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Abstract. A brief review of the effect of Newton’s macroscopic
dynamic shear viscosity on the rotation of a cylinder and a ball
in a viscous fluid is presented. The approximate nature of some
of Stokes’ formulae is discussed, and formulae from elementary
viscosity theory are given. The concept of molecular viscosity is
introduced, and it is shown that, among other information
sources, spectra of depolarized molecular light scattering and
electromagnetic wave dispersion in liquids of constant-dipole-
moment molecules may, within a certain scheme, be used to
derive the value and temperature dependence of the coefficient
of shear dynamic molecular viscosity. As an example, the tem-
perature behaviour of molecular viscosity in salol and o-terphe-
nyl is presented and discussed qualitatively.

1. Introduction

The internal friction, or viscosity, of a liquid manifests itself in
the motion of bodies through the liquid or in the motion of the
liquid itself through pipes or channels. In the process of
motion of a viscous fluid some its momentum is transferred,
just as heat conduction is accompanied by energy transfer and
diffusion is accompanied by mass transfer.

All three transfer phenomena constitute sizable parts of
hydrodynamics, thermodynamics, and the kinetic theory of
matter, respectively, and are described by the single-type
equations like that of the Fourier equation.

All phenomena involving viscosity are irreversible.

To our knowledge, internal friction, or shear viscosity,
was originally introduced by Sir Isaac Newton in his famous
treatise =~ Mathematical Principles of Natural Philosophy,
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commonly known as Principia [1], with the first edition
published in 1687. Newton, however, did not use the modern
terminology, i.e. ‘internal friction’ or ‘viscosity,” but it is this
concept that he had in mind when he spoke of ‘lack of
slipperiness.’

In Book Second of the Principia, in section IX, titled ‘On
the Circular Motion of Liquids,’ in the ‘Assumption’ Newton
writes: ‘Resistance occurs because of lack of the liquid
slipperiness, which is assumed, all other things being equal,
to be proportional to the speed with which the liquid particles
move apart’. It is apparent that the ‘lack of slipperiness’ is
what we today call viscosity. Clearly, Newton’s supposition
implies that the force of ‘resistance’

F=danV, (1)

where A is a constant, 7 is the quantitative measure of ‘lack of
slipperiness,’ or the dynamic viscosity coefficient, and Vis the
linear velocity.

Then in ‘Assumption LI of Theorem XXXIX’ Newton
writes:

‘If in a homogeneous and boundless liquid there is an
infinitely long rigid cylinder that rotates uniformly around its
constant axis and the liquid is set in motion solely by this
impact, with each particle of the liquid retaining its uniform
motion, then I assert that the times of revolution of the liquid
particles are proportional to the particle’s distances from the
axis of the cylinder.’

Newton then argues as follows: ‘Since the liquid is
homogeneous, the action of its layers on each other (by
assumption) is proportional to their displacements along
each other and to the size of the surfaces involved in the
interaction. If the force applied to the convex surface of a
layer is larger or smaller than the force applied to the concave
side, the larger force will prevail and the layer will accelerate
or decelerate, since at each point the force is directed either in
the same direction as the motion or in the opposite direction.

Since each layer retains its uniform motion, the forces are
equal and point in opposite directions, but since these forces
are proportional to the size of the surfaces in contact and to
their relative velocities, the difference of these velocities must
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be inversely proportional to the distances between the
respective layers and the axis.’

This is hard to believe, but the great Newton did allow for
an inaccuracy (it would be difficult to call this a mistake) in
the above assertion, which was pointed out later by Stokes [2],
who corrected it.

The point is that by ‘forces’ Newton understood forces of
friction, but actually these should be moments of the forces of
friction. According to Newton, the time of revolution
T =10a/L, while in reality, as shown by Stokes [2],
T = 19a?/L?, where 14 is the time of revolution of a rigid
cylinder, a the cylinder’s radius, and L the distance from the
rotation axis of the rigid cylinder to a cylindrical layer of
liquid.

Newton’s arguments and the six corollaries he formulated
[1]imply that if two layers of liquid that are at distances L and
L + AL from the rotation axis of a rigid cylinder of radius a
and surface area S move with different velocities, then in the
stationary case the moment M of the tangent forces acting on
the cylindrical surface of radius L per unit length of the
surface is

M =2nl*n— . 2

nLN 47 ()
If we introduce the angular velocity w = V//L, we arrive at the
following expression for M:

dw
M =2nL*n— L. 3
mLn (3)
The liquid between two cylindrical surfaces carries an angular
momentum, which in steady-state motion remains constant,
so that the moment of force (3) must be independent of L.
This implies that w has the form
Ci

w = p + C2 y (4)
where C; and C, are the constants.

If the liquid occupies a boundless volume and is at rest at
infinity while a rigid cylinder of radius a rotates with an
angular velocity wg, from formula (4) it follows that

w a2

(,L)()_LZ7

(5)

with the result that the moment of the friction force acting on
a unit length of the surface layer is

M= 4m1a2w0 . (6)

The entire range of these problems was first examined by
Stokes and Saint-Venant and the results are presented in
detail in Lamb’s book [3], which we follow in some respects
(see also Refs [4, 5]).

If instead of a boundless liquid we take two coaxial
cylinders, an inner rotating cylinder of radius ¢ and an outer
(fixed) cylinder of radius b, calculations yield the following
result:

2 h 2
TR
and for the moment of the friction force, instead of (6), we
have

w g, (7)

abh?

which becomes (6) if we proceed to the limit & — oo.

2. A ball rotating in a viscous medium

For ball of radius r to rotate in a viscous medium bounded by
an immobile concentric sphere of radius b, we must apply a
rotation moment N to the ball. This moment of force is given
by the following expression
37,3
b

For the case where b — oo formula (9) becomes

N =8mnriay . (10)

Here it should be noted that formula (9) is valid to within
second-order terms in the ratio
wor?p

g (11)

where p is the density of the fluid. This means that formula (9)
is valid only if near the equator of the rotating ball the
inequality wor < 1/pr holds true.

These remarks are important since, as noted by Lamb [3]:
‘If second-order terms are taken into account, then the
stationary motion of this kind becomes impossible. The ball
begins to act as a centrifugal fan, i.e. at a certain distance from
the ball the motion is an outward flow from the equator and
an inward flow to the poles, and this motion is superimposed
on the rotational motion’ (see also Ref. [6]).

