
Abstract. The recently developed matrix approach to the super-
string concept and M-theory is introduced. The Banks ±
Fishler ± Shenker ± Susskind matrix theory, built as a super-
symmetric matrix quantum mechanics, is considered. Two
supersymmetric matrix models providing a non-perturbative
formulation of the IIB superstring problem are discussed.
Applications to non-perturbative string theory are reviewed.

1. Introduction

String theory (or superstring theory [4], to be precise) is
currently the sole consistent attempt to integrate all funda-
mental interactions including gravity{. In this theory, various
particles correspond to internal oscillation quanta of a one-
dimensional extended object, a string. It appears that the
string state spectrum almost inevitably comprises gravitons
and massless gauge fields. Moreover, the string theory
predicts supersymmetry which may be considered to explain
the existence of fermions.

String interaction leads to their decoupling (or coupling).
Such an essentially geometric description allows for the
development of a divergence-free perturbation theory whose
zeroth order at low energies reproduces Einstein's equations

in the case of closed strings and the Yang ±Mills equations in
the case of open ones. An important breakthrough in
superstring theory has been the solution of the ultraviolet
divergence problem and the construction of finite and
anomaly-free quantum gravity in the framework of perturba-
tion theory. However, string interaction at Planck scales is no
longer weak and non-perturbative effects can not be
neglected. The development of methods unrelated to pertur-
bation theory constitutes one of the main objectives in
modern superstring theory.

Superstring theory can be consistently formulated in ten-
dimensional space ± time. There are several self-consistent
string theories, not to mention different variants of compacti-
fication into a space of fewer dimensions. In the weak
coupling domain where perturbation theory is applicable,
different superstring theories appear to be virtually unrelated.
Considering the string theory as the theory of everything,
such a large number of alternative variants looks quite
unnatural, at least from the aesthetic point of view. How-
ever, it has been argued that all superstringmodels beyond the
limits of the perturbation theory are, in a sense, equivalent.
Available observations appear to support this hypothesis.
There is strong evidence in favor of a single universal theory
encompassing all superstring models as different limiting
cases.

That all superstring models are limiting cases of a certain
unified theory is confirmed by discrete symmetries with
respect to duality transformations which, generally speak-
ing, relate different superstring theories{. These symmetries
can translate the weak coupling domain of one theory into the
strong coupling domain of another. In duality transforma-
tions, normal string excitations, their Kaluza ±Klein modes,
and soliton-like states undergo interconversion. All this gives
reason to believe that string excitations are no more

K L Zarembo, YuMMakeenko Russian State Research Center ``Institute

of Theoretical and Experimental Physics'',

ul. B. Cheremushkinskaya 25, 117218 Moscow, Russia

E-mail: zarembo@vxitep.itep.ru,

makeenko@vxitep.itep.ru

Received 23 September 1997

Uspekhi Fizicheskikh Nauk 168 (1) 3 ± 27 (1998)

Translated by Yu VMorozov; edited by L V Semenova

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 02.10.Sp, 11.15.±q, 11.25.±w

An introduction to matrix superstring models

K L Zarembo, Yu M Makeenko

Contents

1. Introduction 1
1.1 Dynamical triangulation; 1.2 Matrix models; 1.3 Continuum limit; 1.4. D � 1 barrier; 1.5 Generalization to

superstrings

2. Banks ± Fishler ± Shenker ± Susskind matrix theory [1] 6
2.1 Infinite momentum frame; 2.2 11D and 10D; 2.3 How matrices arise; 2.4 Matrix theory Lagrangian; 2.5 Matrix

quantum mechanics; 2.6 Relation to membranes

3. Ishibashi ±Kawai ±Kitazawa ±Tsuchiya matrix model [2] 10
3.1 Schild action; 3.2 Matrix formulation of the IIB superstring problem; 3.3 D-strings as classical solutions; 3.4 Dp-

branes; 3.5 One-loop effective action and p-brane interactions

4. Matrix model with non-Abelian Born ± Infeld action [3] 16
4.1 Matrix description of the Schild string; 4.2 Effective action and measure; 4.3 A note on classical solutions

5. Conclusions 19
6. Glossary 19

References 22

Physics ±Uspekhi 41 (1) 1 ± 23 (1998) #1998 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

{ See Ref. [5] for a brief review of physical aspects of the modern

superstring theory.

{ See Refs [6, 7].



fundamental degrees of freedom than non-perturbative states
and that the theory can be formulated in such a way as to
ensure the description of all degrees of freedom (and different
types of superstrings) on a footing of equality. Extensive
superstring duality studies have created a somewhat para-
doxical situation. On the one hand, string behavior in the
strong coupling domain is known fairly well. Moreover,
considerable progress has been made in the research of non-
perturbative degrees of freedom. On the other hand, a
consistent approach to the superstring concept unrelated to
perturbation theory is still lacking.

It is quite possible that an interpretation of string theory
as the quantum mechanics of one-dimensional extended
objects is adequate only in the weak coupling domain
whereas fundamental degrees of freedom should be viewed
from a different standpoint. Moreover, non-perturbative
string theory should not necessarily be ten-dimensional. In
fact, it has been suggested that a unique dynamical descrip-
tion in eleven dimensions is equally applicable to all current
string theories [8 ± 10]. Different types of superstrings are
realized in different kinematic regimes. Such a hypothetical
construction is referred to as M-theory{ (see Ref. [6] and
references therein). The low-energy limit of M-theory is
consistent with eleven-dimensional supergravity. The con-
siderations underlying this hypothesis are beyond the scope of
the present review. However, it is worthwhile to note that
eleven-dimensional supergravity is maximal in terms of
supersymmetry because no other consistent supersymmetric
theory exists in space ± time with a larger number of
dimensions [11]. This fact accounts in part for the singularity
of eleven-dimensional space.

A variety of indirect considerations allows for the
identification of certain variants of M-theory compactifica-
tion with (compactified) superstring theories. The simplest
example is compactification ofM-theory on a circle along one
of the spatial directions. The resultant ten-dimensional theory
is actually a IIA type superstring{, and the perturbative string
is in correspondence with the small compactification radius.
Conversely, in the strong coupling domain, the radius tends
to infinity, and the theory is neither compact nor eleven-
dimensional.

The only thing known about the state spectrum in the M-
theory is that it contains the graviton and its superpartners as
the sole massless states along with extended objects, such as
membranes and the five-branes dual to them, carrying electric
and magnetic charges relative to the third rank tensor field
included in the eleven-dimensional gravity supermultiplet.M-
theory offers no general considerations to say anything about
fundamental degrees of freedom. Generally speaking, M-
theory dynamics at Planck scales must be very complicated
because the theory contains no free parameters. The coupling
constant in M-theory, the 11D-gravity constant, has a
dimension and can be eliminated by an appropriate choice
of units of measurement. Therefore, a small parameter can
arise in the theory only kinematically. For this reason, it is not
easy to offer even the quantum-mechanical formulation ofM-
theory and the problem awaits solution. One hypothesis
suggests that supermembranes play the role of fundamental
degrees of freedom inM-theory [12, 13, 9] in the same sense as
superstrings are fundamental objects in ten-dimensional

quantum supergravity. However, a consistent quantum
supermembrane theory remains to be developed.

An alternative approach to the dynamical formulation of
M-theory referred to as matrix theory} has been suggested by
Banks, Fishler, Shenker, and Susskind (BFSS) [1]. This
approach is based on quantization in the light cone frame
with one of the cone coordinates compactified on a circle of
radius R!1. The momentum along the compactification
direction pÿ is quantized in units of Rÿ1: pÿ � N=R. The
association of M-theory compactified on a circle with type
IIA superstring allows the singling out of degrees of freedom
important in the given kinematic regime [1]. These degrees of
freedom turn out to be a sort of string soliton. The dynamics
of these solitons is described with the help of the non-
commutative coordinates Xi in the form ofN�NHermitian
matrices and their superpartners (see Section 2 for details).
An allegedly less fundamental but more definitive explana-
tion of matrix origin ensues from the close relationship
between matrix theory and supermembranes. Xi

IJ matrices
appear to arise simply as Fourier modes of transverse
membrane coordinates Xi�s1; s2� in the light cone gauge.

The transition to non-compact 11D space ± time,R!1,
must be characterized by the N!1 limit which is necessary
for the correct normalization of the longitudinal momentum.
Therefore, the number of degrees of freedom in the matrix
theory is really infinite. It has been shown in Ref. [1] that
quantized excitations of matrix coordinates Xi describe an
eleven-dimensional graviton and its superpartners as well as
their scattering states. This, taken together with the intrinsic
non-linearity of matrix theory, allows for the interactions to
be taken into consideration without secondary quantization.

Similar ideas have been developed with respect to type IIB
superstring theory [2]. The authors proposed to regard string
instantons as fundamental objects and interpret matrices as
Fourier modes of the string world sheet coordinates.

The objective of the present paper is to review applications
of matrix models in M-theory and non-perturbative super-
string theory. However, it appears appropriate to preface the
discussion of supersymmetry with an outline of bosonic
strings to which the matrix approach was successfully
applied and became a standard tool to exceed the limits of
perturbation theory. This method is based on discretization
of the functional integral over the string world sheet.

1.1 Dynamical triangulation
It is well-known that in the first quantized formulation,
summation over string trajectories actually reduces to a two-
dimensional quantum gravity on the world sheet [4]. In this
case, the string interaction corresponds to topologic fluctua-
tions:

Zs �
X1
n�0

g2nÿ2s

�
�dhab��dX m�

� exp

"
ÿ
�
Mn

d2s
���
h
p �

1

2
habqaX nqbXn � m

�#
; �1:1�

where hab�s1; s2� is the metric on the string world sheet and
coordinates Xn�s1; s2� ensure the embedding of the string
surface into aD-dimensional Euclidean space. Parameter gs is
the string coupling constant and m is the cosmological
constant of two-dimensional gravity having a square-of-{The term `M-theory' is believed to have been coined from `membrane

theory' although opinions differ.

{ See Glossary in the end of this paper for superstring classification. }The term M(atrix) theory can also be encountered in the literature.
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mass dimension. The world sheetMn in the nth order of the
string perturbation theory is topologically a sphere with n
handles. It should be recalled that the Euler characteristic w of
the surface and its genus n are related by the formula
w � 2ÿ 2n.

A major property of string action is reparametrization
invariance. The right choice of the integration measure in
Eqn (1.1) is crucial. Collectively, gauge fixing and the
Faddeev ± Popov method allow for the description of string
coordinate fluctuations and metrics to be reduced to the
Liouville theory [14, 15] and integration over the moduli-
space of the Riemann surface [16 ± 18]. Topological fluctua-
tions are taken into account in terms of excitation theory,
order by order. Another approach altogether equivalent to
the previous one is more or less analogous to lattice
regularization in the field theory. Similar to the field theory,
it does not require gauge fixing. Discretization of the
continuum integral (1.1) consists in the replacement of
integration over internal metrics by summation over string
world sheet triangulations [19 ± 21].

Let us consider a simplest example of two-dimensional
quantum gravity with D � 0 in Eqn (1.1){:

Z2D �
X1
n�0

g2nÿ2s

�
�dhab� exp

�
ÿ
�
Mn

d2s
���
h
p

m
�
: �1:2�

Such amodel describes fluctuations of the internal metric and
topology on the `zero-dimensional string' world sheet.

The essence of dynamical surface triangulation is the
approximation of the surface of genus n by a combination of
equilateral triangles. Each vertex need not necessarily host six
triangles, as on the plane, because the surface in question may
have internal curvature. The statistical sum (1.2) is approxi-
mated by

ZDT �
X1
n�0

g2nÿ2s

X
Tn

exp

�
ÿLnt

�
; �1:3�

where Tn denotes a certain triangulation, i.e. a system of nt
triangles which form the surface of genus n. It is very
important that the number of triangles nt is not predeter-
mined but represents a dynamical constant. Also, summation
over triangulations Tn implies summation over nt.

The exponential dependence on nt is responsible for the
convergence of the sum over triangulations, at least for
sufficiently large values of the parameter L. However, with
decreasing L, the sum can undergo divergence at a certain
value of L � Lc, due to the entropy factor, i.e. the number of
different graphs with given nt. Crucial in the approach based
on dynamical triangulations is the fact that the total number
of graphs of genus n formed by p triangles increases only with
increasing p as [22]:X

Tn

d�nt ÿ p� � exp�Lc p�pÿbn
�
1�O�pÿ1�� ; �1:4�

where Lc is independent of genus n; n-dependence is present
only in the superscript bn. It is worthwhile noting that the

factorial p-dependence of the total number of graphs arises
due to the summation over genera.

The continuum limit of sum (1.3) over triangulations is
reached when

L! Lc � 0 : �1:5�

In this case, contributions from all genera to, say, the string
susceptibility

f � q2

qL2
ZDT �

X
n

g2nÿ2s �Lÿ Lc�ÿgn ; gn � ÿbn � 3 ;

�1:6�
simultaneously become singular atL! Lc � 0. At this point,
the discretized statistical sum ZDT reproduces continuous
Z2D. The critical index gn in Eqn (1.6) is referred to as the
string susceptibility index; it is an important characteristic of
the string. It is worthy of note that any complex surface can be
taken into consideration by such a transition to the con-
tinuum limit in which nt is a dynamical constant. This
distinguishes the method in question from discretization
with fixed nt.

