
Abstract. The authors of Ref. [1] drew incorrect conclusions
when extending the results of Refs [2 ± 14] on the stimulated
one-photon Cherenkov effect and linear electromagnetic wave
amplification, both for an infinite medium and for surface
Cherenkov radiation in dielectric guides.

In Uspekhi Fizicheskikh Nauk [Physics-Uspekhi 37 (10)
1005 (1994)] V MArutyunyan and S G Oganesyan published
the paper ``The stimulated Cherenkov effect'' under the
heading ``Reviews of Topical Problems'' [1]. The paper
includes serious mathematical and physical errors. As a
consequence, some results on the stimulated Cherenkov
effect (SCE) are interpreted inadequately and, moreover,
they contradict many physical notions and principles. The
authors would have avoidedmany errors if they had discussed
at least the familiar results on the subject, along with the
presentation of their own results.

In this note we do not intend to discuss the issues
considered in Ref. [1] in much detail. We will present only
the principal errors because of which the authors arrived at
contradictory conclusions in Ref. [1] and their other papers
[2 ± 14].

1. In the review ``The stimulated Cherenkov effect'' all the
results are obtained from perturbation theory in the first-
order approximation with respect to the field of an outer
wave, though it is known [15] that the SCE has a specific
nonlinearity in the presence of an arbitrary small wave near
the Cherenkov cone. There is a critical value of the wave
intensity and it depends on the Cherenkov resonance width. If
the wave intensity exceeds the critical value, then the wave
becomes a potential barrier, or potential well, for the electron
and in this case the linear theory cannot be applied to describe
the interaction. Hence, perturbation theory is applicable to
the SCE problem only if the wave intensity is much less than
the critical value and the electron moves in phase with the
wave.

Ignoring this fundamental feature of the SCE the authors
[1] calculate the classical change in the electron energy DE
from the perturbation theory in the presence of a plane
monochromatic wave. In Section 2.1 (Ref. [1]) they analyse
the well-known result for DE using the linear theory [see Eqn
(7); the motion of an electron in phase with the decelerated
wave is equivalent to the motion in a constant electric field].

Then they specially discuss the case of the exact Cherenkov
resonance oÿ kv0 � 0 [see Eqn (10)]. However, in this case
perturbation theory is not applicable even in principle. The
exact solution of this problem [15] shows that the Cherenkov
resonance has a minimal width �oÿ kv0�min � Dx, which
depends on the field strength (x � eA=mc2, A is the ampli-
tude of the wave potential vector), and that the electron gets
into an essentially nonlinear mode of interaction (`reflection'
or electron capture by wave) when the width is less than the
critical value. However, even if the electron is not in this
mode, i.e., if oÿ kv0 > Dx, the SCE shows a nonlinear
behavior and the results of Section 2.1 are invalid. These
results are applicable only ifoÿ kv0 4Dx or if the wave field
is [16]:
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Here the quantity in the right-hand side of Eqn (�) is the
aforementioned critical value of the field (v0 is the initial
velocity of the electron, E0 is the electron energy, n is the
refractive index, y is the Cherenkov angle).

In Section 2.2 (Ref. [1]) the authors calculate the change in
the electron energy DE [Eqns (18), (19)] in an artificial field of
finite diameter [see Eqns (11), (12)]. As the comparison of
Eqns (7), (10), (19) shows, the width of the Cherenkov
resonance oÿ kv0 is replaced by vx=d in the case of the
beam of a finite diameter 2d along the x axis. Hence in Eqn (�)
in this case 1ÿ n�v0=c� cos y must be replaced by vx=od and
Eqns (14), (19) can be applied in the field
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(l is the wave length of laser radiation, l=d5 1). In Ref. [1]
the condition, from which Eqns (14) and (19) are derived, is
jDEj5 E0 and it yields:
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The comparison of these conditions shows that in Ref. [1]
the probable fields exceed the legal values by a factor of d=l
(d=l4 1) (the typical Cherenkov parameters are
nÿ 1 � 5� 10ÿ4 for CO2, E0 � 100 MeV, y � 6� 10ÿ3 rad,
see Ref. [17]). However, the authors claim: ``The quantityDE0
is very important in the theory of interaction between free
electrons and laser radiation. As will be shown later, the
characteristics of all processes in which the electron is
involved depend on DE'' (p. 1008).

