
Abstract. It has been revealed using microlensing that a con-
siderable part, possibly more than half, of the darkmatter in the
halo of our Galaxy consists of objects with a mass spectrum
ranging from 0.05 to 0.8 of the solar mass.What is the nature of
these objects? There exist two hypotheses. According to one,
these are Jupiter type planets or small stars (brown and white
dwarfs) consisting of normal baryonic matter. According to the
other, these are non-compact objects, i.e., small-scale forma-
tions in non-baryonic dark matter. Here, a theory is proposed
describing the possibility of the existence of non-compact ob-
jects in the halo of our Galaxy, their structure and formation
from non-baryonic matter. The theory of microlensing on com-

pact and non-compact objects is considered in detail. The results
of microlensing observations are described and compared with
theory. Possible astrophysical manifestations of the presence of
small-scale structure are pointed out. The field is being exten-
sively studied and is of fundamental interest for cosmology and
astrophysics.

1. Introduction

Observations show that the greater part (over 90%) of the
matter in the Universe is made up of invisible (dark) matter
[1], and it remains unknown what particles it consists of.
From analysis of the processes of primary nucleosynthesis
and galaxy formation it follows, however, that dark-matter
particles must be of non-baryonic origin and must interact
rather weakly both among themselves and with baryonic
matter. These particles are typically assumed to be either the
hypothetical heavy particles predicted by supersymmetry
theory (customarily referred to as neutralinos), or light
axions, or cosmic strings. They all may constitute the so-
called cold dark matter (CDM) [2, 3].

Non-dissipative dark matter plays a decisive role in the
formation of the large-scale structure of the Universe, i.e.,
galaxies, clusters of galaxies, and superclusters. At the
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nonlinear stage of development of initially small perturba-
tions there occurs a gravitational compression and a sub-
sequent kinetic mixing of the dark matter leading to the
formation of stationary self-trapped objects with a singular
density distribution r at the center [4, 5]

r�r� � Krÿa ; a � 1:8 : �1�

Here K is a parameter depending on the instant of time when
the object was formed. It is of importance that the form of
initial perturbation does not practically affect the scaling
parameter a.

The dissipative baryonic matter, which makes up but a
small fraction of the total mass of the matter, is located in the
center, i.e., in the peak of density, where it forms galaxies,
while the non-dissipative dark matter, distributed according
to the law (1), forms a giant galactic halo. This theory is
confirmed by the observational data [6 ± 8].

Owing to gravitational forces, galaxies unite to form
clusters which, in turn, form large Abell clusters and super-
clusters thus showing up hierarchical clumping. The domi-
nant role in this process is also played by dark matter in
which, irrespective of the object's size, the distribution (1)
inevitably sets in. This property of hierarchical clumping is
clearly pronounced in the pair correlation function of galaxies
and other objects. At this point, the theory [9] also agrees well
with the observational data [1, 10, 11].

We have up to now considered clumping of large-scale
objects. What happens to objects that are smaller than
galaxies? How far can the hierarchical structure extend
towards small scales? It had normally been assumed that the
minimal objects formed of dark matter were halos of small
galaxies with a mass of �107ÿ108�M�. However, the ideas of
possible scales of minimal objects have lately changed
radically. In the papers by the present authors [12, 13] it is
shown that dark matter can form very small gravitationally
bound objects. The mass of these objects is determined by the
structure of the spectrum of initial fluctuations. The structure
of the spectrum on small scales is now unavailable. On the
basis of the hypothesis [12, 13] concerning the character of the
initial spectrum in this region, it was demonstrated that in the
dark matter on these scales a hierarchical structure fairly
similar to the large-scale structure may develop, extending to
quite a large amount of objects with masses as large as that of
the Sun.

The question, however, is whether such dark-matter
objects can exist now, and if they can, in what form. How
long do they live and how are they distributed in the halo of
the Galaxy? The analysis of these questions shows [13] that
the lifetime of small-scale objects is much longer than the age
of the Universe. They are distributed in the halo according to
the law (1). Thus, the theory points out the possibility of the
existence of a large amount of small-scale non-baryonic
objects in the Galactic halo with a fairly broad mass
spectrum.

Manifestations of dark matter on large scales up to now
have been registered only in observations of the dynamics and
gravitational lensing of large-scale structures. Experiments
on microlensing which revealed that a substantial amount of
invisible objects of massM � �0:05ÿ0:8�M� [14 ± 16] exist in
the halo of our Galaxy are therefore a fundamental new step.
These are usually supposed to be brown or white dwarfs or
planets (`Jupiters') consisting of ordinary baryonic matter
[15, 17].

However, the number of dark objects thus revealed
appeared to be very large. A detailed analysis carried out in
recent papers (see Ref. [16]) demonstrates that the observed
objects make up perhaps over 50% of the total mass of dark
matter in the halo of our Galaxy. So, we find a contradiction
with the conventional ideas of the non-baryonic nature of
dark matter. Furthermore, with such an interpretation one
encounters some difficulties in what concerns the consistency
between microlensing data and direct optical observations
from the Hubble telescope [18].

In this connection it was hypothesized in Ref. [12] that
microlensing in the halo reveals not Jupiter type objects and
cold stars, but objects of small-scale hierarchical dark-matter
structures consisting of non-baryonic matter. These objects,
however, are non-compact and have sizes of the order of the
Einstein radius, characterizing microlensing, or may even be
several times greater. For this reason, the theory of microlen-
sing by non-compact dark-matter objects was developed in
Ref. [19] (see also Ref. [20]). A detailed comparison of this
theory with the available observational data gives a good
agreement [19, 13]. It should nevertheless be emphasized that
the same observational data are in agreement with the theory
of microlensing by compact objects. The difference in the
results of these theories now lies within the experimental
error. Therefore, the question of the presence of both non-
compact and compact objects in the halo of our Galaxy
remains open.

Our aim here is to give a review of the present state of this
problem. We should stress that if in comparison with the
theory some non-compact objects are discovered as a result of
improved precision and processing of microlensing observa-
tion, this will simultaneously mean a direct discovery of non-
baryonic CDM for the reason that no baryonic objects of
such a mass, scale and luminosity may exist.

2. Minimal dark-matter objects

2.1 Primary spectrum cut-off
Dark-matter objects are formed upon development of Jeans
instability: as a result of gravitational attraction, small initial
perturbations of a uniformly distributed matter increase.
Crucial for the formation of such a structure is the form of
the initial density fluctuations

d�x; t� � r�x; t� ÿ r0�t�
r0�t�

; �2�

where r�x; t� is the local density of matter and r0�t� is the
mean density of matter. The initial fluctuations di0�x� are
customarily represented by the Fourier spectrum

��di�k���2,
where

di�k� �
��1
ÿ1

di0�x� exp�ikx� dx : �3�

The form of the spectrum of initial fluctuations is
determined by physical processes in the early Universe. The
spectrum��di�k���2 / k �4�

is used conventionally, suggested in 1965 by Ya B Zel'dovich
[21] and confirmed by recent observations [22] over large
scales.
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The spectrum (4) is cut off for low values of the wave
number k on the scale of the horizon radius Rÿ1h . For high
values of the wave number k!1, the cut-off occurs during
decoupling, i.e., in the period when the particles of the dark
matter escape thermal equilibrium. Note that one typically
considers both HDM and CDM (or a combination). HDM is
understood as weakly interacting particles that leave thermo-
dynamic equilibrium when they are still relativistic (for
example, light neutrinos). CDM is thought of as consisting
of rather heavy particles of mass mx 4 102 eV whose strong
interaction stops as soon as the temperature in the expanding
Universe lowers to T � mxc

2. The concentration of such
particles may continue to decrease for some time at the
expense of annihilation. In both cases, the spectrum varies
on small scales during freezing-out of dark-matter particles.
A free kinetic spread of these particles results in a smearing of
the fluctuations whose scale is less than the horizon radius at
the moment tx, when the temperature is

T�tx� � mxc
2 : �5�

It is the horizon radius Rtx
h at this instant of time that

determines the characteristic scale of the cut-off [23]:

kmax � 1

Rtx
h

: �6�

On large scales k5 kmax, the fluctuation spectrum (3), (4)
remains practically unaltered, whereas on small scales
k > kmax the free spread of particles causes a strong damping
of fluctuations, which leads to a sharp fall of the spectrum on
the scales l < kÿ1max. The calculated variations of the spectrum
(4) due to this process are presented in Fig. 1 [23]. The position
of the peak is determined by relations (5) and (6). The peak is
fairly broad:

0:5kmax < k < 2kmax : �7�
After this peak, a sharp fall of the spectrum is observed. The
maximum in the spectrum and the steep fall when k > kmax

are indicative of the fact that in the realization of the spectrum
there are no perturbations with scales below lmin � �2kmax�ÿ1.
Consequently, the smallest objects formed of dark matter will
just have scale lmin.

2.2 Linear growth of fluctuations
The small-scale dark-matter structure, as for the large-scale,
appears owing to the growth of small fluctuations upon the
development of Jeans instability. An important peculiarity of
this process is that at the radiation-dominated stage of
Universe expansion, the increase of fluctuations is slow.
Their comparatively rapid growth starts just after equili-
brium has set in and the expansion is already determined by
matter rather than radiation [24].

We shall discuss the dynamics of the growth of dark-
matter fluctuations. For simplicity we shall assume the
parameter O to be equal to unity, that is, the density of
matter to be equal to the critical density. In this case, on scales
less than the horizon, one can use the Newtonian approxima-
tion in the analysis of fluctuation dynamics. The equations
describing the linear growth of density fluctuations d�x; t�
take a simple form [1]

d2d
dt2
� 2

a

da

dt

dd
dt
� 3

8

E
a3

d ;
�
1

a

da

dt

�2

� 1

4

�
1

a4
� E
a3

�
: �8�

Here a�t� is the scale factor determining the expansion of the
Universe. The parameter E describes the matter-to-radiation
density ratio rx=rg. Before the moment teq of equilibrium
onset, when a < aeq and

a�teq� � aeq � 1

E
; E � rx

rg
; �9�

the dominating particles are photons [the first summand in
Eqn (8) for a�t�] and after the equilibrium onset, i.e. for
t > teq, nonrelativistic X-particles are predominant. At the
radiation-dominated stage, that is, in the period when
radiation is predominant, the scale factor a�t� increases as��
t
p

, while at the dust stage, that is, in the period whenmatter is
predominant, it increases as t 2=3 [1]. Since the density of
matter is rx / aÿ3 and the radiation density is rg / aÿ4, then
rx=rg / a / �1� z�ÿ1. As the present-day value of rx=rg is
known, it is easy to find the density of matter and the red shift
at the instant of time teq:

rx � rg � req � 3� 10ÿ16 g cmÿ3 ;

teq � t�zeq� ; zeq ' 3� 104 : �10�
In equations (8), the normalization of the scale factor a�t� is
chosen so that we have a � 1 at the instant of time tx when
dark-matter particles escape thermal equilibrium [this instant
of time is defined by Eqn (5)]. Accordingly E � r0x=r

0
g , where

r0x and r0g are the respective densities of X-particles and
photons at the instant tx. Since the temperature is
T � 102 eV at the moment of equilibrium teq, it follows that
if the particle mass is mx 4 102 eV, then tx 5 teq. This means
that in CDM the moment tx is attributed to the radiation-
dominated stage and E5 1.

In equation (8) for d one can get rid of the time by
introducing the variable

m � �������������
1� aE
p

:

Indeed, expressing dt from the second equation of the system
(8) in terms of da, we derive a universal equation for d:

d

dm

�
�1ÿ m2� dd

dm

�
� 6d � 0 : �11�

2

1
d

k=kmax

1 10

Figure 1. Zel'dovich ±Harrison spectrum transformation due to free flight

of dark-matter particles [23]: (1) statistical weight g � 30, (2) g � 200 (16).
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The solution to this equation is the second Legendre
polynomial:

d
d0
� 3m2 ÿ 1 � 3Ea�t� � 2 : �12�

It should be emphasized that d is normalized here to a small
quantity d0 which is the initial value of fluctuations at the
moment tx. Expression (12) describes the linear growth of
fluctuations both at the radiation-dominated and the dust
stages. We see that, during the radiation dominated stage, the
fluctuations grow slowly, increasing only by 2.5 times up until
the moment z � zeq, i.e. a � aeq. After this, a rapid growth
begins

d
d0
/ 3Ea / t 2=3 : �13�

2.3 Mass of the minimal dark-matter objects
The linear growth of the fluctuations stops as soon as the
magnitude of perturbations becomes comparable with the
mean density of matter d � 1. After this, the stage of
gravitational compression and kinetic mixing sets in and
leads to the formation of stable spherically symmetric
objects in the center of which a singular density distribu-
tion (1) is observed. This process was considered in detail
in the previous review by the present authors [5]. As a
result, a hierarchical structure of gravitationally bounded
objects develops from the primary spectrum of fluctua-
tions.

It is of importance that this structure is limited frombelow
by the mass Mmin of minimal objects:

Mmin � rx�tx�a3x : �14�

Here rx�tx� is the dark-matter density at the moment of
decoupling, when the particles mx (5) are singled out, and ax
is the scale of the horizon at the same instant of time,
ax � Rtx

h . The instant tx in Eqn (14) depends on the mass of
dark-matter particles. Consequently, it is the mass mx that
exerts a crucial influence onMmin. In the case of HDM, when
mx 5 102 eV, we have, as shown in Ref. [23],

Mmin �
m3

pl

m2
x

: �15�

Here mpl � �hc=G�1=2 is the Planck mass. One can see that in
the case under consideration the mass Mmin is related to the
mass of dark-matter particles in a one-to-one manner and is
rather large for HDM. For example, for the hypothetical
small-mass neutrinos with mx � 10 eV (which were consid-
ered in Ref. [2]), the mass is Mx � 1017M�, which corre-
sponds to the mass of large clusters.

For the case of CDM for mx 4 102 eV, relation (15)
changes (see Refs [25, 13]) to become

Mmin � p
m3

pl

m2
x

; p � nx
ng

�
g

4

�2=3

: �16�

Here nx and ng are the respective concentrations of CDM
particles and photons, g is a statistical weight of the order of
2� 102. The factor p in Eqn (16) is due to annihilation of a
majority of thematter in the period after decoupling. It can be
estimated from the present-day relic photon-to-baryon

density ratio �rg=rb � 10ÿ9�:

p � 10ÿ8
mb

mx
;

where mb and rb are the mass and the density of baryons.
This implies that if dark matter consists of heavy particles

mx 5 1 GeV, the mass of the minimal objects is very small:

Mx � �10ÿ6ÿ10ÿ7�M�
�

mx

1 GeV

�ÿ3
: �17�

The estimate (6), (17) gives the spectrum cut-off scale and the
mass of a possible minimal object for the assumption that
both the thermodynamic dark-matter particle decoupling and
the cessation of interaction of these particles with others takes
place at the time instant tx (5). If the decoupling and especially
interaction cessation take up more time (which is the case, for
example, for supersymmetric particles Ð neutralinos), the
cut-off scale and the mass of the minimal object may increase
substantially.

