevertheless remain within the framework of the GSh
equation and consider it with model P�C� functions. Despite
the conventionality of this approach, it yields useful informa-
tion on the most general properties of the configurations we
are interested in. Considering the limitedness of such an
approach, we will restrict ourselves to ultimately simple
models. In particular, only plane models in the �x; y�-
coordinates will be treated in what follows. To do so, we
first have to select the magneto-baric characteristics.

The class of model P�C� functions is defined by four
conditions (Fig. 16a):

(1) the field in the center of the system must be zero
�x � y � 0�. Here we putC�0; 0� � 0;

(2) the pressure should vanish or decay rapidly for
x2 � y2 > R2

�, where R�5 2a (here a is the distance of the
myxine to the center of the configuration);

a b2

2

2

1 13 34

4

2

5

5
6

6

Figure 15. Rectilinear discharge devices with a current sheath and the

different types of magnetic configuration. (a) Ð Longitudinal section of

the discharge chamber of the TS-3 facility (at the left): 1Ðfused silica tube

with an internal diameter of 17 cm; 2 Ð mesh electrodes; 3, 4 Ð external

conductors. On the right: 5 Ð vacuum magnetic configuration; 6 Ð

magnetic configurationwhen the discharge current in the plasma is aligned

with the currents in the myxines. (b) Longitudinal section of the discharge

chamber of the UP-1 facility (on the left): 1 Ð fused silica tube with an

internal diameter of 17 cm; 2 Ð mesh electrodes; 3 Ð myxines; 4 Ð

external conductors. On the right: 5 Ð configuration in the case that the

current in the plasma is aligned with the current in the myxines, 6 Ð

configuration in the case that the current in the plasma is in opposition to

the current in the myxines.

November, 1998 On Galateas ì magnetic traps with plasma-embedded conductors 1079



(3) P should become zero in the neighborhood of the
myxines, i.e. for �xÿ a�2 � y2 < R2

m;
(4) the peak of the current density should be located at the

center.
Assuming the current through the myxine to be directed

along the z-axis and considering that the separatrix passes
through the origin, where we put C � 0, we obtain that
C > 0{ inside the separatrix andC < 0 outside it.

It follows from the foregoing that the magneto-baric
characteristic and its associated current density jz �
c dP�C�=dC should have the appearance of the curves
plotted in Fig. 16a. The specific features of the curves are
the decay ofP and jz asC! �1, the current density peak for
C � 0, and, in addition, the change of sign of the current
density in the vicinity of the myxine �C > 0�. For the GSh
equation to have simple analytical solutions, the dependence
P 0�C� should be linear. The curve plotted in Fig. 16a is far
from linear, and therefore P�C� is conveniently approxi-
mated either by linear or by quadratic splines{. Taking into
account precisely the qualitative significance of the calcula-
tions conducted, here we consider in detail only the case of
prescribing P�C� in the form of a linear spline [68]:

P�C� �
0 ; C < C0 < 0 ;

P0

�
1ÿ C

C0

�
; C0 < C < C1 ;

0; C > C1 :

8>><>>: �8:5�

A compelling disadvantage of this approximation is the
absence of current concentration in a narrow layer between
themyxines.We can therefore say that themodel with a linear
spline represents only the current sheath itself. In what
follows we employ the terms: `belt' �C0 < C < C1�, mag-
netic sheath of a belt �C < C0�, magnetic sheath of a myxine
�C > C1�. TheGSh equations corresponding to these regions
are of the form:

`belt'

DC � ÿ4pP 0�C� ÿ 4p
c

Jm
�
d�x� a� � d�xÿ a��d�y�

� ÿ 4p
c

j0 ÿ 4p
c

Jm
�
d�x� a� � d�xÿ a��d�y� ; �8:6a�

where j0 � P0c=jC0j � const, while x � �a and y � 0 are the
coordinates of the myxines;

magnetic sheath of a `belt'

DC � 0 ; �8:6b�

and magnetic myxine sheaths

DC��� � ÿ 4p
c

Jmd�x� a�d�y� : �8:6c�

Below we outline the results of an analysis of these equations
performed in Ref. [68].
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Figure 16.Calculation of the plane configurations. (a) (1)Ðdiagramof an a-typemagneto-plasma configuration; (2)Ð typical form of themagneto-baric

functionP�C� and the current density jz; (3) theP�C� function in the form of a linear spline, taken for calculation, and the corresponding current density.

(b) (1) Ð typical form of the magnetic belt configuration for l � 2, m � 4; (2) ÐU�C� (curve 1) and the dimensionless pressure (curve 2) as functions of

the dimensionless flux; (3) ÐQ�C� for the same l and m. (c) (1)Ðmagnetic configuration of the belt in the double equilibrium regime (l � ÿ0:5, m � 4),

(2) Ð U�C� (curve 1) and the dimensionless pressure (curve 2) as functions of the dimensionless flux; (3) Ð Q�C� for the same l and m.

