
Abstract. A heat-releasing admixture in a liquid or gaseous
medium gives rise to and is transferred by convective flows and
gravitational density flows, making it possible to speak of its
self-induced transfer. In contrast to classical convection pro-
blems, however, the heat releasing field is not specified in this
case and is solved self-consistently as also are the temperature,
velocity, and admixture concentration fields. Owing to its strata
stabilization and turbulence suppression effects, the admixture
may be `self-closed' in a turbulent flow. Exact solutions of
relevant nonlinear problems are presented and analyzed.

1. Introduction

In classical convection problems heat is generally brought
into a fluid (gaseous) medium through the boundaries of the
region under investigation. Meanwhile it may be well to
consider qualitatively different problems, where the source
of heat is an admixture transferred by the motions in the
medium, including the motions (convection) induced by the
admixture itself. An example of such an admixture are
aerosols in the atmosphere, adsorbing short-range solar
radiation. The aerosol can be considered as a bulk source of
heat in the air, which induces convection and, hence, the
transfer of the aerosol itself. It has been suggested that an
admixture of this type (coal dust, soot) could be used to affect
some atmospheric processes [1 ± 4]. Full-scale experiments [2]
provided support for this idea. Some other possible applica-
tions refer to the hydrodynamic effects of natural and
anthropogenic aerosols of varied origin in the atmosphere
[4]. It is well-known, for example, that poorly transparent air
over large cities and industrial regions can give rise to
considerable thermal effects. It would be interesting to study

the influence of heat sources (sinks) of this type on convection
and relevant atmospheric circulations. Other examples are
dust storms in the atmosphere, the conceivable dynamic
effects of volcanic aerosols, and atmospheric influences of
forest fires. In meteorological literature the formation of
tropical cyclones over the Atlantic was hypothesized to relate
to huge dust clouds over the ocean brought from the Sahara
Desert. A very important, though specific admixture is water
vapor in the atmosphere. Below we show that nontrivial and
diverse effects arise even in the simplest case when heat-
release is proportional to the admixture concentration.

2. The main mechanisms of self-action of a heat-
releasing admixture

The occurrence of a heat-releasing admixture in a medium
makes the convection problem much more complicated than
in the classical case, since the heat-release field is not known in
advance and should be found from the solution to the
problem together with the fields of temperature, density,
pressure, velocity and concentration of the admixture.
Below we show schematically the main interrelations in such
a system:

Here M is the field of the source of the heat-releasing
admixture, m is the fractional density of the admixture (in
kg mÿ3 units), Q is the heat-release intensity, y, r, p are
perturbations of temperature, density and pressure, respec-
tively (in the physics of atmosphere `potential temperature' is
conveniently used instead of temperature [5]); v is the
perturbation of the average (non-turbulent) velocity; and K
is the effective coefficient of turbulent exchange.

As is seen from the scheme, the self-influence of the
admixture can, in general, develop of three mechanisms. The
first deals with self-lifting [2] of the admixture, i.e. floating of
the admixture medium due to the buoyant force produced by
the heat-releasing admixture. The second mechanism relates
to the appearance of horizontal density and pressure
gradients and, hence, gravitational density flows in the
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medium which transfer, in addition to other substances, the
admixture inducing them. It should be emphasized that in this
case convective instability does not necessarily arise and the
density stratification may be quite stable. The third mechan-
ism is concerned with the influence of the admixture on the
turbulent exchange. To be more precise, there are two
mechanisms of such an influence, i.e. the generation of shear
flows during heat-release and the resultant changes in the
density stratification{.

The above scheme is rather complicated for every
mechanism, and it may appear that the relevant self-
consistent hydrodynamical problems could be studied only
numerically. Nevertheless, we present below some analytical
solutions, which enable us to reveal some significant regula-
rities in nonlinear phenomena of this type. Similarly to
classical convection problems, the mathematical problems
under consideration involve the Navier ± Stokes equations,
and the equations of continuity and heat transfer (in many
cases one can restrict oneself to the Boussinesq approxima-
tion [6]). The heat transfer equation includes, in addition, a
bulk heat source associated with the admixture, which in
simple cases is proportional to the concentration (fractional
density) of the admixture. Besides, the set of equations
contains the equation for the admixture transfer. When
changes in the turbulence are considered (the third mechan-
ism of self±action), the problem should be closed with respect
to turbulent flow.

