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Abstract. Theoretical and experimental work on magneto-
acoustic surface waves in ferro- and antiferromagnets is re-
viewed. Results on the propagation of Rayleigh and Lamb
magnetoelastic waves in a plate are presented within the frame-
work of a rotation- and translation-invariant theory. Spectra of
the shear surface magnetoacoustic waves (SSMAWs) caused
by effects of magnetostriction and piezomagnetism are also
considered with emphasis on the vicinity of reorientation phase
transitions. The problem of the types of soft modes involved in
phase transitions is discussed in detail. A comparison is made of
experimental results and theoretical predictions on the propa-
gation of Rayleigh waves in magnetic materials.

1. Introduction

Magnetoelastic (ME) interaction plays an important role in
the formation of many properties of magnetically ordered
crystals (magnetic materials). In addition to the well-known
and widely used magnetoacoustic resonance phenomena, ME
interaction strongly affects magnetic resonance, quasistatic
magnetization reversal, the nonlinear dynamics of magnetic
materials, etc. [1]. The interaction between the magnetic (spin)
and elastic subsystems of a magnetic material gives rise to
coupled ME vibrations with very interesting physical proper-
ties [2—5].

Usually the ME interaction is weak and is determined by a
dimensionless ME coupling parameter,
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where ¢ is the characteristic elastic constant, and Ac is the
variation of the constant caused by the ME interaction. For
instance, for an easy-axis ferromagnet (in the absence of a
magnetic field H),

Hme

Wme
= =_me 1.2
C o HA+Hmc ( )

Here wy is the gap in the spin wave spectrum, @wp, is the ME
contribution to this gap, Ha the magnetic anisotropy field,
Hpe = B?/(cM,) the magnetostriction field, B the ME
coupling constant, and M, the saturation magnetization.
For typical magnetic materials (Mo~ 10> G,
c~ 102 ergem™, B~ 107 erg cm™3, and Ha =~ 10* Oe), the
dimensionless ME coupling parameter is small: { ~ 1074,
However, there are physical situations in which the coupling
of the magnetic and elastic subsystems is decisive. For
instance, when the magnetic (spin) subsystem loses its
stability, i.e., in the vicinity of magnetic orientational phase
transitions (OPT), the energy of the ME interaction increases
effectively in comparison to other types of energy, e.g., the
magnetic anisotropy energy, which drops to zero as an OPT
point is approached (accordingly, Hx — 0). In this case the
ME coupling parameter { increases to unity. Hence, in the
vicinity of an OPT, lattice vibrations and magnetic-moment
oscillations should be considered in combination rather than
separately, since their interrelationship is quite significant.
This leads to effects that strongly influence the statistical,
dynamic, thermodynamic, and other properties of magnetic
crystals. In particular, an ME gap oy appears in the
spectrum of spin waves (quasimagnons) near an OPT [6—
12], and for one of the quasiphonon modes the dispersion law
and, hence, the speed of sound may change considerably [11 -
16]. Simple ideas may help to understand this situation.
Suppose that we are dealing with two subsystems (e.g.,
magnetic and elastic), with each subsystem being in an
activationless state (dashed lines in Fig. 1). When the
interaction between the subsystems (magnetostriction) is



702 Yu V Gulyaev, I E Dikshtein, V G Shavrov

Physics— Uspekhi 40 (7)

switched on, two types of motion develop. First, there are the
oscillations of one subsystem with respect to the other
(oscillations of the magnetic moment with respect to elastic
strains). This is the activation branch of coupled vibrations
(branch with an ME gap, represented by curve / in Fig. 1).
Second, there are the activationless vibrations of the entire
system as a whole. Clearly, these vibrations propagate at a
speed lesser than that of the vibrations in each subsystem
because, as a result of the interaction, each subsystem (with a
linear dispersion law) is ‘burdened’ by the other (curve 2 in
Fig. 1).

Dme

0 k

Figure 1. The spectrum of coupled ME waves in an antiferromagnet near
an OPT (solid curves). The dispersion curves for the noninteracting spin
(s) and elastic (t) waves are depicted by dashed curves (o is the frequency,
and k is the wave number).

Experimentally, the decrease in the speed of sound in the
vicinity of an OPT was observed in rhombohedral antiferro-
magnets, such as hematite and iron borate [17—21], rare-earth
metals [22], and rare-earth orthoferrites [23 —26]. The largest
effect was observed in hematite [21] and terbium [23] (more
than a 50% decrease in speed), and also in erbium orthoferrite
in the low-temperature OPT region [26] (roughly a 25%
decrease).

Apart from the speed of sound sharply decreasing near an
OPT, there is also a sharp increase in sound attenuation [16,
27, 28]. However, attenuation manifests itself only in the
immediate vicinity of an OPT and does not hinder the
observation and utilization of the effect of decreasing speed
of sound [28].

It was also discovered that in the vicinity of an OPT there
is a giant increase in ME nonlinearity [29—31]: the magnetic
contribution to the anharmonic elastic moduli increases by
orders of magnitude. This leads to a number of nonlinear
magnetoacoustic effects such as second-harmonic generation
[32], parametric excitation of sound by sound and by a high-
frequency magnetic field [33, 34], and magnetoacoustic
convolution [35, 36].

Because of the strong distortion of the spectrum of
coupled ME vibrations, the static and thermodynamic
properties of magnetic materials undergo considerable
changes near an OPT.

As an OPT point is approached, there occurs a sharp drop
in static elastic constants, e.g., Young’s modulus (an anom-
alous AE effect) [37] and an anomalous change in the

distribution of magnetization and elastic stresses near defects
of the crystal structure (impurities and dislocations) [38].
Features in the temperature behavior of the phonon
entropy, internal energy, heat capacity, and other properties
have also been observed. For instance, the 7 law for phonon
heat capacity becomes a 752 law [39, 40].

Bulk (homogeneous) ME waves can propagate in infinite
magnetic materials. In practice, however, we deal with finite
crystals, in which surface (inhomogeneous) waves localized
near free surfaces or interfaces between different media can
arise in addition to bulk waves. The surface elastic waves
known to propagate in nonmagnetic materials are the
Rayleigh, Love, Stoneley, and Lamb waves [4]1—-44]. In
piezoelectric crystals, shear surface acoustic waves (SAWs)
can arise, whose existence was predicted almost simulta-
neously by one of the present authors (Yu V G) [45] and by
Bleustein [46].

Surface waves can also propagate in the purely magnetic
subsystem of a magnetically ordered crystal. Damon and
Eshbach [47, 48] were the first to study such waves in the
magnetostatic approximation (without allowing for exchange
interaction). These are slow waves (as are SAWs). The effect
of exchange interaction on the spectrum of Damon — Eshbach
waves was later taken into account by a number of researchers
[49—54]. The conditions needed for the existence of surface
spin waves in a purely exchange ferro- or antiferromagnetic
material with a discontinuity in the exchange integral and
partial magnetic-moment pinning at the surface were studied
in Refs [55—58].

In magnetic crystals, we deal with modified magnetoelas-
tic waves. Surface ME waves of the Rayleigh type propagat-
ing in a semi-infinite ferromagnet far from an OPT were
studied in Refs [59—66]. Mathews and Van de Vaart [67, 69],
Parekh [68], and Camley [70] studied Rayleigh and Love ME
waves propagating in a thin ferromagnetic layer on a
nonmagnetic substrate. Parekh and Bertoni [60, 62] studied
Rayleigh ME waves propagating in insulating magnetic
materials with a metallized surface, and Van de Vaart [69]
and Parekh [71] studied the propagation of Love ME waves.
Camley and Maradudin [72] discussed the behavior of
Stoneley ME waves at the interface between two ferro-
magnets. Lamb ME waves propagating in a magnetic layer
of finite thickness have been studied both experimentally and
theoretically by many researchers [73—83]. Such waves are
generated as a result of a resonant interaction of magneto-
static waves and acoustic Lamb waves in ferromagnetic plates
and films. The interaction is most effective near the points of
intersection of the dispersion curves of the corresponding
noninteracting waves. The phase velocity of such hybrid
waveguide-type waves propagating along the ferromagnetic
surface is much higher than the speed of sound in an infinite
medium. These ‘fast ME waves’ were first studied experimen-
tally by Kazakov et al. [78].