{The flux function of a single conductor isC � ÿ�2J=c� ln�r=b�.
{The solutions of theGSh equation for the two specified cases are given in

Ref. [24].
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8.3.2. Morphology of the belts. The general solution of Eqn
(8.6a) is of the form

C � ÿ Jm
c

n
ln
��x� a�2 � y2

�� ln
��xÿ a�2 � y2

�o
ÿ 2p

c
j0y

2 �CL ; �8:7�

where CL is the general solution of the Laplace equation
�DCL � 0�. Following [68], we restrict ourselves to a
particular solution of the form

CL � q�x2 ÿ y2� : �8:7a�

This expression describes the quadrupole field induced, for
instance, by four conductors at infinity with alternating
current directions.

Introducing the dimensionless variables

x � x

a
; Z � y

a
; C1�x; Z� � c

JZ
C ; l � cq

Jm
;

we can write Eqn (8.7) as

C1 � ÿ
n
mZ2 � l�x2 ÿ Z2�

� ln
���x� 1�2 � Z2���xÿ 1�2 � Z2��o : �8:8�

Here m � 2p j0a2=Jm. The product mjC0j � 2pa2c2P0=J
2
m is in

essence the b parameter calculated using the effective field
Heff � Jm=ca. According to expression (8.8) for C, the
morphology of the force lines in the belt is determined by
the two parameters m and l. As shown by the analysis
performed in Ref. [68], there is a great diversity of magnetic
structures [even with the simplest form (8.7a)]. This analysis
proceeded from locating the zero points of the magnetic field,
i.e. the points where qC1=qx � qC1=qZ � 0. With Eqn (8.8),
we find two equations

�mÿ l��Z� �Z

��xÿ 1�2 � �Z2
� �Z

��x� 1�2 � �Z2
� 0 ;

l�x�
�xÿ 1

��xÿ 1�2 � �Z2
�

�x� 1

��x� 1�2 � �Z2
� 0 ; �8:9�

which establish the relation between the �x; �Z coordinates of
the zero points and the parameters m, l. The system (8.9) is
linear in m and l for given �x; �Z. The determinant of this system
isD � �x�Z, and therefore four essentially distinct solutions are
possible in this case:

�1� �x � �Z � 0 ; D � 0 ;

�2� �x � �x2 6� 0 ; �Z � 0 ; D � 0 ;

�3� �x � 0 ; �Z � �Z3 6� 0 ; D � 0 ;

�4� �x � �x4 6� 0 ; �Z � �Z4 6� 0 ; D 6� 0 : �8:10�

In case (1), the zero point is the origin, which remains a
zero point for all values of m, l. So, the point �x � �Z � 0 is
mapped onto the entire �m; l�-plane.

In case (2), when the zero points lie in the x-axis, fromEqn
(8.9) we obtain

�x2 �
lÿ 2

l
; �Z � 0 : �8:11�

The condition for the existence of a real root �x2 implies that
the �Z � 0 line is mapped onto almost the entire �m; l�-plane,
with the exception of the band 0 < l < 2. For each admissible
l there exist two zero points with the coordinates ��x 1=2

2 , i.e.
lying in the x-axis symmetrically on either side of the origin.
The values of j�x2j < 1 correspond to the l > 2 region; such
zero points are located between the myxines. The values of
j�x2j > 1 correspond to the l < 0 region, and the zero points
are positioned outside the myxines.

In case (3), when the zero points lie in the Z-axis, we obtain

�Z23 �
mÿ l� 2

lÿ m
; �x � 0 ; �8:12�

so that the �x � 0 line is mapped onto the band m < l < m� 2
in the �m; l�-plane. Each admissible pair m, l generates two
zero points located symmetrically (above and below) with
respect to the origin.

Finally, in case (4) the nonzero roots �x4, �Z4 of system (8.9)
are bound by the relationships

�Z24 �
1

2lÿ m
ÿ l2

�2lÿ m�2 ;

�x24 � �Z24 �
ÿm

2lÿ m
: �8:13�

One point in the parametric �m; l�-plane corresponds to each
zero point �x4, �Z4 of this kind. In turn, any pair of admissible
values m, l generates four zero points (one in each quadrant of
the plane) located symmetrically relative to the x- and Z-axes.
As follows from Eqns (8.13), the region of admissible values
of m and l (i.e. the region where real roots �x4, �Z4 exist) is
defined by two simultaneous inequalities

F1�m; l�4 0 ; F2�m; l�5 0 ;

F1�m; l� � l2 ÿ 2l� m ;

F2�m; l� � l2 ÿ �mÿ 2l��m� 1� : �8:14�

So, from one to nine zero points �x, �Z, whose coordinates are
specified by Eqns (8.10) ± (8.13), can correspond to a given
pair of parameters m, l.