1.2 Matrix models
The sum (1.3) over random triangulations has a convenient
analytical representation in the formof amatrixmodel. Let us
consider a one-matrix model

Z �
�
dF exp

�ÿN trV�F�� ; �1:7�

where

dF �
YN
i>j

dReFij d ImFij

YN
i�1

dFii �1:8�

is the measure of integration over N�N Hermitian matrices
and

V�F� � 1

2
F2 ÿ 1

3
aF3 �1:9�

is the cubic potential. Propagators and vertices in Feynman
diagrams for the zero-dimensional field theory (1.7) may be
depicted by double lines, one for each matrix index arising in
the simplest Gaussian matrix integral

�2p�ÿN 2=2

�
dF exp

�
ÿN

2
trF2

�
FijFkl � 1

N
dildkj : �1:10�

A fragment of a typical diagram is shown in Fig 1. Each
diagram may be considered to be composed of two-dimen-
sional objects, e.g. polygons bound by index loops. These
polygons are glued together thus giving rise to an oriented
two-dimensional surface. This makes the difference from
conventional Feynman diagrams. Lines drawn through the
centers of polygons produce a diagram known as `dual' to the
original. It is made up of triangles by virtue of cubic
interaction in the matrix model potential (1.9). The shape of
the dual diagram is exactly that needed for dynamical
triangulation of Riemann surfaces.

There is close relationship between the two approaches
due to the fact that topological classification of diagrams in
matrix theories is naturally related to an expansion in powers
of 1=N 2 as was first noticed by t'Hooft [23] for quantum

{Using the Gauss ±Bonnet theorem, this formula may be rewritten in the

standard-for-gravity form:

Z2D �
�
dh exp

�
ÿ
�
d2s

���
h
p �

mÿ �4pG�ÿ1R�� ;
where R is the scalar curvature and Gÿ1 � ÿ ln gs.
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chromodynamics. Simple counting of powers of N indicates
that the diagram with the topology of a Riemann surface of
genus n has the order N 2ÿ2n. Therefore, each term in 1=N
expansion of free energy

F � lnZ �
X1
n�0

FnN
2ÿ2n �1:11�

is given by the sum of connected diagrams each topologically
representing a sphere with n handles:

Fn �
X
G

av�G�

#Aut �G� ; �1:12�

where v�G� is the number of vertices in diagram G and
#Aut �G� is the order of its symmetry group. At N!1,
planar diagrams with spherical topology predominate.

To summarize, the transition from Feynman diagrams to
dual diagrams establishes the relationship between 1=N
expansion in the matrix model (1.7) and the expansion in
genera (1.3) for dynamical triangulation of random surfaces
since Eqn (1.12) can be regarded as the sum over all
triangulations of the surface of genus n. It readily appears
from the comparison of Eqns (1.3) and (1.7) that

F � ZDT �1:13�
provided the size of matrices is N � 1=gs and the cubic
coupling constant a of the matrix model is related to L by
the formula a � exp�ÿL�. Equality (1.13) holds so far as the
number of diagram G vertices, v�G� � nt, and the number of
triangles in the dual diagram coincide. The aforementioned
divergence of the sum over genera in Eqn (1.3) is apparent in
thematrix model as the divergence of the integral over dF at a
finite N.

Also, there is every reason to consider the matrix model
(1.7) with the potential of a more general form

V�F� �
X
j>1

aj F j ; �1:14�

which is a polynomial of arbitrary power. It is understandable
from the analysis of the corresponding Feynman diagrams

and dual diagrams that such a matrix model conforms to
discretization of random surfaces by regular polygons with
j5 3 vertices, the area of the j-gon being � jÿ 2� times that of
the equilateral triangle in case of dynamical triangulation.
This is themost general case of random surface discretization.

1.3 Continuum limit
In a previous section, we discussed how the sum (1.3) over
triangulations describes a continuous string in the limit (1.5).
In terms of the matrix model (1.7), this must correspond to a
phase transition at a certain value of ac � exp�ÿLc�, as is
common in lattice theories. At a finite N, such a phase
transition is infeasible because the system has a finite number
of degrees of freedom. However, the phase transition{ in this
matrix model is possible when the number of degrees of
freedom becomes infinite. This was first demonstrated in
Ref. [24]. Therefore, the continuum limit is reached at
N!1 and a! ac.

In the transition to the continuum limit, it must be
assumed that

L � ma2 ; �1:15�

where a2 is interpreted as the area assigned to the constituent
triangles. When the area is small, summation over triangula-
tionsmay be interpreted as a discretized variant of integration
over internal metrics. Because the coupling constant of the
matrix model is related to the priming cosmological constant
m by the expression a � �ÿma2�, the Boltzmannweight of each
triangulation is a v � exp�ÿm� area�. The perturbation
theory series undergoes divergence near the phase transition
point, and the main contribution is made by diagrams with
v � �ac ÿ a�ÿ1. If the a-dependence of a is such that
a2�ac ÿ a�ÿ1 remains finite at a! 0, the sum over triangula-
tions is dominated by surfaces with the finite area S � va2.
Renormalization of the cosmological constant upon transi-
tion to the continuum limit consists in computation of the
quadratic divergence m � Lc=a

2 � mR.
It follows that the matrix model provides the analytical

description of lattice regularization of the zero-dimensional
string theory. Thematrix integral contains information about
all orders of the perturbative string theory. Evidently, it can
be regarded as a non-perturbative definition of two-dimen-
sional quantum gravity.

Well-developed methods of 1=N expansion for matrix
models make it possible to give the non-perturbative descrip-
tion of topologic fluctuations in two-dimensional quantum
gravity. Topological expansion appears to be defined by a
single parameter, the renormalized string coupling constant l,
expressed through priming parameters by the relation

l � ��ac ÿ a�5=4N�ÿ1 : �1:16�

Transition from discretized random surfaces to continuous
ones occurs in the double scaling limit [25 ± 27], with a! ac
and concurrently N!1, while the quantity l given by
formula (1.16) remains finite. This approach was used to
construct an expansion in genera in two-dimensional quan-
tum gravity and demonstrate the important role of non-
perturbative effects. Specifically, the renormalized theory is

Figure 1. Fragment of planar diagram in the matrix model (double lines)

and the corresponding dual diagram (single lines) which is a certain surface

triangulation.

{This phase transition for the one-matrix model (1.7) satisfies g0 � ÿ1=2
and is characterized by singularity of (1.6)-derivative rather than that of

string susceptibility itself. It is a third order phase transition.
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generally speaking characterized by two constants; that is, in
addition to l, another parameter shows up which is
inapparent in any finite order of the perturbation theory.
Applications of matrix models to two-dimensional quantum
gravity have been reviewed in several papers [28 ± 30].

1.4 D=1 barrier
One-matrix model (1.7) admits natural generalization to the
case of several matrices; accordingly, the strings they describe
are embedded into a space of greater dimensionality. The
simplest example is a two-matrix model

Z �
�
dF1 dF2 exp

�ÿN trV�F1� �N trF1F2 ÿN trV�F2�
�

�1:17�

and its generalization to an (open) chain of qmatrices

Z �
�Yq

i�1
dFi exp

�
ÿ
Xq
i�1

N trV�Fi� �N
Xqÿ1
i�1

trFiFi�1

�
:

�1:18�
Such matrix models describe the discretization of bosonic
strings with 0 < D4 1 or two-dimensional quantum gravity
with matter{. For instance, the multi-matrix model (1.18)
corresponds to D � 1 at q!1.

At q!1, index i may be substituted by a continuous
variable x and the matrix chain with q � 1 regarded as
`lattice regularization' of the statistical sum of one-dimen-
sional matrix model

Z �
�Y

x

dF�x�

� exp

(
ÿ
�
dxN tr

�
1

2
_F2 �m2

2
F2 � Vint�F�

�)
; �1:19�

where _F � dF=dx. Each perturbation theory diagram in this
model has the corresponding Feynman integral which, in the
coordinate representation, has the form

FG �
�Y

i

�
dXi

2m

�
exp

�
ÿm

X
hiji

��Xi ÿ Xj

��� : �1:20�

Therefore, for the cubic interaction potential, the contribu-
tion of diagrams of genus n to the free energy is

Fn �
X
G

av�G�

#Aut �G� FG : �1:21�

Integration variables Xi can be identified with the values of
the string coordinate X in diagram vertices. This accounts for
the correspondence (in the continuum limit) between summa-
tion of diagrams and integration over Xi, on the one hand,
and functional averaging over metrics and field X in (1.1), on
the other. In this case, the one-dimensional propagator
reproduces the kinetic term for the bosonic field{.

A similar approach may be employed to build up a
matrix model equivalent to the string theory at any D [32].
At D > 1, however, one should consider the matrix field
theory rather than zero-dimensional integrals and quantum
mechanics. In this case, neither the exact solution of the
problem at N!1 nor the construction of 1=N expansion
is possible. Thus, D � 1 is a sort of barrier in the bosonic
string theory.

At D > 1, the qualitative behavior changes dramatically
due not so much to technical complication of the theory as
to instability of the perturbative string vacuum. The point is
that the squared mass of the lowest string excitation is
proportional to 1ÿD, and the ground state at D > 1
becomes a tachyon. The presence of infrared divergences
leads to instability of the perturbative vacuum and is
manifested, for example, in that the critical index g0
acquires an imaginary part. Numerous analytical and
numerical studies of discretized random surfaces have
demonstrated (see Ref. [33]) the absence of the string
phase at D > 1. Due to infrared instability, the string
world sheet undergoes degeneration to a quasi-one-dimen-
sional object, a branching polymer; as a result, the bosonic
string fails to describe a system with an infinite number of
degrees of freedom. Such is the tachyon problem solution at
D > 1: there is neither a tachyon over the new (stable)
vacuum nor a string.

1.5 Generalization to superstrings
The aspect of the tachyon problem in the superstring context
is a little bit different. In this case, the tachyon may be
excluded from the system of physical states (at least order by
order of the perturbation theory) with the aid of GSO-
projection. This confirms that the superstring remains in the
string phase even at D > 1, in compliance with the fact, well-
known from statistical mechanics, that fermions are able to
smooth the dynamical behavior of the system.

Further development of the random triangulationmethod
for superstrings encounters some difficulties related in the
first place to supersymmetry discretization. Attempts at
supersymmetric generalization of Riemann surfaces and
matrix models date from Ref. [34], but a certain degree of
progress was reported only in Ref. [35] for the simplest case of
two-dimensional supergravity although its formulation in the
form of a supersymmetric matrix model has never been
proposed.

In autumn 1996, another approach to the non-perturba-
tive description of M-theory and ten-dimensional super-
strings was proposed based on different ideas. Nevertheless,
the fundamental objects used in this approach are also
specific forms of matrix models, and these matrices have a
space ± time interpretation.

Section 2 of the present review comprises an introduction
to the BFSS matrix theory [1].

Section 3 is concerned with the zero-dimensional matrix
model suggested by Ishibashi, Kawai, Kitazawa, and Tsu-
chiya (IKKT) [2] to directly describe IIB superstrings.

A modified IKKT model [3] which makes it possible to
reproduce a matrix analog of the Nambu ±Goto action at the
quantum level is discussed in Section 4.

The Glossary at the end includes some terms frequently
encountered in the present paper but unexplained in the text
(see also Ref. [36]).

{ In the context of two-dimensional quantum gravity, the space dimension

D is equal to the central charge of matter fields in the Virasoro algebra. In

such a broad interpretation, D is not necessarily an integer.

{ Strictly speaking, the regularization of Eqn (1.1) at D � 1 requires that

the propagator be proportional to exp
�ÿm�Xÿ X 0�2�, in conformity with

a matrix model non-local in time. However, analysis of such a model

would be an unnecessary complication because in the continuum limit it is

included in the same universality class as the local theory [31].
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2. Banks ± Fishler ± Shenker ± Susskind matrix
theory [1]

The BFSS matrix theory [1] for the dynamical description of
M-theory looks very much like the first quantized formula-
tion of the theory of superparticles and superstrings. The
most important difference lies in the possibility of making the
equation of motion for superparticles and superstrings linear
by choosing the gauge. Due to this, the action in the first
quantized formalism describes the distribution of free
particles or free string states. The interaction can be taken
into account by considering Feynman diagrams for particles
or world sheets with non-trivial topology for strings. Equa-
tions ofmotion in thematrix theory are essentially non-linear;
therefore, even the first quantized theory turns out to be
interacting. According to the BFSS hypothesis, these interac-
tions settle the problem, and secondary quantization is
superfluous.

It was suggested in Ref. [1] to consider eleven-dimensional
M-theory in a special reference frame sometimes called the
infinite momentum frame or light cone frame. Of course, a
part of the eleven-dimensional Lorentz covariance in this
reference frame is no longer explicit and needs verification.
However, all degrees of freedom in the matrix theory can be
explicitly described only in the light cone gauge. In the first
quantized theory of particles and strings, reparametrization
invariance of action allows one of the light cone coordinates
to be identified with time. The second coordinate is fixed by
the links resulting from the gauge choice. This makes the
action dependent only on transverse coordinates. A covariant
formulation of the matrix theory is yet unavailable, and the
BFSS model is interpreted as a theory with a fixed light cone
gauge; therefore, the action has no longitudinal coordinates,
by definition.

Transverse coordinates of eleven-dimensional M-theory
and their superpartners are described in the matrix theory by
supersymmetric quantum mechanics of N�N Hermitian
matrices. The matrix size N is identified with a positive
integer which defines the total longitudinal momentum of
the system. If eleven-dimensionalM-theory is to be described,
the matrix size must tend to infinity in order to get a correct
normalization of the longitudinal momentum. Such is the
mechanism of origin of the infinite number of degrees of
freedom in the matrix theory. Space ± time coordinates arise
in the matrix theory as parameters characterizing degenerate
potential energy minima.

