
Abstract. Exactly solvable models for impulse time domain
electromagnetics of dispersive media are developed to describe
the interaction of ultrashort (single-cycle) transients with cer-
tain classes of insulators and conductors. Transient-excited
fields are described analytically by means on new, exact, non-
periodic and non-stationary solutions to Maxwell's equations,
obtained directly in the time domain without using Fourier-
expansion or time-space separation methods. Such non-separ-
able solutions form the mathematical basis of non-periodic
waves optics. Extensions to spherical and MHD single-cycle
transients, shock-excited distributed transmission lines, and
some inhomogeneous and nonlinear media are presented. A
flexible technique for modeling real transients by Laguerre
functions is developed which enables the shape and duration
dependence of the refraction and reflection features of single-
cycle waveforms to be presented explicitly.

1. Introduction. The non-stationary
electrodynamics of stationary media

Short duration transients may produce non-stationary elec-
tromagnetic fields in dispersive and conducting media, and
there are a number of reasons why the shock excitation and
propagationmechanisms of such fields are currently receiving
attention in several areas of radiophysics and optics.

(1) Firstly, advances in single-cycle transient generation
using wide band radars (with transient durations typically of

1 to 10 ns) [1] or picosecond optical systems (t0 � 0:1ÿ1 ps)
[2, 3] have prompted much recent interest in potential
application in transmitting information and power through
continuous media. Such transients have a rather different
structure from conventional modulated quasi-monochro-
matic signals with a rectangular or Gaussian envelope,
namely:

(a) the envelope of a single-cycle transient contains few or
only one field cycle whose shape is usually far from
sinusoidal;

(b) the rising and falling edges of the transient are
asymmetrical;

(c) the zeros of the envelope are unequally spaced.
Today, the short transient trend is also seen in femtose-

cond optics, with as few as 3 to 5 field cycles in compressor
transients [4]; and indeed in the newly-emerging field of
attosecond optics [5].

(2) The scattering and diffraction of finite duration
transients on finite size targets exhibit a variety of new
effects. In contrast to the habitual picture of stationary
scattering indicatrices and diffraction patterns characteristic
of long trains of sinusoidal waves, the field of a scattered
single-cycle transient varies rapidly in time. Classical for-
mulae for monochromatic waves scattered by a cylinder or
diffracted by a circular aperture turn out to be just special
cases of the expressions for the non-stationary interaction of
single-cycle transients with such objects [6 ± 9].

(3) The traditional approach to the solution of Maxwell's
equations for continuous media is to represent a solution as a
product of a coordinate-dependent by a time-dependent
function (separable solutions), with the time dependence
usually treated by means of Fourier transform. While this
approach has been dominant over the decades in the study of
quasi-monochromatic waves in optics, acoustics, and radio-
physics, its application to the dynamics of short single-cycle
transients interactingwith dispersivemedia, in particular with
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plasmas, waveguides, and conductors, has run into unex-
pected difficulties of both conceptual and computational
order.

(a) On application of the Fourier transform the envelope
of a finite duration signal is averaged over an infinite time
interval from ÿ1 to1, with the envelope's fastest-changing
portions omitted as a result; but it is precisely these portions
which are crucial for signal detection in information systems.
On the other hand, for the time envelope of a localized signal
to be reconstructed byFourier transform inversion, one needs
to eliminate harmonic fields from outside the localization
region; but the more accurately this region is determined the
more harmonics must be taken into account.

(b) The distortion of a transient in a dispersive medium is
known to be described, in the frequency domain, by
expanding the phase in a power series in the ratio of the
spectral transient width Do to the carrying frequency o [9].
However, for short wideband transients of one or a few field
cycles, this ratio does not represent a small parameter, so that
the number of spectral components needed for obtaining the
transient field in the bulk of the medium becomes prohibi-
tively large and accordingly a number of computational
difficulties arise [10].

(c) All terms in the Do=o expansion involve the refractive
index n�o� of the medium in their denominators. If the
spectrum of the transient contains the medium's cut-off
frequency o0 [for which n�o0� � 0], the expansion of the
phase produces a divergent series.

It should be stressed here that the above difficulties have
nothing to dowithMaxwell's equations themselves but rather
derive from the traditional use of separation-of-variables and
Fourier-transform techniques in their treatment. This, how-
ever, is only one of the possible approaches, well suited for
describing quasi-monochromatic waves with slowly varying
amplitude and phase but hardly applicable to the analysis of
unsteady and non-harmonic fields.

It turns out, however, that a solution procedure exists for
extracting information about such fields from Maxwell's
equations which is carried out directly in the time domain
and does not employ either the standard separation technique
or Fourier expansions. Such non-separable, exact analytic
solutions, free of the usual assumptions of small, slowly
varying fields, provide a mathematical basis for dealing with
rapidly varying non-periodic fields and short transients in a
dispersive medium. The medium itself is assumed to be at rest
and stationary, and the non-stationary nature of the time-
space structure of the propagating field is due to its envelope
changing significantly on the microscopic field relaxation
scale represented, e.g., by the inverse cut-off frequency in the
dielectric or the volume charge relaxation time in a conductor.
It is the purpose of this paper to analyse the non-steady
electrodynamics of stationary media.

Non-stationary electromagnetic fields are described here
in the time domain using new exact solutions of Maxwell's
equations

rotE � ÿ 1

c

qB
qt

; �1�

rotH � 1

c

qD
qt

; �2�

divH � 0 ; �3�

divD � 0 : �4�

The displacementD is related to the electric fieldE and the
current j it induces by the well-known formula

D � e1E� 4p
�t
ÿ1

j dt : �5�

Here e1 is the dielectric permittivity of themedium in the high
frequency limit; it is assumed below that the medium is non-
magnetic and isotropic.

For our further analysis it is expedient to express the
components of the fields E and H in terms of the vector
potential A by means of the familiar formula

E � ÿ 1

c

qA
qt

; H � rotA : �6�

The substitution of Eqn (6) into (1) turns this latter into an
identity. For transversely polarized fields, to be discussed
below, the space-time evolution of the vector potential A is
described by Eqn (2) and the constitutional equation j � j�E�.

While widely accepted in the optics of sinusoidal waves in
the frequency domain, the above set of equations is not by any
means the only possible way of developing wave optics from
Maxwell's equations. Some of the information contained in
these latter can be provided by solutions obtained directly in
the time domain. It is this alternative approach, suitable for
pulsed electromagnetic fields in some dispersive, conducting,
and inhomogeneous media, which is developed here based on
the non-separable solution of the Klein ±Gordon and
telegraph equations. In particular, the possibility is noted of
using Laguerre and Hermite functions for flexibly modeling
single-cycle transients that excite such fields. The non-
separable solutions of Maxwell's equations for fields inside
dispersive media are combined with the Laguerre representa-
tion of transient fields outside to form the exactly solvable
single-cycle transient model which is considered in the present
paper.

2. Non-separable solutions of Klein ±Gordon
equation in the optics of dispersive media

The physical basis and mathematical apparatus of the theory
of non-stationary wave processes in a dispersive medium are
graphically illustrated by examining the propagation of an
electromagnetic field in an isotropic plasma. For simplicity,
consider the one-dimensional problem of description of a
linearly polarized plane wave traveling in a cold, collisionless,
homogeneous, fully ionized gas plasma. In the linear
approximation, the density j of the current induced by a
field E in such a plasma is given by

qj
qt
� O2

4p
E : �7�

Here O is the plasma frequency related by O2 � 4pe2Nmÿ1 to
the density N, charge e, and mass m of the electrons.
Expressing the wave field components Ex and Hy in terms of
the vector potential component Ax defined by Eqn (6) and
combining Eqns (2), (5), and (7) yields an equation for Ax

�Ay � Az � 0� of the form
q2Ax

qz2
ÿ 1

c2
q2Ax

qt 2
� O2

c2
Ax : �8�

Equation (8) is known as the Klein ±Gordon equation,
which is traditionally solved to give harmonic waves of
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frequency o and wave vector k,

Ax � A0 exp
�
i�kzÿ ot�� ; kc �

�����������������
o2 ÿ O2

p
: �9�

Apart from solution (9), the Klein ±Gordon equation has
large classes of exact, analytical, non-harmonic time-domain
solutions. These are conveniently obtained by introducing a
normalized vector potential f and the dimensionless variables
Z and t defined by the equations

Ax � A0 f�Z; t� ; Z � zOcÿ1 ; t � Ot : �10�
Equation (8) then takes the dimensionless form

q2f
qZ2
ÿ q2f
qt2
� f : �11�

This form of the Klein ±Gordon equation is of key impor-
tance in our further analysis. An exact non-periodic solution
of Eqn (11) that describes non-stationary fields propagating
from the boundary Z � 0 into the bulk of the plasma �Z > 0�
may be written, for t2 5Z2, in the form [11]

f �
X
q

aq fq�Z; t� ; �12�

fq�Z; t� � 1

2

�
cqÿ1�Z; t� ÿ cq�1�Z; t�

�
; �13�

cq�Z; t� �
�
tÿ Z
t� Z

�q=2

Jq

� ���������������
t2 ÿ Z2

p �
: �14�

Here Jq is the Bessel function of order q, and the constant
coefficients aq as well as the values of q will be determined
from the boundary conditions at the plasma surface Z � 0 (see
Section 4).