The separatrix lines themselves are generated only by
hyperbolic zero points, at which the condition

q2C1

qx2
q2C1

qZ2
<

�
q2C1

qx qZ

�2

�8:15�

is fulfilled in addition to Eqns (8.9), and in some cases by
parabolic zero points corresponding to the equality in (8.15).
When the opposite inequality is fulfilled, the separatrix
degenerates into a point in the �x; Z� plane (the elliptic case).
Plotted in the figures of Ref. [68] are the regions of the m, l
parameters for which the zero points are hyperbolic and the
regions of elliptic points, the boundaries defining the
parabolic points.

Also notice that for 0 < l < m and m < l < 0 all the force
lines, including the separatrices, are closed. In the opposite
cases, the force lines (including the separatrices) may have
branches going to infinity with slopes Z=x � � ��������������������

l=�lÿ 1�p
.

8.3.3Morphology of magnetic force lines near the center. In the
consideration of the plasma configuration, the situation at the
center is of prime importance. Expanding expression (8.8) in a
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series for x! 0, Z! 0, we obtain

C1 � �lÿ 2�x2 � �mÿ l� 2�Z2 ÿ �x 4 � Z4� � 6x2Z2 � . . .

�8:16�

The equation of the separatrix passing through the center is
C1 � 0. When inequality (8.15) is fulfilled, i.e. with
fl > 2; l > m� 2g or fl < 2; l < m� 2g, we have a hyper-
bolic point at the center of the �x; Z� plane, with branches of
the separatrix emanating from this point. The separatrix
branches near the center represent two intersecting straight
lines

Z � �x
��������������������
2ÿ l

m� 2ÿ l

s
: �8:17�

Consider the region fl4 2, l4m� 2g in greater detail.
The rays fl � 2, m5 0g and fl � m� 2, m4 0g serve as its
boundaries. At the first boundary, the central zero point is
parabolic and the separatrix near the center appears as a
horizontally oriented parabola Z2 � x 4=m. In this case m is
positive: the plasma current has the same direction as the
current in the myxine. The plasma is concentrated here as a
horizontally extended layer and we have an ultimate a-mode.
If we recede from this boundary towards lower x, the
inclination of the separatrices to the x-axis becomes positive
and increases. If now m be reduced for a fixed l < 0, the
inclination will increase further to attain 45� for m � 0 and
become greater than 45� for negative m. Thus occurs a
transition to the b-mode. At the second boundary l � m� 2
even for m < 0, and we obtain the ultimate b-mode. Near the
center the separatrix branches transform into vertically
oriented parabolas x2 � Z4=�ÿm�: the plasma is concentrated
as a vertical layer.

8.3.4 Frame of the belt. Solution (8.8) is formally defined in the
entire �x; Z� plane. Now consider the `excision' of finite
configurations and the construction of magnetic sheaths
conjugated with them. Generally, this conjugation necessi-
tates the fulfillment of two conditions: first, the continuity of
the normal component of the magnetic field, i.e.

Cpl�x; Z�
����
Gÿ0
� Cvac�x; Z�

����
G�0

; �8:18�

and, second, the equilibrium condition��HCpl�2
8p

� P

������
Gÿ0
� �HCvac�2

8p

�����
G�0

: �8:19�

We perform the excision of the plasma volume over the
surfaces C � C0 and C � CM (Fig. 16a). The C function
and its normal derivative are specified on the plasma side of
the interface. The Laplace equation is obeyed in the magnetic
sheath. If we restrict ourselves to a relatively narrow sheath,
the field in the sheath can be found by seeking the solution of a
conventional Cauchy problem as a series in powers of nÐthe
normal distance from G:

C � C
���
G
�n qC

qn

����
G
� n2

2

q2C
qn2
� . . . �8:20�

The first two terms are determined by the boundary
conditions, the third and succeeding terms can be found

from the Laplace equation. A specific scheme for calculating
the terms of expansion (8.20) is outlined in Ref. [68].

With the knowledge of the magnetic sheath of the belt, it
can be conjugated with supported conductors which form, in
concert with myxines, the magnetic configuration of the
system.

And one further remark. As noted in the introductory
section, the approximation of d-like transition layers may be
too coarse in some cases, requiring that they be `spread' by
setting them off by an `edging.' Since we are dealing with an
equilibrium, the edging region should also be described by the
GSh equation

DC � ÿ4p dpk
dC

; �8:21�

where pk�C� is the magneto-baric characteristic in the edging
region. Substituting the expansion

C � C0�s� � nC1�s� � n2

2
C2�s� � . . .

and taking into account thatC0�s� is constant alongGM while
C1�s� � H�s�, the magnetic field strength along GM, we
obtain

C2�s� � ÿ4p dpk�C0�
dC0

and so on.
Examples of `cut-out configurations' with l � 2, 0, and

ÿ0:5 for m > 0 (the a-mode) are given in Fig. 16b.