3. Example of the nonlinear dynamics
of `self-lifting' of the admixture

As an example of the first mechanism let us consider the
dynamics of a stable axially symmetric free-rising convective
jet induced by a point source of a heat-releasing admixture in
a medium exhibiting stable stratification. In the approxima-
tion of the boundary layer extended along the jet axis [7 ± 9]
the set of equations can be presented as
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Here r and z are the radial and the vertical coordinates (the
source of the admixture occurs at the point r � 0, z � 0); u
and w are the corresponding velocity components; y is the
deviation of the temperature from the background; m is the
fractional density of the admixture; a is the thermal expansion
coefficient; r is its average density; g is the free fall
acceleration; g is the vertical background gradient of the

potential temperature (we consider the case of stable
stratification, i.e. g > 0); K is a dimensional coefficient
(K sÿ1 m3 kgÿ1) characterizing the `heating capacity' of the
admixture. The exchange coefficient K is believed to be the
same for all substances, as is usual, for example, in the
description of turbulent exchange in the atmosphere.

It is assumed that away from the jet axis all the
perturbations are damped:

u � w � y � mÿÿ!
r!1 0 : �5�

In view of symmetry, the following conditions should be met
on the jet axis:

u � qw
qr
� qy

qr
� qm

qr
� 0 at r � 0 : �6�

Plus the integral condition of conservation of the admixture
flux along the jet,

2p
�1
0

mwrdr �M ; �7�

where M is the intensity of the heat-releasing admixture
source.

The last term in Eqn (1) takes account of the dependence
of the buoyancy on the admixture weight. In many cases it is
irrelevant. On the whole, Eqns (1) ± (7) naturally generalize
the available statements of the problems on free-rising
convective jets [7 ± 9].

As is easy to check, the problem has a self-similar solution
[9]
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where the quantity R � 8Kz
�
g=�KM��1=2 means the radius of

the rising convective current.
As distinct from many problems on convective jets [7 ± 9],

in this solution the heat source is not concentrated at the point
r � 0, z � 0, but distributed throughout the jet and is not
known a priori. The medium volume containing the heat-
releasing admixture floats up. Interestingly, in this solution a
decrease in the buoyancy of each element of the flow as a
result of heat release is exactly canceled by an equal decrease
in its buoyancy due to rising in less dense layers of the
medium. Therefore the buoyancy is zero everywhere. Such
behavior with neutral buoyancy has appeared to be rather
typical for convection induced by bulk heat-release in a
medium exhibiting stable stratification [3, 4, 9]. With regard
to real boundary conditions the solutions can depart slightly
from this behavior, but they tend to approach it.

4. Gravitational density flows induced by the
admixture

By way of example let us consider a situation arising upon the
interaction of a floating cloud of a heat-releasing admixture
with a horizontal jump in the medium density. The latter can
serve as amodel of an inhibiting layer in the atmosphere. Such
layers, where the air density more or less sharply decreases
with height, are widespread and have a profound effect on the
vertical transfer in the atmosphere.

{As is the convention in atmospheric physics and geophysical hydro-

dynamics, by density stratification we mean the distribution of density

with height. If the density of the medium decreases with height rather fast,

an element of the medium displaced upwards turns out to be heavier than

the surroundings and is therefore acted upon by a returning force. Such a

stratification is called stable. Evidently, vertically heterogeneous heating

of the medium affects the stratification which, in turn, influences the

turbulence [5].
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Figure 1 shows schematically the geometry of the
problem. The jump in density (potential temperature) takes
place at the level z � 0. Over and above the jump the medium
is assumed to be neutrally stratified. Since the cloud floats in
the lower medium (in the region z < 0), its density r3 is less
than the density r2 of the lower medium. The cloud continues
to release heat and its density further decreases but it is not
expected to have time to fall to values less than the density of
the upper medium r1. Thus, the admixture cloud occurs at the
interphase between two media and has an intermediate
density: r1 4r3 4r2. Similar problems are encountered, for
example, in oceanology [10]. A simple consideration shows
that in such cases horizontal density gradients originate in the
liquid with intermediate density giving rise to horizontal
divergence, i.e. spreading of the liquid over the interphase
(`intrusion' of the liquid with intermediate density over the
interphase). To describe the nonlinear dynamics of the
intrusion, we will use the Barenblatt model [10]. However,
our situation is more complex than in oceanology, since the
cloud releases heat, and, hence, its buoyancy is not constant,
but increases with time. Therefore model [10] should be
generalized.

As in Ref. [10] we consider an integral model dealing with
values averaged in the horizontal direction. We neglect
mixing of the cloud with the surroundings, but take account
of friction, i.e. vertical exchange of momentum. We deal with
the `viscous' stage of the cloud evolution, when its horizontal
dimension greatly exceeds the vertical one and the horizontal
pressure gradient is, for the most part, balanced by friction.