The time and space derivatives of the above functions are
calculated from the formulae

qcq

qt
� 1

2
�cqÿ1 ÿ cq�1� ; �15�

qcZ

qt
� ÿ 1

2
�cqÿ1 � cq�1� : �16�

Substituting Eqn (12) into (6) gives the electric and
magnetic field components:

Ex � ÿA0O
c

X
q

aqeq ; Hy � ÿA0O
c

X
q

aqhq ; �17�

eq � 1

4
�cqÿ2 ÿ 2cq � cq�2� ; �18�

hq � 1

4
�cqÿ2 ÿ cq�2� : �19�

The current density j is also expressed in terms of the
functions cq to give

j �
X
q

aq jq ; jq � 1

2
�cqÿ1 ÿ cq�1� : �20�

The solution to the Klein ±Gordon equation thus repre-
sents the field and current in the plasma as sums of non-
periodic harmonics expressed in terms of non-separable
functions cq. In contrast to Eqn (9), these harmonics cannot

be written as a product of functions of time by functions of
coordinates. Because of dispersion, the envelops of the field
harmonics eq, hq, given by Eqns (18) and (19), rapidly distort
when propagating in a lossless transparent medium (Fig. 1),
and the space-time structure of these fields differ considerably
from that for monochromatic waves in the same medium,
namely:

(a) the time spacing between the harmonic envelope zeros
varies both for the electric and magnetic field, that is, the
alternating field components Ex and Hy, Eqn (17), are non-
periodic;

(b) the envelope extrema of the harmonics eq and hq vary
in time, and the ratio jhmaxj=jemaxj is not constant;

(c) the harmonics eq and hq have greatly different
dispersive distortion rates as they propagate into the plasma.

Some mathematical aspects of the field representation
(17) are also noteworthy here:

(1) For all points t � Z, the values of the function cq, Eq.
(14), are, for z � ct, as follows:

cq

���
t�Z
� 0 �q > 0� ; c0

���
t�Z
� 1 : �21�

Using Eqn (21), the envelops of the eq and hq harmonics are
found to be (for q > 2)

eq

���
t�Z
� hq

���
t�Z
� 0 �q > 2� e2

���
t�Z
� h2

���
t�Z
� 1

4
: �22�

Thus, the edges of the eq and hq harmonics at q > 2 all move
with velocity c.

(2) The envelops of the oscillation cq, Eqn (14), at any
point Z decrease without bound as t!1,

lim
t!1cq

���
Z�const

� 0 : �23�
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Figure 1. Envelops of the non-separable harmonics of the electric �e3� and
magnetic �h3� field components in the (a) Z � 0 and (b) Z � 3 cross-

sectional planes; t � Ot.
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From the values of cq at t � Z, Eqn (21), and t!1,
Eqn (23), we obtain an important integral property of the
quantities Ex, Hy, and j represented by the non-stationary
harmonics (17) and (20). Using the recurrence formulae (15)
and (16), the field and current harmonics may be written in
the derivative forms

jq �
qcq

qt
; eq �

q2cq

qt2
; hq �

q2cq

qt qZ
: �24�

Substituting Eqn (24) into expressions (17) and (20) and using
the limits (21) and (23), it is found that for an arbitrary point Z�1

Z
Ex dt �

�1
Z
Hy dt �

�1
Z
jx dt � 0 : �25�

(3) Asymptotic expressions for eq and hq for the
`periphery' of the envelops at t4 Z �t4 1� are obtained
from Eqns (18), (19) using the well known asymptotic
expansion for the Bessel functions,

Jq�t�
���
t4 1
�

�����
2

pt

r �
cos aq ÿ 4q2 ÿ 1

8t
sin aq �O�tÿ2�

�
; �26�

aq � tÿ p
4
ÿ pq

2
: �27�

Using Eqn (26), the `tails' of the eq and hq harmonics may be
represented at all points in the form

eq

���
t4 1
� ÿ

�����
2

pt

r
cos

�
Otÿ p

4
ÿ pq

2

�
; �28�

hq

���
t4 1
� ÿ 1

t

�����
2

pt

r �
Z cos aq � q sin aq

�
: �29�

Thus, the evolution of the field harmonics leads to the
formation of sinusoidal modes in the bulk of the plasma, their
amplitudes decreasing in time and frequencies being equal to
the harmonic wave cut-off frequencies. In all cross-sections,
the electrical harmonics decrease as tÿ1=2 and the magnetic
ones as tÿ3=2, i.e., somewhat faster. Note that the modes (28)
and (29) are difficult to excite by sinusoidal waves of
frequency o � O incident on the plasma boundary from
outside because of the reflection these wave undergo at the
boundary.

Interestingly, Eqns (28) and (29) involve the cut-off
frequency as a natural time scale of a dispersive medium (see
Section 4).

Time domain solutions reveal major differences in the
dynamics of the electric andmagnetic components of the non-
periodic waves (17) in the transparent dispersive medium (see
Fig. 1) modeling homogeneous plasmas, ionic crystals, and
free carrier semiconductors. In contrast to the slow dispersion
of a quasi-monochromatic narrow-band transient which may
be described perturbatively [19] by expanding in powers of the
small parameter Do=o, the exact solutions (18) and (19) have
nothing to do with the wave frequency and phase concepts
and do not depend on assuming a weakly dispersive envelope.
These solutions can be classified as

(a) non-sinusoidal,
(b) non-stationary, and
(c) non-separable.
Later on, similar fields in more complex media involving

absorption, inhomogeneity, and nonlinearity will be dis-
cussed.

3. Exact solutions of the telegraph equation
for non-periodic fields

The telegraph equation describes electromagnetic fields in
conducting media in situations where the current induced by
an alternating field is small compared to the conductivity
current. In this case the constitutive equation of the medium,
in contrast to Eqn (7), is given by Ohm's law

j � sE ; �30�

where s is the electrical conductivity. For transverse linearly
polarized fields with components Ex and Hy, introducing the
vector potential A �Ax 6� 0, Ay � Az � 0� one obtains, using
Eqn (30),

q2Ax

qz2
ÿ e1

c2
q2Ax

qt 2
� 4ps

c2
qAx

qt
: �31�

This is the simplest example of the telegraph equation, widely
used for the analysis of wave processes in dispersive media.

Introducing the field relaxation time

T � e1
2ps

; �32�

the conventional solution to Eqn (31) describes a damped
sinusoidal wave with wave vector

K � o
v

���������������������������
1� 2i�oT�ÿ1

q
; v � ceÿ1=21 : �33�

Equation (31), along with (33) and the path integral
solution (12), also describes non-sinusoidal fields in the time
domain. Introducing the normalised variables

A � A0 f ; t � tTÿ1 ; Z � z�vT�ÿ1 ; �34�

Eqn (31) can be rewritten in the dimensionless form

q2f
qZ2
ÿ q2f
qt2
� 2

qf
qt
: �35�

Exact analytical solutions of the dimensionless telegraph
equation (35) for the vector potential of an alternating non-
periodic field can be represented in the form similar to (12) ±
(14) as

f �
X
q

aq ~fq ; �36�

~fq � 1

2
�Yqÿ1 �Yq�1 ÿ 2Yq� � qYq

qt
; �37�

Yq � exp�ÿt�
�
tÿ Z
t� Z

�q=2

Iq

� ���������������
t2 ÿ Z2

p �
; t4 Z : �38�

Here Iq is the modified Bessel function, and q are found from
the boundary conditions in the same way as in solving Eqns
(12) ± (14).

The electric and magnetic field of the conduction current
are found by substituting Eqns (36) ± (38) into (6) giving

Ex � ÿA0

vT

X
q

aqeq ; Hy � ÿA0

vT

X
q

aqhq : �39�
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The time and space derivatives of the vector potential Ax are
calculated from Eqn (37), and

qYq

qZ
� ÿ 1

2
�Yqÿ1 ÿYq�1� : �40�

The eq and hq harmonics assume the forms

eq � 1

4

ÿ
Yqÿ2 ÿ 4Yqÿ1 � 6Yq ÿ 4Yq�1 �Yq�2

�
; �41�

hq � 1

4

ÿ
Yqÿ2 ÿ 2Yqÿ1 � 2Yq�1 ÿYq�2

�
: �42�

Examples of the space-time evolution of qq and hq are
shown in Fig. 2. There are some special features of the field
formed by the harmonics (41) and (42) which should be
noted.

(a) In contrast to harmonic waves in a conductor, with
their electric and magnetic components equally damped, the
maxima of the eq and hq harmonics decrease at different rates.
As seen in Fig. 2, the Z � 2 to Z � 0 envelope peak ratio of e2
is ge � 0:2, and that for h2 is gm � 0:3. Note that the envelope
peak ratio at Z � 2 and Z � 0 for sinusoidal waves of
frequency o for �oT�2 4 4 [see Eqn (33)] is gs � 0:136, so
that gm > ge > gs showing that non-periodic harmonics may
fall off more slowly than sinusoidal ones in a conductor.

(b) The field harmonic envelops rapidly disperse as they
propagate.

(c) The electric and magnetic components of a non-
harmonic field disperse at different rates as they propagate
in a conductor.

The properties of the non-separable functions (39)
describing the field in a conductor may be viewed as an
extension of the corresponding field representations for a
transparent medium (see Section 2):

�1� We have Yq�t; Z�
���
t�Z
� 0 �q > 0� :

(2) Using the familiar asymptotic expansion of the
functions Iq�u�,

Iq�u�
���
u4 1
� exp�ÿu���������

2pu
p

X1
n�0

�ÿ1�n
�2p�n

G�q� 1=2� n�
G�q� 1=2ÿ n� ;

where G is the gamma function, the decrease of the field fq,
Eqn (37), in any section is, for t4 Z,

fq

���
t4 Z
� ÿ 1

2
������
2p
p tÿ3 :

(3) On substituting Eqns (41) and (42) into (39) it is readily
seen that the integral property (25) for the non-separable
representations of Ex and Hy, which was written earlier for a
non-absorbing dielectric, also applies for any section of a
conductor.