8.3.5 Integral configuration characteristics. First consider the
currents through the belt and the force acting on a myxine. If
the external configuration boundary is theC � C0 force line
at which the pressure vanishes, three currents appear in the
system: the current Jm through the myxine, the current JV
through the plasma volume, and surface currents Js at the
boundary between the plasma and the magnetic sheath of
myxines. Their magnitudes are given in Table 3. In particular,
the values of Js relate to themagnetic sheath of the myxine, its
smallest distance from the configuration center being
xM � 0:7. Also given in Table 3 are the dimensionless
magnitudes of the force with which the myxines are attracted
together. Notice that this force is zero for l � ÿ0:5. This is a
consequence of the fact that, as is easy to verify,

Fx �
J 2
m

ac2
�1� 2l� : �8:22�

Indeed, when their potential is taken as mZ2 [see Eqn (8.8)],
the intrinsic magnetic field of the currents flowing through the
plasma becomes zero in the Z � 0 plane, where the myxines
are located. Consequently, the force acting, e.g., on the right
myxine is determined only by the action of the left myxine and
the `far quadrupole.' This gives formula (8.22). Clearly for

Table 3.

l m JV=Jm Js=Jm Fxac
2=J 2

m

2
2
1
1
0
0
ÿ0:5
ÿ0:5

2
4
2
4
2
4
2
4

ÿ0:331
ÿ0:515
ÿ0:405
ÿ0:669
ÿ0:544
ÿ0:919
ÿ0:818
ÿ1:377

0.033
0.059
0.059
0.106
0.097
0.174
0.133
0.235

ÿ5:0
ÿ5:0
ÿ3:0
ÿ3:0
ÿ1:0
ÿ1:0
0:0
0:0
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l � ÿ0:5 there occurs a double equilibrium Ð that of the
plasma and the myxines.

Now let us discuss the issue of the configuration stability
with respect to convection. The most dangerous MHD
instabilities of plasma configurations are those of the
convective type. Therefore there is a need to consider first
the stability of the belts and, especially, their peripheries with
respect to convection. Although b � 1 in the central region of
the belts, in the neighborhood ofC � C0 the magnitude of b
nevertheless tends to zero while in the neighborhood of
C � CM, too, it can be rather small. For b5 1 the perturba-
tions of theE-field are potential and the stability criterion is of
the form (Longmire ±Rosenbluth ±Kadomtsev)

Q � U�n0H�P
P�n0H�U < g : �8:23�

Here U is the specific volume of a magnetic force tube

U�m; l;C� � dV
dC
�
�
dl

H
;

n0 is a unit vector of the external normal to the C � const
surface and g is the adiabatic exponent. Figure 16b, c shows
plots of the dimensionless function U1�C1� � UJm=a

2c for
m � 4 and two values of l equal to 2 and ÿ0:5; also plotted is
the dependence Q�C1� for the same l and m. One can see that
the plasma volume is stable as far as the external boundary
P � 0 for l � 2, with Q monotonically decaying towards the
periphery and remaining negative forC1 < 0. As shown by a
number of numerical examples, a similar situation occurs for
different m > 0 if l5 0. For lower l, the periphery can
become unstable. In particular, for l � ÿ0:5 only the
internal region with C1 4 0:1 is stable, which corresponds to
the necessity of truncating the configuration for nonzero
pressure P � 0:6P0. This fact is consistent with what was
stated in Section 3.1 Ð holding the myxines adversely affects
the plasma confinement.

8.3.6 Numerical simulation of the formation of the Galatea-
Belt conéguration. In the groups supervised by K V Brush-
linski|̄ [69] and G I Dudnikova [70], dedicated codes were
developed and preliminary 2-D simulations of the formation
of the Galatea-Belt configurations were performed. A system
of the MHD equations was solved in a rectangular range; the
solution was shown to reach the quasistationary stage
corresponding to the static solutions with a single-valued
magneto-baric characteristic P�C�. As shown in Ref. [70], in
the a-mode it is possible to induce a magnetic sheath around
the myxines virtually devoid of plasma by changing the
current through them. At present (1998), work is underway
to calculate the dynamics of the belt configuration in the
axisymmetric case with ohmic heating.