2. We will now to make some notes about the field (11),
(12), in which different aspects of the SCE are considered in
Sections 2.2 ± 2.9 (Ref. [1]).
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(a) This field is attributed to ``an electromagnetic wave
propagating along the z axis and which has a finite width in
the x direction only''. However, such an artificially con-
structed field presents a set of waves propagating basically
in opposite directions along the z axis, i.e., it presents a
standing wave Ax � f �x; z� cosot.

(b) The authors claim that ``the Fourier transform of the
vector potential is chosen so that, in the plane z � 0, the
amplitude of the field is attenuated on an increase in jxj as the
Gaussian distribution of width 2d ''. However, in the plane
z � 0 the field constructed is identically zero! Moreover, how
can the field be given at one intermediate point in the
interaction region when z varies from ÿ1 to �1 and when
there are no boundary conditions (the interaction proceeds in
an unbounded medium, the wave is turned on at t � ÿ1 and
it is turned off at t � �1)?

(c) The diffraction divergence of the beam is assumed to be
small: l=d5 1. As a result the z projection of the field
Az � �ÿqx=qz�Ax � 0 is neglected. However, a d-function is
artificially introduced into the Fourier component of the field
to allow for the exact law of dispersion q2x � q2z � n2o2=c2. In
other words the small quantity of the first order qx=qz (or l=d)
is neglected while the small quantity of the second order q2x=q

2
z

(or l2=d 2) is retained in the expression for the field.
Thus, if the beam divergence is considered to be small

because of its finite width in the transverse direction so that
the wave is assumed to propagate along the z axis and that the
z projection of the field is neglected, then in this approxima-
tion qz has a fixed value qz � no=c and the field of the wave
should be described by the vector potential
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rather than by Eqns (11) and (12) (see Ref. [1]). Clearly that in
this case the dispersion equation can hold only approximately
to within a small quantity q 2

x=�n2o2=c2� � l2=d 2 5 1
[�qx�max � 1=d]. Then instead of Eqns (14) ± (17) (see Ref.
[1]) we have

DE � 2p
���
p
p

mc2
d

l
xx exp

�
ÿo2d 2

4v20x

�
1ÿ n

v0z
c

�2�
� cos

�
n
o
c
z0 � o

v0x

�
1ÿ n

v0z
c

�
x0

�
:

However, it should be stressed that the field (��) bounded in
the x axis and infinite in the y axis does not describe a real
laser field because it has at least to have a Gaussian profile in
the beam cross-section.

3. Starting in 1975 the SCE was systematically and
comprehensively studied in laser radiation fields with a real
transverse profile by numerical integration of the exact
equations of motions using the Monte Carlo algorithm in
Stanford University. In particular, results on the modulation
and rearrangement of an electron beam show that the depth
of rearrangement at the second or third harmonic of laser
radiation is of the same order as that at the first harmonic [18].
Consequently, the classical perturbation theory used in Ref.
[1] to describe the beam rearrangement at the first harmonic
presents the rearrangement process for a klystron type beam

inadequately because small changes in the electron velocity in
the interaction region entail large changes in density and in
current after the interaction in the drift region.

In regard to the quantum modulation of the electron
probability density the perturbation theory is applicable if
DE5 �ho. This condition is opposite to that, at which the
classical consideration is valid (DE4 �ho). The problem of the
quantum modulation of an electron beam for the SCE in the
presence of a plane wave was solved using the perturbation
theory in Ref. [16], where the author shows that the
modulation depth at the Nth laser radiation frequency
depends precisely on the aforementioned critical field
strength GN � �x=xcr�N. Mentioning neither Ref. [16] nor the
work [18] on the classical modulation and rearrangement of
the electron field Arutyunyan and Oganesyan in Sections
2.3 ± 2.4 set forth ``classical and quantum theory of electron
beam modulation'' at the first harmonic.