The important feature of non-stationary fields in a
conductor is their natural time scale T, Eqn (32). A similar
time quantity tc � Oÿ1, Eqn (7), is characteristic of a non-
stationary field in a plasma. We shall discuss later the
determining role time parameters play in the transient
excitations of such fields in continuous media.

4. Laguerre optics of single-cycle transients

The penetration of a short single-cycle transient into a plasma
or conductor causes the excitation of non-stationary electro-
magnetic fields in these media. Representing such fields by
means of non-separable functions provides a simple analy-
tical model for such transient processes. To see how the
reflection and refraction properties of a pulsed signal depend
on its duration and envelope shape, we must select a signal
representation form capable of accounting in a flexible way
for both the finite duration and a complex, possibly non-
symmetric and non-periodic, shape. The widely used delta
function or the Heaviside step function imply a zero signal
duration and zero relaxation time and hence are not suitable
for the purpose. On the other hand, more realistic models, for
example the modulated Gaussian or rectangular transients

f1 � exp

�
ÿ t 2

2t 20

�
sinot ; f2 �

sinot ; jTj4 T

2
;

0 ; jTj > T

2

8>><>>: �43�

assume equally spaced zeros. As to the `wavelet' signals with
time-dependent frequency [13], these have little to do with the
real, asymmetric, no-carrier-frequency transients generated
by a mono-pulse radar or a picosecond mono-pulse source.

The proposed approach, in contrast, allows flexible
modeling of real waveforms containing only one or a few
field cycles and is capable of accounting for

(i) arbitrary transient steepness,
(ii) varying zero spacing, and
(iii) arbitrary envelope asymmetry.
To illustrate the reflection of such single-cycle transients

from transparent and absorbing media, we take the medium
to be a plasma or a conductor and examine two types of
signal:

(1) SignalsE�t�with a distinct rising edge, i. e., with a fixed
point t � 0 �E�0� � 0�, defined in the region 04 t <1.

A set of functions orthogonal in this region is known to be
given by the Laguerre functions

Lm�x� � exp�x=2�
m!

dm

dxm
�
exp�ÿx�xm� ; x � tÿ zcÿ1

t0
;

�44�

with t0 being the time scale of the signal. The properties of
such signals can be analysed by considering an envelope
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Figure 2. Non-sinusoidal harmonics of the electric �e2� and magnetic �h2�
non-stationary field components at points (a) Z � 0 and (b) Z � 2;

t � tTÿ1.
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formed by a linear combination of functions Lm,

E�x� �
X1
m�0

bmLm�x� ; �45�

where bm are real constants. The functions Lm are orthonor-
malised by�1

0

Lm�x�Ln�x� dx � dmn �46�

and for small values of m are found from Eqn (44) to be

L0 � exp

�
ÿ x

2

�
; L1 � �1ÿ x�L0 ;

L2 �
�
1ÿ 2x� x2

2

�
L0 ; L3 �

�
1ÿ 3x� 3x2

2
ÿ x3

6

�
L0 :

�47�
The behavior of the functions Lm near the leading edge of

the transient �x � 0�,

Lm�0� � 1 ;
qLm

qx

����
x�0
� ÿ

�
m� 1

2

�
�48�

shows that while the steepness of the envelope Lm at point
x � 0 is finite, the envelope values at this point are nonzero.
Consequently, none of the functionsLm can represent a signal
with a zero starting point and a finite steepness at this point.
Such a signal can, however, be represented by a linear
combination of functions Lm with a free parameter B,

E�t� � EinFm�x� ; Fm�x� � B
�
Lm�x� ÿ Lm�2�x�

�
; �49�

where Ein is the amplitude of the incident transient.
The envelope functions Fm, Eqn (49), whose behavior at

the boundary z � 0 �x � ttÿ10 � is shown in Fig. 3, have a
number of properties suitable for modeling single-cycle
transients. These are

(a) The function Fm�x�, Eqn (49), allows a series
representation

Fm�x� � 2Bx

�
1�

X1
k�1

Ckxk

�
; �50�

Fm�0� � 0 ; �51�

(b) The steepness of the envelope's rising edge at x � 0 is
specified by the free parameter

qFm�x�
qx

����
x�0
� 2B ; �52�

(c) The envelope Fm�x� has m� 2 zeros and an exponen-
tially decreasing `tail,'

(d) The envelope defined by Eqn (49) possesses the
integral property�1

0

Fm�x� dx � 0 ; �53�

(e) The envelope of a signal formed by a linear combina-
tion of functions Fm may have zero steepness at the initial
point x � 0 (see Fig. 3):

Km�x� � Fm�x� ÿ Fm�1�x� �Mx2
�
1�

X1
k�1

Pkx
k

�
: �54�

As can be seen from Fig. 3, combinations of Laguerre
functions enable broad classes of single-cycle transients be
flexibly modeled in the time interval 04 t <1.

(2) Turning to the normalized envelops of second type
signals, which are defined over the intervalÿ1 < t <1 and
correspond to the values

E�t�
����
t�0
� Ein ;

qE�t�
qt

����
t�0
� 0 ; E�t�

����
t!�1

� 0 ; �55�

these can also be represented by means of the Laguerre
functions Lm�x�. An example of such an envelope shown in
Fig. 4 is

E�x� � Ein

L0�x� � 1

2
L1�x� ÿ 1

2
L2�x� ; x5 0 ;

L0�ÿx� � 1

2
L1�ÿx� ÿ 1

2
L2�ÿx� ; x4 0 :

8><>:
�56�

Note the similarity between transient (56) and the conven-
tional symmetric `Mexican hat' transient (see Fig. 4) that

ÿ0.5

0.5

0

F

x

31

2

1284

Figure 3. Envelops of the nonsymmetric single-cycle transients F0 and F1,

Eqn (49), and K0, Eqn (54), are shown as lines 1, 2, and 3, respectively.

1

ÿ0,5 1

22

E

xÿ10 ÿ5 105

Figure 4. `Mexican hat' envelope (curve 1) and the symmetric envelope of

the single-cycle transient (56), i.e., a linear combination of Laguerre

functions (curve 2).
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dates back to Gabor [15]; in particular, both of them possess
the integral property (53).

Now suppose a single-cycle transient described by
Laguerre functions is reflected by the boundary of a
dispersive medium. By representing an alternating field in
the form of non-separable functions, simple analytical
expressions for the reflection coefficients can be derived.
Restricting the analysis to normally incident signals, it is
expedient here to discuss separately the reflection from a non-
absorbing medium (plasma) and that from an absorbing
medium (conductor).

(1) Transient reflection from the plasma boundary.
The reflection coefficient is found as usual by imposing

the continuity condition on the electrical and magnetic field
components at the boundary of the medium �z � 0�. The eq
and hq harmonics of Eqns (18) and (19) at z � 0 reduce to
combinations of Bessel functions

eq

���
z�0
� 1

4

�
Jqÿ2�t� ÿ 2Jq�t� � Jq�2�t�

�
hq

���
z�0

� 1

4

�
Jqÿ2�t� ÿ Jq�2�t�

�
: �57�

Representing the Bessel functions in series form [16]

Jq�t� �
�
t
2

�q�
1

G�n� 1� ÿ
�
t
2

�q�2
1

G�n� 2�

�
�
t
2

�q�4
1

2!G�n� 3� ÿ . . .

�
; �58�

substituting into Eqns (57) and (17) and comparing with
Eqn (50), the continuity conditions show that the lowest
harmonic in sum (17) is given by qÿ 2 � 1; thus, the
summation in Eqn (17) starts from q � 3 and runs over all
positive numbers q5 3. A similar argument shows that for
the incident transient (54) the excited field (17) contains
harmonics with q5 4, and for transient (56), with q5 2.

We turn next to the reflection of transient (49) from a
plasma. In this case the reflected wave components at z � 0
are represented in the form

Ex � ÿA0O
c

X1
q�3

aq
1

4

�
Jqÿ2�t� ÿ 2Jq�t� � Jq�2�t�

�
; �59�

Hy � ÿA0O
c

X1
q�3

aq
1

4

�
Jqÿ2�t� ÿ Jq�2�t�

�
: �60�

Since the Bessel functions are not orthogonal in the interval
04t <1, it is convenient to expand Eqns (59) and (60) in
terms of Laguerre functions Lm�ttÿ10 � which are orthogonal
over this interval, to give

Ex � ÿA0O
c

X1
m�0

T1mLm�x� ; x � ttÿ10 ; �61�

Hy � ÿA0O
c

X1
m�0

T2mLm�x� ; �62�

T1m �
X1
q�3

aqPmq�a� ; T2m �
X1
q�3

aqQmq�a� ; a � t0O :

�63�

The matrix elements Pmq and Qmq and the excitation by the
mth Laguerre transient of the qth harmonic of the non-
sinusoidal field are related by

Pmq�a� �
�1
0

Lm�x�eq�xa� dx ; �64�

Qmq�a� �
�1
0

Lm�x�hq�xa� dx : �65�

Now consider the incident transient

F0�x� � B
�
L0�x� ÿ L2�x�

�
: �66�

Let the reflected single-cycle transient also be represented as a
sum of products of Laguerre functions Lm with the appro-
priate reflection coefficients Rm. From the boundary condi-
tions for the incident, Eqn (66), refracted, Eqn (61), and
reflected fields, and using the orthonormality (46) of the
Laguerre functions Lm, one obtains for each function a pair
of equations of the form

EinB�1� Rm� � ÿA0O
c

T1m ; �67�

EinB�1ÿ Rm� � ÿA0O
c

T2m �68�

to represent the appropriate boundary conditions. The
quantities T1m and T2m are defined by Eqn (63). Such pair
equations for all values of m form an infinite set connecting
the reflection coefficients Rm with the unknown coefficients
aq which determine the contribution of the qth harmonic to
the electric and magnetic components of the refracted field
(59) and (60). Solving the system (67) and (68) for Rm we find