8.4 Experimental modeling of the formation of the
Galatea-Belt configuration
In the Institute of General Physics, Russian Academy of
Sciences, an experimental UP-1 facility (Fig. 15b) intended
for the studies on Galatea-Belt formation in a rectilinear
discharge was devised under the supervision of A G Frank
[71]. Configurationally, it is close to the facility for the studies
of current sheaths. In UP-1 the discharge is likewise
accomplished in a 1-m-long fused silica tube 18 cm in
diameter. The myxines 2 cm in diameter are insulation-
coated. The UP-1 experiments were conducted with max-
imum current in the myxines Jm � 35 kA and a halfperiod of
180 ms. The characteristic magnitude of discharge current in
the plasma was Jp � 17ÿ18 kA and the halfperiod about 5 ±
6 ms. The discharges were accomplished without pre-ioniza-
tion for an initial pressure of � 3� 10ÿ2 Torr when the
working gas was Ar and 0.2 Torr in the case of He.

The plasma emission, recorded through a mesh electrode
using interference light color filters and a streak camera, at
different points of time is shown in Fig. 17. The use of
interference light filters made it possible to take photo-
graphs of the discharge in different spectral lines and thus to

a b

c d

Figure 17. Streak-camera photos of the plasma emission in the UP-1 facility made throughmesh electrodes, with Ar as the working gas (a ± cÐArII line,

d Ð CIII line): (a) t � 0:3 ms, a-mode, (b) b-mode, (c) t � 2:1 ms, a-mode, (d) t � 1:9 ms, a-mode.
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judge the general properties of the plasma configuration.
Frames a, c, and d relate to the a-mode and frame b to the
b-mode. At the initial stage of discharge the current sheath
and the mantles around the myxines are clearly visible
(frame a). Subsequently (frames c and d) the mantles
disappear due to the plasma contact with the myxines and
the chamber walls, for no care was taken in these
experiments to form the magnetic sheaths of myxines while
the diameter of the discharge chamber was too small. Black
strips are evident in the center of the pictures (c, d). Their
appearance results from depletion of the corresponding
atoms and ions with increasing electron temperature. The
most surprising thing about these `black holes' 4 1 mm
thick is that they produce sharp images, even though the
length of the plasma column is � 1 m. This fact indicates
conclusively that the configuration under discussion is very
stable.

Spectroscopic measurements of density ne and Te in Ar
averaged over the current sheath yielded the values
ne � 1015 cmÿ3 and Te � 30 eV for the current magnitudes
specified above [72].

9. Electric-discharge traps

With the exception of Section 8, plasma confinement has
been dealt with so far. Now we will touch on how the
plasma can be produced in Galateas by an electrode
discharge. This is how virtually all fusion traps came into
being. But here the cases in point are peculiar systems which
can be termed `electric-discharge traps' (EDTs) [73]. In
EDTs, the electric field and the flowing current serve many
functions: accomplish the ionization of the entering working
substance; heat the ions (directly and indirectly, via
electrons); provide particle confinement not only by the
magnetic field, but by the electric field as well; they can give
rise to acceleration of the plasma or its components; and,
lastly, in some cases accomplish autorecuperation, i.e.
energy withdrawal from a significant fraction of particles
escaping the trap.

Here we outline the experiments on three EDTs of
different types Ð an `electrostatic' plasma trap (ESPT), a
toroidal electric-discharge multipole trap (EDT-M), and
three-coil Galateas of the Galatea-A type (EDT-A).

The EDT discharges are characterized by a high electron
temperature and therefore, as a rule, are blue in color
irrespective of the kind of gas. This was clearly demon-
strated on EDT-M where Xe, Ar, N2, and He served as the
working substance. The kind of gas could not be identified
by eye. It was therefore proposed to term them `celestines'
(`blue').

Theoretically, the EDTs have not been adequately
studied. However, there is good reason to make a brief
review of the experiments for two reasons. First, amazingly
high plasma parameters were obtained for modest expendi-
tures and, second, they are little known to physicists; hope-
fully, familiarization with the experiments will foster this
avenue of experimental and theoretical investigation.

9.1 Electrostatic plasma trap (ESPT)
This trap was proposed by V V Zhukov and A I Morozov in
1969. The impetus to its invention was given by the plasma
lens experiment [74, 75] conducted with a hydrogen ion beam
of � 1 A in a moderate vacuum (� 10ÿ4 Torr). Under these
conditions, the ionization of the residual gas occurred in the