2.1 Infinite momentum frame
The eleven coordinates x m � �x0; x i; x10� of M-theory are
actually nine transverse coordinates x i, i � 1; . . . ; 9 (or x?�
and two light cone coordinates t � x� � �x0 � x10�= ���

2
p

and
xÿ � �x0 ÿ x10�= ���

2
p

, one standing for time and the other
being regarded as spatial. Conjugate variables are identical
with the energy E � p� and longitudinal momentum pÿ
respectively. An advantage of the light cone frame is in that
both the energy and longitudinal momentum on the mass
surface are positive. The metric in the light cone coordinates
has the form p2 � 2p�pÿ ÿ p2? and the dependence of the
massless particle energy on the transverse momentum is given
by the non-relativistic dispersion law

p� � p2?
2pÿ

: �2:1�

The longitudinal coordinate xÿ is supposed to be compact:

xÿ � xÿ � 2pR :

The compactification radius R serves as an infrared regular-
ization parameter which should be pushed to infinity at the
end of calculations. By virtue of compactness, the long-
itudinal momentum is quantized in units of Rÿ1:

pÿ � N

R
�N � 0; 1; 2; . . .� : �2:2�

For a system with finite longitudinal momentum in the non-
compact eleven-dimensional space,Nmust tend to infinity to
ensure that relation (2.2) remains fixed. It should be
emphasized that there is no need to take into account states
with negative pÿ values which greatly facilitates the construc-
tion of the fundamental M-theory Lagrangian in the infinite
momentum frame.

2.2 11D and 10D
Compactification of M-theory on a circle leads to the theory
of type IIA superstrings. Although the compactification
radius is used solely as an infrared regularization parameter,
all of its quantities are essentially ten-dimensional by origin.
It therefore seems appropriate to briefly discuss how the
parameters and degrees of freedom are related in ten and
eleven dimensions.

M-theory is characterized by the Planck length lp and the
string theory by the dimensionless coupling constant gs and
tension

T � 1

2pa 0
: �2:3�

It is sometimes convenient to use the length dimension
parameter ls �

�������
2a 0
p

instead of tension. The compactifica-
tion radius and string length are related to 11D-quantities by
the formulae

R � g2=3s lp ; ls � gÿ1=3s lp : �2:4�

These relations suggest that M-theory may be regarded as the
strong coupling limit of the type IIA string theory. At
gs !1, the compactification radius tends to infinity and
the theory actually has eleven dimensions.

Massless states in M-theory form a fundamental super-
multiplet of 256 states which correspond to an eleven-
dimensional graviton and its superpartners, the gravitino
and antisymmetric tensor field of rank 3. The number 256 is
easy to find since the 11D supercharge has 32 components one
half of which trivially act on the massless states [37]. The
irreducible representation of the algebra of the 16 remaining
supercharge components has the dimension 216=2 � 256.

Following M-theory compactification, each state from
the gravity supermultiplet gives rise to an infinite set of
Kaluza ±Klein modes in ten dimensions. There is no
problem as far as zero-modes are concerned for they have
corresponding massless degrees of freedom in the type IIA
superstring theory, and it is well-known that the low-energy
effective theory describing them, 10D non-chiral N � 2
supergravity, can be obtained by dimensional reduction
from eleven dimensions.

The interpretation of massive modes is much less
straightforward. The respective states in the superstring
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theory are essentially non-perturbative because their masses
in string units are inversely proportional to the coupling
constant N=Rÿ!N=gs. In the ten-dimensional context, the
integer N looks like a persistent charge whose gauge field
arises from the R±R superstring sector. None of the
perturbative string states carries RR-charges.

However, the superstring theory contains soliton-like
states with necessary properties, D0-branes. Elementary D0-
branes carry unit RR-charge and satisfy the BPS (Bogo-
mol'ny ± Prasad ± Sommerfield) condition. This accounts for
the equality of masses and charges of D0-brane bound states
up to a coefficient. For the same reason, they form a
supermultiplet of 256 rather than 2562 states as is the case
with ordinary massive states in N � 2 D � 10 supergravity
(e.g. superstring massive modes).

To sum up, an eleven-dimensional graviton with long-
itudinal momentum pÿ � 1=R looks like a D0-brane in the
ten-dimensional theory. The bound state of N D0-branes
corresponds to a graviton with momentum pÿ � N=R.

2.3 How matrices arise
There are various soliton-like states in the superstring theory.
In the general case, they have the form of extended objects, p-
branes. A p-brane propagating in space ± time covers a
�p� 1�-dimensional world volume. Ten-dimensional gravi-
ties offer solutions for this type of classical equations of
motion (see Ref. [38]). They have finite tension (mass per
unit spatial volume) and, unlike perturbative string states,
carry RR-charges. Reference [39] showed the possibility of
describing solitonic states with RR-charges in the framework
of the string theory as D(irichlet)-branes. Specifically, such
states are exemplified byD0-branes (D-particles) correspond-
ing to the Kaluza ±Klein modes of eleven-dimensional
graviton.

The dynamical description of D-branes is organized in the
following way. In the presence of a RR-source, fundamental
closed strings may undergo disjunction and conversion to
open strings rigidly bound to a D-brane. The ends of the
strings can move freely along the D-brane but can not detach
from it. Mathematically, this corresponds to the superposi-
tion of Dirichlet boundary conditions on the string coordi-
nates which are orthogonal to the D-brane world volume and
Neumann conditions on the tangential coordinates. Quan-
tum fluctuations of the string are described in the usual way.
It turns out that the Dirichlet boundary conditions are
compatible with supersymmetry and the GSO-projection for
even-dimensional D-branes in the type IIA superstring theory
and odd-dimensional ones in the IIB theory.

As usual, when the characteristic scale of a problem is
much larger than the Planck length, the exact string
description has no sense because the infinite system of
massive string states makes a negligibly small contribution,
and it is possible to be confined to massless or very light
degrees of freedom. Low-energy interactions of massless
degrees of freedom in such an approximation can be
described by an effective field theory with a local Lagran-
gian. Low-energy excitations of Dirichlet strings spread only
along a D-brane because the string end points are rigidly
attached to it. Therefore, in the low-energy approximation, a
D-brane is described by the effective field theory on its world
volume.

Dirichlet strings differ from 10D open superstrings only
by boundary conditions whereas quantum fluctuations in
both theories are identical. For this reason, the effective

Lagrangian for a D-brane is the same as for open strings.
Gauge fields and their superpartners are massless degrees of
freedom of an open string. In other words, the low-energy
effective theory on the D-brane world volume is derived from
the 10D U(1)-gauge theory by dimensional reduction, i.e. by
disregarding dependences of all fields on coordinates ortho-
gonal to the world volume.

Let us assume for certainty that D-brane lives on a
hyperplane xp�1 � 0; . . . ; x9 � 0 and its world volume is
parametrized by coordinates x 0; . . . ; x p as shown in Fig. 2.
The components of the vector potential Aa�x� �a � 0; . . . ; p�
tangential to the D-brane describe internal gauge fields while
the remaining �9ÿ p� components look like scalars from the
standpoint of the field theory on the world volume. It can be
shown that they play the role of coordinates describing D-
brane fluctuations [40]:

Xi�x� � 2pa 0Ai�x� �i � p� 1; . . . ; 9� : �2:5�

The state carrying an RR-charge equal to N can be
represented as the superposition of N D-branes. Let us
consider, for example, N parallel static D-branes in hyper-
planes xp�1 � X

p�1
I ; . . . ; x9 � X9

I , I � 1; . . . ;N. Each D-
brane has a corresponding U(1) field, and the gauge group
of the low-energy effective theory is �U�1��N. The D-brane
coordinates Xi

I can be identified with average scalar field
values (2.5).

In fact, the number of string degrees of freedom in the
presence ofND-branes increases N 2 rather thanN times just
because fundamental strings may begin on one D-brane and
end on another as shown in Fig. 3 for the case of N � 2.
However, the strings possess tension, and the energy

p-brane

x0; . . . ; xp

Figure 2.Dp-brane (depicted as a hyperplane parametrized by coordinates

x0; . . . ; xp) and fundamental (open) string with end points attached to the

D-brane.
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necessary for the creation of a string connecting different
branes must be at least proportional to the distance between
them. Hence, the corresponding field is massive:

MIJ � T jXI ÿ XJj ; �2:6�
if the branes are separated in space.

However, the masses of strings connecting D-branes
become small if the branes are close enough to each other.
This necessitates taking into account the relevant degrees of
freedom in the low-energy theory, when examining bound
states. In an extreme case of coincidentD-branes, allN 2 states
corresponding to different strings are massless, and the gauge
symmetry increases to the U�N� group [41].

Such a picture of D-brane interactions is mathematically
described in the following way. In the presence ofND-branes,
each string is a match for integers I and J numbering the D-
branes on which the string arises and ends. The situation in
which discrete indices are ascribed to string ends is familiar; it
is in this way that non-Abelian gauge symmetry is introduced
into the open string theory with the help of Chan ± Paton
factors. In the low-energy approximation, superstrings with
Chan ±Paton factors are described by the Yang ±Mills
supersymmetric theory. When strings connecting all possible
pairs of D-branes are taken into account, fields in the low-
energy effective theory becomeHermitianmatrices with I and
J indices running from one to N. The Lagrangian of the
effective theory is obtained by simple reduction of the 10D
supersymmetric U�N�-gauge theory to �p� 1�-dimensional
space:

Seff � 1

g2s

�
d p�1x tr

�
ÿ 1

4
F 2
ab �

1

2
�DaX

i�2 � 1

4
�Xi;X j�2

� i

2
�cG aDac� 1

2
�cG i�Xi;c�

�
: �2:7�

When the charge RR � 1, the scalar fieldsXi play the part
of D-brane transverse coordinates. For a D-brane with
charge N, the scalar fields are N�N Hermitian matrices.
The space ± time interpretation of such `non-commutative
coordinates' is based on the fact that the potential for scalar
fields (arising from the term proportional to F 2

ij in the action

of the 10D Yang ±Mills theory) has flat directions. Indeed,
the potential vanishes if the Xi matrices commute and at the
same time are amenable to diagonalization:

Xi �
Xi

1

. .
.

Xi
N

0B@
1CA : �2:8�

When the scalar fields acquire vacuum averages of the form
(2.8){, the gauge symmetry is spontaneously broken to
�U�1��N. The diagonal components Xi

I of X
i matrices should

be identified with the coordinates ofND-branes. In this case,
off-diagonal components of scalar and gauge fields acquire
masses of order (2.6), as expected.

2.4 Matrix theory Lagrangian
According to the BFSS hypothesis (see also Ref. [42]), the sole
M-theory fundamental degrees of freedom in the light cone
gauge areD0-branes. This means that all physical states inM-
theory are built of D0-branes. The number of D0-branes is N
or, in other words, their RR-charge must tend to infinity
because in terms of M-theory it must be equal to the
longitudinal momentum in units of Rÿ1. Similarly, R should
be taken to infinity leaving the longitudinal momentum
pÿ � N=R fixed. The matrix theory action is extracted from
the low-energy effective action (2.7) for D0-branes by field
restretching and transition to 11D Planck units.

The fundamental Lagrangian of the matrix theory has the
form

L � tr

�
1

2R
�DtX

i�2 � R

4
�Xi;X j�2 � yDty� iR ygi�Xi; y�

�
;

�2:9�

where Xi�t� stands for the nine N�N Hermitian bosonic
matrices while the 16-component nine-dimensional spinor
ya�t� (a � 1; . . . ; 16) is composed of N�N Hermitian
fermionic matrices. The nine-dimensional Dirac gi matrices
satisfy the standard anticommutation relations

fgi; gjg � 2dij ; �2:10�

and Planck units, lp � 1, are used.
The covariant derivative Dt in Eqn (2.9) is defined as

Dt � d

dt
ÿ i�A; � � : �2:11�

The gauge field A is not a dynamical degree of freedom. In
principle, it can be eliminated by the gauge choice, but in this
case the action is no longer explicitly supersymmetric since
supersymmetry transformations also affect A:

dXi �
����
R
p

Egiy ; �2:12�

dy �
�
i
����
R
p

4
�Xi;X j�gij ÿ

1

2
����
R
p DtX

igi

�
E� E 0 ; �2:13�

dA � R
����
R
p

Ey ; �2:14�
E and E 0 spinors give rise to two sets of 16 independent
transformation parameters unrelated to the time t.

Figure 3. Emergence of matrices for the case of a bound state of two

parallel D-branes �N � 2�. A fundamental string can start and end either

on the same or different branes. Since the string is oriented, there are four

massless vector states for the case when D-branes practically lie on top of

each other. They form a U(2)-group representation.

{ Strictly speaking, degenerate minima of the potential correspond to

different vacua only in the field theory, i.e. at p5 1. At p � 1, it is not quite

correct either because of infrared divergences; see Ref. [41] for details.
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It is important to keep in mind the critical difference
between the effective action (2.7) for D0-branes and the
matrix theory Lagrangian (2.9). While the former is an
effective action and has sense only at the tree level, the latter
is the quantum theory Lagrangian for which quantum loop
effects are essential.

At first sight, matrix quantum mechanics with Lagran-
gian (2.9) seems too simple to describe eleven-dimensional
quantum supergravity. However, in the N!1 limit when
the infinite number of degrees of freedom becomes a reality,
matrix theory dynamics turns out to be sufficiently compli-
cated. Specifically, phase space of thematrix theory atN � 1
describes a very large collection of states. This can be
illustrated by the following example. At N � 1, the differ-
ence between matrices and operators disappear. Let us
assume X 9 to be an operator (infinite matrix) of the special
form X 9 � ÿiR9�q=qs� ÿ A, where s is the variable which
changes in the range from 0 to 2p. MatrixA as well asXi with
i < 9 depends only on s. Substitution of such an ansatz into
formula (2.9) converts it into the Lagrangian of the two-
dimensional Yang ±Mills theory withN � 8 supersymmetry.
This construction is consistent with the compactification of
the 9th dimension on a circle of radius R9 which is used to
describe the string limit of the matrix theory [43].

Xi
IJ and ya

IJ �I; J � 1; . . . ;N�matrices in the matrix theory
play roughly the same role as world sheet coordinatesXi�s; t�,
ya�s; t� in the string theory excepting one important differ-
ence, i.e. that the string Lagrangian in the light cone gauge
describes the distribution of free string states whereas the
matrix theory Lagrangian contains all dynamical informa-
tion, in compliance with the BFSS hypothesis; specifically, it
describes scattering states and their interactions.