The interaction of a Damon— Eshbach surface magneto-
static wave and a shear bulk elastic wave generates two
coupled waves, a Damon — Eshbach ME wave (of quasimag-
non type) and a shear surface magnetoacoustic wave
(SSMAW) of quasiphonon type, with Parekh [84, 85] being
the first to examine the latter type. Since the magnetostriction
interaction has the same symmetry as the piezoelectric effect,
these SSMAWs have the same structure as shear SAWs
caused by the piezoelectric effect [45, 46]. The dispersion
properties of the wave change upon the inversion of the dc
magnetic field direction. The properties of surface ME waves



July, 1997

Magnetoacoustic surface waves in magnetic crystals near spin-reorientation phase transitions 703

can be controlled externally (by a magnetic field or by elastic
stresses).

SSMAWSs due to the piezomagnetic effect in semi-infinite
antiferromagnetic crystals were predicted and the properties
studied by many researchers [86—92]. Since the symmetry of
the piezomagnetic effect differs drastically from that of the
piezoelectric or magnetostriction effect, SSMAWs differ
dramatically from Gulyaev—Bleustein waves (GBW). In
uniaxial antiferromagnets, an SSMAW in this case is two-
component, i.e., it has a short-range component and a long-
range component (long compared to the wavelength) of
elastic displacement (the only component of a GBW is long-
range). Thus, such a wave combines the merits of a Rayleigh
wave at low frequencies and those of a GBW at high
frequencies.

TIoffe [93] predicted the existence of a new type of ME wave
propagating in a thin plate of a piezomagnetic antiferro-
magnet. They found that in the nonlinear limit such a wave
forms a soliton.

Surface ME waves may lose energy by radiation from the
surface into the bulk [83]. For instance, Parekh’s SSMAW
[84] emits exchange waves, with the pinning of the spin at the
surface increasing the attenuation of such waves. Attenuation
of a Damon — Eshbach wave is due to sound emission [83].

Most researchers studying magnetoacoustic phenomena
ignore the effects of violation of the rotational invariance of
the crystal’s energy in a magnetic field. It is usually assumed
that the free energy depends only on the symmetric part of the
distortion tensor, u; » = Ou;/0xy, i.e., on the strain tensor

) 1 (Ou;  Ouy

Gk = 5 (axk + ax,) ’

where u is the displacement vector. However, within this
approach the free energy is invariant with respect to
translation of the volume elements of the crystal, but it is
not invariant with respect to a local rotation of such elements.
When sound propagates in a magnetic material, the volume
elements of the medium turn locally together with the
magnetic anisotropy axes, which naturally increases the
energy of the crystal. Examining this problem in a rigorous
setting requires building a consistent translation- and rota-
tion-invariant theory that should also allow for the depen-
dence of energy on the antisymmetric part of the distortion
tensor

1 (Ou; Ouy

Wik = 2 <6xk le)
related to the rotation of small volume elements with respect
to each other upon an inhomogeneous deformation of the
crystal [94—98].

Effects associated with allowance for the wj tensor
manifest themselves both in massive and in limited speci-
mens. In massive specimens the rotation-invariant theory
predicts only a small difference between the speeds of
transverse sound propagating along the easy axis of a
uniaxial crystal or at right angles to this axis [99—-101].
Melcher [99] was the first to observe this effect in a massive
tetragonal antiferromagnet MnF», with the antiferromagnet-
ism vector L directed along the z axis. He found the
experimental dependence of the relative variation of the
elastic constant, Acas/caq, on the magnetic field strength H
(i.e., on the parameter H?/(H3 — H?), where Hy is the spin-
flop transition field) for transverse waves with k || L and with
k L L (Fig. 2). Figure 2 shows that as the field strength
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Figure 2. Dependence of the relative change in the transverse elastic
constant Acs/css on the parameter H?/(H2— H?) in MnF, at
T=4.2 K and frequency w = 30 MHz: [ is the transverse mode with
k || [100] || Land u || [001], and 2 is the transverse mode with k || [001] L L
and u || [100] [99, 100].

increases, the difference in the speeds of the two waves
increases too, and reaches its maximum value near the spin-
flop transition. For magnetic plates of finite thickness,
Bar’yakhtar et al. [102, 103] predicted a new effect consisting
in a change in the dispersion law of the flexural wave: the law
in the long-wave range is transformed into a linear (sonic)
law.

For all the surface waves we have discussed so far, ME
coupling is important only near magnetoacoustic resonance.
The ME coupling effect becomes stronger and in some cases
leads to new results when the magnetic subsystem approaches
an OPT. The propagation of ME waves near an OPT have
been studied quite extensively.

For instance, Gerus and Tarasenko [104] found that as an
OPT is approached, the speed of propagation of a Rayleigh
wave decreases in proportion to 51/2 (where ¢ =1—-{_is a
parameter characterizing the closeness to the OPT point),
while the attenuation factor y = Imk and the penetration
depth A increase: 7 o< ¢/ and A oc ¢7Y/2. Since in the
process the elliptic polarization of the wave changes to
transverse, at the OPT point the Rayleigh wave becomes a
transverse bulk wave.

The propagation of Rayleigh waves near the OPT has
been studied in a number of experiments [105—108]. Easy-
plane antiferromagnets, such as hematite and iron borate,
exhibited a strong dependence of the speed of propagation of
such a wave on the magnitude and direction of the magnetic
field in the basal plane. The maximum decrease in the speed of
propagation of a Rayleigh wave observed in the experiment
by Kukhtin et al. [105] amounted to 35%.

Research into the propagation of Rayleigh ME waves in
hematite revealed nonlinear effects such as generation of the
second acoustic harmonic [109] and acoustic convolution of
these waves [110, 111]. As an OPT point is approached, the
efficiency of power conversion from the fundamental wave to
the second harmonic and the convolution amplitude grow.
The specific features of the Rayleigh second harmonic
propagation discovered by Krasil’'nikov et al. [109] were
explained theoretically by Buchel’nikov et al. [112].

A rigorous rotation- and translation-invariant theory was
used in Ref. [113] to study the propagation of Lamb and
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Rayleigh waves in the vicinity of an OPT point in a magnetic
plate placed in a magnetic field. Here, allowance for the
rotational invariance of the energy of the magnetic crystal
with respect to the crystal’s orientation in space changes the
spectrum of the coupled ME waves. Whereas in the zero
magnetic field the soft modes of the magnetic plate near an
OPT are one of the transverse bulk modes and a Rayleigh
wave, in a nonzero magnetic field the flexural ME mode is the
soft mode.

The SSMAWSs related to magnetostriction in uniaxial
magnetic materials near an OPT have been studied by a
number of researchers [91, 92]. They found that as an OPT
pointis approached, the speed of SSMAW propagation drops
to a certain critical value, and the depth of its penetration into
the crystal diminishes too.

At present we can consider the propagation of linear and
nonlinear ME waves in massive specimens in the vicinity of an
OPT thoroughly studied and covered in many reviews [11, 12,
30, 31, 98], but this is certainly not the case with surface and
bulk ME waves in limited crystals, although such studies are
important from the theoretical viewpoint and for practical
reasons. Considerable variation in the speed of sound and the
important role that nonlinear processes play near an OPT
make such crystals a promising material for use in electronic
devices. The effectiveness of such devices can be raised
considerably by using surface ME waves, since the energy of
such waves is concentrated within a thin surface layer. From
the scientific viewpoint, the study of the spectra of ME waves
in limited specimens of magnetic materials makes it possible
to determine the type of soft mode used in the OPT. In
particular, in thin plates it is the flexural ME mode that
proves to be the soft mode.

This review covers the theoretical aspects of studies of
Rayleigh and Lamb ME waves propagating in ferro- and
antiferromagnetic plates and of SSMAWSs due to magneto-
striction and piezomagnetism. The focus is on the OPT
region. We also discuss the results of related experimental
work.