3. Viscous flow around a ball

Another problem was that of the force F acting on an
immobile ball of radius r from the flow of an incompressible
viscous fluid moving with a velocity V. Omitting the
cumbersome calculations involving the equations of motion
of a viscous fluid, we give only the final result

F=6mnrV. (12)

Formulae (6), (9) and (12) are known as the Stokes formulae
and have found numerous application in various fields of
physics.

Various researchers have calculated many other types of
flow around bodies of different shapes, but usually certain
simplifying assumptions are introduced.

Detailed discussions of many examples can be found in
Lord Rayleigh’s book [7].

We would like to stress again that all these cases refer to
motion in a viscous fluid of bodies of macroscopic sizes. This
means that the equations of motion of a viscous fluid and the
boundary conditions that correctly reflect a specific problem
can be used.

4. Equation of motion of a viscous fluid

After Newton [1] many scholars studied the general equations
of motion. Here we cite only the fundamental results
contributed by Navier [§8], Poisson [9], and Stokes [10].

The general equation of motion in a viscous compressible
fluid is

Vi, OV _ 9P
P\ " e ) T o

0 ov, ovy 2 . oV, 0 , 0V,
B e ) | e (1
+6xk {”(axlf ox; 3 61{8)@)} +6xi (’1 ax(,) (13)
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which is known as the Navier — Stokes equation. Here P is the
pressure, and #' is the bulk viscosity which determines energy
losses in the course of uniform compression and expansion
(sound propagation).

If n and %' are position-independent, then (13) can be
written in a vector form as follows:

ov
p {a—t + (VV)V} = —grad P + AV

1 .
+ (n’ + §'7) grad divV. (13a)
If we follow Rayleigh’s arguments for U(x, ¢) [7, 11], we
can write the equation of motion for a viscous compressible
fluid, the Stokes equation [2] for the propagation of sound
along the x axis, in the form

’u LU U
S == = 13b
@ Vo laea =Y (135)
where v is the phase velocity of sound, U the component of
velocity of the fluid element, and

1[4
r=-|2 ' 1 14
p3n+n+C(V ) (14)

K

P
with «x the thermal conductivity coefficient, and C, the
specific heat at constant pressure; I' determines the sound
absorption and the halfwidth of the Mandelshtam — Brillouin
components [11, 12].

In Rayleigh’s treatise, just as in the original Stokes paper,
n' is dropped, but not because Stokes did not consider bulk
viscosity an important quantity.

In their paper [13], Mandel’shtam and Leontovich built a
relaxation theory of sound propagation through liquids and
quoted Stokes [2]: “We can, of course, set ' = 0 if we assume
that in uniform expansion the pressure at each point in time
depends solely on the density and temperature at that
moment and not on the rate of expansion. In most cases of
interest for the application of the theory of a viscous fluid, the
density remains constant or may be assumed constant
without a noticeable error or, finally, can slowly vary with
the passage of time. In the first two cases the result is the same,
and in the third it is almost the same irrespective of whether
we assume that #' = 0 or not. Consequently, even if theory
and experiment in these cases yield the same result, this
cannot be taken as a proof of the validity of the assumption
thaty’ = 0.

Stokes, therefore, clearly understood the importance of %’
in those phenomena where it clearly manifests itself.

Further development in this field of science unquestion-
ably demonstrated that the absorption of sound in liquids
caused by the bulk viscosity #’ for such liquids as, say, carbon
disulfide at sound frequencies in the 1—10 MHz range is
higher by a factor of 1200 than the absorption caused by shear
viscosity 7. Correspondingly, for benzene the absorption
caused by n’ is 280 times higher than that related to n at 1 —
165 MHz, for acetic acid this factor amounts to 5300 at
0.5 MHz, and so on.

Generally, we would not be far from the truth if we said
that for many organic liquids ' plays a greater role in sound
absorption in the ultrasonic region than .

What is measured by a viscosimeter is the shear viscosity,
while 1’ plays no part in such experiments if the viscosimeter

depends for its operation on the slow motion (fall) of a ball in
the viscous fluid or the flow of viscous fluid through a
capillary tube or if some other type of viscosimeter is used in
which volume expansion plays no role.

In this paper we discuss the motion of macroscopic bodies
or layers of liquids and anisotropic molecules in which bulk
viscosity does not manifest itself.

Solving the equations of motion for different cases makes
it possible to obtain relationships between measured and
known quantities that can be in use when obtaining the
viscosity coefficient # with the aid of viscosimeters whose
diversity is astonishing [14].

It appears that a crucially simplest way to measure
viscosity is to employ the Stokes method, which is based on
measuring the velocity of stationary motion of a small ball
falling in a viscous fluid.

In this method the viscous drag given by formula (12) and
the force of gravity making a ball of radius r fall are equalized.
In a steady-state motion

4
omnrV = zmr(p = p) g,

where p, p’, and g are, respectively, the density of the material
from which the ball was manufactured, the density of the
viscous fluid, and the acceleration of free fall. The above
equality yields

2

n=§ﬂ@—05%- (15)

If we know both densities, finding n amounts to measur-
ing the radius of the ball and the velocity of its upward or
downward stationary motion, depending on the sign of the
difference of densities. This is all true, however, if the
following conditions are fulfilled:

(a) the velocity ¥ of ball motion is so small that its square
and higher powers can be ignored;

(b) there is no slip between the surface of the ball and the
liquid;

(c) the liquid occupies an infinitely large volume. These
conditions cannot be met in a real experiment, so that
measuring the viscosity coefficient is not a simple problem:
it requires corrections to the straightforward formula (15).

Rayleigh [6] examined the criterion of smallness of the
velocity and found that V' can be considered small if the
Reynolds number Re obeys the following inequality

n

Re (16)

By setting rp¥/n = 1 in (16), which means that the ‘critical
radius’ is
n
_ 17
re= g (17)
Arnold [15] experimentally established that for different ball

materials and radii Stokes’ law holds to within the experi-
mental error (~ 1%) if

r<0.6r.. (18)
From (15)—(17) it follows that the Stokes law is obeyed
for waterat ¥ =1cms~!ifr < 1073 cm.
Arnold’s experiments [15] revealed that conditions (a) and
(b) appear natural if the liquid wets the ball.
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As for condition (c) which requires that the volume
occupied by the liquid be infinitely large, it cannot be met.
The first experiments showed that the Stokes formula (12)
does not hold for an arbitrarily shaped vessel with liquid.