Rm�a� � 1ÿ T2m=T1m

1� T2m=T1m
: �69�

Comparing this with the well-known reflection coefficient
expression in the frequency domain, R � �1ÿ n��1� n�ÿ1,
where n is the refraction index of the medium, reveals an
analogy between the T2m=T1m ratio and the quantity n. If the
incident transient representation (49) does not contain the
mth harmonic Lm, the corresponding pair of equations (67)
and (68) reduces to

T1m � 0 ; T2m � 0 : �70�

We turn now to the problem of finding the reflection
coefficient for the single-cycle transient (66). First we
calculate the value of R0, Eqn (69), for the reflection of the
signal L0 entering Eqn (66). The ratio T20=T10 in Eqn (69) is
calculated using the formula [17]�1

0

L0�x�Jq�2�ax� dx �
�
aD�a��2 �1

0

L0�x�Jq�ax� dx ; �71�

D�a� � 2
�
1�

���������������
1� 4a2

p �ÿ1
;

which when substituted into Eqns (64) and (65) yields

P0q�a� �
�
1ÿ �aD�2�2Nq ; �72�

Q0q�a� �
�
1ÿ �aD�4�Nq ; �73�

Nq � 1

4

�1
0

L0�x�Jq�ax� dx : �74�
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Finally, substituting Eqns (72) ± (74) into (63) and (69), the
ratio T20=T10 and reflection coefficient R0 are found to be

T20

T10
� 1� �aD�2

1ÿ �aD�2 ; R0 � ÿ�aD�2 : �75�

An important point about the representation (66) is that
the reflection coefficients of the signals must be equal because
otherwise, in view of the equality L0�0� � L2�0� � 1, Eqn
(48), in the case of a continuous signal incident from vacuum
there would be an envelope discontinuity at the rising edge of
the reflected signal. The extension of this property to the case
of envelops (49) shows all these latter to have the same
reflection coefficient (75) dependent on the ratio a � Ot0:

R�a� � ÿ�aD�2 � ÿ 4a2ÿ
1� ���������������

1� 4a2
p �2 : �76�

As can be seen from Eqn (76), 0 > R > ÿ1. The behavior
of R�a� is shown in Fig. 5. For a rarefied plasma �a! 0,
R � ÿa2�, the reflection coefficient is found to be propor-
tional to the electron density, as would be expected. At the
opposite extreme of a dense plasma �a4 1� the reflection
increases �R! ÿ1�.

There is an interesting point to note about the field excited
in a medium reflecting a transient with a central maximum of
the form (56). The representations of the electric and
magnetic components of such fields, Eqn (17), involve the e2
and h2 harmonics

e2 � 1

4

�
J0 ÿ 2c2 � c4

�
h2 � 1

4

�
J0 ÿ c4

�
: �77�

In propagating across the plasma the central maxima of these
harmonics form narrow gaps of width Dt � �1ÿ2�Oÿ1 which
conserve their peak amplitude in the no-absorption case (see
Fig. 4). Since the peripheral portions of these harmonics
disperse in the bulk of the medium, the contrast between the
central peak and the envelope peripherals increases as the
signal propagates. This effects may be of relevance to the
transmission of a signal of the form (56) through a plasma-
like medium.

(2) Reflection of a single-cycle transient from a conductor
surface.

The analysis proceeds along much the same lines as in the
preceding section. The harmonics eq and hq at the boundary

Z � 0 are expressed in terms of the modified Bessel functions
Iq�t� as

eq � exp�ÿt�
4

�
Iqÿ2 ÿ 4Iqÿ1 � 6Iq ÿ 4Iq�1 � Iq�2

�
; �78�

hq � exp�ÿt�
4

�
Iqÿ2 ÿ 2Iqÿ1 � 2Iq�1 ÿ Iq�2

�
: �79�

Using instead of Eqn (71) the result [17]�1
0

exp�ÿpx�Iq�1�bx� dx � bD
�1
0

exp�ÿpx�Iq�bx� dx ;
�80�

D �
�
p�

���������������
p2 ÿ b2

q �ÿ1
; p � b� 1

2
; b � t0

T
;

the sums T10 and T20, Eqn (63), become

T10 � �1ÿ bD�4
X1
q�3

aqMq ; �81�

T20 � �1ÿ bD�3�1� bD�
X1
q�3

aqMq ; �82�

Mq � 1

4

�1
0

exp�ÿpx�Iqÿ2�bx� dx : �83�

Turning again to the reflection coefficient of the single-cycle
transient (66), Eqn (69) yields

R � ÿ 2b
1� 2b� ��������������

1� 4b
p : �84�

The dependence of the reflection coefficient on the ratio of the
characteristic times is shown in Fig. 6, where it is seen that the
transient reflection increases with the ratio t0T

ÿ1

�ÿ1 < R < 0�.
The representation of fields in dispersive media by Bessel

functions of integer order q, Eqns (59) and (60), is related to
the optics of smooth Laguerre envelops with a zero starting
point and a finite front steepness. The same approach allows
one to address the reflection of shock-wave envelops, having
an infinite front steepness near the zero starting point. Such
signals can be represented by the generalized Laguerre

2 5 8

0.5

ÿ1

0 a

1

2

R

Figure 5. Coefficient of reflection R of the single-cycle transient F0 (66)

from a plasma; curves 1 and 2 are for the normal �g � 0� and inclined

�g � 75�� incidence of an S-polarised transient; t � Ot0.

0 2 5 8

ÿ0.5

ÿ1

R

b

Figure 6. Coefficient of reflection R of a normally incident single-cycle

transient F0 (66) from a conductor as a function of the ratio of the

characteristic transient and medium times b � t0T
ÿ1.
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functions

L�n�m �x� �
exp�x=2�

m!
xÿn=2

qm

qxm

�
exp�ÿx�xm�n

�
; 04 n < 2

�85�
of which the earlier used Laguerre functions (44) present the
special case with n � 0. The behavior of the functions L

�n�
m

normalized over the interval 04 x <1, near the edge x � 0,
is given by

L�n�m �0� � 0 ;
qL�n�m �x�

qx

����
x�0
� xn=2ÿ1 !1 ; �86�

showing that the leading edge steepness depends on the
parameter n. Introducing a free parameter B, the linear
combinations

F
�n�
0 �x� � B

�
L
�n�
0 �x� � L

�n�
1 �x�

� �87�

of L
�n�
m shown in Fig. 7 possess the same integral property (53)

as the envelops of the usual Laguerre functions (49).
The reflection of the transients L

�n�
m �x� can be treated as

usual based on the field continuity condition at the boundary,
with refracted fields described, in contrast to Eqns (59) and
(60), in terms of Bessel functions of fractional index, and with
the summation in Eqn (17) starting from q � 2� n=2. Such
`shock' envelops differ from physical transient models with a
finite rising time given by Eqn (49) and are not considered
here.

In concluding this section, some features of the reflection
of single-cycle transients from dispersive and conducting
media should be noted:

(a) The reflection coefficients of Laguerre single-cycle
transients are always real.

(b) The fact that the reflection coefficients of various
envelops (49) are the same for given values of the parameters
a, Eqn (76), or b, Eqn (84), is a characteristic property of the
Laguerre signals not found in other types of signals (e.g.,
Hermite envelops) [18].

(c) For transients of duration t0 reflected frommedia with
field relaxation time T, it is found that one and the same
transient may behave either as `short' or `long' depending on
the medium it interacts with, i.e., on the value of the ratio
t0T

ÿ1.

5. Spherical wave transients

The properties of non-sinusoidal electromagnetic plane
waves discussed in Sections 2 through 4 can easily be
extended to the spherical case. Thus, for a spherical wave
having vector potential components Aj � A0F
�Ay � AR � 0� and traveling along a radius R, referring to
the spherical coordinate system �R; y;j� we have

q2F
qR2
� 2

R

qF
qR
ÿ 1

c2
q2F
qt 2
� O2

c2
F : �88�

By making the substitution F � fRÿ1, this is reduced to the
one-dimensional Klein ±Gordon equation for f of the form
(11). The componentsEj andHy of thewave then follow from
the equations

Ej � ÿ 1

cR

qAj

qt
; Hy � ÿ 1

R

qAj

qR
: �89�

Now suppose a single-cycle transient of spherical waves
F0, Eqn (49), emitted by a dipole source is reflected from the
surface of a plasma. The geometry of the problem is shown in
Fig. 8 for the case of S polarization. Representing the function
f in Eqn (89) in the form of (12) and expressing the field
components in the medium in terms of non-separable
harmonics (17) ± (19), the continuity condition for the Ej,
Hz, andH% components at the plasma boundary z � 0 can be
written as

Ein�1� R� � ÿ A0O

c
���������������
z20 � %2

q T10 ; �90�

Ein�1ÿ R� cos g � ÿ A0O

c
���������������
z20 � %2

q T20 cos d ; �91�

Ein�1� R� sin g � ÿ A0O

c
���������������
z20 � %2

q T20 sin d : �92�

Here Ein is the amplitude of the incident single-cycle transient
(49), R is the reflection coefficient, g is the incident angle, d is
the refraction angle, and the sums T10 and T20 are defined by
Eqns (63) ± (65). Dividing Eqn (2) by (90) yields

sin g�%� � T20

T10
sin d�%� : �93�
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Figure 7. Envelope of a shock transient described by the generalised
Laguerre function L

�n�
m �x� (m � 1, n � 0:5).
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Figure 8.Reflection geometry of an S-polarized spherical wave transient at

the dielectric surface z � 0. The source is at height z0 above the surface;Ej,

H%, and Hz are the transient field components.
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The ratio T20=T10 is given by Eqn (75). The equality (93)
expresses the refraction law for single-cycle transients, in
which

sin g�%� � %���������������
z20 � %2

q : �94�

Combining Eqns (91) and (90) we obtain the reflection
coefficient

R �
cos gÿ

���������������������������������������
�T20=T10�2 ÿ sin2 g

q
cos g�

���������������������������������������
�T20=T10�2 ÿ sin2 g

q : �95�

Thus, for all surface points specified by a given value of radius
%, the reflection coefficient depends only on the parameter
a � Ot0 (see Fig. 5). In the case of normal incidence �g � 0�
the system (90) ± (92) reduces to (67) and (68), and the
reflection coefficient expression (95), to (76).