2. The energy and the equations of motion
of a magnetoelastic medium with free surfaces

2.1 Ferromagnet

The usual approach to studying the spectrum of low-
frequency vibrations of interacting magnetic and elastic
subsystems is to introduce the nonequilibrium thermody-
namic potential [98]

F = JF(r) d’r (2.1)

whose density consists of magnetic, elastic and magnetoelas-
tic components:

F(x) = Fyp(r) + Fo(r) + Fe(r) . (2.2)
Here
Fn = % ik 2—;: : g—: + Kiscl)mfnqz+
+ K2 mrmmim, + ... — M - H — % M-Hp, (23)

1
Fe=- Ci/cl/ngikglm )

: (2.4)

om Om

——Emt+ ...,
Ox; Oxi im

Fie = Bigimmi mkEpy + Gigeim (23)

where 4 is the nonuniform exchange constant, K and B are the
anisotropy and magnetostriction constants in a locally
rotated (due to deformation) system of coordinates, ¢ are
the elastic constants, G are the exchange-magnetostriction
constants, m and m* = R~'m are unit vectors of magnetiza-
tion M in the laboratory and local coordinate systems (the
latter rotates together with its volume element upon an

inhomogeneous deformation of the crystal),

—_

R=140+~ (0 +éd + 06) + 00 )

3 (2.6)
is the local rotation tensor, £ is the total strain tensor [99], is
the unit tensor, and Hp is the demagnetizing field. The
detailed form of the energy density (2.2) is determined by the
symmetry of the crystal.

The equilibrium values M® and £© can be found by
minimizing the thermodynamic potential. To find the spec-
trum of ME vibrations we must shift to the laboratory
coordinate system and use the Landau- Lifshitz equation
with a Hilbert dissipative term

oM 6(Muk) r .
— =gM xHgr| —— M xM 2.7
o oy~ SIMHal g MM, 27)
the equations of the continuum dynamics
. O(ox+of) M-0Hey
;= L 2.
pii; o T (2.8)
and the equations of magnetostatics
VxHp =0, divHp = —4ndivM, (2.9)

where g > 0 is the gyromagnetic ratio, Her = —3F /M is the
effective field, r is the dimensionless attenuation factor of the
magnetic subsystem, og; x = OF/0u; ; is the elastic stress
tensor, a; , = Nyt m 18 the dissipative stress tensor, # is the
viscosity tensor, and p is the density of the ferromagnetic
material.

The above system of equations must be solved subject to
the conditions that (1) there are no mechanical stresses and a
normal component of the energy flux density; and (2) the
normal component of the magnetic induction and the
tangential component of the magnetic field are continuous
at the ferromagnet — vacuum boundary:

{oikm + (M -Heg)ni }| =0, (2.10)
oF

Ay A k| = 2.11

Mo | = (2.11)

BM =B, (2.12)

Hfint :Hfm (213)
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The spin and elastic vibrations are related through
magnetostrictive and ponderomotive forces [97]. The second
term on the left-hand side of Eqn (2.7), the third term on the
right-hand side of Eqn (2.8), and the second term on the left-
hand side of boundary condition (2.10) are responsible for the
ponderomotive forces. In this review we examine magnetic
crystals in which magnetostriction is high (B/Mg > 1), so
that the effect of ponderomotive forces on the magnetoelastic
properties can be ignored.

2.2 Antiferromagnet

This review deals with the problem of magnetoacoustics of
two-sublattice collinear (or weakly noncollinear) antiferro-
magnets, in which far from the magnetic ordering point (the
Neéel point 7T) the magnetic moments of the sublattices, M,
and M, meet the condition |[M;| = M| = M,. Magnetoani-
sotropy fields of the relativistic and exchange-relativistic
origin and the commonly used external magnetic fields are
low compared to the exchange fields Hg ~ 10°—107 Oe.
Therefore, we can assume that

m| < I, =1, (2.14)
where
M; + M, M; - M,
m=——— and Il=—-—-—=
2M() 2A/I()

are the ferro- and antiferromagnetic vectors, respectively.

The nonequilibrium thermodynamic potential of an
antiferromagnet is given by Eqns (2.1) and (2.2). We can
then write the magnetic contribution as

1 1o a
szzEm2+§A,~k—-

axi aX/» + ]<zk>ll [k + Ki<klzn/i lk ll lm

+ Dyl —2Mom-H — Mym - Hp (2.15)

where E and D are the uniform exchange and Dzyaloshinskii
constants, respectively, and the definition of 1* is similar to
that of m*, i.e.,1* = R

The elastic contribution is given by Eqn (2.4).

As is known, in antiferromagnets, in addition to the
magnetostriction mechanism, there is another — piezomag-
netic — mechanism of ME coupling [114—116]. Since the
magnetostriction and piezomagnetism tensors are invariant
with respect to different crystal symmetry elements, we arrive
at different physical results for the corresponding surface
magnetoacoustic waves. The ME contribution to the thermo-
dynamic potential density of an antiferromagnet can be
written as

Fme = Aiklrnm?m/tg/nz + Biklml,'*l/jglm + Ciklmm;ﬁl/:glm . (216)

Generally speaking, this formula is valid for any two-
sublattice magnetic material, including crystals with non-
equivalent magnetic sublattices, i.e., ferrimagnets. When an
antiferromagnet is involved, the first two terms on the right-
hand side of Eqn (2.16), which pertain to magnetostriction,
are invariant under permutations of the magnetic moments of
the sublattices, while the third, piezomagnetic term changes
its sign under such an operation.

In the case at hand, Eqn (2.8) retains its form (here, we
also ignore ponderomotive forces), Eqn (2.7) is replaced by
similar equations for each sublattice, and in (2.9) M must be
replaced by 2Mom.

3. Rayleigh and Lamb magnetoelastic waves
in a magnetic plate

We begin our study of surface ME waves by an analysis of the
propagation of Rayleigh and Lamb waves in a magnetic
plate. We illustrate the main laws governing the propagation
of such waves with the example of orthorhombic ferro- and
antiferromagnets. The results can easily be generalized to the
case of tetragonal and cubic magnetic materials (and to other
uniaxial crystals if the anisotropy in the basal plane is small).

3.1 Ferromagnet

We take a plate of an orthorhombic ferromagnet bounded by
the planes y = +d,,/2, and place it in a magnetic field H || x.
According to Eqns (2.2)—(2.5), the thermodynamic potential
density is

] "
F= 3 A'(Vim)® + (Kym? + Km'2) + Byt iy Em

1
——Hp-M,

1
+= Ciklmgikglm - HxMx >

5 (3.1)
where we have ignored the terms related to the anisotropy
constant K® and the nonuniform magnetostriction constant
G, which have no significant effect on the results.

Next we study the stability of the homogeneous ground
state of a ferromagnet, in whichmy = m; || H || xand £ = &,
where the spontaneous strain tensor & is determined from the
condition that 0F(m =my)/0E, = 0. Substituting & =
Eo+ AE and m* = my + Am* into (3.1), we arrive at the
following expression for the thermodynamic potential den-
sity in the harmonic approximation in Am* and Ou; /Oxy:

1 ~
F=Fo+5 {A’(Vkm)2 + ) [Kulmy — 04)’ + MHM

o=y, z

+ 4Bo¢xcxx(’/”cx - wocx)eotx] —-M- HD + Ciklmeikelm} 3 (32)

where Fj is the ground-state thermodynamic potential
density,
ik

1
Ay = eix + 5 [Eoe +e&y+ Eyw — w&)]

1

+§ [ez —wz—l—ew—we]ik,
Amy=my — oy, Aml=m. — oy, (3.3)
At — [P 2 2 2
my = — 3 (m}, +m; + o), + %) + My, + m-o:

and K, is the effective anisotropy constant, which takes into
account spontancous deformations (e.g., for crystals that
have isotropic elastic and magnetoelastic properties, we
have k{x =K, + 334/644).

The effect of the dipole interaction and nonuniform
exchange on the final results will be discussed later.

In the frequency range of elastic waves, w < ws (here wy is
the spin wave frequency at k — 0), the magnetic subsystem
has time to adjust itself to the elastic subsystem, so that its
effect on the propagation of an elastic wave reduces to the
renormalization of the static elastic constants of the crystal.
Using the condition 8F/8m, = 0, we can express the m, in
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terms of the distortion tensor components u; . The result is

1
F=3 .kZ CikeiiCkk + Z(c u, i+
i,k=x,y,z o=y,z
+ chwuo(,xuxﬂ) + 4C44€J%Z:| 5 (34)
where
C(a): _|_K9‘:FB _(B ’:Fi{“>2l
172 1‘&1\ 4 oLXoX oAX0X 2 HM + Ky )

‘ K K? 1
C(;) = Coxoax — Tx - <B3xo¢x - Tx) HM + K
o

are the effective elastic constants.