Another possibility for the appearance of small-mass non-
baryonic structures is due to axions. The nonlinear effects of
evolution of the axion field in the early Universe which may
lead to the formation of gravitationally bound mini-clusters
were investigated in Ref. [26]. These mini-clusters have a
characteristic massM � 10ÿ12M� and size R � 1010 cm.

2.4 Scale of the minimal objects
As we have seen above, the mass of the minimal objects does
not depend on the spectrum of initial perturbations but is
determined only by the dark-matter particle mass. The scale
of the minimal objects is determined, on the contrary, by the
amplitude of the fluctuation spectrum d. Indeed, the mean
density of matter r0�t� in the Universe decreases with time.
Because the mass of an object is fixed [see Eqns (15), (16)], its
size is naturally determined by the dark-matter density at the
instant of time tc when it was formed. The quantity tc is
specified by the condition of transition to the nonlinear stage
of compression in the region of the spectrum maximum dm
where the minimal objects are generated:

dm�tc� � 1 : �18�
Thus, the scale Rx of a minimal object is defined as

Rmin �
�
Mmin

r0�tc�
�1=3

; �19�

where r0�tc� is the dark-matter density at the moment of its
formation tc.

Within the period when radiation prevails, fluctuations
increase very slowly (see Section 2.2). Since the initial
fluctuations d0 are not large, relation (18) can be fulfilled
only provided that tc > teq, where teq is the moment of
transition from the radiation-dominated to the dust stage,
which is determined by condition (9). The red shift zc that
corresponds to the moment tc is defined here by relations (12)
and (18). They imply that

zc � 1 � 3

2

zeq � 1

1=d0 ÿ 1
; d0 < 1 : �20�

Since the density in the Universe decreases rapidly as

r � req

�
1� z

1� zeq

�3

; �21�
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where req � 3� 10ÿ16 g cmÿ3 is the density of matter at the
moment of equilibrium, it follows that the scale of the
minimal objects increases actively as d0 decreases:

Rm � K2

�
Mmin

4p=
��3ÿ a� req

��1=3
2

3

�
1

d0
ÿ 1

�
: �22�

This expression is specified for the scale Rm, namely, it now
allows for the factor K2 � 0:1ÿ0:3 of nonlinear compression
in the course of the object's formation (see Section 4.1) and
the density distribution (1) inside the object.

For example, for d0 � 10ÿ3 the corresponding red shift at
which the object was formed (21) is zc � 1:5� 10ÿ3zeq, and
the scale of the object of mass Mm � 10ÿ6M� is
Rm � 5� 1015 cm. If d0 � 0:4, then zc � zeq and the scale of
the same object is much smaller: Rm � 1013 cm. We also note
that the scale of objects with a characteristic mass Mm �
�0:1ÿ0:5�M�, in which we are interested later, is
�0:6ÿ3� � 1018 cm when d0 � 10ÿ3 and

Rm � �3ÿ15� � 1014 cm �23�

when d0 � 0:4.

3. Hierarchical structure

Up to now we have only discussed minimal dark-matter
objects. They are first to appear. The presence of a wide
spectrum of perturbations leads to the subsequent generation
of objects on various scales. Large-scale objects can trap
smaller-scale ones and be themselves trapped by still larger
objects. Exactly this type of hierarchical structure is observed
in large-scale formations in the Universe, such as galaxies,
clusters of galaxies, large Abell clusters, superclusters, and so
on. It is quite natural to expect that an analogous hierarchical
structure occurs on small scales as well.

The sequence of objects formation on different scales is
determined by the fluctuation spectrum. Going over from the
Fourier transform and back to x-space corresponds to
integration over d3k and is, therefore, equivalent to multi-
plication of the fluctuation spectrum by k3. So, instead of d�k�
[see Eqn (4)] it is reasonable to consider the spectral function

F0�k� � k3
��di�k���2 : �24�

An important transformation of the fluctuation spectrum
is connected with peculiarities of CDM. The point is that in
the case of CDM the moment of particle decoupling and the
moment when the dark-matter density begins to prevail differ
appreciably in energies (and, accordingly, in time or red shifts
z). As shown above [see Eqns (8), (12)], at the radiation-
dominated stage in dark matter inside the horizon Rh,
fluctuations increase very slowly; they are almost `frozen'.
Outside the horizon, i.e. for k4 keq � 1=Rh, where fluctua-
tions are small, they increase gradually in proportion with
time [1]:

dr
r
/ t :

Owing to this process, fluctuations on small scales are leveled,
and the spectral function is transformed as follows [1, 2]:

F�k� � F0�k�
1� �k=keq�4

: �25�

It is the fluctuation F�k� that determines sequence of
appearance of objects on different scales �l � 1=k� in the
hierarchical CDM structure: the first to appear are objects
with maximum F�k� values, and subsequently appear other,
larger objects.

The form of the function F�k� for the Zel'dovich ±
Harrison spectrum (4) is shown in Fig. 2 (curve 1). As is
clear from Eqns (24) and (25), for k > keq it gradually
transforms to a plain form. This picture is on the whole
confirmed by contemporary observational data over large
scales (l � 500ÿ1000 Mpc) [22]. Recent temperature mea-
surements in the region of the fluctuation maximum, that is,
on scales l � 30ÿ50 Mpc, as well as on smaller scales are
indicative of possible deviations from the Zel'dovich ±
Harrison spectrum, which in the simplest form are reduced
to a variation of the exponent of the spectrum [27]:��di�k���2 / kn ; n � 1:2ÿ1:4 : �26�

Such a power-law spectrum is also presented in Fig. 2 (curve
2). Other notable deviations of the spectrum of initial
fluctuations from the Zel'dovich ±Harrison spectrum are
revealed in observations of distribution of the density of
matter on scales of 30 ± 50 Mpc [3].

It is, however, of importance that between the regions
where the spectrum has already beenmeasured l5 1025ÿ1026
cm and the region of minimum-scale objects
M � �10ÿ6ÿ1�M�, that is, l � 1013ÿ1015 cm, which is of
particular interest for us, there is a huge region with a
spectrum whose state is practically unknown. Note that the
function F�k� is strictly flat in the region k > keq for the
Zel'dovich ±Harrison spectrum only. It may be assumed, for
example, that for k which are sufficiently large but below the
cut-off region k5 kmax, the spectral function F�k� has a new
region where it ascends. Such a non-standard spectrum is
shown in Fig. 2 (curve 3).

In the first model, curve 1 (let us call it standard), a very
broad spectrum of objects, from minimal bodies to galaxies,
appear almost simultaneously in the hierarchical structure. In
the second model (which we refer to as power-law), first to
develop are the small-scale objects, and subsequently appear
structures of much larger scales. This difference in the
character of object formation on different scales becomes
even greater in the third (non-standard) model where small-
scale structures develop at a moment close to teq and large-
scale structures develop much later. It should be stressed that

kskeq log kÿ1

logF

log 0:4

1 1

3

2

Figure 2. Form of the spectral function F�k�: (1) for the Zel'dovich ±

Harrison spectrum, (2) for a power-law spectrum, (3) for a non-standard

spectrum.
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the indicated differences in the course of object formation
may have an appreciable effect on the conditions of their
further existence, which determines to a large degree the form
of the small-scale structure nowadays.

3.1 Clustering
The probability that a small-scale object will be trapped by a
large-scale one, provided that the difference in size is not very
big, does not generally prove to be high. In the case of a
power-law spectrum, this probability is determined by the
clustering parameter e, that is, the probability that an object
of scale Rx appears inside another object of size Rf. An
estimate of the clustering parameter e has the form [5]:

e � 4pb ln
Rf

Rx
; where b < 0:016

�
6

m� 5

�3=2

: �27�

Here m � nÿ 4 is the exponent of the spectral function. This
deviation of the exponent of the spectrum from the value (26)
is due to the spectral function transformation (25). Expres-
sion (27) gives a theoretical estimate `from above' for the
clustering parameter [28]. The estimation of the parameter b
obtained from comparison with observations for a large-scale
structure yields [29]

b � b0

�
6

m� 5

�3=2

; b0 � �3ÿ6� � 10ÿ3 : �28�

A successive entrapment of smaller objects by objects of
increasingly large scales presents a picture of hierarchical
clumping. The relation between the size and the mass in the
case of hierarchical clumping is given by [12]

Rx

Rf
�
�
Mx

Mf

��m�5�=6
: �29�

Proceeding from relations (27) ± (29) one can determine
the mass ratio of larger Mf and smaller Mi objects to fit a
probability of the order of unity that the larger object will
entrap the smaller one. Assuming e � 1 in formula (27) and
allowing for Eqns (28) and (29), we find

Mf

Mi
� exp

��m� 5�1=2
4p61=2b0

�
: �30�

So, for the Zel'dovich ±Harrison spectrum �n � 1� we have
Mf

Mi
� 1:9� 103 for b0 � 6� 10ÿ3 ;

Mf

Mi
� 3:6� 106 for b0 � 3� 10ÿ3 �31�

and for a sharply increasing spectrum �n � 5�
Mf

Mi
� 3:7� 105 for b0 � 6� 10ÿ3 ;

Mf

Mi
� 1:4� 1011 for b0 � 3� 10ÿ3 :

According to the theory, all the entrapped objects will be
distributed inside the large object according to the law (1):

n�r� � 3ÿ a
4pR3

f

Nf

�
r

Rf

�ÿa
: �32�

The total number of objects Nf can be evaluated from the
relation

Nf � f
Mf

Mi
; �33�

where f is the fraction composed of objects Mi in the total
mass of the object Mf.

3.2 The lifetime of entrapped objects
We note first of all that objects of a hierarchical structure
undergo almost no changes from the moment when they are
formed till the moment when they are trapped by larger
objects. Indeed, during this period they have very small
peculiar velocities because the relative velocities at the
moment of formation are practically zero and the distance
between the objects increases owing to the general cosmolo-
gical expansion. The relative velocity and the possibility of
collision of objects are exclusively due to their entrapment in
the gravitational field of larger-scale formations. So, we may
speak only of the lifetime of objects trapped in larger-scale
structures.

Entrapped objects may experience interactions. Elastic
collisions between objects proceeding without energy
exchange may affect only the distribution (1) of matter in
them, whereas it is inelastic processes that are responsible for
destruction. The principal mechanism of destruction is tidal
interaction, occurring when objects fly by one another or by
stars at close distances. For the case of ordinary stars, where
energy dissipation takes place inside a star, the role of tidal
interaction is described in detail in Ref. [30]. In our case, too,
the physics of the destruction process is related primarily to
tidal forces because these forces are responsible for the
increase of kinetic energy of particles inside objects, and if
this energy becomes equal to the binding energy of the object,
we observe a destruction. Let us investigate this process more
closely.

Suppose a non-compact object of mass Mx and scale Rx

interacts with another object flying by at the distance R or a
massive body (star) of massM. The velocityV of their relative
motion greatly exceeds the particle velocity vx inside the
indicated non-compact object

�
vx � �GMx=Rx�1=2

�
. There-

fore, in the first approximation the particles can be considered
to be at rest.

As a result of the interaction, the object Mx as a whole
gains additional velocity, which means an elastic scattering of
objects, and moreover the particles inside it gain the
additional velocity of relative motion. This is the tidal
interaction. The force of tidal interaction Ft is connected
with the finite dimension of the non-compact body and is
determined by the difference of forces acting on its particles:

Ft � 2GMMx

R3
Rx :

The shift of the particles under the action of this force is

Dx � Ft

2Mx
�Dt�2 � GM

R3
Rx�Dt�2 ; Dt � R

V
:

Accordingly, the energy dissipated in one event is

DE � FtDx � 2G 2M 2MxR
2
x

R4V 2
:

The time of the free path between collisions is
tf � 1=�pR2nV�, where n is the number density of objects.
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Introducing the effective collision frequency nE and the tidal
destruction cross-section sE according to the relations�

dE

dt

�
� E

tf
� nEE ; nE � nVsE �34�

(E is the absolute value of the total energy), we eventually find

sE � pR2
x

�
M

Mx

�2
R2

x

R2

v2x
V 2

; R5Rx ; �35�

where vx is the mean velocity of dark-matter particles inside
the objects,

Mxv
2
x

2
� E � GM 2

x

Rx
:

From Eqn (35) it can be seen that the maximum cross-section
is achieved for R � Rx. Let us now take account of the fact
that the velocity vx is determined by the gravitational
potential of a considered object Mx, while the velocity V is
determined by the gravitational potential of a much larger-
scale formation in which it is trapped. Consequently, as
indicated above, we always have V 2 4 v2x. Hence, the cross-
section of tidal destruction of objects by one another is always
rather small as compared to their geometric size. Thus, the
lifetime of the objects is substantially larger than the time of
their free path between straightforward head-on collisions.

As is clear from Eqns (34), the lifetime of objects of mass
Mx trapped in a large-scale object of mass Mf, i.e., the tidal
destruction time tf, is determined by the relation

tf � 1

n�r�sEVf
: �36�

Here, the concentration of trapped objects n�r� dependent on
the distance r to the center of the large-scale object is given by
relations (32) and (33) and the velocity Vf is equal to

Vf �
��������������
2G

Mf

Rf

r
: �37�

In expression (35), for the cross-section one can putM �Mx,
R � Rx. Proceeding from relations (35) ± (37), we find

tf � 4R2
f

�3ÿ a�Rx f

������������
Rf

2GMf

r �
r

Rf

�a

: �38�

Here f is the portion of the mass of the large-scale object Mf

contained in the small-scale entrapped objects Mx. For
example, the total number of entrapped objects of mass Mx

is Nx � fMf=Mx. It can be seen that the lifetime of entrapped
objects decreases strongly with decreasing r, that is,
approaching the center. On average, it increases proportion-
ally to the object size ratio Rf=Rx as well as with increasing
characteristic time of oscillations in the large-scale object and
with decreasing parameter f.

3.3 Destruction of objects in the hierarchical structure
The origination of the hierarchical structure is closely related
to the Hubble expansion of the Universe. Indeed, because of
the expansion, the mean density of matter r0 / tÿ2 falls
rapidly. As a result, those objects that appeared earlier have
a higher density. Therefore, they are more strongly gravita-

tionally bound and can exist inside a large-scale object. It is
the Hubble expansion and the sequence of appearance of
objects Ð first small-scale, and then increasingly large-scale
Ð that enabled the formation of the hierarchical structure.
The sequence of appearance of objects, as was shown above,
is specified by the form of the spectral function F�k� (Fig. 2):
small-scale objects appear earlier than large-scale ones if the
function F�k� grows monotonically with increasing k. For the
standard Zel'dovich ±Harrison spectrum this is not the case
because the function F�k� over a broad range of scales for
k > keq is nearly constant (Fig. 2, curve 1). In this case, objects
of all sizes for k > keq appear almost simultaneously. But
given this, smaller objects inside larger ones are in no way
distinguished in density. This means that they cannot
originate through a regular process, and if they are distin-
guished owing to fluctuations, their density differs very little
from the mean density of the surrounding matter, and they
are destroyed rapidly.