Expressions (93) and (95) may be viewed as extensions of
Snellius' and Fresnel's formulae to the case of Laguerre's
optics, with the ratioT20=T10 as the refractive index. It should
be noted that, from Eqn (75), this ratio always exceeds unity,
so that such single-cycle transients do not suffer total internal
reflection when coming from vacuum to the plasma bound-
ary. Interestingly, total internal reflection is possible for a
train of harmonic waves of frequency o > O incident on a
plasma at an angle g > g0,

g0 � arccos�Ooÿ1� ; �96�

thus indicating the possibility of real-time filtering of
harmonic waves and single-cycle transients incident in the
same direction on the boundary of a plasma.

6. Electric displacement in non-stationary fields

The electric displacementD defined by Eqn (5) is known to be
related to the field relaxation dynamics in the medium. The
contribution of such dynamic processes is accounted for by
the integral term in Eqn (5), which for some types of field, in
particular for sinusoidal waves, is usually evaluated by
assuming the field and medium parameters to vary slowly
with time. The non-separable function representation of
alternating currents, in contrast, enables the integral term to
be calculated explicitly without using this approximation.
Substituting the plasma current expression (20) into Eqn (5),
the electric displacement in a plasmamay be written in a form
analogous to Eqn (17),

D � ÿA0O
c

X1
q�3

aqdq ; �97�

which, without any additional conditions, includes the time
and space dependences of the displacement that follow from
Eqn (5).

Comparing the dq and eq harmonics (Figs 1a, 9a) shows
them to have markedly different envelope shapes. While the
displacement �Do� and field �Eo� Fourier components in the
frequency domain are related through the dielectric permit-
tivity e�o� by Do � e�o�Eo, the dq and eq harmonics are not
proportional to each other. Thus, in order to describe the
non-stationary electric displacement in the time domain there
is no need to introduce the dielectric permittivity e. Further-

more, as seen from Sections 3 to 5, equally irrelevant to the
optics of single-cycle transients are the refraction index n,
related to e by the well-known relation n2 � e, and the phase
velocity vj � cnÿ1. Thus, these fundamental concepts of
conventional sinusoidal wave optics are not employed in the
present treatment of non-harmonic fields in dispersive media.

Using the electric displacement expression (97) one can
find the power flow velocity in the non-stationary field (17) in
a transparent medium. The velocity may be defined by

v � P

W
; �98�

whereP, the power flow density (Poynting vector), andW, the
power density in a non-absorbing non-magnetic medium [9],
are defined by the respective equations

P � c

4p
�EH� ; �99�

W � 1

4p

�
E
qD
qt

dt� jHj
2

8p
: �100�

Writing the derivative qD=qt in the form

qD
qt
� ÿA0O2

c

�
f� q2f

qt2

�
�101�

and using Eqn (6), the power flow velocity (98) can be written
in the normalised form

v

c
� 2�qf=qt��qf=qZ�
j f j2 � jqf=qtj2 � jqf=qZj2 : �102�

Using the vector potential of a running stationary harmonic
wave in the form f � exp

�
i�kzÿ ot��, k � oncÿ1, Eqn (102)

yields the familiar expression for the group velocity vg of a
sinusoidal wave in a plasma,

vg � cn ; n �
����������������������
1ÿ O2oÿ2

p
:

From Eqn (102), using the vector potential expression for a
non-stationary field (12) represented by the non-separable
functions cq, it is found that the power flow velocity depends
in a complex way on the time and coordinates. The presence
of the coefficients aq from Eqn (12) in Eqn (102) indicates
that, for a transient excitation of the medium, the power flow
depends on the shape and duration of the transient.

20 50 80 t

0.1

0

ÿ0.1

d4
a

0 1 2 3 4 t�10ÿ2
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Figure 9. (a)Non-sinusoidal harmonic of the electric displacement d4 in the

cross-sectional plane Z � 0, (b) envelope of the d4 harmonic in the cross-

sectional plane Z � 50.
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Thus, the phase velocity vj, which assumes superluminal
values for the stationary propagation of sinusoidal waves in a
plasma, has no meaning for the non-stationary fields
discussed here. In contrast, the power flow velocity defined
by the general formula (98) is meaningful for both harmonic
and non-harmonic fields and, as can be seen from Eqn (102),
satisfies the relativistic restriction jvj4 c.

7. Non-harmonic waves in transmission line

The distributed-parameter transmission line has been widely
used over the years as a model for wave processes in electrical
engineering and radiophysics. The dynamics of the current J
and voltage U in such lines are described by the set of
equations

qJ
qz
� C

qU
qt
� GU � 0 ; �103�

qU
qz
� L

qJ
qt
� RJ � 0 ; �104�

where C, L, R, and G are the capacitance, inductance,
resistance, and leakage of the line (all per unit length).
Introducing the characteristic time scales

t1 � L

R
; t2 � C

G
; T0 � 2t1t2

jt1 ÿ t2j ; �105�

and defining the dimensionless variables t and Z and normal-
ised values of the current i and voltage u,

t � t

T0
; Z � z�vT0�ÿ1 ; v � �LC�ÿ1=2 ; �106�

i � AI ; u � AU

RT0v
; �107�

the set (103) and (104) can conveniently be rewritten as

t1t2

T 2
0

qi
qZ
� t2
T0

qu
qt
� u � 0 ; �108�

qu
qZ
� t2
T0

qi
qt
� i � 0 : �109�

The solution of the system (103) and (104) is traditionally
written in the form of a damped harmonic wave
exp
�
i�kzÿ ot� ÿ dt

�
, where the frequency o is connected to

the wave number k by the dispersion relation

o � i�t1 � t2�
2t1t2

�
�������������������������
�kv�2 ÿ T ÿ20

q
: �110�

We wish now, instead, to find non-sinusoidal wave
solutions for the transmission line problem. To this end, let
us introduce an unknown functionc defined by the equations

i � qc
qZ

; u � ÿ t1
T0

qc
qt
ÿ c : �111�

On substituting this into the set (108) and (109), Eqn (109)
becomes an identity and the function c is now found from
Eqn (108). We have

q2c
qZ2
ÿ q2c

qt2
� T 2

0

t1t2
c� T0�t1 � t2�

t1t2

qc
qt

: �112�

New solutions of Eqn (102) may be written in terms of the
non-separable function ~Yq in the form

c �
X
q

aq fq ; fq � q ~Yq

qt
; g � t1 � t2

jt1 ÿ t2j ; �113�

~Yq � exp�ÿgt�
�
tÿ Z
t� Z

�q=2

Iq

� ���������������
t2 ÿ Z2

p �
; t5Z ;

which when substituted into Eqn (111) yields the non-
sinusoidal current and voltage envelops:

i � ÿ
X
q

aqiq ; u � ÿ
X
q

aquq ; �114�

iq � 1

4

�
~Yqÿ2 ÿ ~Yq�2 ÿ 2g�Yqÿ1 ÿ ~Yq�1�

�
; �115�

iq � 1

4

�
1ÿ t2

t1

��
~Yqÿ2 � ~Yq�2 ÿ 2�1� g�� ~Yqÿ1 ÿ ~Yq�1�

� 2�1� 2g� ~Yq

�
: �116�

Eqns (115) and (116) describe the time and space
evolution of non-sinusoidal current and voltage harmonics
(Fig. 10), the rate of the evolution varying widely depending
on the two time scales of the system, t1 and t2, Eqn (105). In
the special case t1 4 t2 �g! 1, T0 ! 2t2�, the transmission
line equation (112) reduces to the telegraph equation for a
dissipative medium with a single time scale T � 2t2, and the
voltage �uq� and current �iq� harmonics go over to the electric
and magnetic field harmonics, Eqns (41), (42),

uq

���
g�1
� eq ; iq

���
g�1
� hq : �117�

Pursuing the analogy further, we can require the current and
voltage to be continuous at the end of the line Z � 0 and to
determine the reflection coefficient for a Laguerre transient
there [14]. Thus, the standard transmission line equations
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Figure 10.Non-separable harmonics of the current �i3� and voltage �u3� in
a transmission line �t2 � 4t1�, (a) at the end of the line Z � 0; and (b) at the

point Z � 3.
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(103) and (104) describe, along with damped sinusoidal
waves, a wide variety of non-stationary regimes that arise
from the transient excitation of the line, thus suggesting the
possibility of using transmission lines for modeling the
interaction of single-cycle transients with continuous media.

8. MHD transients in an inhomogeneous plasma

One of the most active areas of magnetohydrodynamics is the
study of Alfven waves that couple magnetic field and plasma
density vibrations. This concept is widely used both in cosmic
and laboratory plasma problems in which magnetic field
perturbations are often of a pulsed nature and the plasma
density is strongly non-uniform along the direction in which
these perturbations propagate. By modifying the method of
non-separable solutions of the Klein ±Gordon equation a
number of exact analytical solutions can be obtained for such
non-stationary non-uniform problems.