Below, we give the results for Rayleigh and Lamb ME
waves propagating along the x axis [113].

In the short-wavelength approximation (kd, > 1), we
arrive at a cubic equation for the spectrum of Rayleigh waves

(1 =&y’ = 2D+ ¢ — (2D, + en) |

+ [(DIZ + ng))z —&(Dy + Cll)z - (cgy)z - 30%1)]'7
_ (C(l,v)D122 _ 8611D3) =0, (3.5)
where
2 C(W-)Z
D,‘k = Cjj — ik Da = ng 3 (OC = ’C,y) )
k e
2
pwz C(zy)
TR T

In highly anisotropic crystals, in which the interlayer
interaction is much weaker than the intralayer
(c11 > ca,c1n5 f )) the dispersion law for the Rayleigh wave
becomes simpler:

22 W A
pw- =k (cl — ())7> .
Cy €162

In the long-wavelength approximation (kd, < 1), the disper-
sion law for the lowest-frequency Lamb waves can be written
as

(3.6)

pw} =k*Dy;  (longitudinal mode),
k4dfcgy>2D12

1265

(3.7)

pw3 = k’D, + (flexural mode).  (3.8)

The dispersion equation for the flexural wave propagating
in the plate’s plane at an angle to the magnetic field assumes
the following form:

dz{ C(v) 2
k4D12( ) +ij32
12 é)

e
+ kK2 [2((’12(1 _fﬁ> _|_C(2)> 3_)+ Cs:)
2
)

pPW Dk2

In accord with the results of Bar’yakhtar et al. [102], the
presence of a magnetic field renders the plate a transverse
rigidity. For this reason, the dispersion law for the flexural
wave propagating at an angle ¢ # n/2 to the magnetic field is
similar to that of a sound wave. The speed of propagation of
this wave is

<Dy)l/2
Uy = | —
o
HMK? K; 1\
= PNK*+HM(1— (-2 + Bgs | —
I Y 4 Co6

where Ky = k}, — B626 /Cé6-

Thus, by orienting the magnetic moments, an external
magnetic field impedes the local rotation of the magnetic
anisotropy axis upon the propagation of a flexural wave. Let
us estimate the transverse rigidity of the given wave emerging
as a result of this. Assuming that in a highly anisotropic
magnetic material K ~ 10°~108ergem ™, p ~ 5gem ™2, and
H> K;/M, we find that v, ~ 10°~10* cm s~!, which is
0.01-0.1 of the speed of sound in the crystal due to the
symmetric components of the distortion tensor.

Now, we write the dispersion relation for the high-
frequency Lamb waves in the long-wavelength approxima-
tion

pwipn*nznip €p+fik2 (3.11)

where wy ,, are the frequencies of the symmetric and
antisymmetric waves, respectively; ny , =2n—1/2+
(—=1)?/2, p = 1,2 for the longitudinal and transverse waves,
n=12,...,e=cn, &= czy), and f,* are functions of ¢
and cf-“).

For the transverse wave polarized in the plate’s plane, the
dispersion law with k || x has the form

pw’ = c@k2 . (3.12)

But if the plate’s size d. is limited (d. > d,), the plate can
be regarded as a rod with a rectangular cross section with sizes
dy, and d.. When k, < d;l, the laws of dispersion for the
longitudinal and flexural waves propagating along the rod
can be written as

pw?* = Dik>  (longitudinal mode), (3.13)
274
* = Dk + -2 B (flexural mode,
polarized in the xy plane), (3.14)
24
D
pw? = Dk}2 + % (flexural mode,
polarized in the xz plane), (3.15)
where Dy =cn —2c3;/(cn+c23) at ¢y =c»n and

Cl2 = (€23 = C3].

Let us assume that the anisotropy constants K;, the
magnetostriction constants By, and the elastic constants
citim depend on the temperature 7. Then the symmetric phase
(m || x, u; , = 0) becomes unstable when the square of the
speed of propagation of one of the above modes vanishes on
variations of the magnetic field. The square of the speed of
propagation of the longitudinal wave in the plate [see
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Eqn (3.7)] is positive for D15(T) > 0. At D(T) =0, the
symmetric phase loses its stability with respect to the
emergence of longitudinal displacements u,(x). The square
of the speed of propagation of the flexural mode [see
Eqn (3.8)] is positive for D, (T, H) > 0. At D,(T, H) = 0 the
given phase loses its stability with respect to the emergence of
transverse displacements u,(x,z) and, hence, of the plate
flexure. In the absence of a dipole interaction m || x, we have
uy « # 0 and u, - # 0 (dissymmetric phase). As Eqn (3.10)
implies, there are two cases where the condition D, (7, H) = 0
is realized: when either the field changes sign (H = 0) or the
anisotropy constant changes 31gn [ K (T) = ] A portion of
the phase diagram in the HHY Py plane for the symmetric phase
is depicted in Fig. 3, where Hm =K; /M.

HY

u}'(x7 Z) 7é 0

H

Figure 3. Portion of the phase diagram of a ferromagnetic plate con-
structed with allowance for the antisymmetric components of the distor-
tion tensor for the symmetric phase m || x || H, u,(x, z) = 0 (the stability
region is hatched).

On the lines of critical points (H =0 and H /(3) =0), the
speed of propagation of the Rayleigh wave [see Eqn (3.6)]
remains finite (i.e., it does not vanish)

Sr ~ si(1— ()2 < sk, (3.16)
where St = (066/,0)1/29 46 = Hmeé/(Hmeé + H + HAEA}’)), Hme6 =
BZ/(ceeM), and sg is the speed of propagation of the
Rayleigh wave far from an OPT. In this case the set of
frequencies of transverse Lamb waves, w+ 2 ,, is also finite:

Ty o (Q) 1/2 Ty
dy \ p - d,

wi,Z,n(k:()): St(l 7C6)]/2-

(3.17)

At the triple point H = H/(Xy) = 0, the speed of propagation of
the Rayleigh wave, Eqn (3.16), that of the flexural wave, Eqn
(3.10), and the set of the critical frequencies w+ > , of the
longitudinal Lamb waves, Eqn (3.17), vanish, so that there is
an OPT into a phase with m, # 0 and u,(x, z) # 0. Note that
as we get closer to the triple point, the depth A of penetration
of the Rayleigh wave into the crystal grows:

21‘ED132/2

_ il VIR 3.18
P Poce(l = To) (3.18)

and the wave’s polarization approaches that of a transverse
wave.

To calculate the attenuation of these surface waves, we do
the following change of variables in Eqns (3.5)—(3.9):
H — H—irw/g and ¢ — ¢ — in. The attenuation coefficient
is defined as the ratio of the imaginary and real parts of the
complex-valued wave vector k = k' +ik":

k" A
~% T
where 1 =2n/k is the wavelength, and 6 = 1/k” is the

effective attenuation length. For bulk and Rayleigh waves,
we have

(3.19)

2
w Nes . M&6 )
r= + ; 3.20
(1 - g()) < Mme6 ( )
for flexural waves,
B
2HY +H)\co H  8gH

As in the case of an unbounded medium, the attenuation
coefficient of the surface wave grows as an OPT point is
approached and attains its maximum at the transition point.

If the specimen is a rod, the symmetric phase loses stability
with respect to the emergence of longitudinal and flexural (in
the xy and xz planes) deformations [see Eqns (3.13)—(3.15)]
when Di(T, H) and D, (T, H) change sign, respectively.

The fact that a magnetic field breaks the rotational
symmetry of a magnetic material greatly affects the spectrum
of the elastic waves and the phase diagram. Indeed, if we
ignore the effects caused by the antisymmetric part of the
distortion tensor, we can use the standard calculation
methods [12, 14] to write the effective elastic constants as
follows:

H+HY

— e =c, D,=0,
H+ H + Hye

= Coxax

(3.22)

where o = y, z, and H/(;) =K*/M = (K. — B/cs5)/ M.