lens volume (a non-self-maintained discharge was initiated) in
crossed poloidal �E;H�-fields and, naturally, the resulting
ions were accelerated towards the lens axis. The surprising
thing was that a dark spot (channel) � 1 mm in diameter and
� 10 cm in length was clearly visible when viewing a rather
bright emission region along the lens axis. The spot was due to
the deflection of the resulting radiallymoving low-energy ions
induced by the magnetic field. The very fact of dark spot
formation is indicative of stability of the plasma configura-
tion. Naturally, the idea was conceived in designing a
magnetoelectric trap of the mirror-type. A diffusion-type
trap was made Ð a chain of five cells (Fig. 18a) [31, 76, 77].
Basically, the trap design was as follows: each cell constituted
amagnetic bottle with a magnetic field� 200 Oe in the axis at
the cell center and� 1000 Oe in the mirrors. An anti-turn was
placed in themedium cell plane to induce a zeromagnetic field
in some circle. This zero-field circle was intended to suppress
azimuthally asymmetric perturbations{. However, the role of
the zero-field circle was not limited exclusively to stabiliza-
tion. This separatrix surface intersected the electrode towhich
positive voltage was applied. As a result, it played the part of
the anode of the discharge circuit. The role of the cathode was
fulfilled by the axial magnetic line which met either the
chamber walls or a special axial electrode.

In this way a radial electric field was induced in the trap
volume. Tomake the potential distribution across the coaxial
magnetic surfaces more uniform, systems of coaxial electro-
des connected to a voltage divider were placed at the trap
ends.

The equipotential lines inside the cell constructed on the
basis of probe measurements for Up � 500 V are given in
Fig. 18b; plotted in Fig. 18c is theUp-dependence of the depth
Fmax of the potential well in the central cell. It is evident that
the value ofFmax in this case exceeds one-half the value ofUp.

The ESPT operation is as follows. Hydrogen (or deuter-
ium) is delivered to the central cell to become ionized in the
cloud of azimuthally drifting electrons. The resulting ions
accelerate towards the trap axis andmove further in the radial
direction. Most of the ions in this case cannot cross the
separatrix surface, which is at the anode potential Fa � Up,
because the ions are produced at a potential F� < Up. They
can escape the potential barrier Fa ÿ F� only due to
classical or anomalous collisions. When the system is
stabilized well and classical collisions are the governing
factor, it is easily seen that the ions crossing the anode
surface and reaching the chamber walls, which are at the
anode potential, impart a relatively small fraction of energy
to them. The main fraction of the energy eFa goes to the
electric circuit which induces the electric field in the trap.
Consequently, the trap itself is a recuperator. Improving the
recuperation efficiency is favored by a specific feature of
Coulomb collisions: they occur primarily at large distances
and are associated with the transfer of small portions of
energy. So, the Fokker ± Planck nature of the energy
variation for the bulk of the ions causes them to approach
the anode separatrix with a small energy scatter and to
escape it with a low velocity.

Of course, the ions do not move strictly along the trap
radii. Moreover, the cell dimensions are so selected that a
sufficiently strong randomization of ion motion occurs in the
�r; z�-plane. In this case, the cell chain behaves like a diffusion

{More recently, in the late 80s, anti-turns were incorporated in the `Taro'

trap for the same purpose [78].
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trap and the particle lifetime

t�N�p / N 2t1p ;

where N is the number of cells and t1p is the average particle
lifetime in one cell.

In an ESPT the energy is recuperated not only from the
ions. In principle, to a large extent the electron energy can be
recovered, too. This is because the plasma density peaks in the
central cell of the trap and reduces to a small value near the
ESPT ends. This is responsible for a `thermal' potential
difference

dF � kTe

e
ln

nmax

nmin
:

across the axis. In consequence, those electrons that move
towards the trap ends give up a significant part of their
thermal energy to the electric circuit of the system.

It is valid to say that an ESPT behaves, with respect to the
charged particles inside of it, as a kind of thermoelement in
which the cathode and the anode are surrounded respectively
by ion and electron barriers (Fig. 18d).

The barrier for electrons is induced by the magnetic field
between the axis and the separatrix, and the barrier for ions by
the crimps of the equipotential lines along the trap. That is

why in experimental studies attention was above all given to
the resultant potential well{.

9.2 Electric-discharge quadrupole EDT-M Galatea trap
(`Avos'ka')
The next Galatea studied in the electric-discharge mode was
the toroidal quadrupole EDT-M trap (Fig. 19a). It was
proposed by A I Morozov and implemented by A IBugrova,
A S Lipatov, and V K Kharchevnikov [5, 79 ± 81]. The trap
consisted of two parallel rings with currents flowing in one
direction. The major and minor ring radii were 30 cm and
2 cm, respectively. The coils were wrapped in foil connected
electrically to the chamber walls. Rigid braces were used to
obviate the attraction of the coils to one another. The coil
separation was 10 cm. The experiments were conducted
primarily for two values of ampere-turns in the myxines:
Jm � 1500 A and Jm � 12000 A. The z-component of the field
as a function of radius in themedium (between the coils) plane
is plotted in Fig. 19a. Noteworthy is the effect of toricity
responsible for a radial shift of the magnetic field zero.
Specifically, if two parallel conductors rather than two rings
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Figure 18.Magnetoelectric ESPT trap: (a) schematic diagram: 1Ðmirror coils, 2Ð `anti-turn,' 3Ðanode, 4Ðsectional cathode; (b) distribution of the

floating potential in the central ESPT cell for Up � ÿ1250 V, Hpr � 4 kOe; (c) dependence of the well depth on Up and the pressure in the vacuum

chamber; (d) functional diagram of the ESPT as a plasma `decay'-mode recuperator: 1 Ð plasma volume, 2 Ð ion barrier, 3 Ð electron barrier, 4 Ð

energy receiver.