True, the physical sense of non-commuting Xi quantities,
unlike that of string coordinates, is not immediately apparent.
There are two possibilities of interpretingXi matrices in terms
of space ± time, one ensuing from ten-dimensional interpreta-
tion of the matrix theory Hamiltonian and the other
borrowed from the theory of supermembranes.

2.5 Matrix quantum mechanics
The Hamiltonian corresponding to Lagrangian (2.9) has the
form

H � R tr

�
1

2
PiPi ÿ 1

4
�Xi;X j �2 ÿ iygi�Xi; y�

�
; �2:15�

where Pi and Xi give a pair of canonically conjugate
variables. As usual, ya

IJ satisfy anticommutation relations,
one half of them playing the role of momenta and the other
that of coordinates.

Group U�N� can be represented in the form of the direct
product U�1� 
 SU�N�. The Abelian part of Xi should be
identified with the center-of-mass (cm) coordinate

xi�cm� � 1

N
trXi : �2:16�

Such an identification is quite natural both from the view-
point of D0-branes [see Eqn (2.8)] and in the membrane
interpretation of thematrix theory action discussed in Section
2.6.

In compliance with equality pÿ � N=R, the transverse
center-of-mass momentum

pi�cm� � trPi � N

R
_xi�cm� ; �2:17�

is related to velocity by the conventional formula

1

pÿ
pi�cm� � _xi�cm� : �2:18�

Momentum dependence of the center-of-mass energy ensues
from Eqn (2.15):

p� � E � R

N

p2?�cm�
2

� p2?�cm�
2pÿ

: �2:19�

The last expression fairly well coincides with Eqn (2.1) which
holds for a massless particle in eleven dimensions.

It is worthwhile noting that the Hamiltonian is totally
independent of fermionic superpartners of the center-of-mass
coordinates. Therefore, a state with a definite momentum is
degenerate and forms representation of the algebra of 16 tr ya

components. The dimension of this representation is

216=2 � 28 � 256 :

This exactly corresponds to the 256 states of an eleven-
dimensional graviton. For excellent agreement with super-
gravity, the SU�N�-part of the Hamiltonianmust have a zero-
energy normalizable vacuum state. The delicate question of
the reality of such a state has been discussed by several
authors [44, 45].

It can be inferred that the vacuum state of the matrix
theory Hamiltonian is consistent with a supergravity of
longitudinal momentum N=R. Excited states have a contin-
uous spectrum originating from zero{. It arises as a sequel of
flat directions of the potential for the Xi discussed in Section
2.3{. The existence of the continuous spectrum in matrix
theory appears to be quite natural because it is necessary for
the description of graviton scattering states. It should be
noted that only a small part of the continuous spectrum
survives in the R!1, N!1 limit. The compactification
radius R enters the Hamiltonian only as the common
multiplier; therefore, the energy eigenvalues have the form
RE, where E is independent of R. Only states with E � 1=N
have finite energy of order R=N � 1=pÿ in the non-compact
eleven-dimensional limit.

Supergraviton scattering states can be described in the
matrix theory as block-diagonal matrices. For example, it is
natural to compare superpositions of two matrix gravitons

Xi �
Xi
�1� 0

0 Xi
�2�

 !
; �2:20�

where the Xi
�I� blocks are of size NI �NI. The longitudinal

and transverse graviton momenta are NI=R and tr _Xi
�I�=R

respectively. The standard background field method is
suitable for the investigation of intergraviton interactions in
thematrix theory. Results of such calculations are in excellent
agreement with eleven-dimensional supergravity [1, 47, 48].

2.6 Relation to membranes
The infinite matrix size limit allows for the relationship
between matrix theory and supermembranes to be estab-
lished. Such a correspondence is underlain by somewhat

{Positive-definite Hamiltonian (2.15) ensues from its equality to the

square of the supercharge.

{The existence of the continuous spectrum is a non-trivial fact despite the

presence of flat directions; it also follows from supersymmetry [46].
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formal but sufficiently general considerations playing an
important role in superstring matrix models discussed
below. The present section concerns such considerations for
membranes with toroidal topology.

The idea is to expand dynamical variables of the BFSS
model, i.e. Xi and ya matrices, around the special basis in
gl�N�. It is introduced in the following way [49]. At first, two
unitary matrices g and h which satisfy the relations

hg � exp

�
2pi
N

�
gh ; �2:21�

hN � 1 � gN �2:22�
are considered. In the representation in which matrix g is
diagonal, h acts as the shift operator:

gjni � exp

�
2pin
N

�
jni ; �2:23�

hjni � jnÿ 1i : �2:24�
In this case, j0i � jNi. Any matrix of size N�N can be
represented as a function of g and h:

Z �
XNÿ1
n;m�0

Zn;m gmhn : �2:25�

Upon transition to the N!1 limit, the space in which g
and h act becomes infinitely dimensional and equality (2.22) is
no longer essential while the permutation relation (2.21) can
be realized by expressing g and h through coordinate and
momentum operators:

g � exp iq ; h � exp ip ; �2:26�
�q; p� � 2pi

N
: �2:27�

Relation (2.27) suggests that parameterN plays a dual role. It
defines the matrix size while 2p=N has the sense of the Planck
constant. Hence, N!1 is a quasi-classical limit. In the
quasi-classical limit, the q and p operators turn into c-
numbers which makes it natural to apply correspondence to
the function of two variables in the matrix of the general form
(2.25) at N!1:

Z) Z�q; p� �
XN=2
n;m�0

Zn;m exp�imq� inp�

�
XN=2
n;m�0

�n;m�6��0; 0�

ZNÿn;Nÿm exp�ÿimqÿ inp� : �2:28�

The function Z�q; p� of both variables is periodic and is thus
defined on the torus.

In the quasi-classical approximation, the commutators
are replaced by Poisson brackets

�X;Y� ) 2pi
N
�qqX qpYÿ qpX qqY� ; �2:29�

and the matrix trace changes to an integral over phase space:

trZ � N

�2p
0

dp dq

�2p�2 Z�p; q� : �2:30�

True, the latter equality contains no approximation.

The above calculations with the substitution of infinite
matrices by the functions of two variables are equally
applicable to the matrix theory Lagrangian (2.9). In the
gauge A � 0, it turns into expression

L �
�
dp dq

�2p�2
�
pÿ
2

_X 2 ÿ p2

pÿ
�qqX i qpX j ÿ qpX i qqX j�2

� pÿy _yÿ 2pygi�qqX i qpyÿ qpX i qqy�
�
; �2:31�

which coincides with the supermembrane Lagrangian in the
light cone gauge [50].

The relationship between matrix theory and supermem-
branes offers an elegant solution of the problem of the
supermembrane continuous spectrum [46]. The continuous
spectrumof supermembrane theory looks a serious problem if
it is to be interpreted in the spirit of string theory. By contrast,
the presence of the continuous spectrum in the matrix theory
is quite natural because it corresponds to the graviton
scattering states discussed in the previous section.

The description of membranes in the matrix theory may
be approached from the other side by simply identifying them
with classical solutions without regard for the origin of
Lagrangian (2.31). Membranes in the matrix theory may be
interpreted as statistical solutions of classical equations of
motion�

Xi; �X j;Xi�� � 0 : �2:32�

A membrane in a �x8; x9� plane has the form [1]

X 8 � R8

����
N
p

p ; X 9 � R9

����
N
p

q ;

all the remaining Xi � 0 : �2:33�
Here, p and q are infinite matrices (operators) satisfying
canonical commutation relations and R8 and R9 play the
role of compactification radii; they must be large enough to
allow for the periodicity in x8, x9 to be neglected. The
commutator �X 8;X 9� is equal to the c-number; therefore,
(2.33) is actually the solution of Eqns (2.32).

The long-range interaction between these membrane
configurations (and more general classical solutions corre-
sponding to even-dimensional Dp-branes{) has been investi-
gated in the framework of matrix theory [51 ± 55] and
compared with the results for IIA superstrings. Details of
these calculations are not presented here since they are similar
to those for type IIB strings below.

3. Ishibashi ±Kawai ±Kitazawa ±Tsuchiya
matrix model [2]

The matrix theory has been suggested as a model providing a
full quantum-mechanical description of M-theory in eleven
dimensions. Strings arise in the matrix theory only after
compactification.

In another approach, the IKKT hypothesis [2], the matrix
model is directly connected with superstrings. The action of
this model is derived from the ten-dimensional supersym-
metric gauge theory by reduction to a point, i.e. by
considering fields altogether independent of coordinates.
According to the IKKT hypothesis, this zero-dimensional
matrixmodel can be considered in the infinitematrix size limit

{ Strictly speaking, with a presumably magnetic field living on them.
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as a non-perturbative definition of the type IIB superstring
theory.

The IKKTmatrix model has much in commonwith BFSS
matrix theory. Specifically, it is closely related to the D-brane
concept. Unlike type IIA theory, the string IIB theory deals
with odd-dimensional D-branes. The minimal dimension,
p � ÿ1, is intrinsic in D-instantons for which the low-energy
effective action is extracted by reducing the Yang ±Mills
theory to a point. This explains why D-instantons play the
role of elementary degrees of freedom in the IKKT model by
analogy with the role of D0-branes in the matrix theory.
Moreover, fundamental extended objects in the IKKTmodel
are strings instead of membranes, due to diminishing the
dimensionality by one.

The IKKT approach is based on the same line of
reasoning which connects matrix theory with supermem-
branes. As a result of the calculations described in Section
2.6 for membranes, the action of the IKKT model is
reduced to that of the Green ± Schwarz superstring as
formulated by Schild or, vice versa, the Lagrangian of the
IKKT model may be regarded as a matrix analog of the
Schild action for a superstring. The Schild formulation is
equivalent, at least at the level of classical equations of
motion, to more familiar approaches to string theory based
on the Nambu ±Goto action or two-dimensional gravity.
Selected properties of the Schild action are discussed in the
next section.

3.1 Schild action
Usually, the starting point for a string theory is a Nambu ±
Goto-type action. Geometrically, it is the area of its world
sheet. By introducing auxiliary fields, it is possible to
formulate the variation principle of the string theory in
several different ways. All of them are equivalent to the
Nambu ±Goto formulation, at least at the classical level.
The standard approach implies introducing an auxiliary
metric on the world sheet [14, 56 ± 58] although alternative
options are available, e.g. formulation in terms of a Schild
action.

The Schild action contains an auxiliary field, i.e. a
positive-definite function

���
g
p �s0; s1�, which enters the action

without derivatives:

SSchild �
�
d2s
�
ÿ a
4
���
g
p fX m;X ng2 ÿ i

2
�CGmfXm;Cg � b

���
g
p �

:

�3:1�

Poisson brackets f ; g are defined as usual:

fX;Yg � eabqaX qbY : �3:2�

Indices m and n running from 0 to 9 are raised or lowered using
the Minkowski metric Zmn � �� ÿ . . .ÿ�. The Gm matrices
satisfy anticommutation relations

fGm;Gng � 2Zmn : �3:3�

The fermionic field Ca�s1; s2� is a scalar on the world sheet
and a Majorana ±Weyl spinor in space ± time, i.e. �C � CG0

and G11C � C. It should be noted that the metric needs to be
pseudo-Euclidean if Majorana ±Weyl spinors are to exist in
ten dimensions. In principle, a and b constants may be
included in field normalization, but it is convenient to retain
them further.

The auxiliary field
���
g
p

can be disposed of by classical
equations of motion. This will result only in a change of the
bosonic part of the action because its fermionic term does not
depend on

���
g
p

. Variation of Eqn (3.1) over
���
g
p

yields

���
g
p � 1

2

���
a
b

r �������������������������
ÿfX m;X ng2

q
: �3:4�

In this equality, the expression under the radical is, up to
two, the determinant of a metric induced on the string world
sheet:

fX m;X ng2 � �eabqaX m qbX n�2 � 2 det
ab

Gab ; �3:5�
Gab � qaX m qbXm : �3:6�

It should be emphasized that the radicand in Eqn (3.4) cannot
be negative. Otherwise, the induced metric would be positive-
definite which is possible only for a string propagating faster
than light.

Substituting Eqn (3.4) into (3.1) and changing the
fermionic field normalization leads to the Nambu ±Goto-
type action for a Green ± Schwarz string with fixed k-
symmetry [2]:

SNG �
�
d2s
� ��������

2ab
p �������������������

ÿ det
ab

Gab

q
ÿ 2ieabqaX m �CGmqbC

�
:

�3:7�

Quantum theory requires integration over the
���
g
p

field. It
has been argued (see Ref. [59]) that the functional integral for
a string with the Schild action is equivalent to that in the
conventional Polyakov formulation provided the choice of
the integrationmeasure is correct and the conformal anomaly
is canceled, i.e. in the critical dimension D � 10.

Action (3.1) shows space ± time N � 2 supersymmetry:

dCa � ÿ 1

2

���
g
p fXm;Xng�gmnE�a � xa ;

dX m � i�EgmC : �3:8�

The parameters of this transformation, x and E, are real
spinors of the same chirality as C, independent of the world
sheet coordinates.

Of course, the Schild action possesses reparametrization
invariance. During general coordinate transformations, the
auxiliary field

���
g
p

behaves as scalar density as follows, for
instance, from Eqn (3.5). A unique class of world sheet
transformations, symplectic diffeomorphisms, deserves spe-
cial comment. Symplectic transformations are characterized
by a unit Jacobian, i.e. they leave the element of the world
sheet area invariant. In classical mechanics, phase space area-
preserving transformations are usually referred to as canoni-
cal. It is well-known that they may be given by a generating
function:

d
���
g
p � f ���

g
p

;Og ;
dX m � fX m;Og ;
dCa � fCa;Og : �3:9�

Formulae (3.9) resemble gauge transformations in theYang ±
Mills theory and therefore play an important role in the
matrix model.
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3.2 Matrix formulation of the IIB superstring problem
The matrix model action is derived from the superstring
action by the substitutions

Xm�s0; s1� �) AIJ
m ; �3:10�

Ca�s0; s1� �) c IJ
a ; �3:11�

where AIJ
m and c IJ

a are N�N Hermitian bosonic and
fermionic matrices respectively. Transition from functions
to infinite matrices and back may be formalized by expansion
around the bases J IJ

m1;m2
in gl�1� and jm1;m2

�s0; s1� in the
function space.