From this it follows that in the case of a standard
spectrum (curve 1 in Fig. 2) the hierarchical structure does
not at all depend on the spectrum cut-off at small scales. It
begins in the region where a deviation appears in the flat
spectral function F�k�, that is, for k4 keq. The scale kÿ1eq is
smaller than the horizon radius by approximately an order of
magnitude at the moment of equilibrium onset. It corre-
sponds in mass to small galaxies. Consequently, in the case
of a standard spectrum the hierarchical structure begins in the
region of small galaxies and stretches towards larger scales.
This agrees well with the observed large-scale structure of the
Universe.

The picture is approximately the same for the power-law
spectrum which differs from the Zel'dovich ±Harrison spec-
trum (n � 1:4, curve 2 in Fig. 2). Although the hierarchical
structure may in this case start developing early, the survival
small-scale objects to survive is hampered because of the small
difference in density. A sufficiently long-lived structure
occurs on a scale larger than kÿ1eq when the slope of the
spectral function F�k� changes sharply. This again leads
mainly to the possibility of the appearance of a full
hierarchical structure in the Universe beginning with small
galaxies.

The situation is essentially different in the case of the non-
standard function F�k� represented in Fig. 2 (curve 3). The
hierarchical structure develops here first in the region of small
scales, for k > ks, but it breaks sharply for k4 ks and appears
again only on galactic scales k4 keq. Small-scale objects
k5 ks originate early and have, therefore, a very high dark-
matter density in galactic-scale objects that arise much later.
Under such conditions small-scale dark-matter objects with
k5 ks are strongly pronounced. As will be seen below, they
may exist in the Universe for a rather long time.

3.4 Small-scale structure Ð the main hypothesis
Sufficiently reliable data on the spectrum of initial perturba-
tions in the Universe are now available only for large scales
l > 1ÿ10 Mpc. As to small scales l < 1ÿ10 Mpc, the
information is next to null. The basic hypothesis that we
suggested in Ref. [13] reads that for small scales the spectral
function exhibits a non-standard nature as shown in Fig. 2
(curve 3) and for this reason the small-scale structure develops
in theUniverse. On the assumption that it is this structure that
is observed in the microlensing on objects in the halo of the
Galaxy one may conclude that objects of mass 0:1ÿ0:5M�
correspond to the point of a sharp small-scale (ks) spectrum
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cut-off. Furthermore, the amplitude of the spectral function
in the plateau (or peak) region is

Fm � dim � 0:3ÿ0:4 ; �39�

which exceeds the value of the constant F0 in the standard
spectrum by over two orders of magnitude.

On this basis we obtain that the small-scale hierarchical
structure of dark-matter objects extends to the region

Mx � �0:01ÿ1�M� : �40�

Since the initial amplitude is high (39), it follows that as is
implied by Eqn (20), the fluctuations reach a nonlinear stage
and form gravitationally compressed objects within a period
of time close to themoment of equilibrium onset teq. The scale
of the appearing objects (22) and (23) is

Rx � �1014ÿ1015� cm : �41�

This scale grows with increasing mass Mx in proportion to
M

1=3
x or somewhat faster, the growth rate depending on the

slope of the spectral function.
We shall emphasize that the principal hypothesis of the

character of the spectrum of initial perturbations has not yet
been cosmologically grounded.

3.5 Lifetime of small-scale objects in the Galaxy
The small-scale structure with the characteristic mass spec-
trum (40) and scales (41) develops, under assumption (39),
over the period close to the moment of equilibrium onset teq.
At this moment, the amplitude of fluctuations on large scales
is only F0 � 10ÿ3. The large-scale structure, therefore,
develops much later, when z < z0 (z0 4 10). As a result, the
mean dark-matter density in large-scale structures, including
the halo of our Galaxy, is many �� 1010� orders of magnitude
lower than the density in small-scale objects. The small-scale
objects are thus strongly distinguished dense formations in
the Galactic halo.

They, naturally, interact among themselves as well as with
stars and galactic gas and can, in principle, decay as a result of
this interaction.We shall determine their lifetime. To this end,
we shall first estimate the total number of objects in the
Galactic halo

NxMx � fMh : �42�

Here f is the fraction of dark matter contained in small-scale
structures, Mh is the total mass of the dark matter in the
halo, Mx is the characteristic mass of an object. The
distribution of dark-matter objects obeys the fundamental
law (1). Consequently, the density of these objects in the
halo is

nx�r� � 3ÿ a
4p

Nx R
ÿ3
h

�
r

Rh

�ÿa
; �43�

where Rh is the size of the halo.
Allowing for the tidal interaction of the dark-matter

objects, their lifetime is determined by expression (38).
Substituting Eqns (42) and (43), we obtain

t0 � 4R2
h

�3ÿ a�Rx f

�������������
Rh

2GMh

r �
r

Rh

�a

: �44�

Using now the values of the parameters [6, 13]

Mh � 2� 1012M� ; Rh � 200 kpc ;

Mx � 0:5M� ; Rx � 4� 1014 cm ; f � 0:5 ;

we find

t0 � 7� 108t0

�
Rh

200 kpc

�3=2�
4� 1014 cm

Rx

�

�
�������������������������
2� 1012M�

Mh

s �
r

200 kpc

�1:8

: �45�

Here t0 � 3� 1017 s is the lifetime of the Universe. From this
one can see that the lifetime of objects in the halo is many
orders of magnitude larger than the lifetime of the Universe.
Approaching the central part of the halo, t0 decreases
substantially, but here, too, below scales of the order of
10 kpc it remains much greater than t0.

In the galactic region, one should also involve the
interaction with stars. Making use of relations (35), (36), we
arrive at the lifetime

ts � 4� 103 t0

�
4� 1014 cm

Rx

��
V

300 km sÿ1

�

�
�
1 pcÿ3

Ns�r�
��

Mx

0:5M�

��
M�
Ms

�2

; �46�

where Ns�r� is the density of the stars and Ms is their
characteristic mass. We can see that outside the central
region r > rGc, where rGc � 0:1ÿ1 kpc, this quantity remains
larger than the lifetime t0.

Thus, dark-matter objects may exist at the present time
not only in the halo, but in the greater part of the Galaxy as
well. It is in the region r < rGc close to the center that they
must already be destroyed as a result of tidal interaction with
stars.

The interaction of dark-matter objects with gas may be
quite diversified. First of all, since they form before
recombination, it follows that after recombination and gas
cooling to temperatures

T < T0 ; T0 � mpMxG

Rx
� 2:6� 103K ; �47�

where mp is the proton mass, gas condensation starts in the
dark-matter objects, which leads to the formation of baryonic
cores. This processmay proceed even now. Then, obviously, a
substantial difference must appear in scale and, perhaps, in
the composition and structure of baryonic cores in the halo
and theGalaxy, where the gas density is high. Baryonic bodies
in the Galaxy may not only be much greater than in the halo,
but they may also have an appreciable effect on the
distribution of the dark matter surrounding the core. Specific
features of the structure of dark-matter objects with baryonic
cores will be discussed at length in the section to follow.

Note that being bare gravitational bodies on which star-
constituting gas is condensed, the dark-matter objects
existing in the Galaxy may also have a strong effect on the
star formation process. On birth and ignition of a star, dark-
matter particles may either leave it or stay inside (depending
on their mass mx) producing a noticeable effect on its
burning. This point will also be discussed briefly in Section 4.
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Concluding this section we emphasize that the small-scale
structures considered within the proposed theory are essen-
tially new objects in the structure of matter in the Universe.
They are formed by non-interacting dark-matter particles and
exist owing to gravitational forces only, i.e., the particles are
entrapped by the gravitational field created by these objects.

An important feature of the objects is, as follows from
Eqns (40) and (41), that their mean density is
r / 10ÿ11ÿ10ÿ13 g cmÿ3. In view of this, in spite of a similar
mass, the volume they occupy is much larger than is typical
for baryonic bodiesÐ their size exceeds that of a correspond-
ing compact baryonic body by approximately four orders of
magnitude. For this reason we henceforth refer to them as
non-compact objects (NO). It is noteworthy that, having a
similar mass, a baryonic gas occupies a much larger (by 7 ± 9
orders of magnitude) volume in the Galaxy than NO. Thus,
one can state that in their general properties Ð mass, scale,
and luminosity Ð NO are specific objects of non-baryonic
matter. Weakly luminous baryonic objects of the same mass
and size do not exist in nature.

4. Structure of non-compact objects

4.1 Coefficient of nonlinear compression
In the course of gravitational collapse leading to the
formation of gravitationally bound objects of non-interact-
ing dark-matter particles, nonlinear compression occurs. Let
us determine the parameters of this compression. Gravita-
tionally compressed objects are formed in the neighborhood
of local maxima of the initial density. Suppose at the initial
moment the density distribution near this maximum r � 0 has
the form

r � r0

�
1ÿ r2

r20

�
; r < r0 : �48�

For simplicity, we have assumed here the initial distribution
to be symmetric (in the neighborhood of a three-dimensional
maximum of any form the results are quite similar [5, 31]).
The evolution of the nonlinear process of gravitational
compression of the initial cluster (48) leads to the appearance
in a time of the order of the Jeans time �tJ ' p

����������
3=8r

p � of a
singular point in the center with a density distribution [4]

r�r� � Krÿ12=7 ; K � 3

7

�
40

9p

�6=7

r0r
12=7
0 : �49�

Let us assume the distribution (49) to be restricted to the
radius r1. For r > r1 we put r � 0. The forms of the
distributions (48) and (49) differ strongly. Under these
conditions, in order to find the value of the effective
parameter of compression it is reasonable to bring both the
distributions to a unified form. It is natural to choose as such
a form a uniform ball with a constant density

r � runi : �50�
To the initial distribution (48), we add a uniform ball of the
same mass

M � 8

15
pr0r

3
0 �

4

3
pr�0�unir

3
0 �51�

and radius r0. Then the density r
�0�
uni is related to the parameter

r0 as follows

r�0�uni �
2

5
r0 : �52�

Auniform ball of radius r1 and density r
�1�
uni corresponds to the

singular density distribution (49). From Eqns (49) we obtain

4

3
pr�1�uni �

28p
9

Kr
ÿ12=7
1 : �53�

Furthermore, in view of mass conservation we have the
relation

r�0�unir
3
0 � r�1�unir

3
1 : �54�

From Eqns (49), (52), and (53) we find the coefficients of
compression in density Kr and in radius Kr:

Kr � r�1�uni

r�0�uni

'
�
40

9p

�2�
5

2

�7=3

; Kr � r1
r0
� Kÿ1=3r ; �55�

which gives Kr ' 20 and Kr ' 0:3. Let us emphasize that the
coefficients of compression (55) do not depend on a particular
unified form to which both the distributions are brought. For
example, the result will be the same if we bring the distribution
(49) to the form (48) assuming r�r� � r1�1ÿ r2=r21� and
determine the parameters r1 and r1 using mass conservation.

We can see that the nonlinear gravitational compression is
sufficiently large even before the first singularity. The analysis
carried out in Ref. [32] shows that in the course of subsequent
mixing and the onset of the stationary state it does not
generally increase. This remains valid if all the particles are
kept in the entrapment region. However, depending on the
initial conditions, some particles may actually leave the
entrapment region, and as a result of conservation of the
total energy this process inevitably leads to strengthening the
object's compression.

4.2 Density distribution in non-compact objects
The distribution of density in NO depends mainly on the
development of Jeans instability at the nonlinear stage, but
the linear stage of fluctuation growth also exerts a consider-
able influence on this process. So, the scaling law (1), (49) is
characterized by two factors, namely, the slow linear growth
of initial density fluctuations and the rapid compression with
subsequent kinetic mixing at the nonlinear stage. In the case
of large scales, the initial density fluctuations di0 [see Eqns (2)
and (3)] are always small, and therefore the unstable mode
increases for a substantially long time before the nonlinear
collapse sets in.Within this time interval, the stable modes are
damped strongly. In the course of nonlinear collapse,
however, one of the damping modes starts increasing and
does so very rapidly, so that in the neighborhood of r � 0 it
outruns the increasing mode [33]. As a result, in a small
neighborhood of r � 0 the law (1), (49) is cut off on the scale rc
[5], where

rc � d3i0Rx : �56�

HereRx is the characteristic scale of an object. Themagnitude
of initial density fluctuations di0 on large scales is rather small,
di0 ' 10ÿ3. This means that the scaling law (49) is fulfilled up
to very small scales: fromEqn (56) it follows that rc � 10ÿ9Rx.
Thus, its actual cut-off is naturally caused by the influence of
other processes, for instance, by the action of baryonic matter
or the appearance of a giant black hole [34].
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For small-scale objects the situation is essentially differ-
ent. As shown above [see Eqn (39)], the initial density
fluctuations on small scales, where their effective growth
begins, are sufficiently high: di0 � 0:3ÿ0:5 for t � teq. Then
fromEqn (56) it follows that the distribution (1), (49) is cut off
rather early, namely when

rc � �0:05ÿ0:1�Rx : �57�
As a result, the particle density in the CDM of a small-scale
NO can approximately be represented as

r �
r0 ; 0 < r < rc ;

r0

�
r

rc

�ÿa
; rc < r < Rx ;

0 ; r > Rx ;

8>><>>: �58�

where the scale rc is determined according to Eqn (57) and the
density r0 is related to the object'smassMx and the scaleRx as

r0 '
3ÿ a
4p

MxR
aÿ3
x rÿac : �59�

4.3 Influence of baryonic component
on the structure of non-compact objects
Up to now we have ignored the influence of the small
baryonic component on the structure of dark-matter in NO.
However, as they cool down, baryons tend to the bottom of
the potential well created by the dark matter and condense at
the center forming a compact baryonic object of mass Mb. It
creates an additional potential

cb � ÿ
GMb

r
:

The scale of influence of this potential, rb, depends on the
mass of a baryonic object and can readily be estimated on the
basis of the relation

cb�rb� � cd�rb� ; �60�
where cd�r� is the potential created by the non-baryonic
component with the density distribution rd�r� (58), (59). It
can be found through a solution of the Poisson equation

1

r2
d

dr

�
r2

dcd

dr

�
� 4pGrd�r� �61�

with the boundary condition cd ! 0 as r!1; it has the
form

cd �

GMx

Rx

(�
3ÿ a
6

�
r

rc

�2

� a�3ÿ a�
2�2ÿ a�

�

�
�
rc
Rx

�2ÿa
ÿ 3ÿ a
2ÿ a

)

�
�
1ÿ a

3

�
rc
Rx

�3ÿa�ÿ1
; r < rc ;

ÿGMx

r
� GMx

Rx

�
1

2ÿ a

�
r

Rx

�2ÿa

ÿ 3ÿ a
2ÿ a

� Rx

r

��
1ÿ a

3

�
rc
Rx

�3ÿa�ÿ1
; rc 4 r4Rx ;

ÿGMx

r
; Rx 4 r ;

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
a � 1:8 : �62�

From relations (60) and (62) it follows that in the case
Mb � 0:05Mx the region of appreciable influence of the
baryonic-object potential is of the order of
rb � �0:05ÿ0:1�Rx. For smaller values of Mb the region of
influence of the potential cb is even smaller.