On this basis it seems that there is a little sense to discuss
the results of Sections 2.2 ± 2.9 for the field (11), (12) but,
independently of the field, the authors [1] make several
mistakes in their calculations, in definitions of classical and
quantumnotions, in passage from the classical formulae to the
quantum formulae, and in their consideration of spin
interactions. As a result they give an incorrect quantitative
description of the classical rearrangement (Section 2.3), of
quantummodulation (Sections 2.4 and 2.5), of electron beam
magnetization (Section 2.6), of classical and `quantum' theory
of the Cherenkov klystron (Sections 2.8, 2.9) as well as
misinterpret the physical nature of these phenomena. There-
fore, we shall dwell on Sections 2.2 ± 2.9 in somewhat more
detail and show the principle mistakes especially as they recur
in the subsequent discussion of the monochromatic wave
(Sections 2.11, 2.13).

(a) The density of an electron beam, i.e., the electron
probability density in quantum theory is defined as
r � i�hc�qc=qt� c.c.!! [see Eqn (44)].

As a result of this non-physical definition of the prob-
ability density of particles an extra term DE=E appears in the
expression for r [Eqn (44)] which leads to contradictory
results from the physical standpoint. This term is considered
to be a classical rearrangement ``remaining in the drift region
x > d '' (p. 1011). And this is a formula for quantum
modulation!

It should be emphasized that the violation of the
definition of such a fundamental notion as the probability
density is related to the inappropriate use of the Klein ±
Gordon equation for electrons (see Ref. [14]) by the authors
of the paper in question. It is known that the squarable Dirac
equation in an outer electromagnetic field is reduced to the
Klein ±Gordon equation with additional terms associated
with the spin interaction. By neglecting these terms each
component of the bispinor wave function of an electron cD

satisfies theKlein ±Gordon equation and r � c�DcD ! jckj2,
where ck is a solution to the Klein ±Gordon equation. In
other words, in the Klein ±Gordon equation the spin
interaction is neglected as a small correction rather than the
electron spin as the authors assume. Consequently, r � jckj2.

(b) Arutyunyan and Oganesyan deduce the formulae,
supposedly, in the classical limit from the quantum formulae
for one-photon interaction (46), (49) and identify the former
with the formulae of the classical theory (29), (30)! They
ought at least to consider the condition DE4 �ho, under
which the classical consideration is valid. This condition is
exactly opposite to the one DE5 �ho, under which the one-
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photon description is true. How can any formulae be the
same, even if they look alike, when the quantity DE=E is of a
different order of magnitude in the classical and quantum
approximations? In the last case it is a very small:
DE=E � �DE=�ho���ho=E� (here DE=�ho5 1 and �ho=E5 1). If
the accuracy of classical perturbation theory is the same as
that of the quantum theory, then in the quantum case DE=E is
at least a factor of 107 less than in the classical case
(E=�ho > 107 for the SCE). As a result the essence of the
klystron type classical modulation is distorted as well as that
of the quantum modulation of the electron probability
density. As the authors conclude: ``In the region Dqxx5 1
themodulation is classical in nature and the expression for the
density of electrons [Eqn. (46)] coincides with Eqn (29). Since
the second term is proportional to x in this limit, the
associated modulation can be called klystron modulation. In
the region Dqxx � 1 the difference between the amplitudes of
emission and absorption reaches a maximum, and the
classical modulation becomes quantum at the depth
2DE=�ho.'' It remains only to note that the quantum
modulation is particularly the wave property of a particle.
Therefore, it is true for an electron (superposition of partial
waves of an electron with different energies and momenta
leads to oscillation in the electron probability density). The
one-particle consideration of the quantum modulation
problem is possible especially because of this property. In
contrast, classical modulation and rearrangement have a
meaning for a particle beam only.