Transition from one representation to another is realized
by convolution with the matrix function

L�s0; s1�IJ �
X
m1;m2

jm1;m2
�s0; s1�J IJ

m1;m2
; �3:12�

namely,

Am �
�
d2sNXmL ; �3:13�

Xm � trAm L : �3:14�
Matrix traces change to integrals while commutators at
N!1 are defined by Poisson brackets

tr �)
�
d2sN ; �3:15�

� � ; � � �) i

N
f � ; � g : �3:16�

The latter formula holds only for smooth configurations. The
term `smooth' refers to fields or matrices for which the
amplitudes of high-frequency modes with mi � N expanded
in the basis jm1;m2

�s0; s1� or J IJ
m1;m2

are small.
Formulae describing transformation from matrices to

functions on a torus from Section 2.6 present a specific case
of the above construction. Generally speaking, the expression
for basic functions are known in an explicit form for both the
sphere and the torus; the general case of the Riemann surface
of genus g has also been discussed in a series of papers (see
review [60]).

As a result of substitution (3.10) and (3.11), the Schild
action (3.1) changes to

S � tr

�
a
4
�Am;An�2 � 1

2
�cGm�Am;c� � b

�
: �3:17�

the IKKT model contains no matrix analog of the auxiliary
field

���
g
p

. Its role is assumed by thematrix sizeN. Indeed, after
substitution of the integral for the trace and Poisson brackets
for commutators, N enters the action exactly as the field

���
g
p

does. Therefore, the IKKT matrix model is defined by the
integral over matrices of variable size which is thus also a
dynamic variable.

Since the transition to Euclidean metric poses some
problems raised by Majorana ±Weyl spinors, it is natural to
define the model by a vacuum amplitude

Z �
X1
N�1

�
dAm dca exp�iS� �3:18�

instead of a statistical sum. If this amplitude is dominated by
large-N and smooth Am and ca matrices, the matrix model

may serve as the non-perturbative definition of the type IIB
superstring.

Action (3.17), excepting its last term dependent only onN,
has the form of the Lagrangian of the ten-dimensional
supersymmetric Yang ±Mills theory in which derivatives of
all fields are omitted. A similar effective action arises in the
description of bound states of ND-instantons in the type IIB
superstring theory [cf. with Eqn (2.7) at p � ÿ1]. This makes
the IKKT model distinct from the D-instanton matrix model
only in the summation over N.

The relationship between the IKKT model and the ten-
dimensional Yang ±Mills theory can also be interpreted in
terms of the Eguchi ±Kawai reduction [61] (see also review
[62]). In the N!1 limit, any matrix field theory is
equivalent to the reduced zero-dimensional matrix model.
True, in a pure non-supersymmetric gauge theory the
straightforward variant of reduction, in which derivatives
are simply dropped from the action, is not applicable because
of a spontaneous breakdown of invariance with respect to
shifts to constant matrices

AIJ
m ! AIJ

m � cmd
IJ : �3:19�

Special care is needed to restore this symmetry using external
fields of a definite form. However, supersymmetry precludes
violation of RD-invariance (3.19) as was first noticed in the
four-dimensionalN � 1 supersymmetric Yang ±Mills theory
[63]. This fact is crucial for the IKKT model because the
gauge potentials Am play the role of space and time-like
coordinates and symmetry (3.19) corresponds to transla-
tional invariance.

Action (3.17) is invariant with respect to N � 2 super-
transformations

dc IJ
a �

i

2
�Am;An�IJ�GmnE�a � d IJxa ; �3:20�

dAIJ
m � i�Egmc

IJ ; �3:21�

analogous to Eqns (3.8). One of the supersymmetries, a U(1)-
shift of U(1)-components of fermionic matrices, has a
kinematic origin since action x is totally independent of trc.
The other supersymmetry can be viewed as ten-dimensional
supertransformations for coordinate-independent fields.

Also, the action of the IKKTmodel does not change in the
case of gauge U�N�-transformations

dAm � i�Am;o� ;
dca � i�ca;o� ; �3:22�

which turn into symplectic transformations (3.9) on the string
world sheet upon replacement of the commutators by Poisson
brackets. This explains why the matrix model automatically
ensures invariance with respect to area-preserving diffeo-
morphisms due to gauge symmetry. Complete reparametriza-
tion invariance in thematrix model remains implicit andmust
arise dynamically in Eqn (3.18) during summation over N.

3.3 D-strings as classical solutions
Matrix models (both BFSS and IKKT) are maintained to
provide the full non-perturbative description of string
dynamics. Non-perturbative effects in the string theory are
most conspicuously manifest in that the spectrum of physical
degrees of freedom contains solitonic p-branes having finite
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tension and carrying electric and magnetic charges relative to
tensor gauge fields present in the gravity supermultiplet in ten
and eleven dimensions. A general formalism for the descrip-
tion of p-branes in matrix models was developed in Ref. [64]
and is based on two observations:

(1) supersymmetry algebra at N � 1 includes central
charges of a non-trivial tensor structure;

(2) classical equations of motion for matrix models have
operator-like solutions which may be interpreted as p-branes
of various dimensions.

The presence of central charges in the matrix theory were
reported in Ref. [64]. For the IKKT model, they were
calculated in Ref. [65]. The discussion of central charges is
beyond the scope of the present review which is concerned
only with solutions of classical equations.

The classical equations ofmotion ensuing fromEqn (3.17)
have the form�

Am; �Am;An�
� � 0 ; �3:23�

�A m; �Gmc�a
� � 0 : �3:24�

The former equation is actually the Yang ±Mills equation for
coordinate-independent fields. Equations of this type have
been considered in early studies in connection with the
master-field in multicolor quantum chromodynamics [66]
and also at finite N [67]. Solutions describing D-branes in
matrix models exist only at N � 1. Equation (3.24) defines
fermionic zero modes against the classical configuration of
bosonic fields. The problem of fermionic zero modes in
matrix models remains to be investigated. Here, we shall
also discuss only equations of motion for bosonic degrees of
freedom (3.23).

The simplest solution has the form of a diagonal matrix

A cl
m �

x1m

. .
.

xNm

0BB@
1CCA : �3:25�

Classical vacua of this type can play an important role in the
IKKT matrix model. Interpretation of the IKKT model in
terms of an effective theory for D-instantons makes it natural
to regard x1; . . . ; xN as space and time-like coordinates of N
D-instantons (see Section 2.3). In the context of the Eguchi ±
Kawai reduction, the space ± time dynamics is also described
by diagonal components of gauge fields.

Solution (3.25) for D-instantons exists at any N whereas
for the description of extended objects the infinite matrix size
limit is essential. At N � 1, the number of solutions for the
equations of motion (3.23) markedly increases because the
infinite matrix size limit allows the solutions of classical
equations to play the role of any operator. The operator-like
solution interpreted as a D-string was suggested in Ref. [2]:

A cl
m �

�
T

2p
q;

L

2p
p; 0; . . . ; 0

�
: �3:26�

Here, p and q are infinite matrices satisfying canonical
commutation relations (2.27), T is the periodicity interval in
time, and L=2p is the compactification radius. These two
quantities must be large enough to make compactification
effects imperceptible. Solution (3.26) has the same form as the
classical membrane [1] in the matrix theory (2.23). Its match

in a ten-dimensional space is a static string extending along
the x1 axis.

In the quasi-classical limit,

A cl
0 �) X cl

0 �
T

2p
s0 ; �3:27�

A cl
1 �) X cl

1 �
L

2p
s1 : �3:28�

Solution (3.26) actually has a number of properties character-
istic of aD-string. It keeps half the supersymmetry and is thus
a BPS state. Moreover, it is possible to calculate interaction
potential in the matrix model the between two strings in the
form (3.26). At large distances, the answer is in excellent
agreement with D-string interaction in supergravity [2]. In
addition, solution (3.26) is easy to generalize toD-branes with
p > 1.

3.4 Dp-branes
BPS states, i.e. solutions preserving half of the supersymme-
try, are singled out from all solutions of the classical equation
of motion (3.23). This corresponds to cancellation of the first
and second terms in the formula for fermion variation (3.20)
provided the parameter x is specially selected. The matrix
structure of the second term is trivial which makes the
cancellation feasible only when the first term is proportional
to a unit matrix, i.e. at�

A cl
m ;A

cl
n

� � icmn1 ; �3:29�

where cmn are arbitrary numbers. Equation (3.29) plays the
role of the BPS condition in the matrix model [2,64]. As usual,
any classical configuration meeting the BPS condition solves
the equations of motion (3.23).

Using the Lorentz transformation, the cmn matrix is
readily reduced to the canonical Jordan form

cmn �

0 o1

ÿo1 0

. .
.

0 o5

ÿo5 0

0BBBB@
1CCCCA : �3:30�

The solution for which the �p� 1�=2 coefficient of ok from 5
(where p � 1; 3; 5; 7; 9) is other than zero may be expressed
through a �p� 1�=2 pair of canonically conjugate operators:

A cl
m �

ÿ
Q1;P1; . . . ;Q�p�1�=2;P�p�1�=2; 0; . . . ; 0

�
; �3:31�

which follows directly from the commutation relations (3.29):

�Qk;Pk� � iok : �3:32�

In the specific case p � 1, the D-string is obtained from a
previous section on the assumption that Q1 � Tq=2p,
P1 � Lp=2p and

o1 � TL

2pN
: �3:33�

In the case of arbitrary p, the solution (3.31) describes an
extended p-dimensional object. Interpretation of this solution
as a Dp-brane in the type IIB theory inevitably comes to
mind. Arguments in favor of this solution can be found in
Refs [65, 68]. It is worthwhile noting that the dimension p is
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automatically odd. The authors of Refs [69, 70] adhere to a
different opinion and choose to interpret (3.31) as aDp-brane
with a constant magnetic field on its world volume. Such an
object can be regarded as the bound state of a Dp-brane and
N D-instantons.

If the solution (3.31) is to exist, the ten-dimensional space
must be assumed to be compactified along axes x0; . . . ; xp on
a circle with radii L0=2p; . . . ;Lp=2p. Hence, eigenvalues of
Qk, Pk matrices are uniformly distributed over intervals
�ÿL2kÿ2;L2kÿ2� and �ÿL2kÿ1;L2kÿ1� respectively. The space
in which Am matrices act is naturally broken into a tensor
product of �p� 1�=2 spaces on which Qk, Pk operators are
defined. This means that for the p-brane solution, Qk and Pk

act in a N 2=�p�1�-dimensional space [64]; hence, they have
N 2=�p�1� different eigenvalues. The compactification radii
being proportional to N 1=�p�1� at N!1 [1, 2, 64], the
distance LaN

ÿ2=�p�1� between neighbor eigenvalues tends to
zero as Nÿ1=�p�1�.

The quantitiesok in commutation relations (3.23) play the
role of Planck's constant. They are not independent para-
meters and can be expressed through the compactification
radii La and matrix size N. According to the Bohr ±
Sommerfeld quantization rule, the number of quantum
states is proportional to the phase space volume with
coefficient �2p�h�ÿ1. In our case, �h � ok and eigenvalues of
Qk and Pk operators are in the ranges from ÿL2kÿ2=2 to
L2kÿ2=2 and from ÿL2kÿ1=2 to L2kÿ1=2, respectively. Thus,
the phase space volume is L2kÿ2L2kÿ1. The number of states,
N 2=�p�1�, depends on the size of the Qk and Pk matrices. The
Bohr ± Sommerfeld rule leads to

ok � L2kÿ2L2kÿ1
2pN 2=�p�1� : �3:34�

Formula (3.34) is a generalization of relation (3.33) and is
easy to derive from commutation relations for Qk, Pk by the
Fourier transform, without regard for the quasi-classical
Bohr ± Sommerfeld rule. This formula indicates that ok

remain finite in the N!1 limit. By multiplying relations
(3.34) for all k, the matrix size can be expressed through the p-
brane world volume,

Vp�1 � L0L1 . . .Lp ; �3:35�

and the parameters ok:

N � Vp�1
Y�p�1�=2
i�1
�2poi�ÿ1 : �3:36�

The above solutions play the role of elementary genera-
tors which can be used to construct more complicated
classical configurations. The general method for building up
superpositions of arbitrary states in matrix models has been
described in Ref. [1]. Let each state be characterized by
matrices of a definite form. Then, the superposition is
described by block-diagonal matrices into which elementary
constituents are embedded as blocks. Symmetries with respect
to block permutations reflect the statistics of the states
forming.

Now, let us consider two similar p-branes coincident in a
space. Evidently, such a configuration corresponds to the
matrix of two similar blocks. The relative orientation of p-
branes can be made arbitrary using different Lorentz
transformations to act on either of them. Let us further
suppose that translation along the xp�1 axis results in a

configuration composed of two parallel p-branes:

A cl
a � Ba 0

0 Ba

� �
; a � 0; . . . ; p ;

A cl
p�1 �

b

2
0

0 ÿ b

2

0B@
1CA ;

A cl
i � 0 ; i � p� 2; . . . ; 9 : �3:37�

Here, Bm denotes solution (3.31) for one p-brane:

B0 � Q1; B1 � P1; . . . ; Bpÿ1 � Q�p�1�=2; Bp � P�p�1�=2 :
�3:38�

Parameter b has the sense of the distance between p-branes. It
is quite understandable that both (3.37) and its constituent p-
branes satisfy the BPS condition.