The wall effects can be exactly accounted for a cylindrical
vessel in which the ball falls along the axis. Ladenburg [16]
took account of these effects and found that for the case of an
infinitely long cylinder the denominator in (15) acquires a
factor equal to (14 2.4r/R;), with R; being the cylinder’s
radius.

In the experiments that followed, Ladenburg established
that the finite size of the cylinder also introduces a correcting
factor in the denominator of (15) and that this factor is
(14 3.1r/l), where /is the cylinder’s length.

Thus, instead of (15), the final formula takes the form

2% (p—p)g
V(1 +24r/R)(1 +3.1r/1) "

n= (19)

Ladenburg [16] verified formula (19) for a viscous medium,
and Arnold [15] showed later that the formula can be used for
less viscous media, provided that r/R; < 0.1.

Notice that the above reasoning and relationships hold
only if the ball remains undeformed. The motion of air
bubbles and other deformable balls has been examined in
the scientific literature, but we do not consider these cases
here.

The above example points to the fact that the procedure of
measuring the shear dynamic viscosity 7 is not so simple as
might be expected from glancing at formulae (12) and (15).

As we have said earlier, there are many devices for
measuring viscosity coefficient [14]. The theory of such
devices has been developed, and it permits inferring of the
values required from measurements with # ranging from
infinitesimal values in gases to enormous values in super-
cooled liquids and in the region close to the vitrification point
of various composites.

It should be noted that in all cases of viscosimetric
determination of the coefficient n we are actually dealing
with a characteristic of friction between macroscopic layers of
the liquid or the liquid and macroscopic bodies — the walls of
the pipes or the balls or other bodies to which the liquid has
stuck. The shear viscosity # deduced from viscosimetric
experiments is the quantity that enters into the Navier—
Stokes equation and characterizes the motion of bodies or
the propagation of a perturbation through a viscous medium,
with these phenomena being described by the Stokes for-
mulae (13).

The equations of motion in a viscous fluid or of the
motion of a viscous fluid itself are described by the Navier —
Stokes equation, which is approximate in the sense that it is
valid only for certain viscosities and losses in the motion of
the bodies or in sound propagation [17].

If a perturbation with a wavelength A propagates through
a viscous medium with an amplitude absorption coefficient o,
the Stokes equation can be used as long as o4 < 1. This is the
criterion of applicability of the Stokes equation (13). For
cases accessible to the experimenter the results are always
approximate, and the above examples are a clear indication of
this situation.

Shear viscosity for various substances being in different
states can vary within very broad limits.

For instance, for vitrifying substances, both organic and
inorganic, the viscosity coefficient # can vary by 20 orders of

magnitude from several fractions of a centipoise to 106 —
10'® P when the temperature changes within the range
pertinent to the substance found in the liquid state and in
the vitreous state, respectively.

So far we have been dealing with static viscosity, which
can be measured by viscosimeters of disparate design. Such
viscosity manifests itself only in extremely slow processes.
From the standpoint of their mechanical properties, sub-
stances with such viscosities are described by the well-known
Maxwell equation, which links the Hooke elasticity of the
solid and the Newtonian flow of the liquid:

4o l dSq, & dSs _ (ﬁ _ &) G, (20)
dr ¢

FTC T 7 O T
where 0 is the strain, Sy, the shearing stress, and G the shear
modulus.

If the strain remains constant (6 = const), the Maxwell
equation (20) implies

t
Ssh = Sgh exp <— —) ,

™

where the Maxwellian relaxation time 1y is related to the
viscosity coefficient  and the shear modulus G as follows:

HZTMG.

Here the relaxation time 7y is the time it takes Sgh to decrease
e-fold (e = 2.7).

The coefficient of static viscosity measured by a viscosi-
meter used with media characterized by enormous values of
shear viscosity has practically no effect on the phenomena
most common not only in science but also in ordinary life.

By way of an example we take the absorption of sound in
the ordinary window glass.

For ordinary liquids and glass, the amplitude absorption
coefficient o multiplied by the wavelength A is given at low
frequencies, i.e. as Qt — 0, by the following formula

nQ2 (4 ,
1= 17 (5 +).

Taking into consideration that the main audio frequencies of
the male voice lie in the range f'~ 100—150 Hz [18], and
setting @ = 2nf, V=3 x 10°cms~!,and p ~ 1.22 gcm 3, we
get

(1)

4
A ~2.5x1078 <§n + 11’) . (22)

Even if we ignore the bulk viscosity #’, which is most likely
to be of the same order of magnitude as the shear viscosity,
and take  ~ 10'¢ P for glass, we get A4 ~ 108, and since even
at a4 = 2w there can be no propagation of waves, the value of
aA = 108, if we could actually reach it, would mean that glass
is an ideal sound-proofing material.

All this is untrue, of course, in relation to window glass,
since glass is a good conductor of sound, it reverberates and
can even break if high-intensity sonic waves are applied to it,
which would not be the case if a shear viscosity of 10'® P
actually manifested itself in glass.

The explanation lies in the viscosity relaxation process.
The point is that the viscosity coefficient ceases to be a
constant quantity and becomes frequency-dependent; in our
case it becomes dependent on the frequency of sound.
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As noted earlier, the relaxation theory was developed by
Mandel’shtam and Leontovich [13] for the case of combined
effect of bulk viscosity and was later generalized by Isakovich
[19] to the case of the combined effect of bulk and shear
viscosity.

If we are dealing with shear viscosity at a certain
frequency €, then we can write [11]

Mo
T 23
a 14 Q%2 (23)

where ny = Gty, and 7, is the relaxation time. The quantity 7,
remains equal to the static viscosity coefficient when Qt, < 1,
and then we can ignore Qz'cf in (23) in comparison to unity.
But if Qty > 1, the ‘one’ can be neglected and 7, becomes
smaller than 5, or even infinitesimal. Then the acoustic
properties of viscoelastic media, as well as those of organic
or inorganic glass, become clear. Notice that here we
examined only shear viscosity, characterized by the shear
viscosity relaxation time ;.

Obviously, when calculating #,, by formula (23) we must
include a term, similar to (23) in structure, that allows for the
relaxation of the bulk viscosity with a characteristic time t,,
the bulk viscosity relaxation time.

