
Abstract. The production of Bose ± Einstein condensates in
atomic gases of alkaline elements contained in magnetic traps
has opened a new direction of research in the physics of superlow
temperatures. This paper explains in plain words the theory of
Bose ±Einstein condensation in rarefied gases, and then offers a
brief overview of the experimental results.

1. Introduction

The first three papers [1 ± 3] concerned with the production
and study of Bose ±Einstein condensates in gases of alkaline
elements at superlow temperatures were published in 1995.
Condensates of diamagnetic atoms were contained in minia-
ture magnetic traps, sometimes equipped with a laser stopper
for controlling the shape of the potential well. In this way, new
members with unusual and intriguing properties were added
to the small family of Bose condensates which formerly
included only superfluid helium II and exciton drops. A new
page was opened in the physics of superlow temperatures
[4, 10].

The production of condensates of alkaline atoms has been
made possible by bringing together the new ideas and the
techniques developed in other branches of physics. First of
all, a magnetic trap is required for containing the condensate.

Such traps were first invented for the confinement of high-
temperature plasma: from theoretical considerations regard-
ing the stability of diamagnetic plasma in a magnetic field,
Ioffe and colleagues designed a magnetic trap with a quadru-
pole stabilizing field [13]. It was in this trap that the
possibility of stable magnetic containment of a diamagnetic
plasma was demonstrated for the first time. Later Pritchard
[14] proposed using traps of this type for the containment of
neutral atoms in a diamagnetic state.

The magnetic traps are filled with gas with the aid of laser
cooling. Let us recall the principle of the latter. Assume that
we have lasers tuned to a frequency slightly below the
absorption frequency of the gas atoms. An atom at rest will
be not able to absorb the quanta of laser radiation. However,
an atomwhich moves up the laser beammay absorb a photon
owing to the Doppler effect. The atom then acquires the
momentum of the quantum whose sign is opposite to the
initial momentum of the atom. Some time later the excited
atom will emit a quantum of light, on average isotropically in
all directions. In this way, illuminating the atoms simulta-
neously from all sides, one can gradually slow them down in
the magnetic trap.

Laser cooling permits the trap to be filled with gas at a
very low temperature. The next step is evaporative cooling.
The shape of the potential well can be adjusted in such a way
with an added high-frequency field that thewarmer atoms can
easily escape. A combination of these techniques permits us to
go down to sub-micro-kelvin temperatures. It is at such
temperatures that the Bose ±Einstein condensation of gases
of alkaline elements takes place.

In this paper we first give a relatively simple treatment of
certain theoretical aspects of the physics of Bose ±Einstein
condensates, and then briefly describe the relevant experi-
mental results.
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2. Ground state

Let us first of all describe the ground state of a rarefied Bose
gas at zero temperature. It will be convenient to rely on
Feynman's qualitative analysis [15].

Let the gas be contained in a vessel of large volumeV. One
particle of such a gas has a normalized wave function
�c � 1=

����
V
p

. Assume now that an entirely similar but fixed
particle occurs at the point r � 0. The existence of a second
particle will slightlymodify thewave functionc�r� of the first.
Let us assume that the potential of interaction between the
two particlesU�r� is the simplest potential of repulsion of two
elastic spheres:

U�r� � 1 when r < a ;
0 when r5 a :

�
�1�

Parameter a corresponds to the closest distance between the
particles, and is thus equal to the diameter of the elastic
sphere.

The wave functionc�r�must be zero at r � a, and at r > a
it must satisfy the SchroÈ dinger equation for free motion:
Dc � 0. Hence we find that

c�r� � �c
�
1ÿ a

r

�
; where �c � 1����

V
p : �2�

One may say that function (2) takes into account the S-wave
scattered by the fixed site.

There is a certain infelicity in our choice of solution of the
SchroÈ dinger equation in the form (2). Strictly speaking, the
wave function c�r�must become zero on the boundary of the
volume V. Because of this, in the expression for the mean
kinetic energy e0 we may carry out integration by parts, so
that

e0 � ÿ �h2

2m

�
cDc dr � �h2

2m

�
�c2

�
H
a

r

�2

dr ;

where the integrals are taken over the volume V. Straightfor-
ward integration proves that e0 � 2p�h2a=V, where we have
taken into account that �c 2 � 1=V. The quantity e0 is
obviously very small if the volume V is macroscopic. There-
fore, approximation (2) is fairly reasonable.

Assume now that our vessel of volume V contains N4 1
identical particles. Assume also that the gas of these particles
is rarefied, so that N5Vaÿ3. The wave function of any two
particles located closely enough to each other is given by Eqn
(2), where r is the distance between the particles. The kinetic
energy 2e0 of such particles may be regarded as the energy of
their interaction. Multiplying 2e0 by the number of all
possible pairs of particles N�Nÿ 1�=2 � N 2=2, we get the
total energy of the particles E � N 2p�h2na=m, where n � N=V
is the density of particles. The energy of each particle is e,
which differs from e0 in that the volume V is replaced by the
volume nÿ1 pertaining to one particle.

Let us now look at the situation from a somewhat
different standpoint. Obviously, the wave function of two
close enough particles should not be too different from that
given by Eqn (2). Accordingly, fixing one particle at the origin
r � 0, we seek a solution of the SchroÈ dinger equation for the
other particle in the form

c�r� � �c
�
1ÿ j�r�� : �3�

Here r is the radius vector of the second (test) particle.
Assume that all the remaining particles are uniformly
distributed in the volume with a mean density
n � �Nÿ 2�=V � N=V. For the sake of argument we tem-
porarily fix the test particle at the point r � fx; y; zg. By rj we
denote the radius vector of particle number j. Interaction of
the test particle with particle number j gives rise to a wave
function of the form (2), with �c replaced by �c�rj� according to
Eqn (3), and r replaced by jrÿ rjj. In this way we take into
account the re-scattering of the wave of the test particle by
particle number j. This brings us to

c�r� � �c
�
1ÿ j�rj�

��
1ÿ a

jrÿ rjj
�
: �4�

Here the factor
�
1ÿ j�rj�

�
is defined at point rj.

It is easy to see that the the expression a=r looks like the
electric potential of a `charge' a at a distance r from the
charge. If we want to find the effect of all particles on the wave
function of a test particle, we must add together all the
contributions from the many particles. Since the `potential'
a=r falls off very slowly with the distance r, the remaining
particles will give long-range contributions which must be
diligently taken into account. The function j�r� will only
coincide with a=r when the particles are close enough to each
other; when the distance is large, the function j�r� will be
`shielded' by the particles located in between. In accordance
with Eqn (4) we get

c�r� � �c
�
1ÿ a

r
ÿ A�

X
j

a

jrÿ rjj j�rj�
�
: �5�

Here the second term in brackets takes care of the interaction
between the test particle and the particle fixed at r � 0, in
accordance with Eqn (2). The sum over all the remaining
particles describes the contribution from the latter arising
from the term in Eqn (4) which is linear in j�r�. Equation (5)
also includes the constant A,

A �
X
j

j
ÿjrÿ rjj

�
; �6�

which will be calculated in due course.
If na3 5 1, the summation in Eqn (5) must be carried out

over a very large number of particles. Because of this, the sumP
j may be approximated by the integral

�
n dr 0 with respect

to rj � r 0. Given that the wave function c�r� on the left-hand
side of Eqn (5) is defined by Eqn (3), we get the integral
equation for j�r�:

j�r� � a

r
ÿ
�

an

jrÿ r 0j j�r
0� dr 0 � A : �7�

Now we take advantage of the fact that the function 1=r
satisfies the equation D�1=r� � ÿ4pd�r�. Applying the D
operator to Eqn (7), we rewrite it in the form

ÿDj� K20j � 4pad�r� ; �8�

where K20 � 4pan.
The solution of Eqn (8) is well known:

j�r� � a

r
exp�ÿK0r� : �9�
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We see that the inclusion of contributions from other
particles leads to the Debye ±Huckel potential. For a rarefied
gas the quantity a2K20 � 4pa3N=V will be much less than one,
and so the shielding of the charge occurs at a fairly large
distance from each of the atoms. Since, by virtue of Eqn (2),
(3), the function j�r�must be considered equal to unity when
r < a, solution (4) can only be used for r > a. Accordingly, the
`charge' in Eqn (8) ought to be seen as localized on the surface
of a sphere of radius a rather than at its center. Of course, at
r > a the solution does not depend on the profile of `charge'
distribution.