We shall assume the time of oscillations of dark-matter
particles trapped in the potential (62) to be much smaller than
the characteristic time of baryon cooling and baryonic body
formation in the center of NO. For the objects of interest, (40)
and (41), the time of oscillations is t0 � 10 years, so this
condition is always well fulfilled. In this case, to consider the
variation of the distribution function of dark-matter particles
under the influence of baryons, one can use the adiabatic
approximation. The initial adiabatic invariant Ii is deter-
mined by the relation

Ii �
�rmax

rmin

��������������������������������
Eÿ cd�r� ÿ

m2

2r2

r
dr ; Ii � Ii�E;m� : �63�

Here E is the energy of a particle moving in the potential cd,
normalized to themassmx;m is the angular momentum of the
particle; rmin, rmax are reflection points defined as points at
which the integrand vanishes. The initial distribution func-
tion is

f � f0�Ii� � f0�E;m� : �64�

After the baryonic body formation, the adiabatic invar-
iant Ib of the particle is already described by another equation

Ib �
�rmax

rmin

����������������������������������������������
Eÿ c�r� � GMb

r
ÿ m2

2r2

r
dr ; �65�

where GMb=r is the baryonic body potential and c�r� is the
potential created by the non-baryonic matter. In view of the
fact that the adiabatic invariant is preserved in a slow process,
I � const � Ib, the relation

f�I� � f0�Ii�
���
Ii�Ib

�66�

holds. Here f0�Ii� is the initial distribution function, but given
this, the function Ib�E;m� (65) already differs from Ii�E;m�
(63). Expressions (63) ± (66) completely describe the deforma-
tion of the distribution function f�E;m� of dark-matter
particles under the influence of the baryonic body potential.
The distributions of the potential and particle density are
described here by the equations

Dc � 4pGr ;

r�r� � 2pmx

r2

�1
0

dm2

�0
c�m2=�2r2�

f�E;m�������������������������������������
Eÿ cÿm2=�2r2�p dE :

�67�

To determine the NO structure, one should solve Eqns
(67) together with Eqns (63) ± (66). We shall stress that these
equations, which determine the distribution function f�E;m�,
the potential c�r�, and the dark-matter density distribution
r�r�, are essentially nonlinear. The perturbations of the
potential c and density r by the baryonic body depend,
naturally, on the mass of this body. We shall first analyse
(Section 4.4) the case of a small-mass baryonic body
Mb=Mx ! 0, when the perturbation of the potential c
created by non-baryonic matter can be neglected to a first
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approximation under the assumption that c ' cd�r�. After
that we shall consider (Section 4.5) the influence of a baryonic
body of arbitrary mass.

4.4 Structure of non-compact objects in the halo
As was shown above, when the baryonic body mass is not
large, Mb 5M, the region of its influence is rb < rc (57).
Hence, in solving Eqns (67) one can restrict the consideration
to the region r4 rc (58). In this region, the distribution
function should naturally be chosen in the Maxwellian form

f0 � n0

�2pT�3=2
exp

�
ÿE

T

�
; T � f � 2

3
pGn0mxr

2
c : �68�

Here f is the potential well depth at the level r � rc. On
integrating equations (63) and (65), we obtain the following
relations for adiabatic invariants

Ii � p
23=2

������
2

f0

s
Eÿm

 !
; Ib � p

2

�
2GMb

�ÿE� ÿ 21=2m

�
:

�69�

After the substitution of Eqns (68) into (67), the expression
for the density has the form

r�r� � 2pmx

r2

�1
0

dm2

�0
ÿGMb=r�m2=�2r2�

n0

�2pT�3=2

� exp

�
2f1=2

0 GMb

TE
�mf1=2

0

21=2T

��
Eÿ cÿ m2

2r2

�ÿ1=2
dE :

�70�

Let us analyse relation (70) in the neighborhood of a
baryonic body, i.e., as r! 0. In this case we have E! ÿ1
and allowing for the fact that m2 4 2GMbr we find

r�r� � 8

3
������
2p
p n̂0mx

�
GMb

Tr

�3=2

: �71�

Note that although the result (71) is obtained under the
assumption (68) concerning the form of the initial distribu-
tion function, the asymptote (71) does not depend on the form
of the function but is determined only by its behavior as
E! ÿ1. It is the value of the constant n̂0 that depends on a
particular form of the distribution function. As is seen from
Eqn (71), the density distribution has a singularity when
r! 0, but this singularity is due to the fact that in the
calculations we assumed the baryonic body to be a point.
Therefore, the law (71) will actually be cut off on the baryonic
body scale rb. Proceeding from these considerations and
allowing for the fact that, as follows from relations (57) and
(58),

4

3
pn0mxr

3
c � 0:1Mx ;

we find the density of dark-matter particles trapped in the
baryonic body:

r�rb� � 32n0mx

�
Mbrc
Mxrb

�3=2

: �72�

From Eqns (72), (57), (40), and (41) it follows that an
adiabatic entrapment causes an increase of dark-matter

particle density by three to four orders of magnitude both
inside the baryonic body and in its neighborhood (71). For a
NOmass of the order of 0:5M�, the total mass of dark-matter
particles trapped in the baryonic core appears to be

Mn � 1025ÿ1026 g : �73�

4.5 Non-compact objects in the Galactic disc
As has already beenmentioned above, NO in the galactic disc
are centers of interstellar gas condensation, and owing to this
fact their baryonic core can increase substantially. Such an
increase of the baryonic core affects the general dark-matter
distribution and can even change the scale of the NO.

When the fraction of baryonicmatter becomes significant,
in the solution of Eqns (67) and calculation of the adiabatic
invariant (65), it is necessary to take into account the potential
of the dark and baryonic matter over the entire solution
space. Here we shall restrict ourselves to examination of the
coefficient of dark-matter compression Kdm which we define
according to the relation

Kdm � hriihrfi
; �74�

where hrii is the mean dark-matter density in the NO before
and hrfi is the same after the baryonic body formation. In
view of mass conservation, by analogy with Eqn (54) we
obtain the relation of Kdm with the body size ratio:

Kdm � R3
i

R3
f

: �75�

To find the body size ratio, we shall make use of conservation
of the adiabatic invariant. We shall determine the maximal
adiabatic invariant by setting E � ÿGMx=Rx in Eqn (63):

I max � I

�
E � ÿGMx

Rx

�
:

Taking into account that according to the general theory [4]
the moment m is small, we find from Eqn (63) that in the
initial state

I max
i � 0:37

������������������
5GMxRi

p
; Ri � Rx : �76�

In the presence of a baryonic body we find the final value of
the adiabatic invariant from Eqn (65)

I max
f � I

�
E � ÿGMx

Rf

�
� p

2

Mb

Mx

���������������������
GMxRi

Ri=Rf ÿ 1

s
: �77�

Equating these two invariants, we find the degree of NO
compression on the scales:

Ri

Rf
� 1� 3:6

�
Mb

Mx

�2

: �78�

From Eqns (75) and (78) one can see that the degree of NO
compression depends strongly on theMb-to-Mx ratio. So, for
Mb � 0:3Mx the mean dark-matter density increases by a
factor of 2.5 and forMb � 0:5Mx by a factor of 7. As is seen in
the sequel (see Section 6), such a compression of a NO may
have a substantial effect upon its gamma-radiation.
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5. The theory of microlensing on non-compact
objects

The possibility of rays of light being focused by a gravita-
tional field (lensing) was first reported by O Chwolson [35]
and was later considered by many authors [36, 37]. The
gravitational lensing phenomenon was first observed for the
radiation of quasars, and the lensing objects in that case were
galactic halos [38 ± 40].

An important step was made by B Paczynski who
proposed the observation of star light lensing by dark-matter
objects in the halo of our Galaxy (supposedly Jupiter type
planets) [17]. This work underlay the experimental studies
[14, 41] which led to the discovery of the microlensing effect.
We shall describe here the theory of microlensing on compact
and non-compact bodies.

5.1 Microlensing on compact bodies
Let us consider gravitational lensing in the case where the
lensing object is compact, i.e., its size is negligibly small. The
potential created by an object of massM is then written in the
form

Fs�r� � ÿGM

r
: �79�

The equation of the trajectory of a light ray in a
spherically symmetric gravitational field

ds2 � exp
�
n�r��c2 dt 2 ÿ exp

�
l�r�� dr2 ÿ r2�dy2 � sin2 y df2� ;

where n�r� and l�r� are arbitrary functions, has the form (see
Refs [42, 43])�

du

df

�2

� u2 exp�ÿl� ÿ 1

R2
exp�ÿnÿ l� � 0 ; u � rÿ1 :

�80�

HereR is the incidence parameter of the ray and the anglef is
taken in the ray plane (Fig. 3).

In the zeroth approximation in n, l the solution to
Eqn (80) is the straight line

u�0� � 1

R
cos�fÿ f0� : �81�

The first correction gives

u�1� � 1

2R

(�f� n� l

sin2�f0 ÿ f0�

ÿ l cos2�f0 ÿ f0�
sin2�f0 ÿ f0�

�
df0 � C1

)
sin�fÿ f0� ; �82�

the integral being calculated along the straight line (81). In
Newton's approximation we have

n�r� � ÿl�r� � 2F�r�
c2

: �83�

The calculation of the angle between the asymptotes yields the
total deviation of the ray

Y �
�p=2
0

�
l�r0� ÿ r 0l 0r�r0�

�
df0 ; r0�f0� � R

cosf0
: �84�

Substituting the potential (79) into Eqns (84) and (83) and
integrating, we arrive at the Schwarzschild valueY � Ys�R�:

Ys�R� � 4GM

c2R
: �85�

Thus we have found the dependence Y�R� of the angle of
ray deviation from the incidence parameter in the given
potential (79).

Let us now turn to the mutual position of an observer, a
lens, and a source of light (Fig. 4). Suppose y is the angle
between directions from the observer to the lens D and to the
source of light (a star) S, LD and LS are the distances to the
lens and to the star, respectively,LSD � LS ÿ LD. Because the
rays of light are bent, the observer will see two images I1 and
I2 instead of the point star in the ODS plane. By y1 we shall
denote the angle between the directions to the lens and to the
image. Then, from geometric considerations (see Fig. 4 and,
e.g., Ref. [44]) and allowing for the smallness of the angles y,
y1,Y, one can obtain the formula

y1 � y � LSD

LS
Y�R� ; R � y1LD �86�

which relates the angles y and y1. The sign� is taken to make
all the angles positive.

When the Schwarzschild function (85) is substituted
into Eqn (86), a dimensionless quantity appears, namely,

Y

j

R

Figure 3. Trajectory of a light beam in a spherically symmetric gravita-

tional field.

O
D

y1
y

Y

I1

S

I2

Figure 4. Geometry of a gravitational lens. (Mutual positions of an

observer O, a lens D and a source S.)
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the angle y0

y20 �
4GM

c2
LSD

LSLD
�87�

or the Einstein radius

R2
E � �LDy0�2 � 4GM

c2
LSDLD

LS
: �88�

The relation (86) itself in this case passes over to the
quadratic equation

y1�y1 � y� � y20 ; �89�

which always has two solutions y1�y�.
The Einstein radius gives the characteristic lens scale. The

lensing object is compact if its size rb is much smaller thanRE.
For planets or stars on scales of the Galactic halo this
condition is always well fulfilled.

The dependence of y�1 on the angle y is presented in Fig. 5.
It reflects the variation of angular position of images y�1 as a
function of the angle y between the directions from the
observer to the lens and to the source. As y! 0, the images
merge. As y!1, one of the images approaches the star and
the other approaches the lens. (As is seen from what follows,
the brightness of the second image will tend to zero.)

It is of importance that under the conditions of experi-
ments on microlensing the characteristic distance to a lensing
object in the Galactic halo is LD � 10 kpc. If the mass of this
object is M � 1M�, the angle between the images is
y1 � 0:00100. Such angles are too small to allow image
resolution using present technical means. But the existence
of gravitational focusing can be established from brightness
variation of the lensed star.

The brightness amplification coefficient O is equal to the
ratio of the total angular area of the images to the area of the
source. It is expressed in terms of the position of source and
images as follows

O �
X y1

y

�����dy1dy

�
y

���� : �90�

Here the sum is taken over both branches y1�y�.

With allowance for Eqn (89), we obtain

Os � y2 � 2y20

y
�����������������
y2 � 4y20

q : �91�

Let us now take into account that the picture of star
brightness amplification is non-stationary: the observer, the
lens D and the star S possess some virial velocities. In view of
this, the angle y varies with time. Since it is the relative
velocity alone that is significant, one may assume that the
observer and the star are at rest, while the lensing object is
moving at a velocity v? in the plane perpendicular to the line
of sight. Given this, the angle y between the directions to the
source S and lens D is equal to

y �
���������������������������������������������
y2min �

�
v?�tÿ tmin�

LD

�2s
;

where tmin is the instant when they aremaximally close to each
other and ymin is the angular distance between D and S
(incidence parameter) attained at this instant.

Finally, making use of Eqn (91) we obtain the time
dependence of the star brightness amplification coefficient
[15]:

As�t� � As

�
u�t�� � u2 � 2

u
�������������
u2 � 4
p ;

u�t� �
"
u2min �

�
2�tÿ tmin�

t̂

�2
#1=2

: �92�

Here u�t� � y�t�=y0, umin � ymin=y0, t̂ is the characteristic
lensing time related to v? as follows

t̂ � 2RE

v?
� 2LDy0

v?
:

The relativemotion of the lens and the source corresponds
to the motion of the points in the graph Os�x� from x! �1
to xmin and back. Therefore, As�t� is a symmetric `bell-like'
function which has a maximum value

As;max � Os�ymin� ;

and does not depend on the frequency of the light. It is the
dependence A�t� that is measured in observations.