Amorphous substances, such as highly viscous liquids and
glass, are not adequately described by formula (23) or even
contradict it. To overcome this difficulty, a set of relaxations
times or, more precisely, a continuous arbitrary function of
relaxation times, is introduced [20]. Such a set of relaxation
times has no physical content, which means that kinetic
equations with local derivatives do not describe phenomena
taking place in amorphous media and nonlocal theories like
the Isakovich—Chaban theory [21] are needed in these cases.

5. Brownian motion of small
solid balls in a viscous fluid

In Section 4 we examined the motion of bodies in viscous
fluids and motion of fluid (flow) in a medium containing
solids in conditions where the motion of the fluid is fairly
slow, Re < 1, and the bodies are sufficiently large that the
liquid, which consists of individual molecules, can be
interpreted as a continuous medium. Such motion is exactly
Brownian motion.

In 1827, the British botanist Robert Brown discovered
that small particles suspended in a liquid are in perpetual
random motion. The particles moved, it seemed, without any
regard for external action, since neighbouring particles were
observed to be independent of each other in their motion.
Isolating the suspension from vibrations and light had no
effect on the particles’ movements. But as the particles grow
larger and the viscosity of the medium in which they are
suspended increases, their displacements decrease.

The first to put forward the idea that small particles move
because of collisions with the molecules of the liquid, which
are in random motion, was Wiener [22], thirty-six years after
Brown’s observations.

A quantitative theory of Brownian motion was developed
by Einstein [23] and Smoluchowski [24]. It does not seem
logical to present the full line of reasoning that led to the
derivation of relationships for the longitudinal (Dy) and
rotational (D,) diffusion coefficients defining motion of
small balls in the viscous fluid, since all of this can be found
in numerous textbooks and monographs. Here we give only

the calculation results: Einstein’s formula for the longitudinal
diffusion coefficient reads as follows

kT

- 2%
6mrn’ (24)

L

where k is the Boltzmann constant, while the formula for the
rotational diffusion coefficient is

= S’i . (25)
rn

In the very idea of their derivation, the two formulae
contain the shear viscosity coefficient, which can be measured
by a viscosimeter. Notice that Einstein [23] derived the above
formulae for the case where the number of macroscopic solid
balls is so great that their distribution over the coordinate and
time can be expressed by a function f'(x, ¢) for motion along
the x-axis (more precisely, the projection on the x-axis of
random particle motion):

4Dt (26)

2
flx,H)dx=n (41‘EDI)71/2 exp (— L) dx
with n being the total number of particles.
The square root of the arithmetic mean of the squares of
displacements along the x-axis takes the form

Ay =/ (x2> =+2Dt,

so the average displacement of a small ball along the x-axis is
proportional to the square root of time.

For the rotational movements we have an expression
similar to (27):

7=/ (aY) = 2Dy,

where D; and D, are defined in (24) and (25), respectively.

The basic relationships of kinetic theory were subjected to
experimental verification in great detail and with the highest-
possible accuracy by Perrin [25] and other researchers, and it
was found that the theory is in full agreement with the
experimental facts.

In his doctoral thesis, ‘A new determination of molecular
dimensions’, Einstein [26] took a bold new step by using the
formulae of Brownian movement in determining the size of
molecules.

The boldness consisted in that he interpreted a solution of
sugar in water as a suspension of small balls in a continuous
medium. Of course, there was the possibility that such a
model and Einstein’s assumption would disagree radically
with experimental results for those reason alone that the
motion of an individual molecule has little in common with
the motion of a microscopic particle, and Einstein fully
understood the risk. Nevertheless, he proceeded with his
assumption.

Einstein [23, 26] derived a formula for the viscosity
coefficients of the solvent, #, and the solution, #*. By ignoring
the higher-order terms he arrived at the following expression
linking above viscosities:

n =n(l+2.5¢),

here the ¢ is the fraction of the volume occupied by the balls,
¢ = (4/3)mr3n, with n being the number of balls per unit

(27)

(28)

(29)
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volume, so that

1
0= (1 + ?oni‘3n> : (30)
and, hence,
10
Ap=n*—n= n?nr%. (30a)

Using formulae (29)—(30a), Einstein [26] found that for
a 1% sugar solution in water the densities of both
substances are additive, while the viscosity coefficients are
not (for a 1% sugar solution in water the viscosity is
greater than that from addition by a factor of 1.5).

In this connection Einstein wrote [26]: *...It appears to me
that this result can hardly be explained in the light of
molecular theory, in any other manner than by assuming
that the sugar molecules present in solution limit the mobility
of the water immediately adjacent, so that a quantity of water,
whose volume is approximately one half ... the volume of the
sugar-molecule, is bound on to the sugar-molecule.’

Allowing for the fact that n/N = p/M, where N is the
number of molecules in one grammolecule, p is the mass of the
dissolved substance per unit volume, and M is the molecular
weight, we conclude from formulae (24) and (30) that

M (n* RT 1
Nr3:i— ’1__1 , Nr=——.
10T p \ 1 6nny D

In his example of a sugar solution Einstein found that
N3 =80and Nr=2.08 x 10'°, which implies that

(1)

r=62x10"%cm, N=33x10" mol'. (32)

The modern value of N = 6.02 x 10?* mol~! is in good
agreement with Einstein’s result, and for r the agreement is
within order of magnitude. So we can see that Einstein made a
bold and decisive step by using the phenomenological
formulae (30) and (31) in calculating the molecular radius
and Avogadro’s number N = Nj. It is remarkable that
calculations using the above formulae yield correct orders of
magnitude for the molecular size and number of molecules
Na. What is really astonishing is that the value of the
phenomenological viscosity 1 measured by a viscosimeter
proves to be close to the value of molecular viscosity, which
should have been incorporated in the respective formulae.
The “viscosity’ formulae for a molecule and its characteristics
should be different, but before a microscopic theory of liquids
or its equivalent is developed there is no way we can know the
real form of such formulae.

Einstein’s attempt to replace molecular viscosity with
macroscopic viscosity and the success that followed was
remarkable and, naturally, had many critics. Here we do not
even attempt to discuss everything that has been written on
the topic. We touch only on Vavilov’s paper [27], which
contains not only critical remarks concerning Einstein’s
method of determining the size of molecules but also an
attempt to develop a method for finding the size of molecules
that is more realistic and for determining molecular viscosity
differing from the macroscopic viscosity.

1 Quoted from the English translation in [20], p. 56.

In particular, Vavilov writes: ‘By its very definition the
viscosity coefficient is a macroscopic factor that has meaning
only for internal friction between layers of liquid. However,
Sutherland [28] and Einstein [23, 26] generalized the idea of
viscosity to the case of individual molecules moving in a
liquid, when one is forced to speak about the immobile liquid
film that moves together with a molecule in a very ambiguous
and even indefinite sense.