In the course of the above discussion we occasionally had
to `fix' the charges. This was done solely to simplify the
mathematical expressions. In reality, any two interacting
particles, say, particles i and j, are not fixed. The sum of the
Laplacians Di � Dj, however, can be represented as
�1=2�DR � 2D0, where DR is the Laplacian with respect to the
coordinate of the center of massR � �ri � rj�=2, andD0 is the
Laplacian of the relative motion with the coordinate ri ÿ rj.
The factor two at D0 reflects the appearance of the reduced
mass m� � m=2. In the case of the free motion of particles
whose center of mass is at rest we haveDRc � 0,D0c � 0, and
so expressions (2), (3) and (9) still hold but now relate to the
wave functionof twoparticles at r � jri ÿ rjj (duly accounting
for the shielding caused by many particles).

In Eqn (6) for the constant A we may again replace the
sum by an integral. Then, in the gas approximation �na3 5 1�,
we get

A � 4pan
K20
� 1 :

Now let us find the energy of the test particle resulting
from the interaction with the other Nÿ 1 � N particles. This
energy is

e � N

�R0

a

�
c

�h2

2m
Dc
�
4pr2 dr : �10�

Here the radius R0 4 a is formally selected in such a way as
to satisfy the normalization condition 4pR2

0
�c2=3 � 1. Since

the wave function c�r� � �c
�
1ÿ j�r�� goes to zero at r � a,

and the function j�r� falls off fairly quickly as r increases,
one may carry out an integration by parts in Eqn (10), so
that cDc will be replaced by ÿ�c 2�Hj�2. In the gas
approximation we get

e � �h2K20=2m �
2p�h2an

m
: �11�

This energy has been calculated with the second particle
fixed. It would be more correct to calculate the energy of the
two particles for a predefined function j

ÿjri ÿ rjj
�
of their

relative motion. Going over to the relative variable ri ÿ rj, we
find the energy with the reducedmassm=2 and the interaction
which is a function of ri ÿ rj. As a result, the total energy (of
the pair of particles at rest) will be doubled, but each of the
particles will have the same energy e as before.

The total energy of the particles in the gas approximation
is E � Ne, that is,

E � Ne � 2p�h2an2

m
V : �12�

Sometimes it will be convenient to write it in the form

E � 2p�h2aN 2

mV
: �13�

We have written Eqn (3) for the case of interaction of the test
particle with just one other particle (subsequently taking the
shielding into account). In the general case the wave function
of an individual particle imust be written as

c�ri� � �c
�
1� Aÿ

X
j6�i

j
ÿjri ÿ rjj

��
; �14�

where �c may be a function of ri, but in the homogeneous
condensate �c � const � 1=

����
V
p

. We have included the con-
stant A to compensate for the mean value of the sum. In the
gas approximation A � 1.

We see that function (14) depends on the coordinates of all
the other particles, and thus cannot be regarded as a truly
independent one-particle function. Because the particles are
indistinguishable, the overall wave function of N particles
could be represented as the product of individual wave
functions of the form (14):

C�r1 . . . rN� � �cN
Y
i

�
1� Aÿ

X
j

j�ri ÿ rj�
�
: �15�

If, however, subscript i runs through all possible values,
each of the pairwise interactions will be included twice. We
could have set j > i; then, however, it would be hard to see
that function (15) is symmetrical. Therefore, we use a
somewhat different approach. Given that in the gas approx-
imation A � 1, and 1ÿPj j�ri ÿ rj� may be considered
small, we represent the product (15) in the form

C�r1 . . . rN� � �cN exp

�
N

2
ÿ 1

2

X
i6�j

j
ÿjri ÿ rjj

��
; �16�

where the first term in braces compensates for the mean value
of the sum over i 6� j. Expression (16) is not quite exact when
jri ÿ rjj � a, but it is useful for getting the hang of the
structure of the many-particle wave function.

Expression (16) is completely symmetrical with respect to
permutation of particles. Each of the functions �c in the
general case of a condensate in an external field must be
considered as a function of only one of the coordinatesÐ say,
�c�rj�. In the case of a homogeneous condensate the exponent
in Eqn (16) gives only a small correction to the normalization,
and so, as before, we have

�c � 1����
V
p �

���
n
p����
N
p ; �17�

for each of the identical particles.
It is easy to prove that function (16) satisfies the

SchroÈ dinger equation of free motion in the range
jri ÿ rjj > a. Indeed, any operator of type Ds acting upon
function (16)will select the terms j

ÿjrs ÿ rjj
�� j

ÿjrj ÿ rsj
�
of

the sum, which will result in sums of the formX
j

Dsj
ÿjrs ÿ rjj

�ÿX
jk

Hsj
ÿjrs ÿ rjj

�
Hsj

ÿjrs ÿ rkj
�
:

In the first sum we may replace Dsj by K20j by virtue of Eqn
(8) in the range r > a. In the second sum it is sufficient to
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retain only the terms with j � k (all the rest cancel out because
of symmetry). If once again we replace the summation by
integration, it immediately becomes clear that the total energy
is zero. This is quite natural, since our solution has been
constructed by rearranging the starting-point solutions of
type (1) with zero energy. As regards the energy of interaction
(12), it can be found by averaging the total Hamiltonian of the
free motion of the particles, using function (16) and integrat-
ing by parts.

Since the individual functions (14) look exactly alike for
all particles, it is possible to describe the condensate in terms
of functions (14), dropping the subscript `i ' at ri. If we are
dealing with an equilibrium or with the collective behavior of
condensate, then function (14) is assumed to depend on
coordinates and time.

3. Gas equilibrium

Having derived Eqn (13) for the total energy of the gas, we can
find the gas pressure p using the well-known thermodynamic
relation

p � ÿ qE
qV
� 2p�h2aN 2

mV 2
� 2p�h2a

m
n2 � en : �18�

The adiabatic equation having the form pV g � const, from
Eqn (18) we see that the adiabatic exponent is g � 2.

We also find the squared speed of sound c2s :

c2s �
1

m

qp
qn
� 4p�h2a

m2
n : �19�

Hence it follows that the energy of the particle e can be
represented in the form

e � mc2s
2

: �20�

If we add one particle to the condensate at constant pressure,
its energy will increase by the increment e� p=n, since the
volume per particle is V=N � 1=n. Hence, the chemical
potential is m � 2e. It is the chemical potential that must be
considered equal to the energy per particle.

Assume that the gas in question is in an external potential
U�r�. Then from the equilibrium condition

Hp� nHU � 0 �21�
we find that

n � m

4p�h2a
�U0 ÿU� : �22�

The constant U0 is found from the normalization condition�
n dV � N.
Let us first consider the simplest example of a gas in the

field of gravity. Then U � mgz, where z is the vertical
coordinate. Then the density n�z� falls off linearly with
altitude:

n�z� � n0 ÿ m2g

4p�h2a
z : �23�

where n0 � n�z � 0�. At z � H � 4p�h2an0=m
2g the density of

the gas vanishes. This means that the Bose gas can be poured
into a vessel (Fig. 1), and its density will increase linearly with
depth. We get something in between a liquid and a gas.

Using Eqn (23) it is easy to find the relation

H 2 � 8p�h2aN

m2gS
: �24�

which gives the thicknessH of the layer of gas poured into the
vessel given the number of particles N and the vessel area S.
We see that the thickness of gas layer increases with H=S as
H � �N=S�1=2.

A more realistic entity is the spherically symmetrical
oscillator potential

U � ar2

2
; �25�

where a is the `coefficient of elasticity'. Let n0 be the density of
gas at r � 0, and e0 � 2p�h2an0=m the particle energy at r � 0.
Then distribution (22) can be represented in the form

n � n0 ÿ n0
2e0

U � n0

�
1ÿ a

4e0
r2
�
: �26�

We see that the gas density falls off with r according to a
parabolic law, and goes to zero at r � r0 � 2�e0=a�1=2. Using
Eqn (26) and the normalization condition, we find

n0 � 152=5

8p

�
am

�h2a

�3=5

N 2=5 ; �27�

r20 �
8p�h2a

am
n0 � 152=5

�
�h2a

am

�2=5

N 2=5 : �28�

We see that the density of gas in the center of the `drop'
increases with the number of particles asN 2=5, and the volume
of the `drop' of Bose gas increases as N 3=5.