(c) If DE=�ho5 1 is a parameter in the perturbation
theory, then the terms DE=E � �DE=�ho���ho=E�, where �ho=E
is much less than unity as well as than the perturbation
parameter, are present in the final formulae (46), (49)
together with the terms of the order of DE=�ho. And this
term is interpreted as in the quotation in item 3(a). At the
same time, upon derivation of the formula [Eqn (46) on
p. 1010] the authors explain that ``the terms of order of
�ho=E are omitted''. Hence, the terms of order of �ho=E are
retained while the terms of order of �DE=�ho���ho=E� are
omitted [see Eqn (44)]? The reader should be reminded that
the omitted terms �DE=�ho�2 in the expansion of the perturba-
tion theory (see Ref. [16]) in the one-photon approximation
are much greater than the retained ones. For example, for the
modulation depth expected (about 10%, see Section 2.16 in
Ref. [1]) the terms of order of 10ÿ2 are omitted while the terms
of order of 10ÿ8 are retained.

Thus, there are no terms DE=E in the expression for the
electron probability density when the spin interaction is
neglected even if we assume that the definition of r the
authors give is true. Terms of this type (/ 1=E) can appear
because of the spin interaction but it is incorrect to consider
them along with small terms of the first order in the
perturbation theory with respect to the parameter
DE=�ho5 1 due to the aforementioned reasons since the spin
interaction is proportional to the same parameter �ho=E5 1.
But even if its consideration is correct, the associated
radiation of the magnetic moment of an electron is so small
that it has hardly any influence on the Cherenkov radiation,
or on the beam modulation, etc. So, there is no sense in
drilling down into any analysis of the results of the spin
interaction in the linear theory, i.e., in the first order of the
perturbation theory. However, the spin effects in the
stimulated Cherenkov effect are what is new in the review
discussed. Moreover, the authors claim that they can be
observed experimentally (see Section 2.16)! To this end we

think it is worthwhile to analyse the quantitative description
of the spin interaction in the review [1] in which the authors
use the results of Refs [2 ± 4, 7].

Restricting themselves to the linear approximation with
respect to the field, the authors [1] do not consider when the
approximation is applicable, neither in the classical theory,
nor in the quantum theory. They just omitted the terms / A2

from the start. Therefore, besides the aforementioned condi-
tions there is another one: sin y4 eA=E. It limits the
Cherenkov angle from below in the classical case. It is also
true in the quantum case if the spin interaction is neglected
and the Klein ±Gordon equation is considered. If the spin
interaction is considered to be described by small terms of the
first order, then yet another condition has to be satisfied:
eA5 �ho
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. To this end the Dirac equation has to be
solved in a form, in which the bispinor component and the
spin interaction are separated from each other. In this way,
provided that the parameter of the perturbation theory is
selected correctly and all the small terms of the same order are
accounted for, the results are obtained, according to which
the amplitude of the probability of Cherenkov absorption ±
radiation decreases by a factor of ��ho=E�
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damps the effects considered. In this case the condition
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is automatically imposed on the
value of the Cherenkov angle. Thus, there is no sense to
consider all the subsequent problems (wave amplification,
beam modulation, etc.)

However, once the Klein ±Gordon equation is solved, the
authors solve the Dirac equation and then the Pauli equation
``to extract the spin contribution'', and they make the
opposite conclusion that the terms DE=E are associated with
``the orbital motion'' (p. 1012) rather than to the spin
interaction. The authors have to solve the SchroÈ dinger
equation to check that there are no such terms in the
expression for the electron probability density jcj2. This
conclusion is a direct consequence of the errors the authors
make when they extract the spin interaction and pass from the
Dirac and Pauli equation to the limiting case of `the absence'
of a spin interaction. In defining the initial state of an electron
in the polarization matrix the authors assume that the spin
interaction vanishes for a m � 0 (a m is the four-dimensional
electron polarization vector) and the expressions for the
probability density and beam current (62), (63) coincide
with the similar expressions (46), (49) where the Klein ±
Gordon wave function is used. Note that a m � 0 means the
absence of beampolarization rather than the absence of a spin
interaction.