Only practical success, at least in making correct order-of-
magnitude estimates, might justify such an extrapolation. The
physical reasons for the coincidence lie, of course, solely in the
statistical averaging of an enormous number of individual
deviations, which is automatically present in any real
experiment.’

Formulae (24), (25), and (29) obtained by using the
statistical hydrodynamic approach cannot give a molecular
size r equal to the gas-kinetic size a. To be able to use the
hydrodynamic model, Vavilov [27] employs an approximate
scheme (Fig. 1) that illustrates how a molecule of the solute
(sugar) is surrounded by molecules (of radius ¢) of the
solvent. Figure 1 depicts a temporary monomolecular layer
of thickness 2¢. After that Vavilov suggests that

a+26>r>a, (33)

and writes that ‘... for a plausible value used in approximate
calculations we can take

ra—+o.

(34)

Generally, this correction is not equivalent to allowing for all
the solvent shells constantly bound to a solute molecule and
must be taken into account for all solutions. To our knowl-
edge, correction (34) was never taken into consideration.’

In discussing the internal friction coefficient, Vavilov [27]
further writes: ‘The formulae (24), (45), and (35) contain the
viscosity #; this quantity should not be identified, for particles
of a molecular size, with the macroscopic viscosity, which has
meaning only when large surfaces are involved in friction.’

Below we shall see how Vavilov introduces the notion of
molecular viscosity #,,, and here is Vavilov’s opinion about

Figure 1. The minimum thickness (- - -) of the liquid layer surrounding a
dissolved molecule is equal to the diameter of the solvent molecule [27].
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the problem as whole: ‘As we go over to very minute particles
(e.g., neutrons), the hydrodynamic formulas lose all meaning.
Despite the theoretical vagueness and even the arbitrary
nature of formulae (24), (45), and [the formula for the
dipole-moment relaxation time tp; see below] when applied
to molecules, they still form the only basis for understanding
and calculating the kinetics of processes proceeding in
liquids.’

As far as is known, these assertions are entirely true even
today, 60 years later.

To introduce a quantitative expression for the molecular
viscosity #,,, Vavilov [27] uses Einstein’s formula (30) for a
solution, derived in [23, 26], with r being a quantity of linear
molecular dimensions, and n = 1. Then
5 31

. 10
Anp=n"—n=ny, X 5mr, M =10 73 M-

3 (35)

This is how Vavilov [27] determines the molecular viscosity #,,
(35), which is defined, via (24) and (25), in terms of
measurable quantities.

Notice that in the above-discussed [27] paper, the ratio of
the macroscopic viscosity # to the microscopic viscosity #,, is
assumed constant, n/n,, = const, with a concrete value
chosen in such a way that it varies for real substances from
1.5to 2.

However, it must also be noted that in [27] in all cases the
solutions had values of 7 lying within the interval
1.25x 1072 P to 6.2 x 10~ P, which means that these were
media with low macroscopic viscosity.

6. The elements of viscosity theory

More than 200 years have passed since Newton introduced
the notion of ‘lack of slipperiness,” or viscosity, and before
Jager [29] made the first attempt, albeit unsuccessful, to
express # in terms of molecular and other physical para-
meters. The first formulae for u yielded a temperature
dependence that was reciprocal of that observed in experi-
ments.

Although there exists still no molecular theory of liquids,
many different microscopic theories of viscosity in fluids were
developed. Panchenkov [30] mentioned as many as 15
theories, including his own. The list certainly did not exhaust
all the researchers who have contributed to the theory of
liquids in one way or another (see also [14]).

There is an extremely large number of studies devoted to
inorganic substances capable of vitrification. Monographs on
the amorphous state have been written (e.g., see the mono-
graphs by Kobeko [31] and Feltz [32]) that expound the
theories of various researchers. In the final analysis, how-
ever, everything boils down to three or even four arbitrary
constants remaining in the formulae, and these constants
must be adjusted in such a way that these formulae provide a
good description of the experimental findings.

Sometimes the formulae are obtained not from theory but
are written empirically so that they describe the experimental
results in the best possible manner and contain the smallest
possible number of arbitrary constants.

Perhaps the most widely known formula of this kind is the
Vogel — Fulcher — Tammann formula [33—35], which can be
written as follows:

B
Inp=A4+—-,

T (36)

where 7 is the macroscopic viscosity coefficient (as before),
and A4, B, and T* are the adjustable parameters.

Formula (36) has been used with equal success for organic
and inorganic liquid viscous media over a broad temperature
interval, up to the vitrifying point 7.

It must be noted, however, that (36) is not the soul
formula used to describe the temperature dependence of the
shear viscosity in viscid media. The constants 4, B, and T* in
(36) are determined from the temperature dependence of
viscosity measured in experiments, usually not the highest
viscosities. After the constants have been found, formula (36)
becomes valid at viscosities so high that measuring them
becomes difficult or even impossible without using special
types of viscosimeters. What is important, the parameters
determined in this way are not universal, thus meaning that
for each substance they have to be determined anew.

A microscopic theory governing high values of macro-
scopic shear viscosity # has yet to be developed.

For low shear viscosities the theory situation is not really
any better.

Vast experimental data on the temperature dependence of
shear viscosity made it possible for Batschinski [36] to
establish a relation between the flowing quality of a liquid,
¢ = n~!, and the liquid’s specific volume v, namely

v=>b+co, (37)

where b and ¢ are the constants. Here » may be interpreted as
the volume occupied by the molecules of the liquid proper
and, to within a numerical factor, assumed equal to the
constant b entering the van der Waals equation, so that
formula (37) can be written as

¢
v—>b"

n= (38)
This is the Batschinski formula, with v — b being the free
volume. As noted earlier, there is no theory of liquids and no
molecular theory of viscosity, but basing our reasoning on
pure intuition it is possible to draw a microscopic picture of
the phenomenon.

Forinstance, it is obvious that the presence of viscosity is a
direct consequence of the intermolecular interactions. The
stronger the interaction, the smaller the free volume v — b and
the higher the viscosity #. Similarly, the weaker the interac-
tion between molecules, the larger the free volume v — b and
the smaller the viscosity. Batschinski’s formula (38) corre-
sponds very well to this qualitative pattern: the shear viscosity
of a liquid is inversely proportional to the free volume.