Thus, in the case of a compact lens the shape of the curve
A�t� is completely determined by two parameters, namely, the
incidence parameter umin (or theA value in themaximum) and
the duration of the event t̂. Figure 6 presents graphs of the
dependence A�t� for different values of the parameters umin

and t̂; the instant of closest proximity tmin is assumed to be
zero.

5.2 Microlensing on non-compact objects
The theory presented above refers exclusively to compact
bodies whose scale rb is much smaller than the Einstein radius

rb 5RE :

For non-compact dark-matter objects, the inverse condition
typically holds

Rx 5RE : �93�

0 1 2 3

3

2

1

y

y1

Figure 5.Position of images y1�y� in the case of a point-like lens. Angles are

normalized to the Einstein angle y0 (87).
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Indeed, according to Eqn (23) the sizeRx of an object of mass
M � �0:1ÿ1�M� is of the order of 1014 ± 1015 cm. This
exceeds by 3 ± 10 times the Einstein radius for bodies of the
same mass which are at a characteristic distance LD � 10 kpc
typical of lensing in the halo. Hence, the theory of microlen-
sing should be extended to the case of NO with the
characteristic sizes (93). It should be emphasized that such
an extension of the microlensing theory is of interest for non-
baryonic objects only because baryonic objects of such a scale
and mass cannot exist in the Galaxy (see Section 3.5)

So, we shall consider gravitational lensing in the case
where the lens size Rx cannot be neglected. We shall assume
the density distribution for r4Rx to have the simplest form
(1), i.e., the density cut-off for small values r4 rc (58) is
insignificant as shown below in Section 5.4. To the density
distribution

r �
�3ÿ a�Mx

R3
x

�
r

Rx

�ÿa
; a � 1:8 ; r4Rx ;

0 ; r > Rx

8<: �94�

corresponds the potential

F�r� �
ÿGMx

Rx

�
3ÿ a
2ÿ a

ÿ 1

2ÿ a

�
r

Rx

�2ÿa�
; r4Rx ;

ÿGMx

r
; r > Rx :

8>><>>: �95�

Bending of the trajectory of the ray of light for the spherically
symmetric potential F�r� is described as before by formulae
(80) ± (84). For a complete deviation of the ray between the
asymptotes, instead of Eqn (85) we now obtain

Y�R� � 2GMx

c2Rx
f

�
R

Rx

�
; �96�

f�x� �

3ÿ a
2ÿ a

Z� 2
1ÿ sin Z
cos Z

� 1

2ÿ a
sin Z cos Z

ÿ a
2ÿ a

cos2ÿa Z
�Z
0

cosa f0 df0 ; x4 1 ;

2

x
; x > 1 ;

8>>>>>><>>>>>>:
Z � arccos x : �97�

For R > Rx the expression for Y coincides with
Schwarzschild's one.

The angle y1 between the direction to the lens D and to the
image is related as before to the position y of the source S
relative to the lens by formula (86),

y1 � y � LSD

LS
Y�R1� ; R1 � y1LD :

However, the quantity Y�R� is now determined not by
Eqn (85) but by expression (96). Because the function Y�R�
has a complicated form, it is more convenient to transform
the variables y, y1 to the variables x � yLD=Rx,
x1 � y1LD=Rx and to introduce instead of the Einstein angle
y0 the constant

Q � 2GMx

c2
1

R2
x

LSDLD

LS
� 1

2

�
RE

Rx

�2

: �98�

Equation (86) then takes the form

x1 � x � Q f �x1� ; �99�

where the function f�x1� is defined by formula (97).
The graph of the dependence x1�x� for various Q is

presented in Fig. 7. It is seen that as distinct from the point-
lens case, the second image vanishes for x > xcr �
�p=2�Q�3ÿ a�=�2ÿ a�. Note that the value of x1�0� may be
either greater or smaller than unity.

Let us estimate the quantityQ: if a lensed star S is located
in the Large Magellanic Cloud (LMC) �LS � 50 kpc) and the
lens parameters correspond to the values Mx � 0:5M�,
Rx � 4� 1014 cm indicated in Section 3.4, the most probable
Q value (for LD � LS=2) is Q � 0:04, i.e., Rx=RE � 3:5.

The increase of star brightness O defined by expression
(90) now depends on the parameterQ. Allowing for Eqn (99),
we obtain in our case

OQ �
X x1

x

1

1ÿQf 0�x1� : �100�

ÿ15 ÿ5 155
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b

Figure 6.Dependence of the amplitudeA�t� of increase of for various umin,

t̂ in the case of a point-like lens: (a) t � 30 days, umin is equal to (1) 0.1,

(2) 0.3, (3) 0.5; (b) umin � 0:1, t̂ is equal to (1) 30, (2) 60 days.
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The dependence OQ�x� for various Q values is presented in
Fig. 8. As in the point-lens case, this is a decreasing function
going to infinity as x! 0.

The time-dependent variation of parameter x due to the
relative motion of the lensing object is described by the
formula

x �
������������������������������
x2min �

�
v?t
Rx

�2
s

;

where xmin � yminLD=Rx, ymin as before is the incidence
parameter. With lens motion, the star brightness changes as
follows

A�t� � OQ

ÿ
x�t�� :

Figure 9 presents the graphs of the dependence A�t� (only
for t > 0) for various values of the constant Q (or Rx=RE).
The time scale t � Rx=v? corresponds to v? � 200 km sÿ1,
Rx � 4� 1014 cm. For comparison, the A�t� graphs are given
for the case of a point source with the same values of M and
LD and the same impact angles ymin.

One can see that the difference between the curves for
Q4 0:01 is not large. It is however of importance that in the
case of a non-compact body the shape of the brightness (light)
curve is determined not by two but three parameters. As such
parameters one can choose the brightness at maximum Amax,
the lensing duration t̂ � 2RE=v? andQ � �RE=Rx�2=2. As the
scale of the lensing object Rx increases, i.e., Q decreases, the
difference between the light curves created by compact and
non-compact lenses increases. Their detailed comparison is
carried out in the section to follow.

5.3 Comparison of light curves created by compact
and non-compact lenses
The exact form of the light curve of a compact object is
determined by the following parameters: the mass Mx of the
lensing body, the distance LD to this body, the relative
velocity v?, the incidence parameter ymin, and the distance
LS to a lensed star. For anNO, there is also a body scaleRx. If
all of these quantities were known, the difference between the
light curves for a compact and a non-compact body as shown
in Fig. 9 would be small, but still sufficient to be detected in
observations.

The difficulty of the problem is that we do not actually
know these parameters. The theoretical light curve is typically
chosen so as to attain the best possible agreement with
observations. Thus, to determine whether the lensing body is
compact or non-compact, we have to compare the closest
lensing curves and not those corresponding to similar values
of parameters. Let us find out how the difference between
these curves can be characterized.

The problem is formulated as follows. The light curve
Ac�t� of a compact body with a given amplitude A0 and a

0 0.4 0.8 1.2

0.4

0.8

1.2

x

x1

1

2

Figure 7. Position of images x1�x� in the case of a non-compact lens for

various values of the parameter Q: (1) Q � 0:1, (2) Q � 0:01.
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Figure 8. Dependence of the amplification coefficient O�x� for various Q:

(1) Q � 0:01, (2) Q � 0:1, (3) Q � 0:4.
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Figure 9. Light curve A�t� for various values of Q (the dashed line is a

point-like lens): (1) Q � 0:01, (2) Q � 0:02, (3) Q � 0:05. Time is in units

t � 2� 107 s (Rx � 4� 1014 cm); xmin � 0:05.
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characteristic duration t̂c is defined. In the case of a non-
compact lens, the light curve is characterized by three
parameters, namely, the amplitude An0, duration t̂n, and size
of the lensing body Rx=RE [or the parameter Q (98)].

Our task is that for a given ratioRx=RE the amplitudeAn0

and the width t̂n be so chosen that the difference between the
compact Ac�t� and non-compact Anc�t� curves should be
minimal.

To this end, we shall construct a functional

J �
��
Anc�t� ÿ Ac�t�

�2 dt

t̂c
: �101�

This is a dimensionless quantity which we shall just choose as
characteristic of the distinction between the compact and
non-compact light curves. Now varying arbitrarily the
amplitude An0 and the characteristic time t̂n of the non-
compact light curve, we shall find the minimum J for a given
Ac andQ. This minimum will describe the difference between
the closest light curves for a non-compact and a compact lens.

The corresponding closest light curves for different
values of the amplitude Ac0 are shown in Fig. 10 for
Q � 0:01. One can see that although the size Rx of the NO
is much larger than the Einstein radius Rx=RE �
�2Q�ÿ1=2 ' 7:14, the distinction between the light curves is

not large. The integral J is only 0:02ÿ0:03. It increases very
slowly with increasing amplitude.

As Q increases, the magnitude of the divergence J grows,
although for Rx=RE � 10 and even somewhere higher it still
remains insignificant and lies within the present-day experi-
mental error (see Section 6).

We point out that as can be seen from Fig. 10, the most
substantial difference is observed on the wings of the light
curves, i.e., in the region jtÿ tminj > t̂c. In order to under-
stand this phenomenon, we shall consider the asymptotics of
the light curves in this region. The condition jtÿ tminj4 t̂c is
equivalent to u�t� � y�t�=y0 4 1 or R4RE. For a point-like
(compact) lens we then obtain from Eqn (92)

Ac�t� ÿ 1 ' 2

u 4
; u�t� � R

RE
' jtÿ tminj

t̂c=2
; R4RE :

�102�
For a non-compact lens, on the wings of brightness for
R4RE (102) the region of intermediate asymptotics occurs
first of all

RE 5R5Rx : �103�
The light curve in this region can be calculated assuming

x � R

Rx
5 1 ; Q � 1

2

�
RE

Rx

�2

5 1 ;
RE

R
� 2Q

x2
5 1 :

�104�
In view of the fact that the function f�x� is limited, we find
from Eqn (99) the position of the image x�1 �
x�Qf�x� �O�Q2� which is unique in the region under
consideration.

Taking account of the asymptotics of the function f�x�, we
obtain from Eqn (100), as x! 0,

Anc�t� ÿ 1 ' 3ÿ a
2ÿ a

p
2

Q

x
�O�Qx1ÿa� �

����
Q
p
u

: �105�

Thus, in the case of a non-compact lens we have the
dependence A � uÿ1 instead of A � uÿ4 in the `transition'
region (103).This difference is responsible for the appreciably
more slowly decreasing light curve wings which are shown in
Fig. 10.

Further on, however, the relation between the compact
and non-compact light curves changes. ForR4Rx, in a non-
compact lens, as is seen from Eqns (97), (99), one image
coincides with that of the point lens and the other image is
absent. It follows from Eqn (100) that the difference of the
amplification coefficient from unity for non-compact lens is
half that for a compact lens:

Anc�t� ÿ 1 ' 4Q2

x4
� 1

u4
; u�t� � R

RE
4 1 ; x � R

Rx
4 1 :

�106�

Therefore, as t!1, the light curve corresponding to a non-
compact lens runs lower.

5.4 Influence of the baryonic core
on the lensing curve for a non-compact object
We have already considered the simplest model of density
distribution for an NO, which is characterized by a single
parameter, namely, the body radius Rx. As mentioned in
Section 4.2, for the small-scale structure this model is
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Figure 10. `Non-compact' curves 1 closest to the given `compact' curves 2;

Q � 0:01; amplitudes of `compact' curves Ac0: (a) 3, (b) 7. The time is

normalized to t̂c.
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somewhat modified, and the cut-off parameter rc (56)
appears. Furthermore, a considerable influence on the light
curve might, in principle, also be exerted by a baryonic body
located in the center of an NO. So, let us therefore consider a
model with a density distribution (58) of non-baryonic matter

r �
kRÿa1 ; r < R1 ;

krÿa ; R1 < r < Rx ;

0 ; Rx < r

8>><>>: �107�

and suppose in addition that in the center is a baryonic body
which may be thought of as point-like. The gravitational
potential F�r� will then assume the form

F�r�� ÿGM

Rx

3ÿ a
2ÿ a

� l
b

�
R1

r
ÿ 3ÿ a

2a

�
r

R1

�2

ÿ 3

2

3ÿ a
2ÿ a

�
; r < R1 ;

3ÿ a
2ÿ a

ÿ 1

2ÿ a

�
r

Rx

�2ÿa
; R1 < r < Rx ;

Rx

r
; Rx < r :

8>>>>>>>>>>>><>>>>>>>>>>>>:
HereM is the total mass of the object and l is the fraction of
baryonic mass. The ratio b � R1=Rx determining the cut-off
radius R1 is chosen so that the coefficient k in (107) remains
the same as in Eqn (94), i.e., the mass `deficit' of the non-
baryonic matter in the center is equal to the mass of the
baryonic core. Then l � �a=3�b3ÿa. Further calculations are
completely analogous to Eqns (96) ± (100) with the only
difference that here, as in the case of a point (Schwarzschild)
lens, two images are always present.

The corresponding light curves which are particularly
close to the Schwarzschild curve of a given amplitude are
represented in Fig. 11. The value of the parameter l is chosen
to be 5% and the cut-off radius corresponds to rc (57). One

can see that the light curves both with and without allowance
for the baryonic core are almost coincident. A substantial
difference from the case of a compact body is pronounced, as
before, on the wings of the light curve.

5.5 Optical depth
We have considered individual characteristics of the micro-
lensing curves. An important role is played by the statistical
characteristics, primarily the probability of observing the
microlensing effect. This probability is naturally character-
ized by the `optical depth' t.

The quantity t characterizes the probability that the light
of a given star experiences lensing at a given moment of time.
This probability is defined by the relation

t �
�LS

0

X
M

nM�l�sMl dl : �108�

Here nM�l� is the concentration of lensing bodies of massM in
space, sMl is the effectivemicrolensing cross-section, andLS is
the distance to the lensed star. It is natural to set sMl � pR2

E,
where RE is the Einstein radius (88). Then [17]

t � 4pG
c2

�LS

0

l�LS ÿ l�
LS

X
M

MnM�l� dl : �109�

This shows that the optical depth is, in fact, independent of
the mass M and is only determined by the distribution of the
total density rd�l� �

P
M MnM�l� of the dark matter con-

tained in these objects, in the space between the observer and
the lensed star.

6. Microlensing Ð results of observations
and comparison with the theory

6.1 Microlensing of objects in the halo
and the central part (bulge) of the Galaxy
The probability of observing the stellar microlensing effect
described by the `optical depth' t is very small in the real
conditions of the Galaxy. The quantity t can be readily
evaluated. Indeed, as follows from Eqn (109),

t � G rL2
S

c2
� v

2

c2
� 5� 10ÿ7 : �110�

Here r is the mean dark-matter density in a region with a
characteristic scale LS and v is the characteristic velocity of
dark-matter motion in this region. In the Galaxy, as is well-
known, the velocity is v � 200 km sÿ1, which implies the
estimate (110).