Let us derive a few more relations. Using Eqn (11) and
Eqn (22) we find

e � 1

2
�U0 ÿU� : �29�

Hence the following quantity is preserved

m�U � 2e�U � U0 � const ; �30�
where m � 2e is the chemical potential.

Another interesting relation can be found from Eqn (20)
and Eqn (29):

mc2s �U � U0 � const : �31�

Â

n0 n

H
z

b

Figure 1. Rarefied Bose gas at zero temperature may be `poured' into a

vessel. Its density n�z� varies linearly with z from n � n0 at the bottom to

n � 0 at the height H. The height H is defined by the relation

H 2 � 8p�h2aN=m2gS, where N is the total number of particles, and S is

the cross-sectional area of the vessel.
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which implies that the speed of sound becomes zero at the
boundary of the `gas drop', atU � U0. As we go deeper inside
the `drop', the speed of sound increases and attains its
maximum at U � 0 Ð that is, in the middle of the drop,
cs�0� �

������������
U0=m

p
.

4. Dense gas

In order to fathom the applicability of the simple relations
above in the gas approximation, it will be worthwhile to look
into what happens as the density increases. Without aspiring
to achieve quantitative precision, we shall try instead to find
approximations which will outline the nature of changes to be
expected in our results. For the starting point wemay take the
idea of the `shielding' of wave functions according to relations
(3), (8), and (14). Also, it will be convenient to consider
separately the various effects of increasing density, and then
sum them up together.

The first effect we are going to consider consists in the
following. Relations (4) and (5) were written under the
assumption that the function j�rj� changes little over the
length a, which allowed us to represent the response to the
function j�rj� in the form aj�rj�=jrÿ rjj. If the parameter Ka
is not too small, we must take into account the variation of
j�rj� on the scale � a. If Hj�rj� 6� 0, then the requirement
that the wave function of the test particle must vanish on the
boundary of sphere of radius a at point rj brings us to the
expression

c�r� � �c
�
1ÿ b

r
�
X
j

a

jrÿ rjj j�rj�

�
X
j

a2�rÿ rj�
jrÿ rjj3

Hj�rj�
�
; �32�

where b is an unknown constant. In Eqn (32) we have taken
into account the dipole contribution in addition to the
centrally symmetrical contribution introduced earlier Ð in
other words, we have added the P-wave to the scattered S-
wave. If once again we replace the summation by integration,
in lieu of Eqn (6) we get the integral equation

j�r� � b

r
ÿ
�

an

jrÿ r 0j j�r
0� dr 0 ÿ

�
na3�rÿ r 0�
jrÿ r 0j3 Hj�r 0� dr 0 ;

�33�
where the parameter b is found from the condition j�a� � 1.

To this equation we may again apply the D operation,
accounting for therelationD�dr=r3� � 4p�dH�d�r�,where d is
an arbitrary constant vector (dipole moment). After integra-
tion with the d�rÿ r 0� function we get:

ÿ�1� K20a
2�Dj� K20j � 4pbd�r� : �34�

With a new notation

K2 � K20
1� K20a2

: �35�

the solution of Eqn (34) may be written as

j�r� � a

r
exp
�ÿK�rÿ a�� : �36�

This formula appears as a refinement of Eqn (9). According to
Eqn (35), the parameter K increases linearly with density at

low densities, and at high densities it comes to saturation at
K � 1=a.

Using function (36) it is easy to find the energy e of one
particle:

e � �h2K20
2m

�
1� aK

2

�
; �37�

where K is given by Eqn (35). For low densities the correction
in parentheses is aK=2 � aK0=2 �

����������
pa3n
p

, for high densities
the correction is 1/2.

The above relations allow us to discuss some properties of
superfluid helium on a qualitative level. The parameter a2K20
may be assumed to be large. and so the expression in
parentheses in Eqn (37) is simply equal to 1.5. This expression
describes that part of the kinetic energy of helium atoms
which relates to the far end of the distribution of wave
functions Ð that is, when the test atoms are located far from
one another. In addition, however, we must take into account
the potential energy of interatomic interaction and that part
of the kinetic energy (the energy of zero oscillations) which is
associated with the localization of atoms near the minima of
the potential energy. This second part of the energy we shall
call by convention the potential energy Us; it may be
considered as a function of the density of atoms. Near the
minimum it may be represented as a parabolic function of the
difference nÿ n0, where n0 corresponds to the density with the
minimum potential energy. In this way, the total energy per
atom may be written as

e � 3p�h2an

m
ÿUm � 3p�h2an

2mn0
B�nÿ n0�2 : �38�

Here we have written the term of second order in �nÿ n0� in
such a way as to make its dimensionality similar to that of the
first term (constant B is dimensionless).

From condition qe=qn � 0 it is easy to find expressions for
the equilibrium density and the equilibrium potential energy
U0:

n

n0
� 1ÿ 1

B
; U0 � Um ÿ 3p�h2an0

3mB
: �39�

The condition qe=qn � 0 is equivalent to the requirement
that the external pressure be zero. Using Eqns (18), (19) and
(38), we find a new expression for the squared speed of sound:

c2s �
n2

m

q2e
qn2
� 3p�h2an2B

m2n0
� 3p�h2an

m2
�Bÿ 1� : �40�

This expression contains one unknown parameter, B.
Comparing Eqn (40) with the experimental value of
cs � 2:4� 104 cm sÿ1, and knowing the values a �
2:7� 10ÿ8 cm, n � 2:2� 1022 cmÿ3 for superfluid helium,
we find that B � 5, which seems reasonable. Now, using
Eqns (22) and (40), we find:

Um � 4p�h2na

m
ÿ 3p�h2an0

2mB
: �41�

Knowing the values of n, a, B, it is easy to check that the
second term in Eqn (40) does not exceed 20%of the first term.
The absolute value of Um seems quite reasonable, if we recall
that each atom has six closest neighbors, and that the
potential of pairwise attraction of the atoms is of the order
of a few kelvins.
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Note that the experimental value of the squared speed of
sound in helium II is about three times the value given by Eqn
(19), and so it is wrong to calculate the speed of sound in
helium II without taking into account the short-range forces
of attraction.

5. Collective motions

Let us now return to the case of rarefied gas. According to
Eqn (16), the wave function of gas atoms may be represented
in the form

C � C0F � �cN exp

�
1�Nÿ

X
i6�j

j
ÿjri ÿ rjj

��
: �42�

For a homogeneous gas at rest we haveC0 � �cN � VÿN=2. If,
however, we set the gas in motion at a velocity v, each of the
wave functions �c acquires a phase factor exp�ikri�, where
k � mv=�h. The functionC0 therefore becomes

C0 � VÿN=2 exp�iKR� ; �43�

where R � Nÿ1
P

rj is the coordinate of the center of mass,
K �Mv=�h,M � mN is the mass of the entire fluid.

In case of the more complex flows the wave functionC0 of
the condensate may be presented in the form

C0 � VN=2 exp

�
i

�h

X
i

y�ri�
�
; �44�

where the function y defines the velocity v as

v � 1

m
Hy : �45�

In case of condensate at zero temperature the functionC0

is equal to the product of �cN, so the function C0 may be
discussed in terms of the individual wave functions �c. In the
general case �c must be considered as a function of the time t
and the coordinate r of any of the identical particles. If �c
depends on r, then it is

���c�r���2 that has to be normalized to
unity. The quantity N

���c�r���2 must be assumed equal to the
density of particles n�r�, so that

�
n dV � N.

Let us now construct the SchroÈ dinger equation for the
wave function (42):

i�h
qC
qt
� HC : �46�

Here the Hamiltonian H is equal to the sum of the kinetic
energies ofN particles with an added boundary condition: the
wave functionmust vanish on the boundary corresponding to
the closest approach of any two atoms. If the functions �c vary
little over a length of the order of Kÿ1, then for the function F
we may use the stationary solution (42): HF � NeF. In this
case the flows of condensate are described by the functionC0,
which is equal to the product of the individual functions �c. In
this way, the flows of condensate can be described in terms of
the individual wave functions.