The configuration with rotated p-branes can be obtained
from parallel ones, for example by rotating in the �xp; xp�2�
plane through an angle y which leads to

A cl
a � Ba 0

0 Ba

� �
; a � 0; . . . ; pÿ 1;

A cl
p �

Bp cos
y
2

0

0 Bp cos
y
2

0B@
1CA ;

A cl
p�1 �

b

2
0

0 ÿ b

2

0B@
1CA ;

A cl
p�2 �

Bp sin
y
2

0

0 ÿBp sin
y
2

0B@
1CA ;

A cl
i � 0 ; i � p� 3; . . . ; 9 : �3:39�

Two rotated p-branes no longer form the BPS state but satisfy
the classical equations of motion, as before.

Parallel-moving p-branes may be obtained by a hyper-
bolic rotation in �x0; xp�2� the plane. In a center-of-mass
system, the following solution is consistent with such a
configuration:

A cl
0 � B0 cosh E 0

0 B0 cosh E

� �
;

A cl
a � Ba 0

0 Ba

� �
; a � 1; . . . ; p ;

A cl
p�1 �

b

2
0

0 ÿ b

2

0B@
1CA ;

A cl
p�2 � B0 sinh E 0

0 ÿB0 sinh E

� �
;

A cl
i � 0 ; i � p� 3; . . . ; 9 : �3:40�

The velocity of each p-brain is related to parameter E by
means of the conventional equation:

v � tanh E : �3:41�
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3.5 One-loop effective action and p-brane interactions
A comparison of D-brane interaction potentials computed in
the matrix model and superstring theory turns out to be the
simplest way to verify the IKKT hypothesis. The classical
solutions for p-brane superposition in the matrix model
having the form of block-diagonal matrices, the classical
theory is devoid of interactions. However, the interaction
potential may be generated by quantum corrections unless
considerations of supersymmetry interfere. Specifically, the
BPS state should not undergo renormalization.

Association of the IKKT model with the ten-dimensional
Yang ±Mills theory allows the standard background field
method to be employed to calculate quantum corrections for
classical solutions. Bosonic variables are expanded in the
vicinity of a classical solution into the background constitu-
ent and fluctuations:

Am � A cl
m � aÿ1am : �3:42�

The contribution of quantum fluctuations is computed from
perturbation theory. It should be borne in mind that in
calculations to follow, the matrix size is assumed to be fixed
(and infinite). The procedure of calculating quantum correc-
tions in the IKKT model regardless of the summation over N
tacitly suggests that such a summation is saturated by a
certain saddle point at infinite N.

As usual, it is convenient to select the background gauge
for computing quantum corrections in the external field:

Pma
m � 0 ; �3:43�

where Pm is the zero-dimensional covariant derivative in the
adjoint representation

Pm �
�
A cl

m ; �
�
: �3:44�

Thematrixmodel action in this gauge up to terms of order aÿ1

has the form

S � S cl ÿ tr

�
1

2
a m�P 2Zmn ÿ 2iFmn�an

ÿ 1

2
�cGmPmc� �cP 2c

�
�O�aÿ1� : �3:45�

The last term in square brackets contains Faddeev ± Popov
ghosts. The gauge field strength in the adjoint representation
is denoted through Fmn:

Fmn � i
�
Pm;Pn

� � i
��A cl

m ;A
cl
n �; �

�
: �3:46�

Integration over am, c and c gives the effective action for
the background fields. In the lowest order of perturbation
theory in aÿ1, i.e in the one-loop approximation, the effective
action has the form [2]:

W � 1

2
Tr ln�P 2dmn ÿ 2iFmn�

ÿ 1

4
Tr ln

��
P 2 � i

2
FmnGmn

�
1� G11

2

�
ÿ Tr lnP 2 : �3:47�

This result is obtained following quadration of the Dirac
operator and a Wick rotation to Euclidean space. Super-

fluous 1=2 multipliers in front of the first and second terms
arise from the Hermiticity of Am and c matrices. The
contribution of fermions includes a projector taking into
account chirality. The `minus' signs before the second and
third terms are explicit.

Let us first consider a case when the background field
meets the BPS condition. This means that Fmn � 0. The
contributions of bosons, fermions, and ghosts are mutually
canceled [2]:

W �
�
1

2
� 10ÿ 1

4
� 16ÿ 1

�
Tr lnP 2 � 0 : �3:48�

As expected, the BPS states undergo no renormalization and
fail to interact.

An important sequel of the absence of BPS renormaliza-
tion is the zero effective potential for diagonal matrices of the
form (3.25) which accounts for the persisting uniform
distribution of xIm eigenvalues [63,2]. This is not true of non-
supersymmetric theories where the one-loop attraction
potential for eigenvalues appear and RD symmetry (3.19)
turns out to be spontaneously broken by quantum correc-
tions.

Let us now consider a one-loop effective action computed
on classical configurations from the previous section. This
action has the sense of an interaction energy for static p-
branes and that of a phase shift for p-branes propagating past
one another.

For parallel p-branes, the effective potential becomes
zero, as expected, because such a configuration meets the
BPS condition. Therefore, the interaction energy for parallel
branes becomes identically zero. In supergravity, such a
cancellation occurs due to the compensation of gravita-
tional attraction by the electric or magnetic repulsion of p-
branes.

Other classical solutions from the previous section fail to
satisfy the BPS condition, and the effective action for them
does not vanish. It can be calculated in a closed form which
allows for the comparison between interaction energies of
different p-brane configurations in the matrix model with
string results. The calculation of the interaction potential
between p-branes is technically feasible because classical
fields for one p-brane (3.38) in the `coordinate representa-
tion' have the form of multiplication and derivative opera-
tors:

B0 � q1; B1 � ÿio1q1; . . . ;

Bpÿ1 � q�p�1�=2 ; Bp � ÿio�p�1�=2q�p�1�=2 : �3:49�

To sum up, the one-loop effective action (3.47) after the
substitution of classical solutions is expressed through the
determinants of certain second-order differential operators.
We report here the final results of computation of the effective
action [2, 65, 3] without giving the derivation.

The interaction energy of two antiparallel p-branes is

W � ÿ2N
�1
0

ds

s
exp�ÿb2s�

Y�p�1�=2
i�1

1

2 sinh 2ois

�
X�p�1�=2
i�1

ÿ
cosh 4oisÿ 1

�ÿ 4
Y�p�1�=2
i�1

cosh 2oisÿ 1

 !" #
:

�3:50�
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At large distances, the potential decreases as 1=b7ÿp:

W � ÿ 1

16
NG
�
7ÿ p

2

�
2
X�p�1�=2
i�1

o4
i ÿ

X�p�1�=2
i�1

o2
i

 !2
24 35

�
Y�p�1�=2
i�1

oÿ1i

�
2

b

�7ÿp
�O

�
1

b9ÿp

�
: �3:51�

This result agrees with supergravity, 1=b7ÿp being none other
than the Coulomb potential between p-dimensional planes in
a nine-dimensional space. Naturally, the string result for the
potential [39, 40, 71] has the same asymptotics at large
distances. However, the full answer taking into account the
exchange of all modes of a closed string including massive
ones is at variance with formula (3.50) obtained in the matrix
model{.

The effective action for rotated p-branes has the form

W � ÿ4N 2p=�p�1� 1

cos�y=2�
Y

a 6�pÿ1
Lÿ1a

�
�1
0

ds

s

�
p
s

�p=2

exp�ÿb2s� tanh
�
o�p�1�=2s sin

y
2

�
� sinh2

�
o�p�1�=2s sin

y
2

�
: �3:52�

Its asymptotics at b!1,

W � ÿG
�
6ÿ p

2

�
4Vp

�4p�p=2
o4
�p�1�=2

�
Y�p�1�=2
i�1

1

o2
i

sin3�y=2�
cos�y=2�

1

b6ÿp
�O

�
1

b8ÿp

�
; �3:53�

correctly reproduce angular and distance dependences for the
energy of interaction between statistically rotated p-branes in
ten-dimensional gravity.

The phase shift undergone by propagating p-branes when
scattered at one another is found from the interaction
potential of crossed branes by means of the analytical
extension y=2! iE:

d � ÿ Vp

�2p�p o1

Y�p�1�=2
i�1

1

o2
i

�1
0

ds

s

�
p
s

�p=2

exp�ÿb2s�

�
�
cos�4o1s sinh E� ÿ 4 cos�2o1s sinh E� � 3

�
cosh E sin�2o1s sinh E� : �3:54�

The integrand function in this formula has poles on the real
axis so that the integration contour needs to be shifted to the
complex plane. Residues in the poles define the imaginary
part of the phase shift. The magnitude of these residues
coincides with the string result [73] at small velocities for the
assumption that alloi � 2pa 0. The real part of the phase shift
is in concord with string calculations at large distances when

d � ÿ4Vp�4p�ÿp=2 sinh
3E

cosh E
G
�
6ÿ p

2

�
o4

1

�
Y�p�1�=2
i�1

1

o2
i

1

b6ÿp
�O

�
1

b8ÿp

�
: �3:55�

The above examples demonstrate that the interaction
between p-branes in the IKKT model agrees with superstring
results in a certain kinematic region when the contribution of
massless states becomes essential and massive modes can be
neglected. This suggests that the truncated variant of the
IKKTmodel including no summation overNwhich was used
in the calculations reproduces superstrings in the low-energy
approximation, i.e. at low velocities or large distances.

4. Matrix model with non-Abelian Born ± Infeld
action [3]

It has been mentioned in a previous paragraph that the gauge
symmetry of the IKKT matrix model is responsible for string
action invariance with respect to area-preserving diffeo-
morphisms. They represent only a part of general coordinate
transformations, and complete reparametrization invariance
of the string theory in the Schild formulation has to be
dynamically restored by integration over the auxiliary field���
g
p

. In the IKKTmodel, integration over
���
g
p

is substituted by
summation over the matrix size N and the limiting N!1
transition is assumed to occur dynamically.

On the other hand, it is possible to modify the matrix
model by introducing, from the very beginning, an additional
degree of freedom, a Y�IJ� matrix, which is a direct field

���
g
p

analog in the Schild formulation. Such a modification was
proposed in Ref. [3] and is discussed below. The matrix sizeN
becomes a parameter, rather than a dynamical variable as in
the IKKT model, which allows for a direct transition to the
N!1 limit. If integration over Y reproduces a matrix
analog of the Nambu ±Goto action, the matrix model may
be expected to keep the reparametrization invariance of the
string theory at the quantum level.

The matrix analog of the Nambu ±Goto action has the
form

S �
������
ab

p
tr

������������������
�Am;An�2

q
: �4:1�

Indeed, the transition to string variables and substitution of
Poisson brackets for commutators at N!1 leads to

�Am;An�2 �) ÿ 1

N 2
fXm;Xng2 � ÿ 2

N 2
det
ab

qaX m qbXm ; �4:2�

hence,

tr

������������������
�Am;An�2

q
�)

�
d2s

������������������������
ÿfXm;Xng2

q
: �4:3�

Expression (4.1) looks like the non-Abelian generalization
of the Born ± Infeld action (NBI) in the strong field limit{. It
would be possible to handle action (4.1) directly were it not
for its non-analyticity which causes much inconvenience.
Specifically, in the case of classical equations of motion for
Eqn (4.1), the introduction of an auxiliary field

Y /
������������������
�Am;An�2

q
: �4:4�

seems opportune. In what follows, we consider a matrix
model for which Eqn (4.4) ensues from the equations of

{ It was suggested in Ref. [72] that the effects of senior loops in the matrix

model can restore the agreement with the superstring for intermediate

distances.

{ It is worthy of note that in the string theory the effective Born ± Infeld

action for open strings and D-branes of a different structure is more

familiar.
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motion and which reproduces the non-Abelian Born ± Infeld
action (4.1) at both classical and quantum levels.

4.1 Matrix description of the Schild string
The action of the NBI matrix model is defined by formula

S � tr

�
a
4
Yÿ1�Am;An�2 � 1

2
�cGm�Am;c� � bY

�
; �4:5�

where YIJ is the positive-definite N�N Hermitian matrix
considered to be an independent dynamical variable and a
field

���
g
p

analog in the Schild action (3.1).
The vacuum amplitude of the NBI matrix model is given

by the integral

ZNBI �
�
dAm dca dY �detY�ÿg exp�iS� �4:6�

over all fields with action (4.5), where parameter g which
defines the measure of integration over theYmatrix is related
to matrix size by the formula

g � Nÿ 1

2
: �4:7�

The NBI model is supersymmetric in the infinite matrix
size limit. The supertransitions

dc � i

4

�
Yÿ1; �Am;An�

�
� G

mnE� x ;

dAm � i�EGmc ;

dY � 0 �4:8�
leave (see Ref. [3]) action (4.5) invariant up to terms which
vanish upon replacement of the commutators by Poisson
brackets. In the formula for fermion variations, � �; � ��
denotes the matrix anticommutator.

The action of the NBI model (4.5) changes to the Schild
action for a superstring (3.1) following the replacement of
functions by matrices according to Eqns (3.10) and (3.11) and
substitution of

YIJ �) ���
g
p �s0; s1� : �4:9�

Similarly, the matrix analog of the Nambu ±Goto action
may be obtained by removing the auxiliary field Y using the
classical equations of motion

ÿ a
4

ÿ
Yÿ1�Am;An�2Yÿ1

�IJ � bdIJ � 0 ; �4:10�

the solution of which is given by the formula

Y � 1

2

���
a
b

r ������������������
�Am;An�2

q
: �4:11�

This solution is the only one provided theYmatrix is positive-
definite as in the case being considered.

Substitution of the classical solution (4.11) into the action
(4.5) leads to

SNBI �
������
ab

p
tr

������������������
�Am;An�2

q
� 1

2
tr
ÿ
�cGm�Am;c�

�
: �4:12�

This expression is the supersymmetric generalization of the
non-Abelian Born ± Infeld action (4.1).

Thus, the NBI matrix model has an important advantage
over the IKKTmodel because it has a simplematrix analog of
the connection between the Schild formulation and the
Nambu ±Goto action at the classical level.