The characteristic lensing time, t̂ � RE=v, by an object of
mass �0:1ÿ1�M� located at a distance LD ' 10 kpcmakes up
a value of the order of a month or a year. Therefore, the effect
of microlensing of a star located in the Galactic halo can be
seen with a rather high probability p � 1 just once within the
time t̂=t, i.e., a time of the order of one million years. From
this it is clear that observation of stellar microlensing can
actually be carried out only by simultaneously tracing the
radiation intensity variation of not less than a million stars.
Such a possibility was realized using special modern technical
devices Ð large CCD matrices with 2048� 2048 cells. These
studies were started by the MACHO [14], EROS [41], and
OGLE [45] groups.
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Figure 11. Light curves due to a non-compact lens both with and without

baryonic core which are closest to the given Schwarzschild curve: (1) NO

with a baryonic core (the dashed line), (2) NO without a baryonic core,

(3) a compact object.
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In studies of the halo, the sources of lensing light are stars
from the Large and Small Magellanic Clouds and also from
the galaxy M31 (Andromeda). Up to the present time
microlensing could only be observed for LMC stars. For
this purpose, using a 127-cm telescope on Stromlo mountain
in Australia, the MACHO group is conducting continuous
observations of the intensity of 8.5 million stars.

Observations of the central part of the Galaxy are being
carried out in the region free of absorption by dust Ð the so-
called `Baade window' (galactic coordinates l � 2:5�,
b � ÿ3:6�). The MACHO observes 12.6 million stars and
the OGLE group observes nearly the same number.

It should be specially pointed out that this is the first
attempt to observe the intensity of such a huge number of
stars simultaneously, and the process itself must provide
invaluable material for the investigation of star variability.
However, such a large amount of data entails considerable
difficulties in revealing microlensing cases. Indeed, as is clear
from relation (110), only one star out of several million shows
a noticeable change in brightness due to microlensing. At the
same time, the number of stars that simply possess non-
stationary radiation is three orders of magnitude greater. For
this reason, the authors of the experimental studies [14, 41]
developed special methods of processing the observational
data and found criteria for identifying microlensing. An
important role among these criteria is played by the
achromatism of the gravitational lensing process. Therefore
observations are carried out simultaneously in two chromatic
ranges Ð blue (l � 4500ÿ6000 A) and red
(l � 6300ÿ7300 A). Other important criteria of selection
are connected with the requirement that the observational
data should be in agreement with the theoretical curve (92)
(see Fig. 6) that describes the intensity variation with time. It
is natural that microlensing is always assumed here to be
determined only by the action of compact invisible objects
(the name of the MACHO group just means `massive
compact halo objects').

We note that the shape of the theoretical curve of lensing
by a compact object, as we have seen above (92), is defined
uniquely by two parameters (for instance, amplitude and
duration), whereas the number of unknown quantities
determining these parameters and, accordingly, affecting the
shape of the curve is much larger. Hence, to estimate the mass
of a lensing object one has tomake certain assumptions about
the values of other parameters. So, in observations in the
halo, the most probable values v? � 200 km sÿ1 and LD � 10
kpc are usually used, which makes it possible to determine the
values of the object's mass M and the characteristic scale RE

from the results of observations.

6.2 Results of observations in the halo
Observations of microlensing on objects in the halo are
carried out mainly by the MACHO group [15, 16] (the
EROS group observed two objects in 1993 [41]). Examples
of MACHO observations are given in Fig. 12. During two
years of observations they discovered eight cases of microlen-
sing. In Fig. 12 one can see that only observations whose
results agreed sufficiently well with the theoretical curve of
lensing by a compact body (92) were selected. This agreement
is however not sufficiently perfect to state that it is compact
objects that are revealed in the observations (see Section 6.3).

The characteristic lensing time t̂ for observed objects
differs a little and lies between 34 and 145 days. This
corresponds to a fairly large mass Mx of objects. The masses

of the objects observed almost reach the mass of the SunM�.
The number of microlensing events is also very large. For
example, as calculations show, if microlensing took place only
on the known invisible star component of the Galaxy, a
substantially (over an order of magnitude) smaller amount of
events would occur. The same refers to LMC stars. Thus,
observational data show quite definitely that microlensing is
caused by objects belonging to the halo.

The characteristic optical depth t, determined on the basis
of observational data, appears to be equal to

t � ÿ2:9�1:4ÿ0:9
�� 10ÿ7 : �111�

The statistical processing of the results of observations is
presented in Fig. 13. HereMx is themass of lensed objects and
f is their fraction in the halo as compared to the total dark-
matter mass determined from the rotation curve. One can see
that the mean mass of observed objects is rather large and,
which is evenmore important, theymake upmore than half of
the total dark matter in the halo.

It is particularly noteworthy that it takes a very long time
to single out large-scale objects from observational data. It is
therefore not surprising that it is not only the number but also
the mean mass of the objects revealed by the MACHO group
that rises gradually with increasing observations (compare
[15] and [16]). It is not excluded that this process will go
longer. If one assumes, in line with the authors of the
experimental papers, that the objects observed in microlen-
sing are ordinary stars (brown and white dwarfs), one cannot
but notice that the results of observations lead to increasing
contradictions with the conventional opinion, based on the
data on the nucleosynthesis and the origin of galaxies (see
Introduction and [46]), that the dark matter is of non-
baryonic origin. Moreover, it becomes difficult to find
agreement between the interpretation of microlensing data
from observation of brown and white dwarf stars in the halo
and the results of direct optical observations on the Hubble
telescope [18].

It should be noted that observational data do not satisfy
the criteria of exact agreement with the theory ofmicrolensing
on compact objects. The error w2 describing the deviation of
observational data from the theoretical curve exceeds 3 ± 5
and sometimes even 10 ± 20 times the statistically admissible
quantity s. The authors of Ref. [16] explain this divergence by
various types of errors in observational data, by microlensing
of giant stars, and so on. But it is undoubted that there is no
experimental proof of the fact that the objects in the halo,
observed in microlensing, are compact bodies.

In this connection it is of particular interest to clarify the
results of comparison of observational data with the theory of
microlensing on non-compact (non-baryonic) objects.

6.3 Comparison of the data of observations in the halo
with the theory of microlensing on non-compact objects
It was shown by the analysis presented in Section 5.3 that for
not very large sizes Rx of a non-compact body,

Rx

RE
4 10 ; �112�

the microlensing curves look outwardly like the curves for
compact bodies. The most thoroughly investigated event was
reported in detail by theMACHO group in Ref. [47] (Fig. 14).
We used these data, which are available to us, to compare
observational results with the theory [13, 19, 48].
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Figure 12. Examples of microlensing curves according to MACHO observations. For each event, the data are given in two colors (red and blue). The

points stand for the results of observations, the curve represents the theoretical interpretation.
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The comparison is made using the w2 criterion

w2 �
X
i

�
A�ti� ÿ Aobs; i

�2
s2obs; i

: �113�

Here ti is the instant of time when an observation took place,
Aobs; i and sobs; i are an observed amplitude and an experi-
mental error, and A�t� is the theoretical curve. The latter
depends on several parameters. In the case of a compact body
these parameters are the position of the maximum of tmin, the
amplitude at the maximum A0 and the characteristic time t̂
(see Section 5.1). Also of great importance is a sufficiently
exact determination of a constant level of star brightness long
before or long after the lensing because it is to this level that
the observational data are normalized.

In the case of a NO there is at least one more parameter
characterizing the size of the body Rx; it is natural to use it in
the dimensionless form Rx=RE or Q (98).

The parameters are so chosen that the functional w2

reaches its minimum, and the bulk of the observational data
is used. InRefs [13, 48], the following values of the parameters
are given:

(1) for a compact body:

t0 � 433:604 ; A0 � 7:51 ; t̂ � 35:5 ; w2min � 309 ; �114�

(2) for a non-compact body:

t0 � 433:73 ; A0 � 7:72 ; t̂ � 35:3 ; w2min � 304 :

�115�

Note that in the latter case the minimum of w2 for Q � 0:03,
i.e., Rx=RE � 4:22, is quite clearly pronounced. The data of
253 observational points ti (in blue) were employed in the
calculation. Hence, the error is s � �������

2N
p � 23, and therefore

a value w2min within the limits 2404w2min 4 286, i.e., within the
limits of 1s, would signify a coincidence between the
theoretical curve and observations. The divergence, as seen
from the values of the parameters (114) and (115), although
existent, is not large: for a compact body it is 1:91s and for a
non-compact one Ð 1:78s. Obviously, on the basis of these
data it is impossible to make a definite statement of whether
the observed object is compact or non-compact, although
there is some evidence in favor of a non-compact body. One
should stress once again the particularly important role of
determining of a constant level of star brightness Î Ð
although we used for this purpose the data of nearly two
years of observations (with an effective lensing duration of
t̂ � 35 days), the error in Î measurements remained large
enough to affect the determination of the quantity w2min.

Comparison of the theoretical curves for the values
obtained for the parameters (114), (115) with observational
data is presented in Fig. 15. Their generally good agreement is
obvious. The substantial difference of curves for non-
compact and compact objects that occurs on the wings (see
Fig. 15) lies within experimental error in our case. Themass of
the lensing object evaluated inRef. [13, 48] in this case is equal
to Mx � 0:05M�. For the parameters (114) and (115) it then
follows that its size is

Rx � 4:22RE � 1:3� 1014 cm : �116�

This value is in agreement with the theoretical estimates (41).
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The comparison thus demonstrated that the data con-
sidered do not make it possible to state that an object
observed in the halo is non-compact and, therefore, non-
baryonic. At the same time there are no grounds to think of it
as a compact baryonic body. This question needs further
investigation.

6.4 Results of observations in the central region
of the Galaxy and a comparison with theory
Observations in the central region of the Galaxy reveal a
much greater possibility of microlensing: over one year of
measurements, the MACHO group observed 45 events [49]
and nearly the same number was reported by the OGLE
group [50]. Figure 16 gives examples of the results of
observations. An important peculiarity of microlensing in
the bulge is that it was realized for both ordinary stars and the
subgroup of giant stars (about 1.3 million). The distances to
these stars and their luminosities are well known. This
allowed a more precise estimate of the optical depth t which
proved to be fairly large:

t � ÿ3:9�1:8ÿ1:2
�� 10ÿ6 ;

which is a much larger quantity than that given by the
calculations within standard theoretical models of star
distribution in the bulge. One may thus hope that the use of
microlensing will provide an insight into the structure of the
central part of the Galaxy.

In the microlensing of giant stars occur deviations of the
light curve from the curve of ordinary `point-star' lensing
(Section 6.1). These deviations were revealed in recent
observational data [51].

Note that in the central part of the Galaxy, the mass of
the baryonic component in the center of an NO may be
substantially higher than that in the halo (see Section 4.5).

Microlensing realized in the central part of the Galaxy by
invisible stars (i.e., baryonic objects) is, of course, much more
probable than in the halo. However, in this region there may
also exist non-compact baryonic objects with lifetimes, as
shown in Section 3.5, much greater than the lifetime of the
Universe (46). That is why it is of great interest to compare
observational datawith themicrolensing theory onNO in this
region, too. Such a comparison was performed in the paper
[52] where the microlensing data obtained by the OGLE
group were analysed. Out of the six curves examined, in
three cases the microlensing data appeared to be considerably
closer to the theory of a compact body. In one of the cases
presented in Fig. 17, the picture however is the opposite: the
microlensing theory for NO provides a much better descrip-
tion of the observational data. For a NO, the error
D � w2min ÿN (where N is the number of degrees of freedom)
is

D � 2:1s ; s �
�������
2N
p

; �117�

whereas for a compact object this value is

D � 6:2s :

So we see that comparison of the theory with observa-
tional data in the central part of the Galaxy also gives
indications of the possible existence of NO.

7. Neutralino stars

The properties of NO considered up-to now are independent
of the nature of dark-matter particles. It is presently unclear
what particles constitute dark matter, there existing various
hypothetical candidates: neutralinos, heavy neutrinos,
axions, and strings. Neutralinos and heavy neutrinos are the
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Figure 16. Examples of the results of observations carried out by the MACHO group in the central region of the Galaxy [49].
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Majorana particles, and therefore the crucial point of
interaction between these particles is annihilation. If NO
consist of such particles, they should dissipate partially
owing to annihilation. Such objects will be called Neutralino
Stars (NeS) [12] and the constituent particles Ð `neutralinos'.
We shall stress that the word `neutralino' is used here for all
CDM particles annihilating in collisions.

Neutralino annihilation leads to intense gamma-quantum
emission, baryonic body heating, etc. It should be emphasized
that the energy released in these processes was gained inCDM
in the course of dark-matter particle decoupling. The
possibility of discovering these particles by their annihilation
has been discussed previously (see Refs [53, 34]). In these
papers, however, the density distribution of CDM particles
was always assumed to be either smooth or gradually
increasing towards the center of the Galaxy. The possibility
of the existence of NeS suggests quite a new situation
connected with an essentially non-uniform density distribu-
tion of neutralinos in the halo and in the Galaxy, and their
strong compression in NeS would, therefore, cause a
substantial strengthening of the annihilation processes. On

the one hand, this is promising for what concerns observation
of non-compact dark-matter objects (NeS in the given case)
and on the other hand, thismay serve as a source of important
information on CDM particles [54].

7.1 Extragalactic diffusive gamma-radiation
Let us consider gamma-ray fluxes due to neutralino annihila-
tion in NeS. A diffusive gamma-ray flux Ig is determined by
two sources: extragalactic gamma-radiation I1g coming from
NeS and a radiation flux I2g from NeS located in the halo of
our Galaxy.