Let us now write the SchroÈ dinger equation for the wave
function of an individual particle �c. It might seem that we
ought to include the collective contribution to its Hamilto-
nian only in the form of energy e. However, this is not exactly
so. As a matter of fact, the energy Ne is found by adding
together the `pairwise interactions'. One may say that
Ne � N�Nÿ 1�2e0=2, where 2e0 is the energy of a paired

interaction Ð that is, the kinetic energy of two particles
given that the wave function vanishes on the boundary
between the most closely located particles. The energy of
interaction of a particle with all the rest particles is
2e0�Nÿ 1� � 2e � m Ð that is, this energy is equal to twice
the energy e or to the chemical potential. Accordingly, the
equation for the wave function �c of an individual particle
must be written in the form

i�h
q�c
qt
� ÿ �h2

2m
D�c� 4p�h2a

m
Nj�cj2�c�U�c : �47�

This nonlinear SchroÈ dinger equation is known as the
Gross ± Pitayevsky equation [16]. The quantity U�r� in Eqn
(47) is the potential energy of the particle, and Nj�cj2 is equal
to the local density n�r�. The quantity ����

N
p

�c in Eqn (47) we
represent as����

N
p

�c � ���
n
p

exp

�
i

�h
y�r; t�

�
: �48�

Nowwe substitute this into Eqn (47) and separate the real and
imaginary parts, getting two equations:

qn
qt
� div�nv� � 0 ; �49�

qy
qt
� 1

2m
�Hy�2 � ÿ 4p�h2a

m
nÿU� �h2

4m

Dn
n
; �50�

where v � Hy=m.
Let us demonstrate that in the quasi-classical approxima-

tion we get the equations of ideal gas dynamics. For this
purpose we drop the last term on the right-hand side of Eqn
(50) and take the gradient of this equation. Then we get

qn
qt
� div�nv� � 0 ; �51�

m

�
qv
qt
� �vH�v

�
� 4p�h2a

m
Hn� HU � 0 : �52�

Hence it is clear that the condition of equilibrium of
condensate is

4p�h2an

m
�U � 2e�U � const : �53�

which coincides with Eqn (30). This implies that the
equilibrium of condensate discussed in Section 3 disregards
the `quantumpressure', described by the last term in Eqn (50).
Note once again that equations (50) and (52) only apply to
nonrotational flows: mv � Hy. They may be written in the
form of equations of gas dynamics with a pressure
p � 2p�h2an2=m. Because of this, these equations have solu-
tions of gas dynamic form.

For example, atU � 0 one may seek solutions which only
depend on x and t. In particular, if we assume that the density
n is a function of the velocity v, we arrive at a solution of the
Riemann wave or progressive wave. This wave is described by
the equations

qv
qt
� �v� cs� qvqx � 0 ; �54�

���
n
p � �����

n0
p � v

���������������
m2

16p�h2a

s
:

�55�
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In fact, here we have two sets of equations, one describing the
wave propagating along the x-axis, and one describing the
wave running in the opposite direction. If we align the x-axis
with the direction of propagation of thewave, it is sufficient to
retain only the plus sign in Eqns (54) and (55).

Equation (54) in the linear approximation describes a
sonic wave; in the nonlinear case it leads to a Riemann wave.
The leading edge in such a wave becomes steeper and almost
`topples over', so that the derivatives qv=qx, q2v=qx2 should
exhibit a singularity. This implies that in the general case we
have to retain the last term in Eqn (50), which takes care of the
dispersion of the wave.

If the wave amplitude is not large (that is, the Mach
number is v=cs 5 1), then Eqn (49)may be used for finding the
linkage between a small perturbation of the density n 0 and the
velocity v, n 0 � n0vk=o. Substituting this expression into the
linearized equation (50), for k5 K0 we find that
o � csk� csk

3=8K20 for a wave propagating to the right
along the x-axis. The second term here arises because of the
last term on the right-hand side of Eqn (50). Taking the
nonlinear term into account, the equation for a weakly
nonlinear wave with dispersion assumes the form

qv
qt
� �v� cs� qvqx �

cs

8K20

q3v
qx3

: �56�

An equation of this kind is well known in hydrodynamics and
plasma physics as the Korteweg ± de Vries equation.

It describes, for example, waves in shallow water with
positive dispersion [20]. Equation (56) is known to admit
solutions in the form of solitary waves or solitons:

v � ÿv0 coshÿ2
�
xÿ �cs ÿ c�t

D

�
; �57�

where c � v0=3, and v0 is the amplitude of the soliton. The
width of solitonD is linkedwith its amplitude by the following
relation:

D2v0 � 3cs

2K20
� const :

The velocity v of the soliton (57) is negative, so the
perturbation of density n 0 is also negative Ð in other words,
the soliton looks like a small density trough running at a speed
close to cs. If the amplitude of soliton v0 is much less than the
speed of sound, then D2K20 4 1, and the soliton is fairly broad.

Along with the one-dimensional solitons one may con-
sider nonlinear solutions with a weak dependence on the
transverse coordinate y. Such solutions are described by the
Kadomtsev ± Petviashvili equation. The Kadomtsev ± Pet-
viashvili equation for the dispersion described by Eqn (56)
in the system of coordinates moving along the x-axis with the
velocity cs has the form

q
qx

�
qv
qt
� v qv

qx
ÿ cs

8K20

q3v
qx3

�
� cs

2

q2v
qy2

: �58�

The solution of this equation has the form of a two-
dimensional soliton localized with respect to both x and y
coordinates. Replacing the right-hand side of Eqn (58) by

cs
2

�
q2v
qy2
� q2v

qz2

�

one may also obtain solutions for three-dimensional solitons
(see Appendix).

If U 6� 0, equations (49) and (50) can be used for
describing the equilibrium and small oscillations of the
condensate with respect to this equilibrium. It is especially
easy to describe the dipole oscillations, when the condensate
as a whole is displaced to a small distance x. Then v � _x (the
dot denotes the time derivative), and the potential is y � _xx.
Assuming that �h2 � 0, the density n in Eqn (50) is perturbed
by the increment n 0 � ÿx�qn0=qx�; the relevant perturbation
of the first term is simply ÿ�qU=qx�x by virtue of the
equilibrium condition (53). Hence, for the harmonic poten-
tial U � �a=2�r2 at y � _xx we get:

m�x � ÿax :

We see that the `drop of condensate' performs harmonic
oscillations as a free particle in the potential U. It is not hard
to obtain equations for other types of oscillations Ð for
example, for spherical oscillations with y � _xr2, or for
quadrupole oscillations with y � _x�x2 ÿ y2�. One only has to
construct the appropriate Lagrangian and write out the
required equation of motion.

Let us also consider a solution in the form of a vortex
filament. Assume that this filament is located along the z axis
of the cylindrical system of coordinates r;f; z. The function y
for this solution is y � �hf, and so function (48) remains the
same when the angle f is changed by 2p. For homogeneous
condensate with U � 0, given that

qy
qt
� ÿ 4p�h2a

m
n0 ;

the stationary equation (50) becomes

n

�
1

r2
� 8p�h2a�nÿ n0�

�
� �h2

2

1

r

d

dr

�
r
dn

dr

�
: �59�

Here n0 is the density at r!1. If we disregard the right-hand
side of Eqn (59), we simply get nÿ n0 � ÿ1=8p�h2r2a. Hence it
follows that the density of condensate vanishes at
r4 �8p�h2an0�ÿ1=2. The radius of the resulting cavity is the
smaller, the larger the density n0. Therefore, if n0 depends on
z, as in the case of condensate poured into a vessel (Fig. 1), the
shape of the cavity (neglecting the term on the right-hand side
of Eqn (59)) resembles the funnel in water going down a plug-
hole (see Fig. 2).

The term on the right-hand side of Eqn (59) only slightly
changes the shape of n�r� (see Ref. [21]). More detailed
calculations of the flows in rotating condensate in a magnetic
trap were carried out in Ref. [22].

Figure 2.A vortex filament in the gas layer poured into a vessel in the field

of gravity resembles a funnel in water going down a plug-hole.
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6. Elementary excitations

Now let us consider small excitations in Bose condensate. We
shall see that they look like a kind of quasi-particle, the
phonon. At first sight it seems that small excitations can be
described by the linearized equations (49) and (50), relating to
collective flows. To better understand the linkage between
such collective oscillations and quasi-particles, we shall
indeed start with linearizing equations (49) and (50). The
quantity ymust be considered small, and the density n can be
represented as n � n0 � ~n, where n0 � const is the equilibrium
density of homogeneous condensate, and ~n5 n0.