Evidently, both the action and the integration measure in
the NBI model are gauge invariant and, similar to (3.22), Y is
transformed over the adjoint U�N�-group representation:

dY � ÿi�Y;o� : �4:13�

However, a transition to the string limit results in
enhanced symmetry of the theory because in the Schild
formulation the string is invariant with respect not only to
area-preserving diffeomorphisms which correspond to gauge
transformations but also to the complete group of reparame-
trization transformations. Strictly speaking, thematrixmodel
is lacking in reparametrization analogs which do not preserve
area. For example, in gauge transformations sÿ!ls,���
g
p ÿ!lÿ2

���
g
p

, both the integration measure on the string
world sheet d2s and Poisson brackets f�; �g ! lÿ2f�; �g are
changed. In the matrix model, this would have correspon-
dence not only in auxiliary field stretchingYÿ!lÿ2Y but also
in the transformation of traces tr! l2 tr and commutators
��; �� ! lÿ2��; ��. Certainly, such transformations do not
represent symmetry in the full sense of the word. Never-
theless, it appears natural to require that the measure of
integration over Y be invariant with respect to gauge
transformations. This unambiguously fixes the parameter g
in Eqn (4.6): g � N. Indeed, suffice it to assume that
g � N� Z, where Z is any number of unity order which is of
no significance whatever because, after all, N must be kept
tending to infinity.

This line of reasoning facilitates an explanation of
formula (4.7) corresponding to Z � ÿ1=2. It will be shown
in the next section that at this value of parameter g the integral
over Y in definition (4.6) is taken exactly which eventually
leads to a type (4.2) action. In case of arbitrary g, the effective
action can be found in the leading order of 1=N expansion
[74]. It turns out to be non-local and non-reparametrization-
ally invariant at g 6� N�O�1�.

4.2 Effective action and measure
TheYmatrix, as an analog of the auxiliary field

���
g
p

, plays the
part of a Lagrange multiplier whose integration induces the
effective action for Am fields and their superpartners. The
action does not change for fermions because they fail to
interact with Y. In the quasi-classical approximation, when a
and b simultaneously tend to infinity faster than g, the
effective action has the form (4.12). It becomes local and
reparametrizationally invariant after the transition to string
variables. These properties are not explicitly conserved at the
quantum level. This question is discussed at greater length
below.

Since fermions may be neglected, an analytical extension
to Euclidean space poses no special problem. Transition to
the Euclidean metric makes it possible to deal with a
statistical sum instead of vacuum amplitude as is the case
with matrix models. Matrix Y is transformed in the same
manner as the

���
g
p

field and is substituted by iY upon
transition to Euclidean space.

It is convenient to introduce the notation

G � ÿ�Am;An�2 : �4:14�
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Then, following the Wick rotation, the integral over Y in
Eqn (4.6) assumes the form

exp
�ÿSeff�G�

�
�
�
dY exp

�
ÿ a
4
trYÿ1Gÿ b trYÿ g tr logY

�
: �4:15�

This integral may be viewed as the Hermitian one-matrix
model in the external field.

The standardmethod for calculatingmatrix integrals with
the external field is based on the reduction of the Ymatrix to
diagonal form by the unitary transformation

Y � O y diag �y1; . . . ; yN�O ; �4:16�

yI has positive eigenvalues. The integration measure in new
variables takes the form

dY � dO
YN
I�1

dyI D
2�y� ; �4:17�

where D�y� is the Vandermond determinant.

D�y� �
Y
I>J

�
yI ÿ yJ

�
: �4:18�

The integral over the unitary matrix O is calculated as
described in Ref. [75]. The resulting integral over eigenvalues
is

exp
�ÿSeff�G�

�
/ 1

D�g�
�1
0

YN
I�1

dyI

y
1=2
I

D�y� exp
�
ÿ
X
I

�
agI
4yI
� byI

��
; �4:19�

where gI are eigenvalues of the G matrix. The calculation of
integral (4.19) gives [3]

exp
�ÿSeff�G�

� / D� ���gp �
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ÿ

������
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p X
I

����
gI
p �

: �4:20�

The exponent in the right-hand side of Eqn (4.20)
coincides with Euclidean variant of the non-Abelian Born ±
Infeld action:������

ab
p X

I

����
gI
p �

������
ab

p
tr

����
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p
�

������
ab

p
tr

����������������������
ÿ�Am;An�2

q
: �4:21�

An additional pre-exponential factor is

J�G� � D� ���gp �
D�g� �

Y
I<J

1����
gI
p � �����

gJ
p : �4:22�

It has already been noted that action (4.21) is a matrix
analog of the Nambu ±Goto string action (4.1) (here, in
Euclidean space). Therefore, the Nambu ±Goto action is
reproduced in the NBI model at the quantum level too. In
the quasi-classical limit, the pre-exponential factor (4.22) is
unessential as follows from the results in the previous section.
In the quantum case, this additional factor has the sense of the
measure of integration over Am field induced by averaging
over Y field fluctuations.

It would be interesting to find a correspondence for this
induced measure in the N!1 limit where it is possible to

pass from matrices to string coordinates and

G! 1

N 2
fXm;Xng2 � 2

N 2
det
ab

qaX mqbXm : �4:23�

Expression (4.22) proves to turn into

J�G� � const� ÿDet
����
G
p �ÿ1=2

: �4:24�

Two alternative derivations of this formula have been
described in Refs [74] and [76].

Another interesting aspect is the possibility of obtaining
the Nambu ±Goto action by integration over Y. This action
has reparametrization invariance which remains in part
implicit in the matrix formulation as shown before. The
reparametrization invariance is not broken by the induced
measure of integration over string coordinates which is
defined by the expression

�dXm� �
Y
s

dXm�s�Gÿ1=4�s� �4:25�

according to Eqn (4.24). Substitution of world sheet coordi-
nates, s! s 0, implies multiplication of the integration
measure and a constant:

�dXm� ! const� �dXm� ; �4:26�

which does not depend on the fields and is thus canceled in all
correlation functions. It should be emphasized that both the
effective action and the induced measure are local which does
not follow from general considerations.

4.3 A note on classical solutions
It seems natural to suggest that non-perturbative string states
may be described by the solutions of classical equations of
motion in the matrix model. Equations of motion for the NBI
model have the form

Y 2 � a
4b
�Am;An�2 ; �4:27�

Am;
�
Yÿ1; �Am;An�

�
�

h i
� 0 ; �4:28��

Am; �gmc�a
� � 0 : �4:29�

The classical configurations (3.31) identified with p-branes in
the IKKT model may just as well be solutions in the BNI
model. This is due to their meeting the BPS condition (3.29)
which makes their Y matrix defined by the classical equation
(4.27) proportional to the unit matrix. For this reason, it may
be merely taken out of the brackets after which Eqn (4.28)
assumes the same form as in the IKKT model.

A more general statement appears to be relevant in the
N!1 limit. It reads that any solution of classical equations
for the IKKT model is at the same time true for classical
solutions in the NBI model. It is easy to demonstrate by
rewriting equation (4.28) in the formh

Yÿ1;
�
Am; �Am;An�

�i
�
�
h�
Am;Yÿ1

�
;
�
Am;An

�i
�
� 0 :

�4:28�

The first term in the left-hand side vanishes for any solution of
the IKKT model. When the commutators are replaced by
Poisson brackets, the second term is also zero. This follows
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from Ref. [77] where the IKKT equations of motion have
been shown to turn at infinite N into classical equations for
the Schild string which results in a stationary Y: qaY 2 � 0.
Therefore, the Poisson bracket fAm;Y

ÿ1g becomes identi-
cally zero.

The structure of the classical equations for the NBI model
is in a sense wealthier. Specifically, it provides for solutions
with a non-trivial distribution of matrix Y eigenvalues [78]
which is generally speaking typical of matrix models in the
N!1 limit.

5. Conclusions

We have considered three matrix models maintained to
provide a non-perturbative description of superstrings. It
should be emphasized that they are closely related despite
outward differences andmay in the end prove to be absolutely
identical. Suffice it to say that application of the Eguchi ±
Kawai reduction to the matrix theory leads to the IKKT
model (without summation over N). On the other hand,
matrix theory may be derived from IKKT by the choice of
special vacuum configurations in the infinite matrix size limit
[2]. The NBI matrix model contains additional degrees of
freedom as compared with IKKT, but it has been argued [72]
that the two models lie in the same universality class at
N!1.

The BFSSmatrix model appears to be the most promising
of the three due to its direct relation to M-theory. This model
claims to correctly describe dynamical degrees of freedom at
small distances in M-theory which are in fact non-perturba-
tive excitations if considered in the context of ten-dimensional
superstrings. Verification studies conducted till now appear
to confirm the hypothesis that BFSS matrix theory actually
describes M-theory. Specifically, interactions between classi-
cal solutions are in agreement with eleven-dimensional
supergravity, and the connection with the supermembrane
theory is established in the natural way. Moreover, matrix
theory compactification on a circle constitutes themechanism
of perturbative string creation from the BFSSmatrixmodel in
the light cone gauge.

We have given only the formulation ofmatrix theory here,
and the discussion in Section 2 is presented largely by way of
illustration. The matrix model has been formulated only in
the light cone frame while the covariant approach remains to
be developed.

It appears premature to make a conclusion as regards the
validity of the approach to superstring theory based on
matrix models. A definitive check of this approach might be
provided by a comparison with the conventional string
perturbation theory. From this standpoint, the NBI model
looks very promising since it allows the supersymmetric
version of the Nambu ±Goto action to be reproduced. Being
non-perturbative superstring formulations, supersymmetric
matrix models may be expected to answer the question put in
the Introduction: does a superstring live in the string phase?
In any case, matrix models of superstrings need further
studies which should throw new light on the string theory at
large.
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6. Glossary

Green ± Schwarz action Ð an explicitly covariant and super-
symmetric action for a superstring:

SGS �
�
d2s

�
ÿ 1

2

�������
ÿh
p

habZmnP
m
aP

n
b

ÿ ieab qaX mÿ�y 1Gm qby
1 ÿ �y 2Gm qby

2�

� eab �y 1Gm qay
1 �y 2Gm qby

2
��
; �6:1�

where hab is the internal metric on the string world sheet, y 1

and y 2 are ten-dimensional Majorana ±Weyl spinors for IIB
superstrings of similar chirality, and

Pm
a � qaX m ÿ i�y 1Gm qay

1 ÿ i�y 2Gm qay
2 : �6:2�

Action (6.1) is characterized by parametrization invariance
and shows ten-dimensional N � 2 supersymmetry. It is also
invariant with respect to local fermionic k-symmetry which
allows half the fermionic degrees of freedom to be excluded.
The large number of symmetries in the Green ± Schwarz
action is responsible for a complicated system of constrains
and hampers its covariant quantization.

Nambu ±Goto actionÐ the standard action functional in the
bosonic string theory. The Nambu ±Goto action gives a clear
idea of a string as a strand with energy proportional to its
length. Therefore, the action equals the area covered by the
string world sheet up to a coefficient. If the string trajectory
coordinates are labeled as X m�s1; s2�, the area is expressed
through the metric induced on the world sheet in the standard
formula from differential geometry:

SNG � 1

2pa 0

�
d2s

��������������������det
ab

Gab

��r
; �6:3�

where

Gab � qaX m qbXm : �6:4�

The Nambu ±Goto action is by definition independent of the
choice of coordinate system on the world sheet. In other
words, it is invariant with respect to arbitrary reparametriza-
tions s! f �s�.

Kaluza ±Klein modes Ð an infinite set of fields arising from
one field as a result of compactification of higher dimensions.
Kaluza ±Klein modes have masses of the order of the inverse
compactification radius.

Compactification Ð contraction of space ± time dimension-
ality by wrapping a part of the dimensions around a compact
manifold of small radius. In theories of the Kaluza ±Klein
type, the product Rd � KDÿd is considered to be the multi-
dimensional space ± time manifold. Each C�x; y� field on
Rd � KDÿd has corresponding infinite set of fields in the
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compactified theory:

C�x; y� �
X
n

cn�x�fn�y� ; �6:5�

where x and y denote coordinates on Rd and the compact
manifold K respectively. Basis fn�y� provides a complete set
of wave operator eigenfunctions for the field C on the KDÿd

manifold; the corresponding eigenvalues of ln define masses
of cn�x� fields: m2

n � m2 � ln, where m is the mass of the C
field in the uncompactified theory.

A simple example is the compactification of a massless
scalar field on a circle of radius R. In this case,
fn�y� � exp�iny=R�, ln � n2=R2 and masses of Kaluza ±
Klein modes are mn � jnj=R.

Reference [4] comprises an introduction to the compacti-
fication of higher dimensions with special reference to string
theory.

M-theory Ð a quantum theory of eleven-dimensional super-
gravity. As a field theory, supergravity in eleven dimensions is
strongly non-renormalizable. Therefore, a consistent theory
changing to supergravity at large distances must contain, at
Planck scales, additional degrees of freedom which contract
divergences in the same manner as in the superstring theory.

From a different viewpoint, M-theory is a universal
theory which contains all known string theories as different
limiting cases. The simplest connection is between M-theory
and type IIA superstrings which are created by compactifying
one of the ten spatial dimensions on a circle [8 ± 10]. The
compactification radius R is expressed through the Planck
length lp and string coupling constant gs in the relation
R � g

2=3
s lp while the string length ls �

�������
2a 0
p

is related to the
eleven-dimensional scale by the formula ls � g

ÿ1=3
s lp. This

allows M-theory to be viewed as the strong coupling limit for
type IIA superstrings since the compactification radius tends
to infinity at gs !1 and the theory actually becomes an
eleven-dimensional one.