In exactly the same way, the higher the temperature, the
larger the free volume and the lower the viscosity. The
qualitative pattern discussed here agrees with experimental
results. Many researchers have devoted their efforts to
providing a physical interpretation for the Batschinski
formula and the constants entering it [14, 30].

The difficulty in developing a theory that would govern
the viscosity of liquids is that liquids differ from gases and
solid crystalline bodies. In gases at ordinary pressures the
mean free path of a molecule is much greater than the size of
the molecules, and there occurs total randomness in the
directions of molecular motions. In solid crystalline bodies
the molecules or atoms occupy definite equilibrium positions
(sites on the crystal lattice) and this order is repeated in all
directions over all distances.

Liquids lack these distinctive characteristics of gases and
crystals. Hence it is common practice to consider liquids as
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being compressed real gases. It is possible that such an
approach can be justified at temperatures close to the
vaporization temperature.

Apparently, Frenkel [37—39] was the first to examine the
case where a liquid can be interpreted as a solid at
temperatures close to its melting point.

If we assume that the molecules of the liquid occupy their
positions of equilibrium, where, because of thermal motion,
they oscillate with a period 7y, then such a model contradicts
reality since it strips the liquid of its essential property, i.e.
fluidity. Frenkel [37 —39] pointed to this fact and resolved the
contradiction by noting that in a liquid the equilibrium
positions, where the particles oscillate, are not retained for
an indefinitely long time, as they are in a crystal, but remain
such only for a limited time. A molecule that has oscillated
about a position of equilibrium for a time 7 (Frenkel called
this the ‘temporary settled time’) goes over or hops into a
neighbouring temporary settled position and so on. Fluidity
proves to be a natural property of such a model describing the
thermal motion of molecules in a fluid.

The temporary equilibrium positions are arranged in a
completely random way, in contrast to the sites of a crystal
lattice, which do not change their positions with the passage
of time.

The duration of a particle stay at an equilibrium position
is short, but still is much longer than the period t( of particle
oscillation.

According to Frenkel’s model [39]

U

T=T0eXp s, (39)
where U is the activation energy of a molecule in the
environment of its neighbours, and the frequency of mole-
cular vibrations is wy = 15"

The viscosity of gases varies differently from that of
liquids for variations of temperature. While in gases the
viscosity increases in proportion to the square root of the
absolute temperature, in liquids it always decreases with
increasing temperature and its variation depends on the
properties of the liquid substance and the temperature
interval [e.g., see formula (36)].

A good illustration of the temperature dependence of gas
and liquid viscosities can be found in Kobeko’s book [31] and
is reproduced here in Fig. 2.

Frenkel’s theory [39] implies that the viscosity of a simple
liquid depends on its temperature as follows:

U

Nm = A expﬁ ) (40)
where A = kTry/ nre?, with r being the molecular radius, and
o the particle separation. All these quantities characterize an
individual molecule or even an atom of a simple liquid.
Hence, in terms of the adopted notation scheme, (40) is the
formula for the molecular viscosity.

According to Frenkel [39], formula (40) can be used when
describing not only simple liquids, but in this case the value of
A obtained in experiments differs from that predicted by the
theory if comparison is made with macroscopic viscosity
data.

After Frenkel’s work [37—39], several attempts were made
in order for the viscosity theory of simple liquids to be
developed.

Here we will mention only the research done by Born and
Green [40, 41] (see also Ref. [42]), which led to the following

logn

Figure 2. The universal curve representing the dependence of log 1 on T for
liquids (curve ) and gases (curve 2). The dashed section represents the
region where the two states ‘meet.” In the vicinity of this meeting point the
molecular mobility mechanism, corresponding to the gaseous (curve 2)
and liquid (curve /) states, undergoes a drastic change [31].

expression for the shear viscosity:

r r
Ny = 0.48; [me,(r)] 12 exp%T) )
where m is the molecular mass, v the volume of one molecule,
¢,(r) the component of the molecular pair potential corre-
sponding to attraction (Cr~%), which can be found from the
London formula for dispersive forces [43], and r the distance
between the centres of two neighbouring molecules.

At approximately the same time Eyring [44, 45] (see also
Ref. [46]) built a theory of ‘absolute reactions rates,” which
made it possible to derive a general expression for the shear
viscosity of a non-Newtonian liquid, i.e. a liquid whose shear
viscosity depends on an external force or a velocity gradient:

(41)

- Fs
~ 2ak}ysinh(aF/20nkT)’

n (42)

where F is the external field acting on a unit area of the
molecular layer, J the distance between the molecular layers, a
the distance between the positions of equilibrium of molecules
in the liquid, » the number of molecules per unit volume (the
molecular number density), and k{ the Eyring reaction rate
constant [45] equal to

k AG
DY e I
() oo (-27)

with y ~ 1, h the Planck constant, and AG the free activation
energy.

Eyring’s formula (42) remains the only known molecular
representation of non-Newtonian shear viscosity.

For ordinary liquids and weak external forces F, the
quantity aF/20nkT in (42) (bearing in mind that §/a = 1) is
small compared to unity, so that sinh(aF/20nkT) can be
replaced by the first term of its expansion in a Taylor series,
i.e. aF/20nkT, with the result that instead of (42) we have

= éznk—T— §2nhex fA—G
"= \a) 1 ~\a P\UTkr )

(43)
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All the formulae for # obtained from molecular-theory
calculations are similar to Frenkel’s formula [39]; the
similarity even covers the quantities entering the formulae.
Actually, in all cases the index of a power of the exponential
function contains the ratio of activation energy to k7. All the
differences are in the pre-exponential factors, which play no
important role in the problem.

All the quantitative expressions for shear viscosity are
valid for a molecule, but we are forced to use them when
obtaining macroscopic results.

We can hope to achieve good agreement between theory
and experiment for simple liquids like argon and methane,
and such accord has indeed been achieved, at least for n [47,
48]. In an extremely narrow temperature interval the above
formula provides a satisfactory description of the experi-
mental results.

7. Relaxation times for a constant
dipole moment and anisotropy

Here are two more examples where the formulae are derived
for individual molecules but the phenomenological viscosity
is used to determine the characteristic quantities.

We begin by studying the behaviour of molecules with
constant electric moments in an external static electric field
E.