Consider the simplest solution in the form of a planewave:
~n � n 0 cos�otÿ kx�; y � y 0 sin�otÿ kx�. Then from Eqns
(49) and (50) we get

mon 0 � n0k
2y 0 ; mÿ1n0oy 0 � c2sn

0 � �h2k2n 0

4m2
; �60�

where c2s � 4p�h2n0a=m
2.

From Eqn (60) we find the dispersion relation for the
frequency:

o2 � k2c2s �
�h2k4

4m2
� �h2k2

�
K20 �

k2

4

�
mÿ2 : �61�

With the notation eB � �ho, p � �hk, Eqn (61) becomes

eB �
�
p2c2s �

p4

4m2

�1=2
: �62�

This is the well-known Bogolyubov's formula for the
spectrum of elementary excitations in a Bose gas. The
frequency o in Eqn (61) we shall denote by oB, so eB � �hoB.
In Eqn (62) we have only retained the plus sign on the right-
hand side, although formally omay have either sign.

As follows from Eqn (61), at k2 5 K20 the frequency is
o � kcs that is, we simply have a sonic wave. At k2 4 K20 we
observe the transition to a free quantum particle: a particle
with such a large momentum does not have a chance to
`notice' the correlation of its motion with perturbations of the
condensate.

Expression (49) for �c indicates that the wave function in
the linear approximation is

c � �c
�
1� 1

2

~n

n0
� i

�h
y
�
� �c�1� ~c� ; �63�

where �c � 1=
����
V
p

.
Since all the �c�rj� are assumed to be identical, in the linear

approximation we have

C � �cN

�
1�

X
j

~c�rj�
�
: �64�

The functions ~c�rj� in the linear approximation are assumed
to be very small, so expression (64) can be rewritten in the
equivalent form

C � �cN exp

�X
j

~c�rj�
�
: �65�

Hence it follows that the wave function ofN particles may be
represented as the product of similar terms of the form

�c exp
�
~c�rj�

�
. Therefore, the linearized function (63) must

satisfy the linearized equation for the collective mode. In
other words, the wave function ~c must satisfy the linearized
equation (47).

In the zero approximation we simply get the equilibrium
equation. When the number of particles N is very large, this
equation becomes mc2s �U � 0, which implies that the first
term (the kinetic energy) on the right-hand side of Eqn (47) is
small. In the next-order approximation we get

i�h
q~c
qt
� ÿ �h2

2m
D~c�mc2s �~c� ~c�� �U~c : �66�

If U � 0, the solution of this equation may be sought in the
form of a plane wave, so that the total wave function of
individual particle becomes

c � �c
�
1� b1 exp�ÿiot� ikx� � b2 exp�iotÿ kx�� : �67�

It would have been nice to regard this wave function as a
superposition of three states: the condensate itself and two
excited states with positive and negative frequencies. This
straightforward interpretation, however, encounters a formal
mathematical difficulty. The point is that Eqn (66) contains
not only ~c, but also ~c�, so ~cwill only satisfy the superposition
principle with real-valued coefficients, combining different
solutions of the form (67). The amplitudes b1, b2 in each of
these solutions are linked by certain relations which follow
from the homogeneous equations for these amplitudes. If, for
example, b1 and b2 are real, then for o > 0 it is easy to find
that

b1
b2
� ÿ 1� k2

2K20
� k

K0

����������������
1� k2

4K20

s !
: �68�

Hence it follows that at k2 4 K20 the amplitude b2 is small,
and so the wave function (67) only retains the first
exponential term with positive frequency which describes a
free particle. However, for K2 5K20 we get b2 � ÿb1, so that
both amplitudes are equal in magnitude.

Nevertheless, the solutions with positive and negative
frequencies may exist independently from each other. This
can be proved by the following arguments.

It is easy to see that Eqn (47) is invariant with respect to
the transformation �c! �c exp�ia�, where a is an arbitrary
angle. Naturally, the solution (67) is also invariant with
respect to this transformation. Now we take function (67)
and use it for constructing a new solution ca with the aid of
the superposition

ca�x; t� � exp�ia�c
�
x; t� a

o

�
� exp�ÿia�c

�
x; tÿ a

o

�
:

�69�

Obviously, this superposition is a solution of the initial
linearized equation. Now it is easy to find that with a � p=4
solution (69) becomes the superposition of the wave functions
of the condensate and the exponential term with positive
frequency. In a similar way it is possible to construct a
solution in the form of a superposition of the wave functions
of the condensate and the exponential term with negative
frequency. In this sense the wave function of the form (67)
may indeed be regarded as a sort of superposition of the wave
function of the condensate and two wave functions of the
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form exp�ÿiot� ikx� and exp�iotÿ ikx�. This superposition
may actually arise when the condensate interacts with some
external system at a frequency o.

Physically more realistic, however, is the situation when a
perturbation with energy �ho and momentum �hk is excited in
the condensate. Then the only possible state will be repre-
sented by a condensate of Nÿ 1 particles and one phonon
with a wave function �c exp�ÿiot� ikr�. One may say that in
the absence of rigid coherent coupling with an external system
the Bose condensate may exist either in the ground state or in
a state with one (or several) phonons.

If the phonons excited in the Bose gas have different wave
numbers, they will behave independently of each other by
virtue of the linearity of equations for small oscillations (if we
disregard their nonlinear interactions).

In case of inhomogeneous condensate the description of
phonons in the form of planewavesmust be understood in the
sense of a quasi-classical approximation in terms of wave
packets. It is easy to envisage the following pattern of
excitation. Assume that the initial state is represented by a
condensate of Ns particles. If we add to this condensate a
particle with zero chemical potential, we get a condensate of
Ns � 1 particles. If, however, the added particle has the
energy �ho, it will behave in the condensate as a phonon with
the same energy �ho. Adding one particle after another, we
may build a system of N � Ns �Np particles, in which Ns

particles are part of the condensate, andNp particles represent
different excitations. If we bring the potential U�r� at the
periphery of the condensate to zero, then the Np excitations
will escape as free particles, leaving behind only the Ns

particles of the condensate.

7. Phonons

Excitations with Bogolyubov spectra (62) are conventionally
referred to as phonons. At k2 5 4K20 the energy of a phonon
�hoB is approximately equal to �hcsk. At k2 4 4K20 the energy
�hoB corresponds to the kinetic energy of the free particle:
�hoB � �h2k2=2m. The transition from the sonic quantum to
the particle may be loosely assumed to take place at k � 2K0.

Assume that the gas is in a potential wellU�r�, adjusted in
such a way that mc2s �U�r� � 0. This implies that at the
boundary of the condensate, where its density n�r� vanishes,
we have U�r� � 0. In the middle of the condensate U attains
its minimum ÿU0 Ð it is indeed a potential well. Hence it
follows that the speed of sound is a function of the
coordinates: it vanishes on the boundary of the condensate,
and reaches its maximum in the middle of the well.

Consider now a phonon with energy �ho. The wave
function of such phonon may be represented as a wave
packet a�r� exp�ÿiot� ikr�, where the envelope of the
packet a�r� is much greater than 1=k. By virtue of the
conservation of energy, the frequency is o � const, and is
thus a kind of adiabatic invariant. On the contrary, the
momentum �hk of such packet is a function of the coordi-
nates. For each value of frequency o there exists a point for
which

o � kcs � �hk2

2m
: �70�

At this point we have k � 2mcs=�h � o=cs, that is,

c2s �
4p�h2na

m2
� �ho

2m
: �71�

From this relation we find the density at the point of
`phonon ± particle transformation':

n � mo
8p�ha

: �72�

As the energy �ho increases, the point of phonon ± particle
transformationmoves deeper and deeper into the condensate,
until n attains its maximum value of nmax � n�0�. Thus, at
frequencies

o >
8p�hn�0�a

m
�73�

all elementary excitations are free particles.
In the region where the density is above the value given by

Eqn (72) the excitations are phonons with the dispersion
o � csk. Hence it follows that the momentum of a phonon
p � �hk � o=cs increases as it moves from the middle of the
well to its periphery. At the density defined by Eqn (72) the
phonon becomes a free particle, and its momentum remains
the same up to the boundary of thewell, whereU � 0. Outside
of the well the momentum starts to decrease in accordance
with the law of conservation of energy:

p2

2m
�U�r� � �ho � const : �74�

This relation can be used for finding the path of a given
particle. Such particles form a gaseous halo around the
condensate, if the temperature of the gas cloud is not zero.
Thus, in terms of momentum the particle is in a certain
effective potential well Up�r� shown in Fig. 3.