{Unfortunately, for several reasons the experimental studies on the ESPT

did not last long, and only fragmentary results were obtained during that

period.

November, 1998 On Galateas ì magnetic traps with plasma-embedded conductors 1085



were dealt with, the zero of the field would be located between
them. But owing to toricity it is located at R0 � 17:5 cm
instead of Rc � 15 cm. The second important manifestation
of toricity is the field strength asymmetry with respect to
r � Rc. For r < Rc the field has a maximum of
�Hz�max � 80 Oe at r1 � 11 cm, whereas for r > Rc it peaks

at Rd � 21 cm and the field (the `barrier field') at this point
amounts to � 20 Oe. Referring to the figure, the field decays
slowly beyond the barrier.

The plasma in the trap was produced by a straight
discharge between an incandescent tungsten filament and
the chamber. In principle, sustaining the pressure in the
chamber at � 10ÿ4 Torr would suffice to maintain a
discharge. However, the discharge was more stable in the
flow-type mode. In this mode, a tube� 3 mm in diameter was
placed near the discharge to deliver the gas subsequently
drawn away by a pump. For a voltage of 4 100 V, a
discharge was initiated between the incandescent cathode
and the chamber, its color being blue irrespective of the sort
of gas.

Despite its exceptional simplicity, studies of the EDT-M
characteristics and the processes therein present specific
difficulties. They arise from the novelty of the situation
involved and a large number of independent parameters,
such as the intermyxine distance, the myxine cross section
diameter, the currents through the myxines, the locations of
the cathode and the gas supply, the cathode heat, and the
voltage across the discharge. The first series of papers dates
back to the early 90s (see the references cited above). Valuable
results were obtained, which we discuss below.

First and foremost, it was discovered that there exist two
forms of discharge. In one of them, which will be named the
`mirror form,' the main glow was confined to the plasma ring
(plasmoid), with a small diameter of� 2ÿ2:5 cm. In this case,
the plasma glow in the vicinity of the separatrix enclosing the
myxines was quite weak. This part of the configuration was
termed `mantle.' The `mirror form' was observed when the
distance of the cathode to the system axis was� 13:5 cm. For
Jm � 1500 A, the magnetic field intensity was� 50 Oe and for
Jm � 12000 A it was � 400 Oe.

If the cathode is moved in the radial direction, the
plasmoid, too, moves along with it. The discharge pattern
changes substantially when the cathode is in the immediate
vicinity (r0 � 17 cm) of the zero of the vacuummagnetic field.
In this case, the plasma occupies the immediate neighborhood
of the separatrix along its entire length. This was named the
`barrier form' of the discharge. The volt-ampere discharge
characteristics for a constant cathode heat are similar in both
regimes but the barrier-discharge voltage is lower. The typical
magnitudes of discharge current are � 200 ± 400 mA and of
the voltage � 200 ± 400 V. Lastly, the mirror discharge is
transparent-blue whereas the barrier one is less transparent
and its glow is bluish-white.

As expected, probe measurements revealed that higher
plasma parameters were inherent in the mirror regime, which
therefore received primary emphasis at that time. The radial
distributions of the density, the electron temperature, and the
electric potential in the medium plane in this regime, with a
current of 12000 ampere-turns flowing through the myxines,
are plotted in Fig. 19b ± d. Referring to the figure, the
parameters obtained with different gases are close to each
other: ne max � 1012 cmÿ3, Temax � 50 eV, the potential well
depth Fmax � ÿ150 V for the discharge voltage Up � 200 V.
These data are unique. Such a high electron temperature in a
rectilinear low-current stationary discharge, we believe, has
been attained for the first time. The high electron temperature
accounts for the similarity of blue glow in different gases.
That is why it was suggested that the name `celestines'{ be
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Figure 19. Quadrupole electric-discharge EDT-M Galatea trap: (a)
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Ð position of the cathode in the barrier regime, K2 Ð position of the
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Jp�N2� � 200 mA.)