As for the conclusion on the contribution of the magnetic
moment of the electron into the beam modulation, based on
the fact that the Planck constant is eliminated from the spin
part of the interaction (DE=�ho � mH=�ho; m � e�h=2mc), we
will only cite one paragraph from Ref. [1], in which the
ideology the authors develop in [2 ± 4, 19 ± 21] and summar-
ize in [1] is expressed most clearly. This is the classical
interpretation of the quantum formulae when �h is eliminated
(though the contribution of the quantum loss is retained); or
the passage to the classical limit as �h! 0 in the expressions
which are obtained under the condition DE=�ho5 1; or the
derivation of the classical rearrangement from the formulae
for one-photon interaction. Thus, we cite: ``Since the quantity
DE � mH in the case of a spin interaction (here m � e�h=2mc is
the magnetic moment of the electron and H is the magnetic
field strength), the amplitudes of the terms responsible for the
klystron modulation are classical in nature. Interestingly
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enough, the Planck constant �h enters only into the asymmetric
part of the loss and has no effect over distances x � x1''
(p. 1011). It remains only to note that by the authors'
definition x1 is just the distance (purely quantum),

x1 � 1

Dqx
� l

p
E

�ho
vx=c

n2 ÿ 1
;

over which ``the classical modulation goes into a quantum
one with depth 2DE=�ho'' (p. 1010).

4. In Sections 2.11 and 2.12 the authors [1] discuss the
possibility of a spin laser in the direction in which electrons
travel. By formally solving the equation for the self-consistent
field the authors obtained a non-zero coefficient for the linear
Cherenkov gain at the angle y � 0 due to the electron spin:
``...in the spin laser, electrons and the amplified wave travel in
the same direction with almost the same speed. Therefore they
interact over the prolonged period of time so that the effect
can be observed'' (p. 1022).

This result contradicts the Vavilov ±Cherenkov effect
since the probability of stimulated emission in the linear
approximation is proportional to the intensity of sponta-
neous emission whereas the intensity of the Cherenkov
emission is zero at the angle y � 0. Therefore, this issue is
reduced to the spontaneous emission of themagnetic moment
(or spin) of an electron in the forward direction during the
Cherenkov process. However, it is well known that the
Cherenkov emission of a magnetic dipole has no quantum
features (see, for example, Ref. [23], pp. 145, 146 accounting
for the spin of an electron in Cherenkov emission of a
magnetic dipole). It is also known that emission is accom-
panied by a spin flip in the forward direction (y � 0). As a
result the matrix element of transition is non-zero [22] but the
emission intensity at the process threshold (y � 0), as
expected, is zero and then builds up gradually (the non-zero
matrix element is insufficient for a real emission, so a finite
phase volume has to exist) [23].

The authors base their consideration on the fact that the
law of conservation for Cherenkov emission admits the
frequency o 6� 0 at the angle y � 0 (in the absence of
dispersion) when the quantum loss is accounted for. How-
ever, as follows from the Cherenkov condition with regard for
the quantum loss and, in the general case, from the dispersion
of the medium n � n�o�, the frequencies associated with the
angle y � 0 are boundary frequencies (the first new frequency
appearing at the spectrum boundary with the smooth build-
up of the electron velocity corresponds to the angle y � 0), at
which no emission is possible (the strict inequality in the limit
of integration over o in the formula for the Cherenkov
emission intensity matches this conclusion: see, for example,
Ref. [24]). Consequently, the gains (169) and (175) calculated
in Ref. [1] (see also Ref. [7]) must be zero independently of the
electron beam polarization.