Massless degrees of freedom in M-theory give rise to an
eleven-dimensional gravity supermultiplet which contains the
metric gmn, gravitino ca

m , and antisymmetric tensor field Amnl.
The presence of the gauge field suggests that M-theory must
have membranes carrying an electric charge relative to the
Amnl field and magnetically charged five-branes dual to
membranes. There are two closely related approaches to the
consistent dynamical construction ofM-theory. According to
one hypothesis, M-theory is a quantum theory of eleven-
dimensional supermembranes [12, 13, 9]. The alternative
approach is based on the BFSS matrix model [1].

Matrix theory Ð quantum mechanics of N�N Hermitian
matrices with action

S �
�
dt tr

�
1

2R
� _Xi�2 � R

4
�Xi;X j�2 � y _y� iRygi�Xi; y�

�
;

�6:6�

which is supposed to provide a complete dynamical descrip-
tion of M-theory in the limit of N!1, R!1 [1]. Xi

variables play the role of nine transverse coordinates in the
light cone gauge and fermionic matrices y are their super-
partners. The time t is identified with one of the light cone
coordinates while the other coordinate is considered to be
compactified on a circle of radiusR so that pÿ � N=R has the
sense of longitudinal momentum.

Matrix models Ð in the broad sense of the term Ð are
statistical systems of random matrices. They were first
introduced by EWigner in 1951 for the description of excited
nuclear levels and are extensively used in statistical physics. In
the theory of elementary particles, the term `matrix models' is
frequently used in connection with the application of random
matrices to fluctuations of geometry. This approach proved
to be of special value in two-dimensional quantum gravity
(see Refs [28 ± 30]) and Section 1 of this review) where
averaging over metrics and summation over topologies can
be substituted by integration over matrices in the limit in
which their dimension becomes infinite. Sometimes, the term
`matrix models' is attributed to random matrix systems in
two-dimensional gravity.

Membranes Ð extended two-dimensional objects having
three-dimensional world volume. According to one hypoth-
esis, supermembranes are fundamental degrees of freedom in
the quantum theory of eleven-dimensional supergravity [12,
13, 9], by analogy with the ten-dimensional case where the
part of fundamental objects is played by strings. One of the
principal propositions of this hypothesis is that k-symmetry
of the classical action of an eleven-dimensional supermem-
brane in a curved space imposes restrictions on background
fields. These constraints have the form of differential
equations which exactly coincide with the classical equations
of motion for supergravity [12, 13]. The quantum super-
membrane theory encounters certain difficulties, presumably
purely technical ones, related to the non-linearity of the field
theory on the world volume. Specifically, this theory contains
normal ultraviolet divergences. Moreover, supermembranes
possess a continuous spectrum which also constituted a
problem until matrix theory was suggested.

p-brane tension Ðmass per unit spatial volume.

Planck scale Ð length, time, energy or mass scale defined by
gravity constant (in combination with other world constants).
Gravitational interaction at Planck scales is no longer weak.

Eguchi ± Kawai reduction Ð an operation to reduce any
matrix field theory to a zero-dimensional matrix model in
the N!1 limit. In the general form, the operation is as
follows. Fields in the theory action are transformed according
to the rule

F�x� ! exp�ÿiPx�F exp�iPx� ; �6:7�

whereF is already independent of x.Pm matrices are diagonal,
Pm � diag �p1m; . . . ; pNm �, and regarded as fixed when correla-
tion functions are calculated. Averaging over p i

m phases with
uniform distribution results in their transformation to
intermediate momenta in Feynman diagrams. It can be
shown that such a procedure restores conventional perturba-
tion theory at N � 1, i.e. the sum of planar diagrams.
Moreover, Eguchi ±Kawai reduction may use Dyson ±
Schwinger equations which are similar at N!1 in the
original and reduced theories.

The situation is somewhat different in gauge symmetry
theories where the dependence on momenta in Eqn (6.7) can
be taken up by the gauge transformation. This turns the
reduction into a mere consideration of coordinate-indepen-
dent fields while the part of p i

m momenta is played by diagonal
components of the gauge fields themselves. However, the
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uniform distribution of p i
m is usually distorted by quantum

corrections which requires special measures to restore it, e.g.
quenching the diagonal p i

m components during averaging over
gauge fields. The aforesaid does not refer to supersymmetric
gauge theories in which violation of RD invariance
p i
m ! p i

m � cm is precluded by supersymmetry and there is no
need to quench the p i

m momenta [63].

Superstrings. A supersymmetric string theory can be consis-
tently formulated in ten-dimensional space ± time where the
conformal anomaly on the world shift is canceled. There are a
few non-contradictory ten-dimensional superstring theories.
Firstly, there are two types of closed strings with N � 2
supersymmetry, IIA and IIB, which differ in terms of chirality
(IIA theory is chiral whereas IIB one is not). Their low-energy
limit is chiral and non-chiralN � 2 supergravity respectively.
Type I theory may contain both open and closed strings.
Massless states of the open string are described by the Yang ±
Mills supersymmetric theory. Unitarity and the absence of
anomalies keep the gauge group in the type I superstring
theory unambiguously fixed: it can not be other than SO(32).
Along with type I, IIA, and IIB superstrings, there are
heterotic strings which are actually a hybrid of supersym-
metric and 26-dimensional bosonic strings. They possess
intrinsic gauge symmetry with group SO(32) or E8 � E8.

Types of superstrings. There are five self-consistent ten-
dimensional superstring theories including those of type I,
IIA, IIB, and heterotic ones with gauge groups SO(32) or
E8 � E8. Type II theories are characterized by expanded
�N � 2� supersymmetry, with supercharges of opposite
chirality in IIA theory and of similar chirality in IIB theory.
Type II theories contain only closed strings whereas type I
theory also includes the open string sector. The left and right
modes of string coordinates in a heterotic string are described
in a totally different way.

Central charges in the algebra of supersymmetry Ð genera-
tors which arise in supercharge anticommutation relations
but commute with all algebra elements. In each irreducible
representation, central charges assume certain numerical
values. In field theory, they frequently have the form of
topologic quantities of the type of integrals from full
derivatives. In this case, non-zero central charges are carried
by solitonic states. Central charges may have a tensor
structure and are thus connected with extended objects.

Another characteristic example of the emergence of
central charges in the algebra of supersymmetry is related to
compactification of additional dimensions. The appearance
of central charges in this case can be schematically illustrated
in the following way. Let the �D� 1�-dimensional theory be
compactified on a circle of radius R. Then, the momentum
component along the compact dimension is quantized in units
of Rÿ1 and turns into a conserved charge in the D-
dimensional theory. The algebra of supersymmetry for
Kaluza ±Klein modes turns out to be centrally expanded:

f �Qa;Qbg � PMGM
ab � PmG

m
ab �

N

R
GD
ab ; �6:8�

because supercharges anticommute on the momentum
operator. Further analysis depends on the parity of the
number of dimensions D. An important moment is that the
central charge, i.e. coefficient at the last term in the right-hand
side of Eqn (6.8), is equal to the mass of a Kaluza ±Klein

particle arising from the massless state of the uncompactified
theory.

Electromagnetic duality Ð a symmetry transformation
switching the places of electric and magnetic fields and,
accordingly, charges. The meaning of the terms `electric' and
`magnetic charges' needs elucidation. The wave function of a
charged particle propagating in an external electric field
acquires an additional phase exp�ieS�; in other words, the
action on the particle's world line has a term

S �
�
dsm Am : �6:9�

The coefficient in front of this term may be regarded as the
definition of the particle's electric field. On the other hand, the
magnetic charge is related to themagnetic field flux across the
sphere around the point where the charge is present:

F �
�
dsij Fij : �6:10�

In the four-dimensional case, both electric and magnetic
charges relative to the vector field are point objects. How-
ever, it is possible to consider a more general situation when
gauge potentials form an antisymmetric tensor of rank r inD-
dimensional space ± time. Then, electric charges are carried by
p-branes with p � rÿ 1 because their world surface has the
dimensionality necessary to integrate the gauge potential:

S �
�
dsm1... mr Am1... mr : �6:11�

At the same time, the gauge field strength

Hm0... mr � q�m0Am1... mr� �6:12�

is responsible for the antisymmetric tensor of rank r� 1 while
the magnetic flux is defined by the �r� 1�-multiple integral

F �
�
dsi1... ir�1Hi1... ir�1 : �6:13�

The surface surrounding a rectilinear infinite p-brane in the
�Dÿ 1�-dimensional space is a cylinder R p � SDÿpÿ2. There-
fore, the p-brane magnetic charge is defined by the integral
(6.13) over a �Dÿ pÿ 2�-dimensional sphere. Hence, mag-
netic branes have the dimensionality p � Dÿ rÿ 3. This
means, that in the D-dimensional theory branes with
dimensionalities p and Dÿ pÿ 4 are reciprocally dual. It is
worthwhile mentioning important specific cases of particles
(0-branes) in four dimensions and 2- and 5-branes in the
eleven-dimensional theory.

BPS (Bogomol'ny ±Prasad ± Sommerfield) state in supersym-
metric theories Ð a state preserving a part of the super-
symmetries. At the classical level, this state is most often
realized topologically by stable solutions of the equations of
motion. The supermultiplet formed by BPS states has a
smaller dimensionality than the usual massive supermulti-
plet. BPS states saturate constraints imposed by the algebra of
supersymmetry on masses, i.e. for them inequality-type
constraints turn into equalities. This accounts for the rigid
connection of BPS state masses with central charges in the
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algebra of supersymmetry; in the simplest case, the mass of a
BPS state is simply equal to the charge. If supersymmetry is
not spontaneously broken, this statement remains exact when
all quantum corrections are taken into consideration, which
allows it to be viewed as the non-renormalization theorem.
Stable BPS states do not interact because the BPS state of
charge 2, for example, has the same energy as the super-
position of two charge 1 states. Examples of BPS states are
BPS monopoles in four-dimensional theories with expanded
supersymmetry, extreme black holes, domain walls in super-
symmetric theories [79, 80], and D-branes. The Kaluza ±
Klein modes of massless fields are also BPS states.

D(irichlet)-branes Ð soliton-like extended objects in string
theory. Their dynamical description is organized in the
following way. Open string end-points can move freely on
the D-brane world volume. This imposes the Neumann
boundary conditions on string coordinates tangential to the
D-brane and Dirichlet conditions on the orthogonal coordi-
nates. An open string connected with the D-brane covers a
certain surface in space ± time. In the dual description, it may
be regarded as the world sheet of a closed string emitted by the
D-brane. Therefore, D-branes interact with gravitons since
gravitons correspond to the massless state of a closed string.
Hence, D-branes possess tension. Moreover, D-branes carry
RR-charges and are BPS states. In the IIA theory, D-branes
have even dimensionality: p � 0; 2; . . ., whereas in the IIB
theory their dimensionality is odd: p � ÿ1; 1; 3; . . .. �ÿ1�-
branes are point objects, D-instantons.

D-instantonÐD-brane of dimensionality p � ÿ1.

D-string ÐD-brane of dimensionality p � 1.

D-particleÐD-brane of dimensionality p � 0.

GSO (Gliozzi ± Scherk ±Olive) projection Ð superstring
generalization of chiral projection which consists in discard-
ing string states whose so-called G-parity is negative. For
massless modes of an open string, G-parity merely coincides
with chirality. In the massless sector of a closed string, the
signs of GSO-projection for left and right modes may or may
not coincide. This determines whether the theory is chiral
(IIB) or non-chiral (IIA). The GSO-projection allows one to
get rid of a tachyon and also ensures the space ± time
supersymmetry of an NSR-string.

NSR (Neveu ± Schwarz ±Ramond) string Ð the formulation
of a superstring theory with local supersymmetry on the
world sheet. The NSR-string action is given elsewhere (see,
for instance, Ref. [4]). Suffice it to say that the physical
degrees of freedom in the NSR-formalism are the string
coordinates X m and their fermionic superpartners (relative
to supersymmetry on the world sheet) cm

A, i.e. Majorana
spinors, which also carry a certain vector space ± time index.
The critical dimension of a NSR-string is 10. At this
dimension, it shows space ± time supersymmetry following
the GSO-projection and is equivalent to the Green ± Schwarz
superstring.

NS (Neveu ± Schwarz)-sector in the space of NSR-string states
corresponds to the expansion of fermionic fields on the world
sheet in semi-integer harmonics; for a closed string, this meets
antiperiodic boundary conditions.

R (Ramond)-sector occurs in the space of NSR-string states if
fermions on the world sheet are expanded in a Fourier series
with integer harmonics. In other words, the R-sector for a
closed string corresponds to periodic boundary conditions for
fermions.

RR (Ramond ±Ramond)-charges. In the perturbative state
space of a closed superstring, there are four sectors: R ±R,
R ±NS, NS ±R, and NS ±NS, corresponding to different
boundary conditions, both periodic and antiperiodic, for left
and right fermionic modes on the string world surface in the
NSR-formalism. Bosonic degrees of freedom emerge from
NS±NS and R±R sectors. Specifically, the R ±R sector
contains massless vector and tensor fields. These fields enter
the low-energy effective Lagrangian only through their
intensities. Generally speaking, none of the string perturba-
tive states is charged relative to R ±R sector fields. Never-
theless, solitonic states may carry both electric and magnetic
RR-charges. In the general case, these states correspond to
extended objects, depending on the dimension of the gauge
field relative to which they are charged.

In the IIA theory, the massless R ±R sector consists of a
vector field and an antisymmetric tensor field of rank 3.
Therefore, electric p-branes have the dimensionality p � 0
and p � 2 and magnetic ones that of p � 6 and p � 4.
Massless states from the R±R sector of the IIB theory
correspond to pseudoscalar, rank two tensor, and rank four
tensor with self-dual strength. Accordingly, RR-charges in
this theory carry 1 and 5-branes dual to each other and self-
dual 3-branes.

j -symmetry Ð local fermionic symmetry of the covariant
action of a superparticle, superstring, and supersymmetric p-
branes at large which allows an extra part of the fermionic
degrees of freedom to be gauged. k-symmetry plays an
important role in the formulation of Green ± Schwarz super-
strings with explicit space ± time supersymmetry.
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