The excess pressure arising in the liquid with intermediate
density, as is easy to see [10], is expressed through the
thickness h�x; y; t� of the liquid layer and the media densities
as

p � gh�r2 ÿ r3��r3 ÿ r1�
2�r2 ÿ r1�

:

The proportion of the liquid with intermediate density, which
has penetrated into the upper layer is

s � h1
h
� r2 ÿ r3

r2 ÿ r1
; 04s4 1 for r1 4r3 4r2 :

We assume that the admixture is uniformly distributed
throughout the cloud. Temperature and density perturba-
tions upon heat release linearly increase inmodulus with time,

Dy3 � Kmt ; r3 � r2 ÿ �raKmt ;

where r is the average density.

Model [10] considers two equations for two unknown
functions of the horizontal coordinates and time, i.e. the
thickness of the cloud h�x; y; t� and its horizontal velocity of
spreading v�x; y; t�. The former equation is the balance
between the vertical pressure gradient forces
Fp � ÿgrad�ph� and the friction force Fr � v=h. The latter is
the equation for the conservation of the cloud mass:

qh
qt
� div�hv� � 0 :

Eliminating one unknown, we can easily reduce the set to a
single equation of the type of the nonlinear heat capacity
equation [10, 11]:

qh
qt
� k � D�h4� : �8�

Here D is the horizontal Laplace operator,

k � g�r2 ÿ r3��r3 ÿ r1�
8cn�r2 ÿ r1�

;

n is the dynamic viscosity of the medium, and c is a
dimensionless empirical constant.

In our case all the above equalities are also valid, but the
coefficient k depends on time, since the cloud density r3
depends on time. This makes the problem not self-similar
since the exponential asymptotes are absent. But the intro-
duction of a new time-dependent variable t � � t0 k�t 0� dt 0
formally reduces Eqn (8) to the form obtained in Ref. [10].
Solutions generalizing self-similar solutions of Ref. [10] were
found in Ref. [12]. They describe gravitational spreading of
the admixture cloud over the interphase. But, distinctly from
Ref. [10], the time dependence of the spreading is more
complex than the exponential spreading, and the spreading
time is finite. At a certain moment the cloud density, due to
heat-release, becomes less than r1, the cloud breaks through
the inhibiting layer and the entire admixture penetrates into
the region z > 0.

Note that full-scale experiments [2] are very similar to
the situation considered. In the experiments the clouds of
coil soot did indeed break the inhibiting layers in the
atmosphere, thus demonstrating the conceptual possibility
of active influences on some atmospheric processes. How-
ever the measurements performed in Ref. [2] are insufficient
for a quantitative comparison of the theory with experi-
ment.

5. Example of self-action of an admixture
related to its influence on the turbulence
of the medium

Suppose a turbulent flow (for example, a horizontally
homogeneous atmospheric layer near the ground) contains a
weightless heat-releasing admixture. The heat release
increases the medium's temperature. If the temperature at
the low boundary remains unchanged (the temperature of soil
or water surface is more conservative than that of the air) the
medium becomes increasingly warmer than the low boundary
z � 0. This means the appearance of a stable density
stratification in the medium and the suppression of turbu-
lence, which , in turn, influences the transfer and distribution
of the admixture.

In the simplest case of horizontally homogeneous plane-
parallel flow, the stationary set of hydrodynamics equations

x0

z

y1; r1

y2; r2

y3�t�; r3�t�

Figure 1. Scheme of the effect of a heat-releasing admixture cloud with a

horizontal density jump. The latter takes place at z � 0. The cloud region

is dashed; the arrows denote current lines.
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and heat and admixture transfer equations have the form

d
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Here u is the horizontal velocity, K is the turbulent viscosity
coefficient, and aT, am are dimensionless quantities describing
the difference between the coefficients of turbulent heat and
admixture transfer and the coefficient of viscosity. To self-
close a turbulent current, we will use a stationary equation for
the balance of the turbulent energy in the Kolmogorov ±
Monin form [13, 11, 14]:
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Here l is the turbulence scale, b is the specific kinetic energy of
turbulent pulsations, and c1 is a dimensionless empirical
constant. Recall that the first term in Eqn (12) describes the
generation of turbulence, the second presents its damping (at
dy=dz > 0) due to the buoyant force, and the third term
stands for the turbulence dissipation. The diffusion of
turbulent energy is not taken into account in Eqn (12). This
simplification is justified in situations with fairly stable
stratification. In our case its validity can be checked a
posteriori.