On the other hand the condition sin y4 eA=E from item
3(c), under which the linear theory is applicable, is violated
for y � 0 (pA � 0). In this case, as the exact solution of the
Dirac equation for an electron in the presence of a circularly
polarized wave in amedium shows [32] (the case fromRef. [1])
the state of the electron is the superposition of four waves with
different energy-momenta (four solutions). In calculations of
the gain of a `spin laser' the authors used an incomplete wave
function of the electron in the field: in this case two solutions
(formula (173) from Ref. [1]) that follow from the Dirac

equation according to perturbation theory do not describe a
true state of the electron since it is in fact a superposition of
four partial waves [32]. All this applies equally to ``spin and
polarization effects in the Cherenkov laser'' (Sections 2.5, 2.6,
2.11, 2.13) since they are obtained using the same wave
function (the occurrence of these effects would mean, as for
the `spin laser', that the Cherenkov emission intensity is non-
zero at the process threshold: y � 0). So the results on
quantum modulation (Section 2.5) and on magnetization of
electron beam (Section 2.6) are obtained using the wave
function (56) in a field of the form (11) and (53) while the
results on the quantum theory of the Cherenkov laser (Section
2.11) and on a rotation of the polarization plain (Section 2.13)
are obtained using the wave function (156) [cf. Eqn (173)]. So
the results on the spin interaction in Ref. [1] are erroneous.

We shall return to the discussion of the results on the SCE
in a constantmagnetic field (Section 2.14) whenwe discuss the
role of the strong longitudinal magnetic field in the stimulated
Cherenkov process because it is the same for ordinary and
surface Cherenkov effects (Section 3).

5. In Section 3 the stimulated surface Cherenkov effect
(SSCE) is considered. The new concept of the SSCE under-
lying Refs [9 ± 14] is as follows: there are no stimulated effects
when an electron beam moves in vacuum over a dielectric
medium. ``The depth of the klystron modulation, the over-
population of the electron beam, and the gains for the
Cherenkov laser and Cherenkov klystron are zero'' (p.
1029). Laws of conservation are the physical rationale for
this concept but these laws are derived using an erroneous
wave functionÐ it depends exponentially on the x coordinate
and the factor of this coordinate enters into the argument of
the d-function, i.e., into the law of conservation, as the
component of the photon momentum perpendicular to the
waveguide surface (�hkx). And it is an imaginary quantity i�hqx!
As a result, in the laws of conservation [see Eqns (236), (237),
(244)] the x component of the electron momentum becomes
imaginary. The application of a law of conservation for this
component of momentum in Refs [9 ± 14] leads to zero
quantum loss in emission and absorption of a photon during
the SSCE [see Eqn (235)]. The authors interpret this result as a
``peculiar generation that can be removed in three ways: (1) by
placing the waveguide in a gaseous atmosphere; (2) by
applying a constant magnetic field along the waveguide; and
(3) by considering amplification by particles whose velocities
lie outside the Cherenkov cone'' (p. 1029). In other words the
SSCE can proceed if there is an additional fourth body to
provide for `the asymmetry' in laws of conservation of
absorption and emission of a photon by an electron.

However, it is well known [25, 26] that the major
difference between the problem with a boundary between
media and the problem with an infinite medium is the
violation of the law of conservation of the x component of
the electron momentum. Moreover, it follows from the laws
of conservation of energy and the z component of momentum
that by absorbing (emitting) a photon the electron acquires an
the x component of the momentum px:

p2x � �2
E0
c2

�h�oÿ kzvz0� ÿ �h2q2x ; q2x � k2z ÿ
o2

c2
> 0 :

Hence photon absorption in the SSCE is possible when

oÿ kzvz0 5
�hc2q2x
2E0 ;
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while emission is possible when

oÿ kzvz0 4 ÿ �hc2q2x
2E0 ;

i.e., the conditions for absorption and emission in the SSCE
differ by the quantum loss and there is no `peculiar
degeneration'. From this standpoint the SSCE does not
differ from the SCE.

6. If the classical problems for amplification by the SSCE
are solved correctly, then non-zero gains would be obtained
without an additional fourth body and it would be a signal
that the concept set forth and the quantum results are
erroneous. The reasons that the classical gains vanish in the
works [1, 9 ± 14] are as follows:

(a) In consideration of the SSCE problem, in which the
electron beam moves over a waveguide, the authors select a
spatially homogeneous electron distribution function as the
initial one. As a consequence, they do not take into account
the change in the beam density (r1), for which the spatial
inhomogeneity of the initial density [r0�x�] in the perpendi-
cular direction to the waveguide surface is responsible:

r1

�
�oÿ kzvz0� q

qx

ÿ
r0�x� v1x

��ÿ1
:

This inhomogeneity introduces a term, proportional to the
overpopulation qf0=qp, into the expression for the gain and it
is a major factor in the amplification process of a weak wave
in the SSCE.