Ig � I1g � I2g : �118�

Extragalactic radiation is determined by complete energy loss
in the Universe due to annihilation in NeS:

I1g � c

4p
���
3
p t0 _ehag �cmÿ2 sÿ1 srÿ1� : �119�

Here I1g is the number of gamma-quanta passing through
1 cm2 per second per steradian, c=

���
3
p

is the photon velocity
averaged over angles, _eh are the mean annihilation energy
losses per second in 1 cm3, ag is the coefficient of energy
conversion into gamma-quanta, and t0 is the lifetime of the
Universe before the red shift z � 1 (a cut-off for z � 1 is due to
a red shift for a sufficiently rapid fall of the gamma-radiation
spectrum with increasing energy). The energy loss is specified
by the relation

_eh � c2rcOft
ÿ1 ; �120�

where rc is critical density in the Universe,

rc �
3H 2

8pG
; �121�

H is the Hubble constant,O is the ratio of the mean density of
matter to the critical density, f is the fraction of darkmatter in
theUniverse contained inNeS, and t is the neutralino lifetime
in an NeS:

t � Nx

j _Nxj
: �122�

Here Nx is the total number of neutralinos in an NeS,

Nx �Mx

mx
;

Mx is the NeS mass, mx is the neutralino mass, _Nx is the
neutralino annihilation rate,

_Nx � ÿ4phsvi
�
n2x�r�r2 dr ; �123�

nx�r� is the neutralino density in an NeS

nx�r� � r
mx

; �124�

and hsvi is the averaged product of annihilation cross-section
s with particle velocity v. From Eqns (123), (124) and (58) it
follows that

j _Nxj � �3ÿ a�2
4p�2aÿ 3�

�
Mx

mx
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Figure 17.Processed data ofOGLE's observations: the `non-compact' case

[52]. Theoretical curves: (a) a point lens, (b) a non-compact lens.
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and

t � 4p�2aÿ 3�
�3ÿ a�2

mx

Mx

R3
x

hsvi
��

Rx

rc

�2aÿ3
ÿ 1

�ÿ1
: �126�

For the density r�r� we have used the relations (58) and (59).
Proceeding from Eqns (119) ± (122) we find the flux of
extragalactic gamma-radiation:

I1g �
���
3
p

32p2
ag fOc3H2t0

Gt
: �127�

7.2 Diffusive gamma-radiation from the galactic halo
A detected gamma-ray flux from aNeS, which is generated in
our Galaxy, depends on the direction of observation:

I h2g�y;f� �
1

4p
_Ng

�Rh

0

n�r� dr : �128�

Here _Ng is the number of gamma-photons emitted per second
by one NeS and n�r� is the density of NeS in the halo and the
Galaxy. According to Eqn (43), the NeS density in the halo is

n�r� � 3ÿ a
4p

Ns

R3
h

�jrÿ r�j
Rh

�ÿa
; a � 1:8 ; �129�

where r� is the coordinate of the Sun and Ns is the total
number of NeS in the halo (42):

Ns � fh
Mdh

Mx
; �130�

Mdh is the total dark-matter mass in the halo, Rh is the halo
size, and fh is the fraction of the halo's dark matter contained
in NeS.

Choosing the coordinate system along the vector r� we
obtain that the flux I2g does not depend on the angle f. The
dependence on the angle y � arccos�rr�=rr�� is described by
the integral

J �
�Rh

0

R a
h �r2 � r2� ÿ 2rr� cos y�ÿa dr � R a

h

r aÿ1�
F�y� ; �131�

F�y� �
�1
0

�x2 ÿ 2x cos y� 1�ÿa dx : �132�

In integral (132) it was taken into account that Rh=r�4 1. A
simple approximation for this integral can be obtained if we
assume a � 2:

F�y� � pÿ y
sin y

: �133�

Numerical integration of Eqn (132) shows that the approx-
imate expression (133) coincides with (132) to within several
percent.

Allowing for

_Ng � agmxc
2j _Nxj ; �134�

we obtain from Eqns (125) ± (132)

I h
2g � I 02gF�y� ; �135�

where I 02g is the flux I
h
2g in the anticenter direction y � p,

I 02g �
3ÿ a
16p2

ag f
Mdhc

2

R2
ht

�
Rh

r�

�aÿ1
: �136�

Of interest is the relation pg between the galactic I2g and
extragalactic I1g diffuse fluxes. From Eqns (127) and (136) it
follows that

pg �
I 02g
I1g
�

���
3
p �3ÿ a�

4p

�
fh
f

�
Mdh

OrcR
2
hct0

�
Rh

r�

�aÿ1
: �137�

7.3 Diffusive gamma-radiation of the Galaxy
NO, as was mentioned above, are centers of interstellar gas
condensation, and therefore the mass of their baryonic core
Mb may increase substantially. As shown in Section 4.5,
owing to the gravitational effect of the baryonic core, a
neutralino star undergoes compression (78) and the neutra-
lino density increases (74), (75).

This leads to an increase of gamma-radiation. Indeed, as
follows from (123), the gamma-radiation of a NeS is
proportional to the neutralino density squared, and there-
fore allowing for expressions (75) and (78), for the coefficient
of compression we obtain

IGNeS � pIhNeS ; p � K2dm �
�
1� 3:6

�
Mb

Mx

�2�6
; �138�

where IGNeS is the neutralino star radiation flux in the Galaxy,
I hNeS is the NeS radiation flux in the halo, and Mb is the
baryonic core mass. One can thus see that the gamma-
radiation of NeS in the Galaxy may increase several times or
even by an order of magnitude owing to the presence of
baryonic bodies of mass Mb 5 0:3Mx. This also causes a
notable increase of diffusive radiation IG2g in the Galaxy, the
diffusive gamma-radiation IG2g being specified, by analogy
with (128), by the relation

IG2g�y;f� �
1

4p

�
G

nG�r�
jrÿ r�j2

dV : �139�

Here nG�r� is the distribution of galactic NeS and the
integration in Eqn (139) is carried out over the galactic
volume G.

7.4 Discrete sources of gamma-radiation
NeS may not only contribute to diffusive radiation, but may
also be a discrete source of gamma-radiation. Let us
determine the intensity of such a source. The formulae (134)
and (125) yield the total number of photons emitted per
second by a single NeS. From Eqn (134) it follows that the
intensity of gamma-radiation of a single NeS at a distance rx
from the source is

Ig � 1

4p
agmxc

2j _Nxjrÿ2x : �140�

Since according to Eqn (43) the density of NeS in the vicinity
of the Sun is

ns � 3ÿ a
4p

Ns

R3
h

�
Rh

r�

�a

; �141�

with probability of the order of unity one can observe several
NeS as sources of gamma-radiation at a characteristic
distance

rx ' r0 �
�

3

4pns

�1=3

�142�
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with intensities

Igc � �1ÿ a=3�2=3
4p

ag f
2=3
h c2

M
2=3
dh M

1=3
x

tR2
h

�
Rh

r�

�2a=3

p : �143�

Here p is the parameter of NeS radiation amplification at the
expense of a massive baryonic core (138). The quantity Igc
thus gives the characteristic fluxes from the nearest NeS that
may, in principle, be discovered in observations.

7.5 Galaxies as distributed sources of gamma-radiation
When calculating the intensity of gamma-radiation from the
nearest galaxy M31 (Andromeda), one can use Eqns (128) ±
(129) replacing r� by r�a, which is the coordinate of the Sun in
the reference frame fixed to the center of Andromeda.
Furthermore, when integrating over dr one should remem-
ber that the NeS density in Andromeda is described by the
relation

na�r� � 3ÿ a
4p

Ns

R3
ha

�jrÿ r�aj
Rha

�ÿa
Y
�
1ÿ jrÿ r�aj

Rha

�
: �144�

HereRha is the size of the dark-matter halo,Y is theHeaviside
function. The presence of theY-function changes the limits of
the integral (128). Taking into account that the size of
Andromeda Rha is smaller than r�a, from Eqns (128) and
(144) we obtain

IAg �
2�3ÿ a�3
�4p�3�2aÿ 3�

ag fc2MA
dhMxr

1ÿa
�a

mxR
3ÿa
ha

hsvi
R3

x

�
��

Rx

rc

�2aÿ3
ÿ 1

�
K�y� ;

K�y� � 1

j sin yjaÿ1 arctan

���������������������������
R2

ha

r2�a sin
2 y
ÿ 1

s
; �145�

where y is the angle measured from the direction to the center
of Andromeda. From Eqns (145) it follows that the gamma-
radiation from Andromeda is distributed over the character-
istic angles y � Rha=r�a � 20�. Integrating expression (145)
over the angles f and y, we obtain the total gamma-ray flux
IA from the halo of M31:

IA � 1

16p2
ag f

MA
dhMxc

2

mxr
2�a

hsvi
R3

x

��
Rx

rc

�2aÿ3
ÿ 1

�
: �146�

The estimates show [54] that the galactic NeS do not make an
appreciable contribution to the total radiation from Andro-
meda (146).

A similar estimate of gamma radiation flux can also be
obtained for the LMC. The character of rotation curves in the
case of the LMC indicates that it has lost the greater part of
dark-matter halo owing to the interaction with our Galaxy.
Hence, as an estimate one may assume the LMC dark-matter
mass to be of the same order of magnitude as the baryonic
mass:

MLMC
d 4MLMC

b :

Under these conditions, the distribution (129), (144) does not
depend on the dark matter of the LMC. Thus, the LMCmust
be observed as a distributed source of gamma-radiation and
must be defined by relation (145) replacing r�a by the
corresponding LMC parameters.

The gamma-radiation of other nearby galaxies is
described by relations (145), (146) used in the case of
Andromeda. Remote galaxies are point sources, and their
radiation is given by formula (146).

7.6 Comparison of the theory of gamma-radiation from
neutralino stars with observations
7.6.1 Diffusive gamma-radiation. When comparing theory
with observations, it is natural to assume that NeS are just
NO that are observed in microlensing. Hence, the following
parameters will be used (see Sections 6.2, 2.4):

Mx � 0:5M� ; Rx � 4� 1014 cm ;

mx � 10 GeV ; H � 70 km sÿ1 Mpcÿ1 : �147�
The process of neutralino annihilation can be described by a
simple expression [19]

hsvi � hsvi0 �
rg
Rx
�
�

mx

10 GeV

�2

;

hsvi0 � �10ÿ26ÿ10ÿ27� cm3 sÿ1 ; �148�
where rg � 2GMxc

ÿ2 is the gravitational radius of a NeS.
Proceeding from relations (127), (126), and (147), we shall

define the diffusive extragalactic radiation [54]:

I1g � 1:4� 10ÿ4agO
�

f

0:5

��
t0

2� 1017 s

��
mx

10GeV

�
�
�

rc
10ÿ29 g cmÿ3

��
4� 1014 cm

Rx

�4

�
�

Mx

1033 g

�2�hsvi0
10ÿ27

�
photons

cm2 s sr
: �149�

As to the diffusive gamma-radiation from the halo of our
Galaxy, we shall note that it depends on the total dark-matter
massMdh and the halo size Rh. In calculations, we assume as
usual [6],

Mdh � 2� 1012M� ; Rh � 200 kpc ; r� � 8:5 kpc :

�150�

For the ratio of components we obtain

pg �
I 02g
I1g
� 0:36

O

�
fh
f

��
Mdh

2� 1012M�

��
200 kpc

Rh

�2ÿa

�
�
10ÿ29

rc

��
2� 1017 s

t0

�
: �151�

For the minimum diffuse flux from the halo we have

I 02g � 6:1� 10ÿ5ag

�
fh
0:5

��
Mdh

2� 1012M�

��
200 kpc

Rh

�2ÿa

�
�

mx

10GeV

��
4� 1014 cm

Rx

�4

�
�

Mx

1033 g

�2�hsvi0
10ÿ27

�
photons

cm2 s sr
: �152�

Since in the direction perpendicular to the galactic plane Ð
the direction of the pole Ð the diffuse flux from the Galaxy is
certainly small, the gamma-background Ibg, i.e., the mini-
mum flux observed in the vicinity of the Sun, is specified by
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the expression

Ibg � I1g � p
2
I 02g � I1g

�
1� p

2
pg

�
: �153�

Here the factor p=2 allows for the difference between the
gamma-radiation of the halo in the directions towards the
pole and towards the anticenter (133). The total flux of
diffusive gamma-radiation in each direction y;f is

Ig � I1g � I 02gFy � IG2g�y;f� ; �154�

where the functionF�y� is defined by formulae (132) and (133)
and the flux IG2g by relation (139).

Let us now compare the results of the theory with
observations. For neutralino annihilation it is natural to
consider the gamma-ray fluxes due to p0-meson decay [55],
i.e., fluxes with energiesE > 100MeV. For these energies, the
observed gamma-background is, according to Refs [56, 57],

Ibg � 1:5� 10ÿ5
photons

cm2 s sr
: �155�

This value agrees with the theory (153), (149), (152) provided
that

q � ag

�
f

0:5

�
O
�

mx

10GeV

��
4� 1014 cm

Rx

�4

�
�

Mx

1033 g

�2�hsvi0
10ÿ27

��
t0

2� 1017 s

�
� 0:1 : �156�

Here the coefficient ag describes the number of photons with
energy E > 100 MeV generated by the annihilation of 1 GeV
of neutralino energy. For the same parameters q � 0:1 and
pg � 0:25, the latitudinal and longitudinal dependences of the
total flux Ig (154) are presented in Figs 18 and 19. One can see
that the theory is in agreement with observations.

It is of importance to emphasize that formula (148) for
hsvi is obtained under the assumption that neutralino
annihilation has a p-wave character [58, 59]. Usually (see
Ref. [53]), neutralinos with an s-wave annihilation channel
are considered. Such a process leads in our case to much
greater (two-three orders of magnitude) hsvi values. Under
these conditions, the gamma-ray flux appears to be exceed-
ingly large. For this reason, such particles cannot be treated as
candidates for NeS [19, 54, 55].

So, we see that comparison of the theory with observa-
tions of diffusive gamma-radiation gives an appreciable
limitation on the type of neutralinos in NeS: the p-wave
process must dominate in the annihilation cross-section.
Particles possessing such properties, namely, light photons,
have recently been analysed in papers [58, 59]. If the dark
matter consists of this type of particle, the NeS theory is in
agreement with the diffusive-flux observations.

We shall emphasize that our brief comparison with
observations of both galactic and metagalactic components
of diffusive gamma-radiation in no way contradicts tradi-
tional explanations of the generation of this emission by
cosmic rays [57] and active galactic nuclei [60, 61]. The
estimates presented here only allowed us to impose a
restriction (156) on the properties of annihilating particles
and demonstrate a qualitative agreement between the model
proposed and the data of observations. If it turns out that
neutralino stars do exist, the question of the relative
contribution of various radiation generation mechanisms
will undoubtedly require a thorough quantitative analysis
which is beyond the scope of the present paper.

7.6.2 Discrete sources of gamma-radiation.Discrete sources of
gamma-radiation with energies E5 100 MeV are partially
identified with galactic nuclei, pulsars, and other active
objects. There exist, however, a large number of unidentified
sources. They were first discovered with the satellite COS B
[62]. These sources are now investigated most intensively by
the EGRET telescope of the COMPTON observatory.

A new extended version of the EGRET catalogue contain-
ing 95 unidentified sources has recently been published [63].
The observed sources are divided into three groups according

ÿ20:00 0.00 20.00 y

20.00

16.00

12.00

8.00

4.00

0.00

Ig

Figure 18. Latitudinal dependence Ig�y� for pg � 0:25, q � 0:1. The solid
curve is the theory (154). The data of observations are borrowed from

Ref. [57].

0.00 100.00 200.00 300.00 f

5.00
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4.50
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2.50
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Figure 19. Longitudinal dependence Ig�f� for pg � 0:25, q � 0:1.
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to their morphology: em Ð extensive or multiple sources, C
Ð doubtful and extended sources, and P Ð definite point
sources within the scope of the EGRET diagram (1�).