This approach is conveniently illustrated by considering
an MHD transient propagating along a z-directed static
magnetic field H0 in a non-dissipative plasma with a density
profile %�z� defined by

%�z� � %0 1 for z < 0 ;

U 2�z� for z5 0 :

�
�118�

Here U 2�z� is an unknown function that assumes positive
values for z5 0. The propagating transient field is character-
ized by the magnetic field perturbation H1 and the plasma
flow velocity v, both the vectors lying in the plane �x; y�
orthogonal to the direction of H0 if a longitudinal propaga-
tion is assumed. For simplicity, consider a linearly polarized
wave whose H1x and vx components are related by the
magnetohydrodynamics equations; for the assumed long-
itudinal propagation case these are

qH1x

qt
� H0

qvx
qz

; �119�

qvx
qt
� H0

4p%0U 2�z�
qH1x

qz
: �120�

We next introduce the normalised functions h and n and the
Alfven velocity vA,

h � H1x

H0
; v � vx

vA
; vA � H0����������

4p%0
p ; �121�

and define an unknown function c by

h � A0vA
qc
qz

; v � A0
qc
qt

: �122�

By making the substitutions (121) and (122), the system (119)
and (120) is reduced to just one equation

q2c
qz2
ÿU 2�z�

v2A

q2c
qt 2
� 0 : �123�

The inhomogeneous wave equation (123) is widely used in
describing stationary monochromatic waves in inhomoge-
neous media, when it is assumed that c � c1�z� exp�ÿiot�
and the function c1�t� solves the equation

q2c1

qz2
� o2U 2�z�

v2A
c1 � 0 : �124�

Exact solutions to Eqn (124) are available for some U 2�z�
profiles [20].

As opposed to the conventional variable separation
approach (124), in what follows new classes of solutions to
Eqn (123), unrelated to this method, are explored. Introdu-
cing new functions

y �
�z
0

U�z1� dz1 �125�

and

F � c
����������
U�z�

p
; �126�

we transform Eqn (123) into

q2F
qy2
ÿ 1

v2A

q2F
qt 2
� F

�
1

2U 3

q2U
qz2
ÿ 3

4U 4

�
qU
qz

�2�
: �127�

The solution of this equation exhibits a great richness due to
the unknown function on its right-hand side. Consider, for
example, the case

1

2U 3

q2U
qz2
ÿ 3

4U 4

�
qU
qz

�2

� p2 ; �128�

where p2 is a real constant. The solution satisfying this
nonlinear equation and the condition U

��
z�0� 1, see Eqn

(118), has the form

U�z� �
�
1� s1

z

L1
� s2

z2

L2
2

�ÿ1
; �129�

where the free parameters L1 and L2 are the characteristic
lengths of the medium. Using these, the spatial dependence of
the density is described by the two-parameter model
(Fig. 11a)

% � %0
�
1� s1

z

L1
� s2

z2

L2
2

�ÿ2
; s1 � 0;�1 ; s2 � 0;�1 :

�130�

Thus, the wave equation (123) for an inhomogeneous
non-dispersive medium reduces to the Klein ±Gordon equa-
tion (127) for a homogeneous dispersive medium in �y; t�
space,

q2F
qy2
ÿ 1

v2A

q2F
qt 2
� p2F : �131�

The dispersion of this medium is determined by the
inhomogeneity parameter p2 which, upon substituting Eqn
(129) into (128), is expressed in terms of the characteristic
lengths as

p2 � 1

4L2
1

ÿ s2

L2
2

: �132�

The function F can be represented in terms of various non-
separable solutions of the Klein ±Gordon equations depend-
ing on the sign of the parameter p2, Eqn (132). Thus, for
p2 > 0, solution (12) with Z � py, t � pvAt can be employed.
Expressing the vector potential c from Eqn (126) we find the
alternating magnetic field h and the plasma flow velocity v,
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Eqn (122). The electric field of the wave is expressed in terms
of the velocity vx as

Ey � H0vx
c

: �133�

Finally, the electric and magnetic components of the
Alfven wave in an inhomogeneous plasma are written in
the form

Ey � ÿ A0vA

c
����������
U�z�p X1

q�3
aqeq ; Hx � ÿ A0vA

c
����������
U�z�p X1

q�3
aqhq ; �134�

eq � p

4
�cqÿ2 ÿ 2cq � cq�2� ; �135�

hq � p

4

�
�cqÿ2 ÿ cq�2� ÿ

1

pU

qU
qz
�cqÿ1 ÿ cq�1�

�
: �136�

The variable Z involved in the function cq in Eqns (135) and
(136) is easily calculated by substituting the function U�z�,
Eqn (129), into Eqn (125).

Pursuing the analogy with the Klein ±Gordon equation
and using the calculational scheme of Section 4 we find the
reflection coefficient of an MHD transient with the
Laguerre envelope (49) reflected by the boundary of an
inhomogeneous plasma, Eqn (129). For s1 � s2 � 1 we

obtain �p2 > 0�

R � ÿ�a1D1��a1D1 ÿ K�
1ÿ Ka1D1

; �137�

a1 � pvAt0 ; K � s1
2pL1

: �138�

The function D1 � D�a1� is defined by Eqn (71). The
reflection coefficient R is plotted in Fig. 11b. The reflection
becomes total for t0 5 tc, where tc is obtained from the
condition R � 1 giving

tc � �pvA�ÿ1
ÿ
Kÿ

���������������
K 2 ÿ 1
p �

: �139�

To conclude this section we note that the plasma density
profile (129) is an exact analytical solution for a single-cycle
Alfven transient reflected from the boundary of an inhomo-
geneous plasma, a solution which does not require that the
inhomogeneities be small in magnitude or vary slowly in time.
Equations of the type of (123), governing wave propagation
with a coordinate-dependent velocity, are used extensively in
problems in radiophysics, acoustics, and optics, and the
above analysis may therefore be of interest in the dynamics
of various non-stationary and inhomogeneous fields occur-
ring in many areas of physics research.

9. Nonlinear single-cycle transient dynamics

The interaction of ultrashort wave transients with dispersive
media is currently a topical problem in nonlinear optics
because it is in such transients where large peak radiation
power is achieved. Analyses of nonlinear pulse processes
usually consider a multicycle waveform whose phase and
amplitude envelope evolve slowly in time and in which
vibrations are assumed to be harmonic and the nonlinear
perturbation of their refractive index Dn is small compared to
the unperturbed `linear' value n0. This model, while under-
lying the physics of solitons and the theory of interacting and
self-interacting waves, proves inadequate when faced with the
self-action of single-cycle transients, with their non-sinusoidal
vibrations and with the refractive index non-separable into
linear and nonlinear parts. The construction of the optics of
such essentially nonlinear transient fields therefore requires a
first principle treatment. To illustrate this approach, the
screening of a transient field by a nonlinear insulating
medium is treated in what follows. Let us first write down
Maxwell's equation for a linearly polarized wave in an
isotropic conservative medium. Assuming the field relaxa-
tion time to be shorter than the transient duration, we
represent the electric displacement D as a continuous
function of the electric field E,

qEx

qz
� ÿ 1

c

qHy

qt
;

qHy

qz
� 1

c

qD
qt

: �140�

We next transform these equations as follows:
(1) Rewrite Eqns (140) treating the functionsEx andHy as

new independent variables and the variables z and t as new
unknowns, z � z�Ex;Hy�, t � t�Ex;Hy� (the hodograph
transformation). The system (140) then becomes

qt
qH
� ÿ 1

c

qz
qE

;
qt
qE
� ÿ 1

c

qD
qE

qz
qH

; �141�
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Figure 11. (a) Increasing density profilesU 2, Eqn (130), admitting an exact

solution for a longitudinally traveling Alfven wave in an inhomogeneous

plasma; curves: (1), s1 � s2 � ÿ1; (2), s1 � 1, s2 � ÿ1; p2 < 0. (b) Coeffi-

cient of reflection of an Alfven transient F0 [Eqn (66)] from an inhomo-

geneous plasma for p2 > 0. Curves: (1), K � 1:0015; (2), K � 1. The

parameter K is defined by Eqn (138), a1 � pvAt0.
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This approach provides a mathematical framework for
understanding the nonlinear geometric optics of quasi-
harmonic waves in a cubically nonlinear medium [21]. Here,
in contrast, the hodograph transformation is employed to
construct exact analytical solutions of Maxwell's equations
(141) for non-harmonic fields in far more general models of
nonlinear media.

(2) The hodograph transformation converts the nonlinear
system (140) defined in �z; t� space into a linear but
inhomogeneous system (141) in �E;H� space. The system
(141) is formally analogous to the system (123) for wave
propagation with a coordinate dependent velocity, the
function qD=qE in Eqn (141) corresponding to U 2�z� in
(123). This analogy suggests the following solution proce-
dure for the system (141).

Define a new function c such that

t � ÿ 1

c

qc
qE

; z � qc
qH

: �142�

Substituting Eqn (142) into (141) we obtain an inhomoge-
neous wave equation in �E;H� space for this function,

q2c
qE 2
ÿ qD

qE
q2c
qH
� 0 : �143�

Specifically, let qD=qE > 0 so that

qD
qE
� n20U

2�E� ; U
���
E�0
� 1 ; �144�

where n0 is the refractive coefficient in the weak field and
short time scale limit,

n20 � e1 : �145�

Introducing the function

F � c
�����������
U�E�

p
; U5 0 �146�

and the variable

j � p

�E
0

U�y� dy ; �147�

Eqn (143) yields the Klein ±Gordon equation for F,

q2F
qj2
ÿ q2F

qh2
� F ; h � pH

n0
; �148�

where the constant p2 is given by

p2 � 1

2U 3

q2U
qE 2
ÿ 3

4U 4

�
qU
qE

�2

; �149�

and depends on the nonlinear properties of the medium. The
function U in Eqn (149) has the form

U �
�
1� s1

E

E1
� s2

E 2

E 2
2

�ÿ1
; s1 � 0;�1 ; s2 � 0;�1 ;

�150�

p2 � 1

4E 2
1

ÿ s2

E 2
2

; �151�

where E1 and E2 are certain field values characteristic of the
material.