Naturally, in the absence of an external electric field the
molecules move at random, which also means they can be in
rotational motion. Of course, the resistance to rotational
motion is determined by the interaction between the selected
molecule and the environment. What is unknown is the law
governing this interaction, so it is usually assumed that the
moment of the friction force is the same as for a ball and is
given by formula (10).

Debye [49], following Einstein’s reasoning, found the
distribution function for dipole molecules comprising a
liquid when a constant electric field E is applied to the liquid:

l>] cost,

where u, t, and ¢ are, respectively, the constant dipole
moment, the time variable, and the angle between the
directions of the electric field and the constant moment.

Formula (44) implies that when the external field is
instantaneously taken away, the distribution function will
approximate to the random distribution e times closer for the
time

[t A (AT

47rr311
kT

Tp = . (45)

Here r is the molecular radius, and # is the macroscopic
viscosity coefficient, although by the very essence of the
physical problem this should be the molecular viscosity
coefficient.

For low viscosities  the Debye formula (45) agrees with
the experimental findings for the case where 7 is measured by
a viscosimeter.

The relaxation time for a molecular dipole moment is
expressed by formula (45). This formula incorporates the
quantities r and 7, which are characteristics of the behaviour
of a single molecule, its size and its losses (friction resistance)
during motion.

An important parameter used in both experimental and
theoretical studies on the spectra of molecular light scattering,
caused by temporal variations in the anisotropy fluctuations,
is the anisotropy relaxation time.

While the dipole-moment relaxation time tp is the time it
takes the distribution of molecules that have been partially
oriented by an external field to become entirely random after
taking away the external field, the anisotropy relaxation time
7, represents the time during which an emerging fluctuation in
the anisotropy (e.g., the preferred orientation of the highest-
polarizability axis) disperses as a result of the molecular
random motion and the distribution of molecules becomes
random. Based on pure intuition we suggest that these times
(tp and t,) do not differ too much.

In the initial theory of the spectra of molecular light
scattering caused by anisotropy fluctuations, Leontovich
[50] derived an expression for the distribution of the scattered
light intensity as a function of the frequency w reckoned from
the exciting light frequency:

INo)=C"+C o, (46)
where C is a constant, and 7, the anisotropy relaxation time.
This yields

Ty = {C

For the time of anisotropy fluctuation relaxation Leonto-
vich [50] obtained the following expression:

(47)

dr-'(w)]"?
dw? '

4’y 1
Tqg — = =1TD .
“T 3k 3P

(48)

Quantities defined by (46)—(48) have been measured in
experiments [11, 12] and thoroughly discussed [51, 12].

Actually, it was found that the intensity distribution in the
spectrum of depolarized light scattering, or in other words, on
the wing of the Rayleigh line, is not described by a single
relaxation time 7,, meaning that the theory must incorporate
at least two relaxation times, 7; and 1, and for various
substances t; and 1, belong to different intervals of varia-
tion. For instance, for carbon disulfide t; = 2.4 x 10712 s and
75 =2x 107" s, and for a liquid such as salol (phenyl
salicylate) 7, is longer than 7, by a factor of 100. What is
also important is that 7; and 7, exhibit different temperature
dependences, where 7, follows the variations of /T at low
values of #, while 7, varies much more slowly.

A theory that describes the entire spectrum of molecular
light scattering and allows for any number of parameters was
developed by Rytov [52, 53], and Romanov and Solov’ev [54].

Here we do not intend to discuss the entire spectrum of
molecular scattered light. We only note that experiments
make it possible to measure t; =7, and its temperature
dependence.

The Lorentzian (46) implies that the half-width of the
Rayleigh line wing at half-height in intensity, dw, is the
reciprocal of 1., so that 7, = dw~! can be examined experi-
mentally.

We notice again that the quantity r, which enters into (48)
and is determined by the molecular size, refers to a single
molecule. This statement is based on experimental findings.
Indeed, if the light was scattered by a conglomerate of
spherically shaped molecules of radius 2r, then dw would be
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greater than experimental value by a factor of almost 10,
which means that the r in (48) is the radius of one spherical
molecule and (4/3)nr3 is the volume of such a molecule.

As noted earlier, in all the formulae that refer to a
molecule we used the macroscopic values of the viscosity
coefficient, which are measured by viscosimeters. Almost
always the calculation result was satisfactory, at least in the
order of magnitude, and in all cases the viscosity was low,
amounting to several centipoises. But one would like to know
the highest value of the macroscopic viscosity at which
formulae (45), (48) and those akin to them yield results that
are in satisfactory agreement with experimental data. If we
turn to formula (48), we can set up a quantity t* such that
kT 4 |

— Tr’ = const.

=3 (49)

T =1,

Hence, t* must be independent of the temperature and the
viscosity if (49) is true, and t* would not be a constant if for
some values of # and 7 formula (49) is invalid. An
experimental verification of the validity of formula (49) for
salol was carried out by Kovalenko et al. [48]. Phenyl
salicylate is convenient for experimental tests because it
admits of supercooling and its viscosity can be changed, by
varying the temperature, from small fractions of a centipoise
to the viscosity of a vitreous state amounting to 5 = 1016 —
10'8 P. A distinctive feature of phenyl salicylate is that its
molecules display a large optical anisotropy, which produces
a well-resolved doublet and triplet in the spectrum of
depolarized molecular scattering [12].

In Figure 3 the logarithm of the anisotropy relaxation
time 7, and the reduced relaxation time t* are plotted against
the temperature on the Celsius scale over the interval —5 to
80°C. Figure 3 demonstrates that even in this small
temperature interval the deviations from the results pre-
dicted by formula (49) amount to four orders of magnitude.
Clearly, for higher viscosities the deviations are larger still.

The situation is qualitatively the same for the dipole-
moment relaxation time. This was established by measure-
ments [55] of the temperature-dependent dielectric constant
and the loss tangent that used glycerin and electromagnetic
waves in the centimetre range. It was found that according to
measurements of the loss tangent tan ¢ = Qtp (With Q being
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Figure 3. Dependence of the anisotropy relaxation time 7, (+) and the
reduced time t* (o) of phenyl salicylate on the temperature measured in
Celsius. Experimental data show that the deviations from the values
predicted by formula (49) amount to four orders of magnitude. As the
viscosity grows, the deviations increase considerably.

the frequency of the electromagnetic waves) the value of
p =5 x 10712 s, while calculations that use (48) yield
7p = 1.3 x 1078 5. These aspects were also discussed in [56].