As k — 0, the flexural-mode speeds vanish both for the
case of a plate [Eqn (3.8)] and for the case of a rod (Eqgs. (3.14)
and (3.15)). In a plate, the Rayleigh-wave speed is

x *2 1/2
ct c

o { }(1_ }' ﬂ
P C11€12

[see Eqn (3.6)], while the set of critical frequencies

T (i;) 1/2
d, \p

[see Eqn (3.11)] vanishes on the line H+H =0 in the
(H, H( ) phase diagram (the straight AB line in Fig. 4). On
the segment OA of this line, the symmetric phase m || x,
Uy, x =0 (for H /@ > — H) loses its stability against transi-
tion to the angular phase m, # 0, u, # 0. On the straight line
OB, the symmetric phase m 11 x, u, = 0 loses its stability
against transition to the phase in whichm 1| x, u, . = 0. For
H) V) > 0, in the interval -H) V) < H < 0 of field strengths, the
state m 7T x 7] H, u, , = 0is metastable, and the straight line
H = 0 is the line of OPTs between the states m 171 X, Uy =0

wi,Z,n
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Ml

m |7 x >\

1y (X, 4)—0
mT|x k
uy(x,z) =0 0 \ H
/
/
/
/ my, # 0
// uy(x,z) #0
/
/

/

as 4

Figure 4. Phase diagram of a ferromagnetic plate constructed without
allowance for the antisymmetric components of the distortion tensor. The
region of stability of the symmetric phase m 171 X, u,(x,z) = 0 is hatched;
the region of stability of the antisymmetric phase m 7| X, u,(x, z) = 0 lies
above the CD line; and the angular phase m, # 0, u,(x,z) # 0 is stable in
the region 40C.

and m 7] x, u, = 0. The straight line O4 is the line of
second-order OPTs.

Comparing these results with those mentioned earlier, we
conclude that the violation of rotational invariance in the
presence of a magnetic field leads to the following effects
[113]: one of the flexural modes, (3.8), (3.14), or (3.19),
becomes the soft acoustic mode; (2) the symmetric phase
(m u X, Uy x=0) remcuns stable in the quadrant H > 0,
Hff > 0 of the (H, ( ) phase diagram in Fig. 3. But if we
ignore the effects of the antisymmetric part of the distortion
tensor, the set of the critical modes w. > , and the Rayleigh
wave are the soft acoustic modes, and the symmetric phase
remains stable toward smdll perturbations in the half-plane
H+ H< > 0 of the (H, H< ) phase diagram in Fig. 4.

Note that the mvesugated phase transition, accompanied
by the emergence of transverse displacements u,(x,z), is
characterized by the presence of a soft flexural mode, which
leads to anomalously large fluctuations.

As the plate becomes thicker (d, grows), the wave-vector
range

1/2
-
dy \ D12
in which anomalous dispersion manifests itself (i.e., the law of
dispersion of the flexural wave is typical of sound waves)
narrows, so that in the limit d, — oo we have Ak — 0. When
we are dealing with a massive specimen at H = 0, the shear
bulk mode is the soft mode [12, 14].

Allowing for nonuniform exchange leads to dispersion in
the elastic constants cﬁ“ in (3.4). Since for flexural vibrations
of the plate the distribution of magnetization along the
normal to the surface of the bent film can be assumed
uniform, we write the dipole energy density in (3.2) in the

form 2nM2m*? [102]. Hence, when we allow for the effect of

the dipole interaction on the spectrum of flexural vibrations,
in Eqns (3.8)—(3.10) we must replace K, with K, + 4nM>.
Figure 5 depicts the magnetlzanon dlstrlbutlon in a plate in
the dissymmetric phase for HU > 4nM and H < 0 or for
HO) +4nM < 0 and H > 41‘EM (i.e., in situations where the
domain structure is suppressed). The direction of the
magnetization vector coincides with that of the internal field
Hi, = H 4+ Hp, where Hp, is the demagnetizing field along the
normal to the surface of the film. Since the directions of the
vector Hp on the right and left sides of the axial line Y'Y, on
which Hp =0 and M || H, are different, the plate in the
dissymmetric phase consists of two domains with different
directions of magnetization. At HX’) >~ 4nM and H < 0 or at
H /g” +4nM < 0 and H = 4nM, the dipole interaction may
lead to the formation of a domain structure in the dissym-
metric phase. The ways in which such a structure can emerges
merit a special study.

Figure 5. Distribution of magnetization in a plate in the dissymmetric
phase (schematic).

There is also another way in which a system of domains
may form near an OPT. If a longitudinal sound wave is
propagating along a crystallographic axis with H /g close to
zero, the emerging compression and stretching of the
magnetic material due to magnetostriction lead to a periodic
modulation of K [117]. Then, for 7 < T, where 7 is the
relaxation time of the elastic subsystem and T is the period
of the sound wave, the plate will bend in the regions where
K; <0.

3.2 Antiferromagnet

Let us place a plate of thickness d, of an orthorhombic
antiferromagnet with weak ferromagnetism in a magnetic
field H || x. The thermodynamic potential density is given by
Eqns (2.2), (2.4), (2.15), and (2.16). In the expression for Fy,,
we limit ourselves to the following representation for the
anisotropy energy and the Dzyaloshinskii invariant:

%(KZ/;2 + K%)= (DyLm}, + Dalymy) .

To simplify matters, we assume that K. > K, (this corre-
sponds to an easy-plane antiferromagnet with low anisotropy
in the basal plane xy). We competely neglect the in-plane
anisotropy in the elastic and ME energies. For moderate
fields, we ignore the first and third terms on the right-hand
side of expression (2.16) for the ME energy. In this
approximation, the elastic and ME energies can be described
by Eqns (2.4) and (2.16) with the following components being

nonzero: ¢jp = €2, €33, C12 = €21, €13 = €23 = €31 = €32,
c44 = 55, Co6 and By = By, Bz, Bz = By, By = Bss;
and Bge.

When our antiferromagnet is in its ground state, Iy || y and
my || x, while the spontaneous deformations are determined
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by the conditions

aF(mo, l()) —0
0k ’

where mg = (2MoH + D>)/E and Iy = y/1 —m} ~ 1. In the
harmonic approximation (in the small deviations of I, m, and
uy from the ground state), the thermodynamic potential
density is

E 1 ~
F= E(m}z + mf +2moA;) + EKZ(I: — wzy)2
1 -
5 Kally — Wy)? = 2MoHA, — Dylym, — DyAy+

Cikim€ik€im -

(3.23)

1
+ 2B66(lx - wxy)exy + 2344(12 - w:}')e:y + 5

Here

A] ~ — |:2MOH13 -+ (Dl —I-Dz)lx(lx — (ny)

24 o]
+ D, ( - 2 - wX,le - C();ylz - %>:| E 7

Ay ~ Ay = 2w my, + myw.yl: — 0xm;
mo(2w3, + 0 + )
_ 5 ,
D2wxz
m, = —————.
E

m,\’ = 7””0[)(7

For the effective anisotropy constants K, we only write the
expression for one constant:

2(Byi — Bn)®
Cl1 — €12 ‘

kx:Kx+

In the long-wavelength approximation o < w5 < was
(here w 5 are the quasimagnon mode frequencies),

[[%x —+ 2(D1 —+ Dz)WZQ] Dyy — 23(,663@7
2MyHmg + ng + 2(D1 + Dz)l’)’lo

I =

(K + Damg)w., — 2Bue:,

I, = -
- K. + Dymy

As in the case of a ferromagnet, the elastic part of the
thermodynamic potential is given by Eqn (3.4), where we
must modify the effective elastic constants cf“) (0 =y,x) in
the following manner: for c?"’j we must perform the change of
variables

K, — Ky +2(Dy + Dy)mg, H—2Hmy, M— M,,
(3.24)
and for ¢! we must put
- - HMOD2 z HM0D2
C§)=C§)=C44— 4E C(3>=C44+ 2E

The results for Rayleigh and Lamb ME waves propagat-
ing along the x axis of an antiferromagnetic plate are
described by Eqns (3.5)—(3.12) and (3.16)—(3.22), in which,
in addition to the change of variables (3.24), we must replace
K by

2

_ B
K =K, +2(Dy + Dy)mgy — C—""
66

[i.e., H/&") by Hy)]. For instance, as in the case of a ferro-
magnet, a flexural wave, in the presence of a magnetic field,
has a finite speed of propagation given by the following
formula:

vy = (&) - { otk 1" (3.25)
~ P [)(K; + 2MOHMO) ' ’
Actually, the specifics of the propagation of Rayleigh and
Lamb ME waves in an antiferromagnetic plate are the same as
in the case of a ferromagnetic plate considered above. First, at
H =0and H/§x> = 0 the quadratic (flexural) dispersion law is
replaced by the linear law for sound waves. Second, on the
lines H=0 and Hlix) =0 of phase transitions from a
symmetric [m || x, 1]y, u,(x,z) =0] to dissymmetric
[m || x, 1|y, uy(x,z) # 0] phases, it is the flexural mode that
is soft (whose speed of propagation vanishes). As the phase
transition lines are approached, the speed of propagation of
the Rayleigh wave and the critical frequencies w4, , of the
transverse Lamb waves decrease, remaining finite, however.
Only at the triple point H = H y = 0 do the Rayleigh wave
and the transverse Lamb waves become soft, together with the
flexural mode.
The attenuation of the surface ME waves under con-
sideration has the same features as the attenuation in
ferromagnets [see Eqns (3.20) and (3.21)].