Naturally, it is only the last group that may be treated as
possible candidates for sources of observed NeS radiation. In
the extended version of EGRET catalogue, this group now
amounts to 40 sources [64]. The position of P-sources in the
sky in the galactic coordinates l and b is indicated in Fig. 20.
As can be seen from the figure, their distribution across the
sky is sufficiently uniform and small asymmetries may be
associated with the non-equilibrium distribution of the
background radiation and the time of observation (see Fig. 1
in Ref. [63]).

Figure 21 presents a logNÿ logS diagram for these
sources. It also well confirms the uniform and isotropic

distribution of sources: all deviations from the ÿ3=2 law lie
within experimental error. The isotropy and the
logNÿ logS curve are in full agreement with the fact that
the P-sources of gamma-radiation (or the greater part of
them) are a direct observation of NeS. By the logNÿ logS
curve one can determine the intensity of the sources in the
vicinity of the Sun at a characteristic distance (142). This
intensity is

I0 � 5� 10ÿ7
photons

cm2 s
: �157�

Allowing for the value of the parameter agmxhsvi0 from
Eqn (156), one can find the value of the same flux I0 predicted
by the theory from formula (143):

I0 � 5� 10ÿ7

O

�
f

0:5

�ÿ1=3�
2� 1017 s

t0

��
Mx

1033 g

�1=3

�
�

Mdh

2� 1012M�

�2=3�
200 kpc

Rh

�0:8�
p

50

�
photons

cm2 s
: �158�

This implies that the flux predicted by the theory agrees with
the observed value (157) under the assumption that p � 50,
i.e., that the galactic NeS on average have a significant
baryonic core (138) of mass Mb 5 0:3Mx. It should be
stressed that the expression for the discrete flux (158) also
agrees with the observed diffuse flux (155) because in its
derivation we used relation (156).

Also worthy of attention is another assumption
according to which unidentified P-sources are active
galactic nuclei. Testifying in favor of this hypothesis are
the observed gamma-radiation spectra [61], as well as a
possible flux instability. However, the identified sources
of high-energy gamma-radiation have always been identi-
fied with blasar type active galactic nuclei that show
powerful radio emission. In our case there is no such
emission, and therefore one can only speak of a new type
of object.

�180 ÿ180

ÿ90

�90

Figure 20. Position of P-sources in the sky in galactic coordinates l; b according to EGRET [64].

1 10 100
S

N

100

10

1

Figure 21. logNÿ logS diagram for P-sources according to EGRET [64].
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7.6.3 Distributed gamma-radiation from galaxy M31. In
determining the gamma-radiation from the Andromeda
nebula we shall employ the following parameters

MA
dh � 3� 1012M� ; Rha � 250 kpc ; r�a � 600 kpc :

Then, according to Eqn (145), the flux from the Andromeda
nebula is

IAg � 1:1� 10ÿ5K�y�ag
�

f

0:5

��
MA

dh

3� 1012M�

�

�
�

Mx

1033 g

�2�
4� 1014 cm

Rx

�4�
250 kpc

Rha

�2

�
�

mx

10GeV

��hsvi0
10ÿ27

�
photons

cm2 s sr
;

K�y� � 1

j sin yjaÿ1 arctan

������������������������������
0:416

sin y

�2

ÿ 1

s
_

This means that EGRET (with its resolving ability of 1�) can
receive a flux Ig from the center of Andromeda of the order of

IA0g � 1:3� 10ÿ8
photons

cm2 s
:

Here we have again employed relation (156). As follows from
Eqn (145), whenmoving from the galactic center, the gamma-
ray flux in the halo (y > 1�) decreases

IAg �y� � IA0g �
�
1�

y�

�0:8

and vanishes completely at y � 20�. According to Eqns (146)
and (156), the total integral flux from the halo of Andromeda
is equal to

IAg � 2� 10ÿ7
photons

s
:

Such a flux might, in principle, be recorded by EGRET.
However, it is created by an extensive source with an angular
scale of the order of 20�. The background radiation is much
higher on this scale, and thus the question of the possibility of
signal detection remains open.

7.7 Non-compact objects as sources of gamma-ray bursts
One of the most intriguing astrophysical problems of the last
decades is the problem of gamma-ray bursts. In spite of the
considerable joint efforts of observers and theoreticians,
nothing is known today of how gamma-ray bursts are
generated and even where they come from. Two basic models
Ð the cosmological and the giant halo Ð are now under
discussion [65]. According to the cosmological model, the
sources of gamma-ray bursts are at cosmological distances
from one another; the giant halo model suggests that the
sources are located in the halo of the Galaxy.

The model of a giant dark-matter halo (GDMH) was
proposed inRef. [66]. This model considers relic neutron stars
as sources of gamma-ray bursts. These stars must have the
same density distribution as the dark matter in the Galactic
halo, and this fact gave the name to the model. According to
the parameter values (150), the size of the halo is about
Rh � 200 kpc. This model accounts for the basic statistical
properties of gamma-ray bursts, namely, their spherical

symmetry and a substantial condensation towards the
center, which can be expressed in the form of a logNÿ logS
curve [67]. Furthermore, the GDMHmodel well describes the
weak mean anisotropy in the distribution of gamma-ray
bursts [68] and the local anisotropy [69] observed by the
BATSE group at the COMPTON observatory [70] within the
first year of measurements. According to this model, the
characteristic energy released by a gamma-ray source in one
burst is Eg � 1041 erg.

The weak point of this model is the assumption that
sources of gamma-ray bursts are neutron stars. The point is
that the analysis of primary metallicity in the Galaxy suggests
the limitationN4 107 on the total number of such stars. This
means that each relic neutron star must yield 105ÿ106
gamma-ray bursts because the total number during the
lifetime of the Universe must be 3� 1012 following from the
observed frequency of bursts. Such a large number of gamma-
ray bursts produced by a single neutron star is extremely
difficult to explain both energetically and from the viewpoint
of the mechanism of the process. Similar difficulties are
encountered by models that regard high-speed neutron stars
as candidates for sources of gamma-ray bursts [71]. These
stars gain high speeds from the non-symmetric explosion of
supernovae and fly out of the Galaxy. The number of such
stars is only of the order of 107 and the same difficulties occur
because a multiple repetition of bursts is required. For the
model of neutron stars as sources of gamma-ray bursts these
difficulties have been discussed in many papers [71, 72].

There are no such difficulties when NO are thought of as
possible sources of gamma-ray bursts in the GDMH model
[73]. In the first place, the NO distribution coincides with the
dark-matter distribution. This leads to the same agreement
with the principal observed statistical properties of gamma-
ray bursts as in the GDMH model. Moreover, the total
number of NO in the galactic halo is �� 1012ÿ1013� which
approximately corresponds to the expected number of
gamma-ray bursts, and thus burst repetition is not required.
As a concrete mechanism of gamma-ray bursts, we consider
in Ref. [73] the process which can be defined as an explosion
of the central baryonic body of a NO.

We shall point out the main parameters of the model [73]
and briefly describe the main processes that may lead to an
`explosion'. As shown above (73), under ordinary stationary
conditions, the mass of the dark matter trapped in a baryonic
body,Mn, makes up

Mn � 1025ÿ1026 g :
To generate a gamma-ray burst, annihilation of only a
fraction of a percent of this mass will suffice. However, the
annihilation cross-section (148) is small, so generally the
annihilation process proceeds smoothly. The characteristic
neutralino annihilation time appears to be of the order of the
lifetime t0 of the Universe.

The energy released in smooth annihilation heats the
central region of the baryonic body. Its surface temperature
Ts is determined by the balance between the energy released
and the radiation and is Ts � 500ÿ1000 K. Thus, the
baryonic body is heated and may serve as an IR radiation
source �l � �3ÿ8� mm� with intensity P � 1028ÿ1029 erg sÿ1.

The total gravitational energy of a baryonic body is equal
to

E � 3� 1045
�

Mb

5� 1031 g

�2

erg :
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In the case that a baryonic body loses stability, which leads to
its `explosion', this energy (or even a fraction) is absolutely
sufficient to produce a gamma-ray burst. In Ref. [73] we
propose three basic mechanisms that may cause an `explo-
sion'.

1. Superheating of the central part of a baryonic body. The
stationary state of a baryonic body considered above suggests
a balance in the entire body that provides the necessary heat
flow towards the surface. However, with a sufficiently large
quantity of neutralinos,Mn 5 1026 g, a great superheating of
the central part (especially for large neutralino masses mx) is
possible which may ultimately cause a violation of the
pressure balance and the destruction of the baryonic body.

2. Thermonuclear heating. Neutralino annihilation inside
a star induces the generation of high-energy protons and
gamma-photons. When interacting with baryons, these
energetic particles produce D�2 and other light elements. As
a result, the number of D2 and other particles continuously
increases in the center of the baryonic body. According to
Ref. [73], a great number could be accumulated within the
lifetime of the Universe:

ND2
� gD2

Qn0

mxc2
t0 ;

ND2
� 1:6� 1018gD2

�
Mn

1025 g

�2�
106 K

T �

�ÿ1=2
�
�

mx

10 GeV

�ÿ1=2� r0
1 g cmÿ3

�2� hsvi0
3� 10ÿ27

�
cmÿ3 :

Here gD2
is the coefficient of transformation of 1GeV protons

into D2 ions. Such a large amount of D2 at a temperature
Tc � 106 K in the centermay lead to a thermonuclear reaction
accompanied by a rapid heating and an explosion of the star.

3. Self-entrapment of neutralinos. The neutralino density
r0 in the central part of the body is normally small compared
to the baryon density rb. This condition can be violated if the
neutralinos start concentrating in the central part of the core

rn 4 3� 108
�

Mn

1026 g

�
cm : �159�

This process becomes possible if the neutralino temperature is
small, T � < 103ÿ104, or the mass mx is large so that the
density is strongly peaked near the center. If the conditions
(159) are met, rn > rb and the neutralinos are trapped by
their own gravitational field. This causes the state of
equilibrium in the center to change completely, and neutra-
lino self-heating may start as a result of annihilation and
scattering on baryons. A remarkable property of self-
trapping is that heating strengthens compression. As a
result, the process becomes explosive.

The possibility of the indicated processes is discussed in
more detail in Ref. [73].

8. Conclusion

Observations of microlensing and the theory of small-scale
dark-matter structure presented here pose a fundamental
question of the origin of the bulk dark matter. If the
interpretation [16, 17] is correct, the dark matter would
appear to consist mainly of baryonic matter. This would
necessitate a revision of the conclusions of the theory of
nucleosynthesis, the new questions will arise on the problem
of the formation of galaxies, their structure, etc.

If the hypothesis on small-scale non-baryonic dark-matter
structure turns out to be valid, this will mean the existence of
an essentially new type of structure, i.e., gravitationally
bound kinetic formations with characteristic masses less
than or of the order of the solar mass and scales of the order
of that of the solar system. These objects contain a consider-
able part or even the bulk of matter in the Universe. They
appear before recombination and must have an appreciable
effect on the formation of stars and galactic structure.

If it turns out additionally that the non-baryonic dark
matter consists of annihilating particles (neutralinos, heavy
neutrinos), then the NO, which in this case are called
neutralino stars (NeS), must also be observed in the form of
powerful sources of gamma-radiation that substantially
affect the level of gamma-background and are possibly even
the source of the mysterious gamma-ray bursts. On the other
hand, observational data impose significant restrictions on
the possible form of dark-matter particles. This is why the
study of the problems considered here is of crucial interest for
cosmology.

In conclusion we note some observational consequences
of the theory.

I. Microlensing
(1) The difference between theoretical light curves in

microlensing by compact and non-compact bodies is not
large, but obviously quite accessible for experimental verifica-
tion (Section 6). In this connection we should specially
emphasize the possibility of a notable improvement of the
results of observations using telescopes installed from cosmic
apparatus. In particular, measurements on the Hubble
telescope seem now most promising.

(2) We have considered microlensing on spherical objects.
Deviation from spherical symmetry in the case of binary stars
is rather significant for NO and may lead to definitely
observable effects [74]. Analogous observed deviations from
spherical symmetry also occur when objects fly by at a
sufficiently close distance.

(3) Strongly elongated wings in the light curves (Section
5.3) imply that NO have a considerably larger lensing cross-
section at small amplitudes. It should therefore be expected
that they are more strong pronounced in the generation of
intensity fluctuations when quasar radiation passes through
galactic halos.We stress thatmicrolensing is peculiar in that it
provides similar fluctuations in the optical and radio-
frequency bands.

(4) It is noteworthy that the discovery of even one NO in
the course of microlensing may prove the existence of non-
baryonic matter and non-baryonic small-scale structure
because baryonic bodies (or gas clouds) of such a mass and
size cannot exist (Section 3.5).

II. Gamma-radiation
In the discussion in Section 7.6 of the unidentified point

sources of high-energy gamma-radiation (P-sources) discov-
ered by EGRET, two hypotheses were put forward concern-
ing the nature of these sources: they are either active galactic
nuclei of a new yet unknown type or NeS. If a considerable
part of the indicated sources turn out to be neutralino stars,
then

(1) The theory predicts that the unidentified P-sources of
gamma-radiation must be distributed isotropically and obey
the ÿ3=2 law for their logNÿ logS curve.

(2) The theory predicts the existence of a vastly spread
�� 20�� distributed source with quite definite properties
around the Andromeda galaxy. The discovery and detailed
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investigation into the structure of this source would mean the
discovery of the fact that the halo consists of NeS.

(3) The theory predicts that owing to the presence of a
baryonic core,P-sources of gamma-radiationmust have as an
accompanying component thermal IR radiation in the range
l � �3ÿ8� mm with a radiation temperature T � 500ÿ1000�
and intensity ~I � 1028ÿ1029 erg sÿ1 [73]. The discovery of
thermal IR sources and their identification with gamma-ray
sources would mean, in fact, the discovery of NeS and would
confirm the presence of a baryonic body.

Other possibilities connected with the direct determina-
tion of the distance to P-sources by way of observation of
their motion on the celestial sphere and observation of
microlensing and gamma-radiation for one and the same
source are pointed out in Ref. [54].

It should be stressed that comparing the theory with the
gamma-radiation observational data allows already to obtain
some important conclusions concerning the origin of the
dark-matter particles. The relation (156) connecting the
mass mx of the particles, the annihilation cross-section (148),
and the coefficient of gamma-radiation generation is not
performed in the nowaday standard model of neutralino [53].

Therefore, if further investigations will prove that micro-
lensing is accomplished by the non-compact dark-matter
objects, then either special modifications of the standard
model (like, e.g., in Refs [58, 59]) would be needed or the
dark matter consists of some other kind of particles.

Further theoretical and experimental investigation into
the problem considered here is of fundamental interest.
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