Using Eqns (149) and (150) we find the nonlinear electric
displacement

D � n20

�E
0

U 2�y� dy �152�

and the variable j, Eqn (147), for various combinations of
characteristic fields and signs.

(3) For simplicity, consider the one-parameter function
U�E�

U �
�
1ÿ E 2

E 2
2

�ÿ1
; p2 � 1

E 2
2

: �153�

The corresponding electric displacementD and the variable j
are

D � E2n
2
0

2

�
artanh x� x

1ÿ x2

�
; x � E

E2
; �154�

j � 1

2
ln

�
1� x

1ÿ x

�
: �155�

The values of the dimensionless parameter x lie in the interval
04 x < 1. For weak fields E5E2 the dependence (153)
corresponds to the cubic focusing nonlinearity model

D � n20E

�
1� 2

�����
n0
p
3

E 2

E 2
2

�
: �156�

We next find the electrical and magnetic field components
for a medium with nonlinear response (153). Let us represent
the function c, Eqn (142), in the form

c � A
�������������
1ÿ x2
p

F ; �157�

where F satisfies the Klein ±Gordon equation (148) and the
boundary condition (142)

qc
qh

����
h�h0;j�j0

� 0 : �158�

Herej0 � j0�t� and h0 � h0�t� are the values of the functions
j, Eqn (147), and h, Eqn (148), at the boundary z � 0 at any
time t; and A is the normalization constant.

If the solution to Eqn (148) is taken to be of the form

F � A cosh
�
Mj0 ÿ

���������������
M2 ÿ 1
p

h0

�
; �159�

with M a free parameter �M > 1�, then from Eqns (157) and
(158) the functions j0 and h0 are related by

j0 � h0
�������������������
1ÿMÿ2
p

: �160�

From Eqn (159), substituting the values of the nondimen-
sional variables j0, Eqn (155), and h0, Eqn (148), the relation
between the electrical andmagnetic field components at z � 0
can be written explicitly as

E0

E2
� tanh

�
H0

n0E2

������������������
1ÿMÿ2
p �

;

E0 � E�t�
���
z�0

; H0 � H�t�
���
z�0

: �161�

90 A B Shvartsburg Physics ±Uspekhi 41 (1)



We next introduce the reflection coefficient of the incident
signal R using the continuity condition at the boundary,

1� R

1ÿ R
� E0�t�

H0�t� ; �162�

and obtain from Eqn (160)

R � n0
������������������
1ÿMÿ2
p

ÿ G�x0�
n0

������������������
1ÿMÿ2
p

� G�x0�
; G�x0� � artanh x0

x0
: �163�

The envelope of the incident transient Ein is now found using
the reflection coefficient R and the reflected wave field E0 at
the boundary, to give

Ein

E2
� n0

������������������
1ÿMÿ2
p

� artanh x0

2n0
������������������
1ÿMÿ2
p : �164�

Thus, the envelope of the incident transient is expressed in
terms of the normalised envelope of the refracted electric field
at the boundary x0 � x0�t�. To obtain the variation of x0 with
time we substitute the solutions (157) and (159) into (142) at
z � 0, giving

x0 � ctLÿ1��������������������������
1� �ctLÿ1�2

q ; L � ÿAEÿ12 ; �165�

where L is the spatial scale of the envelope.
In the bulk of the medium z5 0, the equations for the

normalised envelops of the electric and magnetic field
components x � x�z; t� and h � h�z; t� are found from Eqns
(142), (157), and (159) to be

�1ÿMÿ2�x2�1ÿ x2�
n20

�
�
zÿ vt�1ÿ x2�

L

�2
ÿ z2

L2

x2

M 2
; �166�

h � j������������������
1ÿMÿ2
p � 1������������������

1ÿMÿ2
p arsinh

�
z

L

n0����������������
M 2 ÿ 1
p 1�������������

1ÿ x2
p

�
;

�167�
v � c

n0

������������������
1ÿMÿ2
p

: �168�

From the reflection coefficient expression R, Eqn (163),
an important trend of the nonlinear field evolution described
by Eqns (166) ± (168) can be seen. For the limiting values of
the reflection coefficient at the signal edge �ct5L� and away
from the edge �ct4L�

lim
x0!0

R � n0
������������������
1ÿMÿ2
p

ÿ 1

n0
������������������
1ÿMÿ2
p

� 1
; lim

x0!1
R � 1 ; �169�

it is readily seen that the refection of the transient increases
with the amplitude, the bulk electric field being much weaker
than that on the surface (Fig. 12). Some features of this self-
screening should be pointed out here.

(1) The electric field leading edge �x � 0� moves with
velocity v, Eqn (168), dependent on thematerial characteristic
and the transient parameter M, the latter in turn depending
on the steepness of the edge of the envelope

q
qt

�
Ein

E2

�����
z�0
� c

2L

�
1� n0������������������

1ÿMÿ2
p

�
: �170�

(2) The electric and magnetic envelops of a signal in a
nonlinear medium have different distortion rates.

(3) The reflection coefficient R, Eqn (163), in the case
n0

������������������
1ÿMÿ2
p

> 1 changes sign at the point x0 defined by

artanh x0 � x0n0
������������������
1ÿMÿ2
p

: �171�

In this case, nonlinear reflection makes the reflected signal
amplitude-modulated as well a changing the polarization of
the peripheral portion of its envelope.

The present analysis of the nonlinear transient dynamics
relies on the solution (157) which extends the non-separable
treatment of the Klein ±Gordon equation to the case p2 > 0
[see Eqn (149)]; further extension enables the same equation
to cover media with p2 < 0 and those with nonlinear
magnetization, when the dependence B�H� is described by
the function U 2, Eqn (150).

10. Conclusion. Non-separable field
representations in transient optics

The study of rapidly varying non-periodic fields in a number
of dispersive model media in Sections 2 to 9 has shown that
such fields can be described in an `alternative' way without
relying on conventional harmonic analysis. It turned out, in
particular, that certain concepts and material characteristics
used in the harmonic analysis are not needed here. These are:

(a) dielectric permittivity and refractive index;
(b) vibration phase and phase velocity;
(c) cut-off frequency and damping factor.
At the heart of the present approach to the excitation and

propagation of non-periodic fields in continua are the
continuity of fields at the boundaries and the non-separable
time domain solutions of the Klein ±Gordon and telegraph
equations. Since the time description techniques of transient
optics are still in their infancy, a few example seem to be
appropriate here to give further insight into non-separable
solutions of Maxwell's equations.

(1) The existence of non-separable solutions is not unique
to the Klein ±Gordon equation. Solutions of the Helmholtz
equation widely used in waveguide theory are of similar
nature. In the simplest case of a hollow waveguide of
rectangular cross section this equation takes the form

q2f
qx2
� q2f
qy2
� k2? f : �172�

ÿ1ÿ2ÿ3
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Figure 12. Self-screening of a field transient in a strongly nonlinear

medium (154). Curves 1 and 2 represent the envelope of the transient

(166) at the boundary and at the section z � L; t0 � L=v; x � E=E2,

Eqn (154); the parameters involved in Eqn (166) are:M � ���
2
p

, n0 � 3:5.
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Here x and y are coordinates in the waveguide section plane,
and the parameter k2? is related to the wave frequency and the
propagation constant b by

k2? �
o2

c2
ÿ b2 : �173�

A one-mode separation-of-variables solution of Eqn (172)
may be written, for example, in the form

f0 � cos�k1x� cos�k2y� ; �174�

where the constants k1 and k2 for perfectly conducting walls
of dimension a, b are given by

k1 � p
a
; k2 � p

b
; k21 � k22 � k2? : �175�

Along with the separable solution f0, Eqn (174), there are
a infinite number of non-separable solutions fn �n5 1� to the
Helmholtz equation. These are constructed from the recur-
rence relation [22]

fn�1 � L̂ fn ; �176�

with the operator L̂ of the form

L̂ � k2
q
qk1
ÿ k1

q
qk2

: �177�

For example, the simplest possible non-separable solution f1
is

f1 � k2 sin�k1x� cos�k2y� ÿ k1 cos�k1x� sin�k2y� : �178�

Linear combinations of the functions fn are of interest for
obtaining the eigenfunctions of waveguides of a complex
curvilinear cross section [23].

(2) The general solution of the Klein ±Gordon equation
(11) can be written in the integral form [24]

f�t; Z� � 1

2

�
j�tÿ Z� � j�t� Z��� 1

2

�t�Z
tÿZ

dyF�y; t; Z�; �179�

F�y; t; Z� � c�y�I0
���������������������������
�tÿ y�2 ÿ Z2

q� �
�

� j�y�Z
I1

���������������������������
�tÿ y�2 ÿ Z2

q� �
���������������������������
�tÿ y�2 ÿ Z2

q : �180�

Here I0 and I1 are the modified Bessel functions, and the
functions j�y� and c�y� are related to the boundary
equations

F
���
Z�0
� j�t� ; qF

qZ

����
Z�0
� c�t� : �181�

Although Eqns (179) ± (181) provide the general solution
of the problem, they do not generally represent explicitly the
information about the fields excited by the external pulsed
source in the bulk of a medium. There are two major reasons
for this.

(a) The functions j and c determining the field at the
boundary are found from reflection coefficients whose
calculation, in turn, requires a knowledge the field within
the medium.