We see that beyond the points A, A 0 the excitation moves
as a free particle, while inwards of the pointsA,A 0 the particle
becomes a phonon whose momentum changes in such a way
as though it were located on a potential hill (dashed line in
Fig. 3).

When the gas is heated, the number of particles in the
condensate will decrease, and the number of phonon
excitations will increase. We can get a mental picture of such
a state starting with a given number of particles in the
condensate Ð say, Ns. The reference point for measuring

xB0

A0
B

A

Up�x�

�ho � const

Figure 3. The effective potential well Up�x� for a phonon with energy

�ho � const. Beyond the points A, A 0 the elementary excitation becomes a

free particle in the potential Up�x� shown by the dashed line. Between the

points A, A 0 the momentum of particle is p � �hk � �ho=cs. Since the

density of the gas in the condensate varies in such a way that the relation

mc2s � ÿU�x� is satisfied, the squared momentum of the phonon is

p2 � �h2o2=c2s � m�h2o2=jU�x�j. Accordingly, in terms of momentum the

effective `well' Up�x� has the shape shown dashed line. When o! 0, the

points A, A 0 tend to the points B, B 0, and the dashed line approaches the

segment BB 0 on the x-axis.
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the potential energy U�x� or U�r� can be selected as shown in
Fig. 3. Then the condensate will be located in the region
U < 0. All particles of the condensate have zero energy. In
terms of particles this state appears as Bose condensate with
zero energy. When any particle within the well is moved, the
change in its potential energy is exactly compensated by the
change in the energy mc2s resulting from paired interactions
with other particles. Because of this, the shape of the potential
well has no effect on the fact that the total energy of any
particle of the condensate is zero.

We now add new `warm' particles of the `normal' gas
phase. Their chemical potential must be zero. From this
condition we may find the temperature dependence of the
number of particles Nn of the normal phase; the sum
Ns �Nn � N is equal to the total number of particles. The
condensate itself appears as a set of Ns particles with zero
chemical potential.

8. Scattering lengths

All the arguments developed above were based on the
simplest model of interaction between the atoms: the model
of rigid spheres. In reality, this interaction is much more
complicated. Thus, faraway atoms experience the Van der
Waals force with the potential U�r� � ÿb=r6, where b is a
certain constant. This potential is sufficiently deep and
extensive, making it possible to use a quasi-classical approx-
imation in a certain range of distances. The momentum of a
particle with near-zero energy varies with the distance as
p2 � ÿmU, and accordingly, the de Broglie wavelength lB
depends on the radius as lB � r3. The derivative dlB=dr is
proportional to r2; therefore, as r increases, a certain radius r0
may be reached where this derivative becomes greater than
unity. The quasi-classical approximation cannot be used in
the neighborhood of this value.

At very large distances, where the kinetic energy is
e4 b=r6, the quasi-classical approximation holds again. In
this way, the problem of scattering reduces to sewing together
the two quasi- classical solutions in the region where e ' b=r6.
Since the wave function has a large number of nodes in the
region of interaction, the scattering length a depends on the
interplay of numerous particular features of U�r�.

The theoretical calculation of the scattering length is a
formidable task. It is possible, however, to find the prob-
ability of the scattering length having a plus or minus sign
from the condition of sewing of quasi-classical wave func-
tions. It turns out (see Appendix) that the probability of the
scattering length for an alkaline atom taken at random being
positive is 3/4, and being negative 1/4. In particular, in three
experiments carried out so far [1 ± 6], the scattering length was
positive for two substances, and negative for only one
substance (7Li).

Now let us see how the magnitude of the scattering length
affects the characteristics of the Bose condensate. We start
with the equilibrium. Multiplying the right-hand side of Eqn
(47) by �c and integrating the result with respect to the volume,
we find the magnitude of chemical potential m at equilibrium.
Given that at equilibrium, according to Eqn (48), we have
�c � ���������

n=N
p

, we get

Nm �
��

�h2

8mn
jHnj2 � g0an

2 � nU

�
dv ; �75�

where g0 � 4p�h2=m � const.

The equilibriumdistribution of density n�r�must be found
from the condition that Eqn (75) is at minimumwith the given
number of particles N � � n dv. From Eqn (75) we see that at
a � 0 the atoms of condensate fill the lower level in the
potential well U�r�. The condensate then occupies a region
of size L0 � ��h2=am�1=4 if U � ar2=2. As a > 0 increases, the
atoms recede from one another, and if the first term in the
integrand can be neglected, the condition of equilibrium
assumes the simple form of Eqn (22): ag0n�U � const.

Now let us consider a condensate with two kinds of atoms.
Let n1, n2 be their densities, a1, a2 the corresponding
scattering lengths, and by a12 we denote their mutual
scattering length. The expression for the chemical potential
becomes more complicated. Assume, for example, that
N1 � N2 � N. Then we get:

2Nm �
��

�h2

8mn1
�Hn1�2 � �h2

8mn2
�Hn2�2

� g0�a1n21 � 2a12n1n2 � a2n
2
2� � �n1 � n2�U

�
dv : �76�

Let us consider a few particular cases. If a12 � 0, the two
condensates are independent of each other and fill the trap in
the same way. If a212 � a1a2, the trap is filled by gas with
density n � n1 � n2, while the concentrations c1 � n1=n,
c2 � n2=n may be entirely arbitrary functions of r, the only
condition being that c1 � c2 � 1. Another interesting situa-
tion corresponds to a212 4 a1a2. In terms of energy it is then
advantageous to have n1n2 � 0. This implies that the
condensates of atoms of kind 1 and kind 2 are segregated,
and the middle of the trap is occupied by the phase whose
scattering length is smaller (that is, whose `elasticity' is lower).

Interesting effects are observed when the scattering length
is negative. If the scattering length in Eqn (75) is negative,
then the second term in the integrand describes attraction
rather than repulsion of atoms. If we compare the second
term with the first and assume that the characteristic size of
the condensate is L, then (recall that n � N=L3) we see that
the first term is proportional toLÿ5, and the second to� Lÿ6.
Hence it follows that equilibrium is only possible when the
number of atoms of condensate is not too large,
N < Nc � L0=a, where L0 is the characteristic size of the
equilibrium condensate of not too high density. At N > Nc

the condensate must collapse into a point; this collapse was
first studied by Zakharov [23] using the nonlinear SchroÈ din-
ger equation of the form (47) as applied to a Langmuir soliton
in a plasma (see also Refs [24 ± 28]). Pitayevsky [29] demon-
strated that an exactly similar collapse must take place in a
Bose condensate. The outcome of such a collapse is not yet
quite clear. Stoof [30] believes that the gas of atoms with
negative scattering length must segregate into phases or build
molecules before or instead of undergoing Bose condensa-
tion. Kagan, Shlyapnikov, Walraven [31] consider the
feasibility of formation of dense clusters. Hopefully, this
problem will be finally resolved by further experimental
studies.

9. Magnetic confinement of Bose condensate

Gas condensates at superlow temperatures are created using
atoms of alkaline elements in diamagnetic states, so they are
most conveniently contained in magnetic traps.

Magnetic traps were first invented for confinement of
high-temperature plasma. One of the simplest types of trap
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was proposed by Budker [32] in this country and Post [33] in
the USA. Budker called it a trap with magnetic stoppers. The
simplest realization consists of a solenoid whose magnetic
field is stronger at the ends than in themiddle. Accordingly, in
the longitudinal direction there is a `magnetic well', a region
where the field B has a minimum. In the cross section,
however, the magnetic field falls off towards the periphery.
In a plasma trap this leads to instability of the plasma [11, 12];
for diamagnetic atoms such a device does not work as a trap.
For the stable confinement of plasma or diamagnetic
condensate there must be an absolute minimum of the
magnetic field inside the trap. Such a trap was developed by
Ioffe and colleagues [13], who were the first to prove the
feasibility of stable confinement of plasma.

Later a trap of this type was used for the confinement of
neutral diamagnetic atoms [14].