3.3 Experimental studies of the propagation

of Rayleigh magnetoelastic waves in magnetic materials
All experimental work in this area of research is centered on
the propagation of Rayleigh ME waves. The specimens are
plates of hematite and iron borate, which are easy-plane
antiferromagnets. The dependence of the speed of sound on
the magnitude and direction of a magnetic field was studied in
[105—108]. Kukhtin et al. [105] found that for a Rayleigh
wave propagating in the basal plane of a hematite crystal at
right angles to the twofold axis (k L U;) with H || k, the
coupling between the elastic and magnetic subsystems is at its
minimum. The speed of propagation of such a wave is at its
maximum, sg = 0.93(C44/p)1/2, and is independent of the
magnetic field strength H. If we rotate H in the basal plane
by an angle ¢ (Fig. 6), the ME coupling gets stronger and
reaches its maximum value (and the speed its minimum value)
at ¢ = m/4. The speed of propagation of the Rayleigh ME
wave renormalized by the ME coupling, §g, can be found by
solving the following equation:

2 2
4~ Ci1\ ~ ~ ~ ~ 11 ~ C11 c
st (5t - )52 = - (5 - L) (- ).
P p p pe33

(3.26)
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0.92

0.88

3n/4 A0

Figure 6. Dependence of the relative speed of propagation of Rayleigh
waves, SR /Smax, On the orientation of the magnetic field H in the basal
plane of hematite [105]; curve / corresponds to H = 2370 Oe and curve 2,
to H = 1300 Oe.

is the speed of propagation of the shear bulk wave,

ngEBlz4

2

[==—l
M()C44(A)SO

2
0y = g[H(H + Hp) + 2Hg Hye] "/

is the antiferromagnetic resonance frequency. The depen-
dence of the speed of propagation of the Rayleigh wave on the
orientation of H in the basal plane is depicted in Fig. 6 and on
the magnitude of H in Fig. 7 (the figures have been taken from
[105]). The variation (decrease) in the speed of propagation of
the Rayleigh wave (as the OPT point H = 0 is approached) is
over 35%, and because of this such waves are important from
practical viewpoint.

g/smax

0.7 -

0.6

0.5 ! !

H, kOe

Figure 7. Dependence of the relative speeds of the Rayleigh ME waves,
SR/Smax (curves I and 3), and of the bulk transverse ME waves, §/smax
(curves 2), on the magnetic field strength H in the basal plane of hematite
[105]; curves / and 2 correspond to ¢ = n/4, and curve 3to ¢ = 0;aand b
are LiNbs, and c is a-Fe»Os.

The research done by Pol’skii et al. [108] on the
propagation of Rayleigh waves in crystals of gallium-
substituted hematite (z-Fe, ,Ga,03, 0 < x < 0.3) with low
Morin transition temperatures (as low as —140°C) revealed
that their Q factors and their ability to transform the speed of
propagation of surface ME waves are in no way inferior to
pure hematite. Such materials could be used to manufacture
acoustoelectronic devices operating stably at lower tempera-
tures than hematite crystals would.

Second-harmonic generation for a Rayleigh ME wave in
hematite was observed by Krasil’'nikov et al. [109]. The most
favorable geometry for observing this harmonic was found to
be when k || y in a field H directed at an angle ¢ = ©t/4 to the
twofold axis x in the xy plane. At low levels of acoustic input
power at the fundamental frequency Py, the dependence of
the second-harmonic acoustic power P, on Py is quadratic
(Fig. 8). Figure 9 (both figures have been taken from [109])

Pz, mW

04

03—

02

0.1

0 1 2 3 4 5
Po,mW

Figure 8. Dependence of the second-harmonic signal power P, on the
fundamental-frequency signal power Py [109].

0.5 | __od 10
-
[e]
/
04 F / 4038
P w
I
2 g 2
Z 03t x! {06 E
E E
S 02k do04 =
01k 402
|
0 2 3 4
H, kOe

Figure 9. Dependence of the relative signal power for the fundamental
frequency (P;), and the second harmonic (P,) on the magnetic field
strength A [109].




July, 1997

Magnetoacoustic surface waves in magnetic crystals near spin-reorientation phase transitions 711

depicts the field dependence of P, and Py, where P is the first-
harmonic power. If we start at a field of 4 kOe, P, grows with
the field strength decreasing to 2 kOe, due to the increasing
effective third-order elastic constants with decreasing field (as
the OPT point is approached). Further growth is limited by
the increase in attenuation and the deterioration of the
conditions for excitation of the surface wave due to a
decrease in the speed of propagation of the wave. The
maximum fundamental to second-harmonic power conver-
sion efficiency obtained by Krasil’nikov et al. [109] was 10—
30% in a 2-kOe field. Qualitatively, these experimental data
agree with the results of theoretical research done by
Buchel’nikov et al. [112].

Another nonlinear ME effect, acoustic convolution in
hematite, in which two oppositely traveling surface Rayleigh
ME waves interact nonlinearly, was observed by Gubkin et al.
[110] and Ermolov et al. [111]. Two geometries were used in
the experiments. The first [110] coincided with that used by
Krasil’'nikov et al. [109], while in Ref. [111], oppositely
directed surface waves propagated along the magnetic field:
k| H | x.

The nonlinear magnetization oscillations generated in the
specimen at a double frequency (60 MHz) with a zero wave-
vector difference, Ak = 0, were registered by the induction
method [110]. Figure 10 depicts the dependence of the input
signal amplitude on the field strength H. Qualitatively, the
variation of the signal’s amplitude (the convolution) as the
OPT point is approached is the same as in the case of
Rayleigh-wave second-harmonic generation.

A, rel. units
1.0 -
[oXe) z
o o
o o 45° Y
* H
o
(o]
0.6 | o O
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(o]
. (o]
o ©O
(o]
(e}
(o]
02+ ©
(o]
(o]
Ooo o
| | |
1 2 3 4 H, kOe

Figure 10. Dependence of the nonlinear-interaction output signal ampli-
tude on the strength of a magnetic field directed at an angle of ¢ = 45° to
the x and y axes [110].

4. Shear surface magnetoacoustic waves
(SSMAWs)

Let us now discuss the aspects of SSMAW propagation —
waves caused by magnetostrictive and piezomagnetic

mechanisms of ME coupling in various semi-infinite mag-
netic materials (ferro-, ferri-, and antiferromagnets). We also
discuss the behavior of such waves in the vicinity of an OPT.

4.1 SSMAWs in ferromagnets

Suppose that a ferromagnet with its easy magnetization axis
directed along the z axis occupies the half-space y > 0 and is
placed in a constant magnetic field H || M || z. Parekh [84, 85]
was the first to describe an SSMAW polarized along the z axis
and propagating along the x axis along the surface of the
crystal (Fig. 11).

Vs

Figure 11. Geometry of the problem of SSMAW propagation in semi-
infinite ferro- and antiferromagnets (here uis the polarization vector of the
elastic wave).