{Celestis Ð sky-blue.
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used for the blue discharges realized in the EDT-M-type
systems. Several significant conclusions, above all about the
ion component, can be drawn from the experimental data
cited above. The Larmor ion radii in the magnetic fields
involved are high (5 100 cm), and hence the ions are confined
in the trap by the electrostatic field (`reside in a potential
well'). The average ion energy can be estimated from the well
profile and the electron density distribution:

�Ei � 1

3
ejFmaxj ;

whereFmax is the well depth. In the case of Fig. 19d, this yields
Ei � 50 eV. The ion escape along the lines of force is hindered
by the convergence of the equipotential lines near the
myxines, i.e. the formation of electric `mirrors' rather than
magnetic ones and the conservation, to a degree, of the
transverse adiabatic invariant

J?; i � V?; ih � const :

Here V?; i is the ion velocity component in the direction
normal to the equipotential lines and h is the distance
between the surfaces with equal potentials.

On the strength of the above considerations, even
though they are undoubtedly subject to refinement, the
form of the discharge under discussion was termed the
`mirror' regime.

It is not the mere color that makes the celestines
remarkable. Also impressive is their low-current property
exhibited for a high discharge voltage, relatively large system
dimensions, and very weak magnetic fields. With the data
given in Fig. 19, we estimate the classical conductivity by the
formula

s? � e2n2ec
2

s0H 2
;

to obtain a value in reasonable agreement with the con-
ductivity estimated from the discharge parameters Jp and
Up. These same data make it possible to estimate the
magnitude of b in the mirror regime (from the vacuum field
in the cathode region). Hence we have b � 0:1. Estimating the
mirror-regime energy times by the formula

tE � 3

2

�
n�Ti � Te� d3r

JpUp

gives tE � 10 ms for Jm � 1500 A and tE � 70 ms for
Jm � 12000 A.

The studies of the barrier regime commenced only
recently (in late 1997). The name `barrier regime' arose from
the fact that plasma in this case fills the region of the zero of
magnetic field and the minimum confining field is the barrier
field. The strength of this field isHb � 20 Oe for Jm � 1500 A
and Hb � 140 Oe for Jm � 12000 A. Preliminary data have
now been obtained for a weak field: ne max � 5� 1010 cmÿ3,
Temax � 28 eV, Fmax � ÿ25 V. To these values correspond
the classical conductivity, bb � 0:1, and tE � 40 ms. A
significant increase in tE is associated with a drastic increase
in the volume occupied by the plasma.

Despite the incompleteness of the available data, the
results of the barrier regime research are highly optimistic.
In this connection, efforts are underway to develop an

`Octupole' Galatea trap, with an average diameter of the
plasma volume of 60 cm. The barrier field in this trap can
attain a magnitude of 1000 Oe.

9.3 Electric-discharge version of Galatea-A
In the Moscow Institute of Radio Engineering and Electro-
nics, too, experiments were conducted on electric-discharge
versions of Galatea-Awhich received the name `Gala' [82]. As
already noted in Section 2.3, this system of three coils makes it
possible to obtain a diversity of magnetic and, accordingly,
plasma configurations by varying the magnitude and the
sense of the current Jm in the central myxine with respect to
the current Jpr in the mirror coils. The two most notable
configurations are depicted in Fig. 20a, b. As in the case of
EDT-M, there is an incandescent cathode and a delivery of
xenon to its neighborhood. The experiments were made for a
constant number of turns in the mirror coils to provide one
and the same field Hpr � 100 Oe in the mirrors. The volt-
ampere discharge characteristics for different field configura-
tions are presented in Fig. 20c. Referring to the figure, they
are close to the characteristics observed on EDT-M for
similar parameters of the magnetic field.

10. Conclusions

Though far from complete, the information on Galateas
summarized in this review nevertheless allows the following
conclusions:

(1) The technical difficulties arising from the magnetic
suspension of myxines and their operation in reactor
conditions can be overcome with present-day technologies.

(2) The orientation of research to the development of
traps with b0 � 1 is justified both from scientific and practical
standpoints.

(3) Galateas are widely diversified, and this provides
additional reason to regard them as promising systems.
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Figure 20. Three-coil electric-discharge traps of the Galatea-A type: (a)

Gala model and two magnetic configurations 1 and 2, (b) volt-ampere

characteristics for these configurations at Hpr � 150 Oe, (c) radial

distributions of the electric density, the electron temperature, and the

electric potential for z � 0 for configuration 1.
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(4) The scope of experimental and theoretical research has
now been defined. Of vital importance are studies of the
plasma ± field transition layer.

(5) Electric-discharge traps are an important tool for
producing and confining plasmas with particle energies
� 10 ± 100 eV.

(6) Unlike low-b traps, Galateas, or `magnetic vessels,'
constitute a unique tool formany plasma technologies and for
hypertemperature reactors (D3He, DD etc.).
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