Let us explain the principle of this trap. It will suffice to
consider the magnetic field near its minimum in the middle of
the trap. Assume that the magnetic field has the form
B � Hf, where f is the corresponding potential. In case of a
homogeneous magnetic field we have f � B0z, where z is the
coordinate in the cylindrical system of coordinates �r;j; z�.
Now we add the quantity B0z to az3=3. The magnetic field on
the axis r � 0 will then be B0 � az2, and will thus increase to
both sides from the point z � 0. It turns out, however, that the
magnetic field fall off in the transverse direction. The point is
that because divB � 0 the function f must satisfy equation
Df � 0. Therefore, in the neighborhood of z � 0, r � 0 the
function fmust be represented as

f � B0z� az3

3
ÿ azr2

3
: �77�

Hence it follows that the field Bz � B0 � az2 ÿ ar2=3 falls
off as r increases, and it is not possible to confine a
diamagnetic substance in the transverse direction. To over-
come this impediment, the simple symmetrical trap was
supplemented with a quadrupole magnetic field in Ref. [13].
Then the potential f is given by

f � B0z� az3

3
ÿ azr2

3
� 1

2
b�x2 ÿ y2� ; �78�

where x � r cosj, y � r sinj.
According to Eqn (78), the squared magnetic field

strength is

B 2 �
�
B0 � az2 ÿ ar2

3

�2
� b2r2 : �79�

Hence it follows that at b2 > 2aB0=3 the magnetic field
grows in all directions away from z � 0, r � 0, and we have a
trap with an absolute minimum of field B. Traps of this type
are used in the experiments with Bose condensates of atoms of
alkaline elements.

There are many more possible designs of magnetic traps.
Cold plasma, for example, is sometimes confined with a
`magnetic grid' [34]. In its simplest form it consists of
current-carrying rods arranged in a plane parallel to each
other. The currents in adjacent rods run in opposite
directions, so that the cross-sectional magnetic configuration
has the shape shown in Fig. 4.

Magnetic grids may be combined to form `magnetic
vessels', which makes it possible to pour condensate into a

vessel (see Fig. 1) in the laboratory.Herewe shall mention just
one such type of idealized vessel, the `magnetic cup' shown in
Fig. 5. It is a double helix with the current running in opposite
directions in each spiral, forming the walls of the imaginary
cup.

10. Experiments with Bose condensates

The first three condensates were prepared from atoms of
rubidium-87 [1], sodium [2] and lithium-7 [3]. The scattering
length is positive for rubidium and sodium, and negative for
lithium. All condensates were prepared according to more or
less similar routines which differed only in minor details.

The experiment starts by filling the magnetic trap with
atoms in a diamagnetic state. The atoms of alkaline elements
have integral spins; therefore, their quantum magnetic
moments may be directed along the field, counter to the
field, or with zero projection of the moment on the direction
of the field. Only those atoms whose magnetic moments are
opposite to the field are suitable for filling the trap. The
energyÿlBof such atomshas aminimum in themiddle of the
trap.

Laser cooling is used during the first stage of filling the
trap with the gas atoms. Then comes the second stage, the
stage of induced cooling. A pulse of high-frequency magnetic
field may rotate the spin of the atom in such a way that the
atom will not be retained in the magnetic trap. The frequency
of the high-frequency field can be adjusted so as to selectively
eject the atoms from the periphery of the trap, where the
`warmest' particles are located. In this way it is possible to
reduce the temperature and get into the sub-microkelvin
range. It is then that Bose condensation takes place. With
additional laser beams it is possible to control the shape of
magnetic trap, thus changing the parameters of the Bose
condensate.

In recent experiments with 87Rb [35] the number of atoms
in the condensate was brought up to 4� 104 at a temperature

Figure 4. A `Magnetic grid' is a set of conductors (current-carrying rods),

with the current in adjacent rods going in the opposite directions. A region

with a strong enough magnetic field is created in the neighborhood of the

conductors.

Current

Figure 5. A `Magnetic cup'
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of 280 pK. It is interesting that the temperature of condensa-
tion Tc turned out to be close to the critical temperature of
non-interacting atoms. The authors were able to excite and
study the collective modes in the condensate [4]. These modes
are well interpreted as collective coherent states. Two modes
were observed: m � 0, and m � 2. The mode m � 0 corre-
sponds to axially symmetrical oscillations, when the radial
contraction of the drop of condensate is accompanied by its
elongation in the longitudinal direction. The mode m � 2
corresponds to elliptic deformation of the drop in the
transverse direction. The frequencies of oscillations were in
good agreement with theoretical predictions. The amplitude
of themodem � 2was large enough to enable the detection of
the nonlinear effect of the square-law frequency increase with
amplitude. The experiment indicated that the time of
damping of oscillations was fairly large, which calls for
further theoretical analysis.

In experiments with condensates of sodium atoms [2, 5, 6,
36] the number of atoms in the condensate was made as large
as 5� 106. In accordance with the simplest theory (disregard-
ing the effect of the expulsion of excitations from the
condensate), the number of condensate atoms Ns must vary
with the temperature as Ns � NÿN�T=Tc�3, where N is the
total number of atoms, and Tc is the critical temperature.
Such a dependence was actually observed experimentally
when the share of particles in the condensate was below 50%.

The collective modes were also observed in experiments
with sodium condensate [36]. These oscillations also died
away rather slowly. The frequencies of two different modes
observed in Ref. [36] were in good agreement with the theory
of collective modes of condensate.

Keen theoretical interest in the condensates of 7Li [3] is
explained by the fact that the scattering length of lithium
atoms is negative. This implies that the effective potential is
negative Ð in other words, there is attraction between the
atoms. From a theoretical standpoint the condensate under
such conditions cannot be stable if the number of atoms in the
condensate is large enough [29 ± 31]. The initial reports [3]
claimed that the experimentally achieved number of atoms in
the condensate was above the critical value. Further experi-
ments [37] revealed, however, that the highest number of
particles N0 in Bose condensate was only about 1300, which
agrees very well with the theoretical limit of 1400 as found in
Refs [22, 31, 38 ± 40].

Coherent states in the form of Bose condensates open the
possibility of studying many interesting quantum effects. For
example, the cover of the March issue of Physics Today [41]
featured a color picture of halfmoon-shaped falling drops of
condensates, with the caption `The Atom Laser'. This picture
appeared courtesy of the authors of Ref. [42] concerned with
the development of an atom laser using the ideas of Refs [43,
44].

Here we are actually dealing with a certain analogy
between a Bose condensate and a laser. In a laser one may
envisage a situation when laser radiation is stored in the
resonator through atomic transitions from a higher excited
level to a lower one. The release of a shutter eliminates one of
the mirrors and lets out the pulse of light. The storage of cold
atoms of Bose condensate in the trap is similar to the storage
of photons in a laser cavity. If we switch off the trap or turn
the magnetic moments of atoms with a pulse of high-
frequency field, we may release either the entire condensate
or part of it. It is exactly such a free drop of condensate that is
portrayed on the front cover of Physics Today.

This analogy between laser and Bose condensate so far
seems somewhat artificial. More sophisticated effects of the
collective behavior of atoms, however, may take place in Bose
condensate. For example, the formation of three-dimensional
solitons may lead to the ejection of coherent clusters of
matter, which fits in better with our intuitive ideas of
coherent laser light pulses.

Another interesting effect was observed in Ref. [45] (see
alsoRef. [41]). It consists in the interference between twoBose
condensates. The magnetic trap for sodium atoms in this
experiment was designed in such a way that the Bose
condensate had the shape of a long cigar. An additional
laser beam of rectangular cross section was used to cut this
condensate in two, with a certain distance d between the
resulting parts. Then the trap and the laser were turned off
simultaneously, and the two halves of the condensate started
to expand fast in the transverse direction, at the same time
moving rather slowly towards each other. A clear interference
pattern was formed in the overlap region, with the distance
between the ripples equal to half the de Broglie's wavelength
l. The wavelength itself was well approximated by the
formula l � ht=md, where h � 2p�h, t is the observation
time, m is the mass of atom, and d is the separation between
the condensates prior to de-energizing the laser and the trap.
The experimentally observed interference pattern of matter
waves with the period of 15 mm corresponds to a kinetic
energy of 0.5 nK, whereas the energy of the particles in the
Bose condensate before was of the order of 100 nK. Owing to
the radial expansion of the condensate its density decreased
greatly, and so the c-waves which formed the interference
pattern corresponded to free particles. This observation
clearly demonstrates the indistinguishability of particles: the
c-functions of the two condensates correspond to the
common wave function of the same particles.

These experiments open new opportunities for studying
coherent atomic beams. In particular, of special interest is the
question of whether it is possible to observe and study the
effects associated with a varying phase lag between two Bose
condensates. The use of coherent phenomena may suggest
new ideas for the development of atom lasers.