For this problem the system of equations (2.7)—(2.9)
describing the coupled oscillations of the magnetization and
the lattice in the nonexchange approximation is

ion. = oam + B44 auz (0373 0P

x = Qofty T8 My 0y  4mn 0y’
. B44 auz (0374 a(p
Oy = 00 8 4 B Am ox

om, Om,
— po*u; = cyyVu. + 344( o +ﬂ) )

ox oy
om, Om,
‘p=4 42
v T 6x+@y ’

(4.1)

where wy = g(H + Ha + Humes), oy = 4ngMy, and Hp =
—MyV® (@ is the dipole field potential).

We seek the solution of this system of equations in the
form

My y oV u. exp[foci|k|y +i(kx — wz)] ,

) o exp[lkly +i(kx — w1)] . (4.2)

The labels ‘i’ and ‘e’ imply that @ refers to the regions where
y > 0and y < 0, respectively. The subscript on o reflects the
fact that the wave propagates in the positive or negative
directions along the x axis.
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Substituting this solution into (4.1), we arrive at the
characteristic equation for o, which determines the depth
A = (ak)™" of penetration of SSMAWs into the crystal:

(@8 =0, ) (e —3,) = 0. (43)
Here
o1+ = 1 ) (44)
24

2 o’ flw)
oL = 1 S5 (45)

2 stk?

Mme4 D0
= 1 - —

flo) = (1 o )
wg = Wy + Wy, ®Dmed = gHineq - (46)

To clarify the physical meaning of f{w), we substitute ik,
for k), = ok in (4.5) (first multiplying both sides of (4.5) by
k* = k?). This leads to a dispersion equation for coupled bulk
ME waves

(0* = 526%) (0* — wpwp) — K Omesy = 0,

(4.7
with x? = k2 + k2. For small values of « this equation
describes a bulk shear wave and a bulk spin wave, respec-
tively, both modified by ME coupling:

SiK S22 Omes 172
W] = Y Wy = (wowB +l7> . (48)
)] @5

Thus, the coefficient [ f(w)] ~'/% determines the variation of
the speed of propagation of a bulk transverse sound wave and
its dispersion.

The solution of system (4.1) for a Parekh surface wave has
the form

u: = Aexp(—u|kly) expli(olk|x — wi)],

By {1*M+UX

o) = —4
uMg |1+ pu+oy

exp(—|kly)

+(u-1) exp(—omﬁldy)} exp[i(alk|x — wi)],

By p—1+oy

o = _4 WM 1T i oy exp(|k|y) expli(clk|x — wr)],
(4.9)

where A4 is the SSMAW  amplitude, pu=
1+ oyw /(0] —w?), and y=oyo/(0}—aw?), o=

k/|k| = +1 (the ‘plus’ corresponds to the propagation of the
ME wave in the positive direction of the x axis).
The boundary conditions (2.10)—(2.13) yield the follow-
ing relationship:
wme4(w - o-er)(w + aw,)

(wpE — 00) [w? — Wo(Wp — Omes) ]

oy = , (4.10)

where wy = {[(D()((UB —I—wM)]]/2 :two}/Z, and wpg =

(wo + wp)/2 is the frequency of the Damon — Eshbach wave.
Substituting (4.10) into (4.5), we arrive at a dispersion

equation for SSMAWs in the form
3K flo)

2 l-a3,

= (4.11)

From (4.10) and (4.11) we see that the SSMAW is non-
reciprocal and exists in the range of frequencies w in which
or+ > 0 and the right-hand side of (4.11) is positive, i.e.,
0 <o < 1.

The spectrum of coupled ME waves in a semi-infinite
ferromagnet is depicted in Fig. 12 [84, 85]. The hatched
sections correspond to regions where bulk ME waves can
exist. Note that for real ferromagnets, such as YIG (yttrium
iron garnet) crystals, the dispersion curves for SSMAWs lie
very near the corresponding curves for bulk ME waves.
Hence, to emphasize the features of the SSMAW spectrum,
all scales in Fig. 12 have been distorted.

WDE
2
Q

Figure 12. The SSMAW spectrum for H # 0: (a) ¢ = 1 and (b) 6 = —1;
curve / represents the lower SSMAW branch and curve 2 the upper
SSMAW branch; the hatched sections correspond to the regions where
bulk ME waves can exist; Q) = [wo(wp — wme4)]1 2 and @, = (wows)'?
[64].

Without allowance for ME coupling (Hpes = 0), the
dispersion equation (4.11) describes three noninteracting
waves: a Damon— Eshbach surface magnetostatic wave, a
bulk magnetostatic wave, and a transverse bulk elastic wave
with the following dispersion laws:

o+ wp

w——2 , W = \/Wowpg,

C44
w=,/—.

(4.12)

At the point where the wave with M || z loses its stability
at H+ Ha =0, the frequency of the surface quasimagnon
branch has a gap @ = @Wmes + wyr/2. The speed of propaga-
tion of the quasiphonon branch decreases somewhat as this
point is approached, but remains finite:

~ 2
Y [1 ST Dimes (4.13)

St = —_— 3
p (74 + a)me4)

where ¢44 = c44 [1 — wme4/(wM + wme4)] .
The spectrum of ME waves at the OPT point fixed by the
condition H + H/(\y) = 0 can also be represented by Fig. 12
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when the characteristic frequencies assume the following
values:

2 2
-Q] = Wme4Wp , Qz = CUme4(wM + CUme4) )

1

Wy = 5 { [wmc4(2wM + wmc4)] 172 =+ (Umc4} s

WDE = el + Wmed -
2

This result differs considerably from that obtained by Scott
and Mills [64] and Parekh [84, 85]. Since these researchers
ignored the ME gap in the spectrum of ME waves, they
obtained Q| = 2, = w; = w_ = 0 at the OPT point. Allow-
ing for the ME gap leads to a situation in which the given
characteristic frequencies are finite, so that the fine structure
of the spectrum of ME waves at the OPT point is conserved in
the low-frequency range.

Note that the Parekh wave differs from the Gulyaev—
Bluestein waves (GBWs) in that, first, it is nonreciprocal and,
second, it is generated as a result of the resonant interaction of
a bulk transverse elastic wave with a bulk magnetostatic wave
and a Damon — Eshbach surface wave.

4.2 SSMAWs caused by the piezomagnetic effect

in antiferromagnets

The piezomagnetic effect, predicted by Dzyaloshinskii [114],
was discovered experimentally by Borovik-Romanov [115]in
two tetragonal antiferromagnets with easy-axis anisotropy
(L || z): CoF2 and MnF,. For such magnetic structures, a
fraction of the free energy describing the piezomagnetic effect
has the following form in the system of coordinates x’,y’, z
linked to the crystallographic axes [114, 116]:

FPM = —D1 (HDx’ey’z + HDy’ezx’) _pZHD:ex’y’ 3 (414)

where p) » are the components of the tensor of piezomagnetic
constants.

Suppose that an SSMAW polarized along the z axis
propagates in a tetragonal antiferromagnet in the (110)
plane along axis x (see Fig. 11). Then, in a system of
coordinates x, y, z rotated with respect to the ‘primed’ system
of coordinates through an angle of n/4 about the z axis,
formula (4.14) becomes

FPM = —Di (HDxezx — HD_VE'VZ) . (415)
The system of equations for the SSMAW is reduced to
0%u. N u. L 2ol 2l
U, = | =— — -,
Plz =\ 52 T2 ) T2 a2 T o2
5 ou.  Ou o*e® o2l
- - - 47 V=0
™ <@x2 @y2> +H( o o ) ’
2o 2
= 4.1
o Ty 0, (4.16)

where u is the permeability of the antiferromagnet,
p=1+16nMZ/E.

We seek the solution of this system of equations in the
form

u., ®V o exp [—ocky +i(kx — wt)} ,

' o explky +i(kx — ot)] , (4.17)

where o is a parameter characterizing the depth of the wave
penetration into the material.

Substituting this solution into (4.16), we arrive at a
characteristic equation for an SSMAW in the piezomagnet
under consideration:

[iﬂaz1)}(a21)+n(mz+1)2—0. (4.18)

S

Here s and s; are the speeds of propagation of an SSMAW
and a bulk transverse wave renormalized by ME coupling,
respectively, and n = np}/(ucas) is the magnetomechanical
coupling constant (similar to the electromechanical coupling
constant for piezoelectric crystals).