(b) The poles in the expression for the gain are calculated
mistakenly. For example, the gain for a plane waveguide in
the absence of a gaseous medium (e1 � 1) does not vanish
even if the terms from item 6(a) are not taken into account
provided that the contribution of the Cherenkov poles into
expression (287) in Ref. [1] is calculated correctly. This can be
seen even from formula (295) for the gain over a finite part of
the waveguide L. As L!1 the factor

La
d

da
sin2 a
a2

in this formula becomes o0 dd�o0�= do0 (to within a factor
o0 � oÿ kzvz0) and, on averaging over the initial electron
distribution function, the gain is proportional to f0�p�, i.e., it
is non-zero.

Thus, the errors made are systematized and summarized
over all the class of problems on the SSCE to fix that an
additional fourth body is required for the dynamic effects
(modulation, etc.) as well as for the amplification processes of
emission to proceed.

7. The Cherenkov laser problem was comprehensively
studied both theoretically and experimentally in the famous
works by Walsh, the results of which were set forth in many
reviews in the late 70s and in the early 80s (see, for example,
Ref. [27]). Walsh had started his research from the stimulated
Cherenkov radiation in an unbounded gaseous medium and
calculated the linear gains for various modes (see, for
example, Ref. [28]). In this case two negative factors affect
the amplification process simultaneously: the influence of the
angular spread of the electron beam and the side effects of
multiple scattering as well as those of ionization losses of
particles in the medium. To eliminate the first factor Walsh

applied a strongmagnetic field and calculated the gains of the
Cherenkov laser by a one-dimensional overmagnetized
electron beam in the hydrodynamic instability mode (cool
beam) as well as in the kinetic instability mode (hot beam). To
eliminate the negative influence of the medium a scheme of
the stimulated surface Cherenkov radiation (SSCR) was
proposed and the gains of the Cherenkov laser in the total
inner reflection mode for waveguides of different geometries
were calculated(the finite length of a waveguide was taken
into account [29]). Then papers [8 ± 13], the results of which
are presented in the review [1], solve the same problems in
linear mode in the same formulation. At best they obtain the
same results as those of Walsh (there are many inconsisten-
cies, incorrect or unnecessary propositions on the way to the
final formulae). However, the authors [1] then dare to
conclude that ``the principle distinction between Walsh's
work and our work is that he does not consider the angular
spread of the particle beam. To justify his model, Walsh
supposes that an infinitely large magnetic field is applied
along the electron beam. Clearly, the magnetic field does not
eliminate the angular spread of an electron beam'' (p. 1025).
Meanwhile Eqns (205) and (309) are the same as those of
Walsh and they do not depend on the angular spread because
this dependence is eliminated by this strong magnetic field.
The required strength of magnetic field is specified by the
angular spread of the beam: O4 k?v? (O � ecH0=E is the
cyclotron frequency). Under this condition the magnetic field
freezes the transverse degrees of freedom, i.e., the transla-
tional motion of electrons in the transverse direction, and, as
a consequence, this component of the velocity falls out the
Cherenkov resonance condition (oÿ kv! oÿ kzvz). This
condition has a simple physical meaning: the Larmor radius
of rotation of an electron R � v?=O has to be much less than
the characteristic change of the wave field in the perpendi-
cular direction to the magnetic field 1=k? for the phase
synchronization of the Cherenkov process not to be violated
(the negative effect of the angular spread of the beam is in
violation of the phase synchronization and the strong
magnetic field maintains the synchronization by freezing the
perpendicular motion of electrons). Note that for the sake of
mathematical rigour the condition O4 maxfk?v?; kzDvzg
(here kzDvz is the Cherenkov resonance width) is required to
eliminate the cyclotron resonance totally (in real situations
the condition is, in fact, the same). Thus, the problem
becomes one-dimensional and there is no need to include the
(`infinitely strong') magnetic field nor the transverse compo-
nent of the electric field of a weakwave (linear theory) into the
equation, and this is what Walsh has done.