The constant on the right-hand side of (49) represents
actually the volume of the molecule of the liquid being
studied. Such a volume is an effective quantity, meaning
that, depending on the external conditions, it can vary
somewhat, but the variations cannot be too large — in any
case they cannot amount to orders of magnitude.

In Figure 3 one can clearly see that at small values of the
shear viscosity the quantity t* is indeed a constant. This does
not mean that the shear viscosity n measured by a viscosi-
meter coincides with the molecular viscosity in the same
conditions, but it does mean that the temperature depen-
dences of 5 and n,,, remain roughly the same up to a certain
value of 7. When 5 becomes high, the proportionality between
n and n,, vanishes and the two quantities begin to depend on
the temperature differently. That had been intuitively obvious
was finally verified by experiments.

What do such large deviations of t* from a constant,
clearly visible in Fig. 3, mean?

Firstly, as has repeatedly been noted, the macroscopic
viscosity measured by a viscosimeter of the Stokes or Ostwald
type [14] must not be confused with molecular viscosity.
Obviously, the energy losses or transfer of momentum by a
macroscopic body differ from that of a molecule, and most
likely the temperature dependences are different, too.

Secondly, the formulae (45) and (48) and some of the
other formulae above were obtained from equations contain-
ing local derivatives. But as we have seen, many properties of
viscid and vitreous media cannot be described by theories
based on equations with local derivatives [12, 21, 57].

8. Finding the molecular viscosity
from experiments

The first theoretical investigations, based on a nonlocal
model that could not be fully substantiated, were made by
Isakovich and Chaban [21]. These investigations provided a
satisfactory description of sound propagation through highly
viscous media. However, the researchers were unable to
generalize their model so it could describe the molecular
light scattering in viscous and vitreous media.

Here it must be noted that the physics of the amorphous
state is still underdeveloped, and although some attempts to
describe the spectra of scattered light in viscous media have
been made, it is difficult to use their results. There is hope,
however, that the theory will eventually be developed to a
state in which it can be used for describing the spectra.

But since a theory that adequately reflects the properties
of the object of investigation has yet to be developed, we are
forced to rely on the model employed by Einstein [23], Debye
[49], Leontovich [50], and Rytov [52], which remains valid up
to a certain values of shear viscosity. The fact that the
quantity t* expressed by formula (49) remains constant
(temperature-independent) can serve as the criterion of
validity of the adopted model.

Within the framework of this model, all the above
formulae that involve the molecular viscosity coefficient #,,
can be used in determining the experimental values of 7,
since

1 1
ta:—rD:—Dr’l:Sw’l.

3 G (50)
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The choice of the proper formula for obtaining #,, is dictated
only by the quantity in (50) that can be measured more easily
and with higher accuracy. The present author and his
collaborators prefer to determine #,, by using (48) together
with the spectrum of molecular scattered light.

Earlier we discussed a method that uses the intensity
distribution in the wing of the Rayleigh line for finding
T, =1, = o L.

Using formula (48), we arrive at the following expression
for the molecular viscosity n,,:

T
dwrd’

N = 3.3 x 10717 (51)

where the numerical factor and the power of the linear
dimension r of a molecule are obtained on the assumption
that a molecule is a ball of radius r.

Of course, in reality, a molecule is shaped differently, but
we assume that this fact will manifest itself only in the
insignificant change in the magnitude of the numerical factor.

Formula (51) implies that the molecular viscosity #,, is
determined by 7, dw, and r, which can be found from
independent experiments. The errors in measuring these
quantities have a direct effect on the absolute value of ,,
and a much weaker effect on the temperature dependence of
molecular viscosity.

Figures 4 and 5 show the temperature dependences of 7,
in salol [48] and o-therphenyl [58]. Here we have plotted the
molecular viscosity #,, calculated using formula (51) on the
basis of spectral measurements of dw and simple temperature
measurements, assuming that 13 is a constant quantity.

In the experiment somewhat unexpected was the appear-
ance of two exponential functions instead of one in the
temperature range being studied.

Following the line of reasoning of Frenkel [formula (40)]
and of Born and Green [formulae (41) and (43)], we arrive at
the following formula

u(T)
N = o ©XP— = (52)
logny,
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Figure 4. Temperature dependence of the molecular viscosity #,,, in salol
calculated using formula (51).
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Figure 5. Temperature dependence of the molecular viscosity 7, in
o-therphenyl calculated using formula (51).

where U(T) is the depth of the potential well occupied by a
molecule, which is surrounded by its ‘neighbours’. But why
even within a limited temperature range do there appear two
exponents for the description of 5, instead of the one
predicted by the theory? There must be an explanation for
this, but more importantly, we should establish how 5,
behaves at extremely high viscosities. This leads in turn to
difficulties in determining dw by spectral measurements.

In this case it is impossible to rely on interferometric
spectral measurements, since the instrument ‘linewidth’
proves to be much broader than the true linewidth, which is
determined by 7,,,. This means employing spectral correlation
techniques.

However, we need an unambiguous relation that would
link the spectral line halfwidths obtained from interference
and correlation spectra. We believe that such a link can be
established, but this has not yet been done, and is possibly not
so easy when numerical results are needed.

A solution to this problem has yet to be found, but we also
have to explain the presence of two exponents in the
description of 7,,.

Our preliminary explanation of this fact looks as follows.
At low values of n,,,, where U/kT < 1, the molecule can freely
change its position or freely rotate within its potential well.
But if #,,, is high, which means that the molecule finds itself in
a ‘deep’ potential well, or U/kT > 1, we must also require
that there occurs an interaction between the molecule and the
environment, since otherwise the molecule would never be
able to hop to another such well or rotate, thus meaning that
the liquid lost its main property of fluidity.

Closer inspection of the observed behaviour will have to
be left to the future, and possibly a more rigorous description
of the experimental data will differ from that presented in this

paper.
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From Figs 4 and 5 it follows that experiments make it
possible to find U; and U,, the quantities similar to the
activation energy. We can find this energy from the following
equation:

k d ln(nm/nOm)
d7-!

as was done in [57].

In conclusion we note that although there exists no
microscopic theory of viscosity, it is quite possible to derive
the molecular viscosity coefficient #,, from spectral measure-
ments by remaining within the Einstein—Debye— Frenkel
model, and this paper tried to show how it can be done.

The author would like to express his gratitude to
T S Velichkina and I A Yakovlev for constructive remarks.

= u(T), (53)
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