As to the turbulence scale, in the case considered of a fairly
stable stratification, the vertical scale of turbulent pulsations
is relatively small and limited mainly by the buoyant force. If
the characteristic velocity of the turbulent motion is of the
order of b1=2, it is easy to assess that a particle of the medium,
moving in the vertical direction at this velocity, will travel a
distance of the order of

�
b=�ag dy=dz��1=2 before it is brought

to stop by the buoyant force. We will take this value as the
turbulence scale

l � s

�
b

ag�dy=dz�
�1=2

; �14�

where s is a dimensionless constant. This hypothetical `self-
closure' is in line with the dimensions and similarity
considerations [4, 14]. Now the set (9) ± (14) is closed. We
will dwell upon the boundary conditions.

Equations (9) and (11) correspond to constant vertical
diffusive flows through themedium layer under consideration
(the atmospheric layer near the ground is commonly referred
to as the `layer of constant flows' [13, 11]).We are dealingwith
stable stratification when the current of the heat-releasing
admixture moves from the top downwards:

amK
dm
dz
�M1 � const > 0 : �15�

At the lower boundary z � 0 we can take, for example, the
admixture to be of absorbence m � 0 and adherence u � 0.
The momentum flux through the layer under study can be
expressed, as is customary in the theory of the layer near the

ground, via the `friction velocity' u� as

K
du

dz
� u2� : �16�

The temperature at the lower boundary can be taken to be
constant, y � y0. The boundary condition at the upper layer
is not so obvious. Since in this case a general solution to the
nonlinear set (9) ± (14) can be found, we need not preset all the
boundary conditions. After the general solution has been
found, we can consider various boundary conditions.

It follows from Eqns (13) and (14) that
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:

In view of these relations, the third term in Eqn (12) appears
to be proportional to the second and Eqn (12) takes the form
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where l � 1� �s2c4aT�ÿ1. At K 6� 0 it results in the unambig-
uous relation between vertical temperature and velocity
gradients,
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where N � �ag dy=dz�1=2 is the `buoyant frequency' (Brent ±
Vyasyalay frequency).

In the absence of a heat-releasing admixture the set of
equations has a solution with linear profiles of velocity and
temperature:
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� lagP 2
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agP

:

Here the normalised heat flow P � aTK dy=dz is constant (in
the absence of bulk heat-release). This solution is in agree-
ment with traditional views of the structure of a turbulent
layer of constant flows of a stable stratification [14].

In the presence of an admixture, it follows fromEqns (10),
(16) and (17) that

m � ÿ u 4
�

agK
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dz

�
1
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�
: �18�

Equations (17) and (18) can be reduced to a single equation
linear with respect to the function Kÿ1,

d2

dz2
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(aT, and hence l are assumed to be constant). If am is also
taken to be constant, Eqn (19) is readily integrated and all the
other unknowns are easily found. For the above-specified
boundary conditions the solution is written as

m � P0

KH
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H
;

98 L Kh Ingel' Physics ±Uspekhi 41 (1)



y � y0 � lagHP 2
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Here P0 is the constant of integration, which has the meaning
of the normalised heat flow aTK dy=dz at z � 0; the vertical
scale

H � u2�

�
am

lagKM1

�1=2

: �21�

The quantities m and K cannot be negative in conception.
Meanwhile, in the solution found they are, in general, sign-
variable. This means that a physically meaningful stationary
solution is not possible for any parameters of the problem. In
particular, it can be determined only in the layer, whose
thickness does not exceed a quarter-period of the sinusoid
sin�z=H�, i.e. in the region

04 z4
p
2

�
am

lagM1

�1=2

u2� :

Note, that a similar restriction occurs for any reasonable
choice of boundary conditions. This can be interpreted as
follows. In the medium layer under study heat is released and
diffuses downwards to the surface z � 0. As the heat release in
the medium intensifies (i.e. the flux of the heat-releasing
admixture M1 enhances), a stable vertical temperature
gradient related to the overheating of the medium with
respect to the lower boundary z � 0 increases. This nonlinear
model describes suppression of the turbulent exchange upon
enhanced stable stratification. As M1 grows, the amount of
admixture and heat to be withdrawn from the medium at the
level z � 0 increases, however the possibilities for withdrawal,
on the contrary, decrease as a result of reduced turbulent
exchange. Therefore in a turbulent medium an admixture can
self-close. Stationary solutions are possible only in the case of
not too large values of the admixture flux and (or) not very
thick atmospheric layers.

6. Conclusions

Below we have given some examples illustrating various
mechanisms of self-action of a heat-releasing admixture in a
liquid medium. In the literature some other possible situa-
tions are considered. For example, if the admixture is
introduced into the medium not from above (as in Section 5)
but from below, the heat-release can enhance turbulence [15].
In this case a self-induced transfer takes place instead of `self-
closing' of the admixture, as discussed in Section 5. There is
no question that various manifestations of the effects
concerned are not restricted to problems of atmospheric
physics, but are of more general interest.
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