Let us show how the Cherenkov amplification and
Cherenkov surface amplification problems in the presence
of amagnetic field are solved in the review [1]. On the grounds
of Refs [8 ± 13] the authors assume that the magnetic field has
an arbitrary strength (and then they consider the Cherenkov
amplification!). As is shown in Refs. [30, 31] the perturbed
distribution function f1 [see also Eqn (194)] is a series, theNth
term of which represents the cyclotron resonance at the Nth
harmonic (N � �1;�2 . . .) while the zero harmonic repre-
sents the Cherenkov resonance. The authors left only zero
harmonic in this series without any explanation. The
aforementioned condition is required to omit the other
terms of the series. As a direct consequence the dependence
on the magnetic field strength would fall out the expression
for the perturbed distribution function of electrons and,
hence for the gain. Instead the authors [1] obtain other
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erroneous conditions to limit the range of electron momenta,
for which the gains by the overmagnetized beam both for the
SCE and for the SSCE, i.e., the results of Walsh are valid. In
fact there is no other condition except the one we cited, in full
accord with the results of Walsh.

As for the amplification problem in a tubular waveguide
considered in Section 3.6, it is quite clear that the final result
(320), (327) is erroneous (there is even no need to compare it
with the Walsh formula) since these expressions are not
proportional to the spontaneous Cherenkov radiation inten-
sity (to the term sin2 y � 1ÿ c2=n2v20) and expression (327) is
completely incorrect. By the way, once the plain waveguide
has been considered there is no real need to solve the problem
for a tubular waveguide since under the condition (326) a
tubular waveguide is equivalent to a plane one with double
thickness [the value a � �dÿ b�=2 should be substituted into
expression (309) for the plane waveguide, in which case the
authors [1] would not arrive at the incorrect formula (327)]. In
Refs [11, 12] formula (327) is a final result. In the review
discussion the authors present, after formula (327), yet
another formula (329) but here the gain is proportional to
the spontaneousCherenkov radiation (however it is two times
less than for a plane waveguide?). But why? Unexpectedly,
there is a need for a final formula in a particular approxima-
tion: ``We also cite the expression for G in the case where the
second terms are retained'' (p. 1036).

Further, as is noted in item 6(a) of these notes the initial
electron distribution function is spatially inhomogeneous for
the SSCE and, as a consequence, the electron density and
electron current experiences additional changes in the
amplification process but this fact is not taken into account
in Refs [1, 9 ± 13]. These changes are negligible only in the
strong magnetic field limit because the transverse motion of
the electron is frozen. Therefore, all the results on the SSCE in
Section 3 are erroneous, except formula (309) for a plane
waveguide, which is the same as that of Walsh (up to the
factor c2=n2v20 in the second term in braces). The conclusion
the authors come to is very interesting: ``The feasibility of
amplification of electromagnetic radiation in plane and
tubular waveguides was also considered by Walsh et al...
The role of the magnetic field is also different. Walsh et al.
consider it as the leading field, whereas we introduce it to
create asymmetry in emission and absorption of photons by
electrons, i.e. to create the mechanism of amplification...
Note that, strictly speaking, the magnetic field strength does
not enter the original equations given by Walsh et al. as a
parameter: they simply postulate that the one-dimensionality
of an electron beam is equivalent to a very strong magnetic
field. Therefore, the results obtained on the basis of this
model can be considered as qualitative'' (pp. 1036 ± 1037).

We have dwelled here only on the principal errors made in
Ref. [1], not to leave the reader in delusion. It is impossible to
discuss the issues set forth in Ref. [1] in more detail within the
present note. The reader can understand the true state of
affairs if he or she read Ref. [1] along with the papers cited.
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