(b) Even if the functions (181), j and c, are known, the
integral conversion (179) does not generally admit of an
analytical evaluation.

Considerable difficulties are encountered, for example, in
applying this approach to the problem of Laguerre single-
cycle transients reflected from a plasma; at the same time, as
shown in Section 4, representing Klein ±Gordon solutions in
terms of non-separable functions yields explicit expressions
for both the field structure and reflection coefficient.

(3) The same problem of the reflection of a Laguerre
single-cycle transient F0, Eqn (66), from a plasma can now be
considered in the frequency domain.Wewill restrict ourselves
to the normal incidence case and employ the reflection
coefficient expression for a wave of frequency o,

R�o� � 1ÿ
����������������������
1ÿ O2oÿ2
p

1�
����������������������
1ÿ O2oÿ2
p : �182�

Taking the Fourier transform of the envelope F0,

�F0�o �
16t0�1� iot0�
�1� 2iot0�3

; �183�

the reflected signal can now be written in the frequency
integral form

Eref � 16Eint0

�1
ÿ1

1ÿ
����������������������
1ÿ O2oÿ2
p

1�
����������������������
1ÿ O2oÿ2
p

� 1� iot0
�1� 2iot0�3

exp�iot0� do : �184�

The fact that this integral cannot be performed analytically is
a further indication of the advantage of the non-separable
solutions which yield a simple algebraic expression for the
reflection coefficient of the single-cycle transient (76).

(4) To proceed further with the analysis of the Fourier
representation approach of transient electrodynamics, it is
interesting to note here several properties of the spectral
amplitudes of the non-separable representations (17) we use
for the electric and magnetic components of a non-stationary
field in a plasma. For simplicity we confine ourselves to
symmetric field envelops at the boundary z � 0
[E�t� � E�ÿt�, H�t� � H�ÿt�] with only even harmonics
q � 2m �m � 1; 2; 3 . . .� present (see, e.g., Fig. 4). Let us
calculate the sine and cosine Fourier transforms of these
fields. Using the result [17]�1

0

cos�ot�J2m�Ot� dt � 0 �185�

in the transparency region o > O, the cosine components of
the e2m and h2m harmonics are, from Eqn (57),�1

0

cos�ot�e2m dt �
�1
0

cos�ot�h2m dt � 0 : �186�

The sine components of the Fourier transform of the even
functions e2m and h2m vanish. Substituting these results into
Eqn (17), we get the spectral amplitudes

Eo

���
z�0
� Ho

���
z�0
� 0 �187�
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of the non-separable representations of fields in the transpar-
ency region at the plasma boundary, which are indicating that
the non-separable fields E andH, Eqn (17), cannot be excited
by a monochromatic cos�kzÿ ot� wave from the transpar-
ency region �o > O� incident on the plasma boundary.

(5) The methods of non-periodic analysis are also of
relevance to a number of traditional problems in radio-
physics and optics. Within the framework of the approach
of Section 8 we can construct new exact solutions for the
problem of harmonic waves in an inhomogeneous propaga-
tionmedia. To this end, consider, for example, how anAlfven
wave of frequency o traveling along the magnetic field H0

through a plasma is reflected by an inhomogeneity of the type
(118) in the plasma density %�z�. To find the wave field
components in terms of the function c, Eqn (122), we use
here instead of Eqn (134) the harmonic solutions of
Eqn (131),

F � exp
�
i�kZÿ ot�� ; k � ovÿ1A n�o� ; �188�

n�o� �
����������������������
1ÿ O2

poÿ2
q

; Op � pvA ; �189�

where vA is the Alfven velocity (121), and the parameter p
�p2 > 0� is related to the structure of the inhomogeneous
medium and is given by Eqn (132).

Representing the function c, Eqn (122), in the form

c � exp
�
i�kZÿ ot������������
U�z�p ; �190�

the wave field components Hx and Ey, Eqn (133), in an
inhomogeneous medium are found to be

Hx � iA0kvAH0

U
����
U
p

�
U 2 � i

2k

qU
qz

�
exp
�
i�kZÿ ot�� ;

Ey � ÿ iA0ovAH0

c
����
U
p exp

�
i�kZÿ ot�� : �191�

The complex reflection coefficient of the wave is calculated by
applying the standard boundary equations, giving

R � 1ÿM

1�M
; M � n�o�

�
1� is1

2kL

�
; �192�

where the parameter n�o� is defined by Eqn (189). Note that
in the frequency range

o4Op � pvA �193�

the Alfven wave undergoes total internal reflection.
The exact solution we have obtained for the wave

equation in an inhomogeneous medium does not involve the
conventional slowness assumption on the field and material
parameters. Note that Eqns (189) indicate a useful analogy
between such inhomogeneous Alfven waves and waves in a
homogeneous plasma, with the characteristic frequency Op,
Eqn (193), playing the role of the plasma cut-off frequency.

In conclusion, this work is only a brief sketch of the first
steps on the way of the `alternative' optics of non-stationary
and non-periodic fields, in which no usual spectral concepts
are needed. This approach provides exact analytical solutions
capable of describing the interaction of single-cycle transients
with a number of dispersive media directly in the time

domain. In mathematical terms, this approach relies on the
non-separable solutions of Maxwell's equations, and the
treatment of these latter involves non-stationary extensions
of the electric displacement and power flow velocity concepts
and also of Snellius' and Fresnel's formulae. Since the present
analysis is restricted to the Debye model of the insulator, the
extension of the time domain approach to include non-
stationary fields in Lorentz's free-oscillator model [25] and
in mixed models [26] would be of particular importance.
Since, further, the Klein ±Gordon and telegraph equations
also have non-optical applications and are widely used in
describing of waves in radio engineering, acoustics, and
geophysics, exact non-stationary solutions of these equa-
tions may be useful in treating impulse processes involving
other types of physical fields and other dispersive media.

In the initial phase of this work, it was my happy
opportunity and honor to discuss some of its aspects with
the theoretical radiophysics' patriarch SMRytov, and today,
when Sergei Mikhailovich is sadly no longer among us, I am
increasingly grateful to him for his advices and encourage-
ment.

Thanks are also due to L D Bakhrakh, B M Bolotovski|̄,
F V Funkin, B B Kadomtsev, and A A Rukhadze for their
helpful interest in this work.

Note added in proof

The transformation of the inhomogeneous wave equations to
the homogeneous Klein ±Gordon equation in new variables
(see Section 8) is easily extended to the conventional
electrodynamics equations with time-dependent parameters,
giving rise to new exact analytical solutions for waves in non-
stationary systems. As an example, one can consider the
propagation of an electromagnetic field in a conductor
whose conductivity varies with time as s � s0U 2�t�. Such a
process is described by a non-stationary telegraph equation
which, using the notation of Section 3, can be written

q2C
qz2
ÿ 1

v 2

q2C
qt 2
� 2

T
U 2 qC

qt
; U 2�t�

���
t�0
� 1 : �194�

Difficulties encountered in solving Eqn (194) are discussed in
Ref. [27], where a relevant perturbation theory is also
constructed.

Alternatively, the non-stationary telegraph equation can
yield a number of exact solutions if, in analogy with (126), the
unknown function C is represented in the form

C � F exp

�
ÿ 1

T

�t
0

U 2�x� dx
�
: �195�

Substitution of Eqn (195) into (194) gives the equation for F,

q2F
qZ2
ÿ q2F

qt2
� ÿF

�
qU 2

qt
�U 4

�
; t � tT ÿ1 : �196�

Equating the bracketed quantity to, say, a constant p2, gives
an equation from which the time dependence of the con-
ductivity U 2�t� can be found; in particular, for p2 > 0 the
`saturation' of conductivity to the limiting value U 2 � p with
a characteristic time t0 � Tpÿ1 is described,

U 2�t� � p�1� p tanh pt�
p� tanh pt

: �197�

January, 1998 Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models) 93



The solution of Eqn (194) for the model function (197) can be
written in the form

C � F

sinh
�
p�1� t�� : �198�

The function F in Eqns (196) and (198) is represented by
solutions to the Klein ±Gordon equation (11) with constant
coefficients. Equation (194) for p2 4 0 is solved in an
analogous fashion.

The exact solutions presented above are relevant to the
electrodynamics of dissipative systems [9], Markoff processes
[27], and impulsemetal optics [28]. For example, the reflection
coefficient of an electromagnetic wave of frequency o
incident on a non-stationary conductor (197) may be found
for arbitrary values of the parameter oT. If the solution of
Eqn (196) for the conductivity model (197) is assumed in the
form

F � exp
�
ioT�ZNÿ t�� ; N �

����������������������������
1� p2�oT�ÿ2

q
�199�

then, from continuity at z � 0, the complex reflection
coefficient at normal incidence is found to be

R�t� �M exp�ÿiy� ÿ 1

M exp�ÿiy� � 1
; y � jÿ j0 ; �200�

M�t� � Q�t�Nÿ1; cosj�t� � Qÿ1; cosj0 � Qÿ1�0� ;

Q�t� �
������������������������������������������������������������������
1� p2�oT�ÿ2 tanhÿ2�p�1� t�� :q

The time dependence of the reflection coefficient causes
the non-stationary amplitude-phase modulation of the
reflected wave as well as producing broadening of its
spectrum, the amount of the broadening depending on the
parameter oT. For oT � 1, the broadening is quite strong
(the localization region is only a few field cycles in size), and
the peak in the reflection produces a short wide-band pulse
against the background of the reflected wave. To separate the
pulse from the background, a dispersive or diffracting system
can be employed.

It is worth emphasizing that obtaining a non-stationary
solution outside the framework of the WKB-approximation
is not restricted by assumptions about the smallness or
slowness of changes in the parameters of the field or medium.
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