Note that the dispersion equation for SSMAWSs caused
by magnetostriction in ferro- and antiferromagnets differs
from (4.18) in the sign in front of the unity in the last term.
This fact considerably simplifies finding the roots of the
dispersion equation for SSMAWSs caused by magnetostric-
tion. The resulting solution is identical to the solution for the
GBWs in piezoelectric crystals. But in the case of SSMAWs
considered here the solution of the dispersion equation (4.18)
becomes more complicated because of the piezomagnetic
effect, which naturally must lead to new results.

The system of equations (4.16) must be solved together
with the boundary conditions (2.10)—(2.13), which in the case
at hand can be written in a simpler form:

B _ _ o0

0 — gl
) % oV =@ at

6:}’:07 y=0.

(4.19)

To within a constant factor A, the solution of the system
(4.16) can be written as follows

U, = [Cl exp(—oky) — Ca exp(—oczky)]A exp [i(kx — wt)] ,

: 27
o) = =1 [Dy exp(—aiky) — Dy exp(—uzky)]

x Aexpli(kx — or1)]

2
o© = LU (D, — D)) dexplky +i(kx —wr)] . (4.20)
u
Here
o —1 2ot !
i =————D;, D;=[1 4.21
o +1 ( * of + 1) (421
The dispersion equation has the form
N 2 o1
(S—> —1 —a—[l—i-,u(l—l—n)(oq +m;)] =0. (4.22)
t 2

The equation leads to the following expressions for the speed
of propagation s and the depth of penetration A = (ockf1 of
SSMAWs:

2
szs‘(l—&—n—li’u),

n
~ 2
0 1 (4 3)

o ~1-2n,
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In an approximation linear in the parameter #, we can write
the following expressions for the constants C; and D;:
2un

C=Dy=1-"".

2
C,=2Din=——,
1 1M u 1+ u

T+ (4.24)

We see that in antiferromagnets, a SSMAW due to
piezomagnetic effect is a purely shear wave propagating at a
speed that is somewhat lower than that of the corresponding
transverse bulk wave with ME renormalization [86—91] (just
asa GBW isin all the known cases where it exists [45, 46]). But
since the symmetry of the problem is different, the system of
equations (4.16) and its solutions (4.20) differ substantially
from the initial equations (4.1) and the solutions (4.9)
describing magnetostriction-related SSMAWSs in magnetic
materials. The main difference is the pattern of the distribu-
tion of the elastic displacements and the variable magneto-
static field in the crystal. Schematically such a distribution for
the SSMAW being considered is depicted in Fig. 13. For
instance, in addition to having a long-range elastic-displace-
ment component u,  exp(—ozky) (just as in a GBW), the
SSMAW under consideration (which propagates in the
antiferromagnet) has a  short-range = component
u; < nexp(—arky), which vanishes in the n — 0 limit
(‘switching-off” of paramagnetism). In comparison to the
well-known shear SAW, the long-range component of the
wave we are interested in [u, @ exp(—ozky)] does not
penetrate the material so deep, provided that the electro-
mechanical and magnetomechanical coupling constants of
the materials being compared are close in value.

X by
. q

A

NN v -

— L / \ 7/ X
Ar=5% O A =4

o)
U,
Ay > 2 Ay > 2
y y

Figure 13. Distributions of the elastic (1.) and magnetostatic (&)
oscillations in an SSMAW in an easy-axis tetragonal antiferromagnet,
caused by the piezomagnetic effect. The dashed curves represent the
distribution of partial SSMAW oscillations.

Note that the SSMAW we are examining here can also
exist in hexagonal and cubic antiferromagnets. For instance,
the results for SSMAWs due to piezomagnetic effect
propagating in hexagonal nickel arsenide-type antiferro-
magnets (with an easy-plane anisotropy) are similar to those
discussed above.

We also note that in all cases, as  — 0, an SSMAW
becomes transformed into a bulk transverse wave.

We believe that the antiferromagnetic CoF, is a material
in which, apparently, one can observe the predicted SSMAW.
Compared to other uniaxial crystals, this antiferromagnet
has exhibited the highest piezomagnetic constants. Using

Borovik-Romanov’s results [115], we estimate the magneto-
mechanical coupling constant to be 5 ~ 1073, which is close
to the values of electromechanical coupling constants of
ordinary piezoelectric crystals [42]. But if we allow for the
fact that Moriya [118] gives a value of 5 larger than the value
obtained in Ref. [115] by a factor of eight, the values of the
piezomagnetic constants prove to be of the same order of
magnitude as the values of piezoelectric constants in piezo-
electric crystals. What will also facilitate experimental
observation of the predicted waves is the fact that an
SSMAW is always accompanied by a variable magnetostatic
wave in the vacuum near the surface of the solid. Since in Ref.
[115] the measurements were static, the effect we have just
discussed may serve as a manifestation of a dynamic piezo-
magnetic interaction.

5. Conclusion

We have reviewed the results of theoretical and experimental
studies of the propagation of ME waves in magnetic crystals
with free surfaces near an OPT point. It is well known (e.g.,
see [119]) that an OPT is a particular case of a ferroelastic
transition. A characteristic feature of such a transition is the
linear relationship between the order parameter and macro-
scopic lattice deformations. Many features of a ferroelastic
phase transition are of a general nature and are independent
of the specific physical quantities that lead to the phase
transition, i.e., are independent of the microscopic realiza-
tion of the order parameter. In view of this, the ideas
discussed in this review that refer to the nature of the soft
mode defining the phase transition and to the effects emerging
in the propagation of hybrid waves may prove useful in
interpreting the theoretical and experimental results in the
process of studying a broad class of ferroelastic-type magnetic
phase transitions that take place in finite specimens. At
present we can report positive examples of the utilization of
these ideas. For instance, a number of new features of the
propagation of Rayleigh waves in plates of ferroelectric
ferroelastic materials in linear and nonlinear modes near
ferroelastic phase transitions were first theoretically pre-
dicted [120] and then discovered in experiments [121—124].
Among these are the decrease of the speed of propagation of
the Rayleigh wave; an increase of the depth of penetration of
the waves into the crystal; and the nonlinear effects of
frequency doubling and acoustic convolution. Analogies
with magnetic systems have been widely used in building the
theory of these phenomena. Effects associated with violation
of the rotational invariance of the energy of an electrically
polarized crystal with respect to its orientation in space in the
presence of an electric field were studied by Bar’yakhtar et al.
[125].

One should expect that effects associated with violation of
the rotational invariance in a magnetic field most vividly
manifest themselves in low-dimensional (layered and chain)
magnetic materials [102]. The present authors proposed a new
mechanism for low-temperature magnetostriction of such
magnetic materials. Low-dimensional magnetic materials
have a negative temperature coefficient of thermal expansion
[126] because of a reduction of the longitudinal size of the
crystal related to the generation of flexural vibrations. The
amplitude of such vibrations increases with temperature. A
magnetic field leads to the appearance of transverse rigidity in
the flexural vibrations and to suppression of the amplitude of
the vibrations, which restores the size of the crystal. Since this
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mechanism is unrelated to changes in the interatomic
distance. magnetostriction in such systems may be relatively
large.

It must be noted that many ME effects discussed in this
review are still awaiting experimental verification. For
instance, the features of the spectrum of magnetoflexural
waves and SSMAWs caused by magnetostriction and piezo-
magnetic effect have only been studied by theoreticians. An
exciting experiment would be to study strong nonlinear
effects near an OPT (solitons, shock waves, the formation of
dynamic domain structures) — effects that have so far been
studied mostly by theoretical methods [31, 127 —133].

In conclusion, we would like to briefly discuss the
difficulties that arise in interpreting the experimental data
on the propagation of ME waves near an OPT. A number of
factors concern discrepancies between the theoretical results
and the experimental data. First, there are the magnetic and
structural inhomogeneities in the specimens, including the
domain structure of the specimens. In particular, if domains
are formed as a result of an OPT, the phase and group
velocities of ME waves with a finite wave-vector value
k = k¢ [134, 135] (where k. is the reciprocal period of the
emerging domain structure) vanish. ME wave scattering by
magnetic and structural defects of the magnetic crystal leads
to a stronger attenuation of these waves [38].
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