The prospects for the experimental studies of numerous
physical effects in Bose condensates of alkaline elements are
still quite vast.

11. Conclusions

The production of Bose condensates of atoms of alkaline
elements in miniature magnetic traps has opened a new
interesting domain of both experimental and theoretical
studies. Progress in the experiments will to a large extent
depend on the development of new diagnostic techniques and
on those questions which will be addressed to the experi-
menters.

Theoretical studies may follow their own guidelines. First
of all, the theory must be developed to describe and interpret
the experimental results already available. Namely, it is
necessary to describe in greater detail the kinetics of the
normal phase Ð that is, the kinetics of phonons. The results
of this treatment should enable one to calculate the damping
of the collective modes. Dispersing gas clouds have been
observed in some experiments [5]. The question is whether the
expanding normal gas phase is associated with the compres-
sion of the condensate because of a kind of `reactive recoil', or
whether this effect is small.

634 B B Kadomtsev, M B Kadomtsev Physics ±Uspekhi 40 (6)



More attention ought to be paid to the scenarios of the
formation of condensates in gases with negative scattering
length. Since this condensate is unstable when the number of
particles is large, it would be desirable to carry out more
detailed studies (compared with the theoretical works [29 ±
31]) concerned with the outcome of its evolution.

In the most recent experiments [46] microscopic explo-
sions were observed in condensate where the number of atoms
was >1400, accompanied by a rapid compression and
scattering of the cloud of atoms [see UFN 167 688 (1997)].
This micro-explosion points to a collapseÐ that is, a jump to
a new quantum state with a higher density. The implosion of
part of the condensate is accompanied by a release of heat and
a bursting of the condensate. This effect resembles the
explosion of supernova, where gravity `overcomes' Pauli's
principle. In the case of condensate, the attraction `over-
comes' Heisenberg's uncertainty principle.

The production of `drops' of Bose condensates in
magnetic traps also puts more general queries to the
theoreticians. The point is that Bose gases are rather
commonly described with the methods of quantum field
theory using the operators of creation and destruction of
particles. Bose condensation in this theory implies that the
field operator has a mean value. Then the phase does not
commute with the operator of the number of particles. This
circumstance alone perplexes the experimenters [10], not to
mention that this approach may imply spontaneous violation
of symmetry. In the present paper this difficult problem is
avoided by using only the SchroÈ dinger equation at zero
temperature. However, even when the formalism of the
SchroÈ dinger equation is used, the wave function of the
condensate may be multiplied by an arbitrary factor of the
form exp�ia�, where a is the phase. Because of this, the phase
difference between different condensates of identical particles
may have a certain physical meaning. We believe that further
experiments will enable one to detect and study the relevant
effects.

The operator approach is found to be useful for describing
a number of fine physical effects in Bose condensates. In
particular, interference phenomena of the Anderson effect
type may take place when two condensates come into contact
with each other [46]. Hopefully, the improvements in
experimental and observational techniques in the physics of
superlow temperatures will permit the observation of these
effects in direct experiments.

12. Appendices

12.1 Acoustic solitons
Solitons (wave formations in the shape of solitary nonlinear
pulses) are well known in hydrodynamics and plasma physics
[2]. Optical solitons are used for transmitting information
through optical fibers. Acoustic solitons are less familiar,
because there are not many media in which sonic waves
exhibit dispersion with increasing wave number. However,
equations (51), (52), and formula (61) indicate that acoustic
waves in Bose condensate exhibit dispersion as the wave
number approaches K0. Accordingly, a weakly nonlinear
plain wave described by Eqn (56) may give rise to solitons.
A single one-dimensional soliton has the form of Eqn (57),
where the amplitude v0 is linked with the width of solitonD by
Eqn (58). The dispersion of the form of Eqn (61), where the
phase velocity vp � o=k increases with k, is usually referred to

as positive. It is known [20] that, along with the one-
dimensional solitons, two and three-dimensional solitons
may exist when the dispersion is positive. They are described
by the Kadomtsev ± Petviashvili equation. Let us briefly
explain the point for those who have never encountered this
equation before. In the linear approximation, Eqn (56) for a
plane wave of the form exp�ÿiot� ikx� leads to the
dispersion relation

o � csk� csk
3

8K20
: �A:1�

Assume that the wave resembles a one-dimensional wave,
but is slightly different, so that it can be regarded as a
superposition of plane waves of the form exp�ÿiot� ikr�,
with k?5 kk. Then the wave number k in Eqn (A.1) may be
assumed to be k � �k2x � k2?�1=2 � kx � k2?=2kx. The incre-
ment proportional to k2? in the second term in Eqn (A.1) may
be neglected, since k2 5 K20 by assumption. Therefore, Eqn
(A.1) may be rewritten as

kx

�
oÿ cskx ÿ csk

3
x

8K20

�
� csk

2
?

2
: �A:2�

This equation we multiply by v, and replace o, kx, k2? by
the operators

o � i
q
qt
; kx � ÿi q

qx
; k2? � ÿD? :

If we also take the nonlinear term into account, we get the
Kadomtsev ± Petviashvili equation (58). Introducing the
appropriate scales along the x, y, z axes, we may write Eqn
(58) in the dimensionless form

q
qx

�
qv
qt
� v qv

qx
� q3v
qx3

�
� D?v : �A:3�

This equation admits a solution of the form v�xÿ t�,
corresponding to a stationary nonlinear wave of the soliton
type. In the case of a two-dimensional soliton, when
D?v � q2v=qy2, the solution can be represented in a rela-
tively simple analytical form

v � 24�3ÿ x2 � y2�
�3� x2 � y2�2 : �A:4�

The analytical solution for the three-dimensional soliton
is not known; it may well be, however, that it does not differ
much from that given by Eqn (A.4). So we proceed as follows:
we set y � ar and select the constant a so as to make the
solution (83) close to a three-dimensional soliton. With this
purpose we multiply

D?v � q2v
qr2
� 1

r

qv
qr

by v, integrate the result with respect to y, and require that
this expression be close to the integral of the function
v�q2v=qy2�. This approach yields the following value of a2:
a2 � 2=7. This means that, as a function of the cylindrical
radius r, the three-dimensional soliton is about twice as wide
as the two-dimensional soliton (A.4).

The three-dimensional soliton looks like a `pancake' with
reduced density, moving at a velocity slightly below the speed
of sound in the direction normal to the `pancake'. The
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thickness of the soliton is of the order of D � Kÿ10 �cs=v0�1=2,
where v0 is the amplitude of the soliton (in magnitude). The
diameter of the three-dimensional soliton is of the order of
2r0 � D�cs=v0�1=2. For small-amplitude solitons, v0 5 cs, the
transverse size r0 of the three-dimensional soliton is much
greater than its longitudinal dimensional D.

12.2 Scattering length
Interaction of alkaline atoms aligned with the magnetic field,
similarly to the interaction of hydrogen atoms, is determined
by the triplet molecular term with 3S�u symmetry. At close
range the atoms are repelled because of antisymmetry of the
coordinate wave function of electrons. At long range the
atoms experience the Van derWaals attraction forces with the
potential U � ÿb=r6, where r is the distance between the
atoms. Because of higher polarizability, these forces for
atoms of alkaline metals are much stronger than in the case
of hydrogen. Accordingly, the Van der Waals well exhibits
many levels of bound states. This circumstance affects both
the magnitude and the sign of the scattering length.

In case of spherically symmetrical S-scattering, the
SchroÈ dinger equation for two alkaline atoms has the form

ÿ �h2

2m�

1

r2
q
qr

�
r2
qc
qr

�
�U�r�c � Ec ; �A:5�

where m� � m=2 is the reduced mass, and all other notations
are conventional.

Using the usual replacement w � rc, we rewrite Eqn (A.5)
at E � 0 and U � ÿb=r6 in the form

r6
d2w
dr2
� g2w � 0 ; �A:6�

where g2 � mb=�h2.
If we now go over to the new variables x � g=2r2,

w � j
��
r
p

, Eqn (A.6) becomes

d2j
dx2
� 1

x

dj
dx
�
�
1ÿ 1

�4x�2
�
j � 0 ; �A:7�

which is the Bessel equation. Its general solution has the form

j � C1Jÿ1=4�x� ÿ C2J1=4�x� : �A:8�

When x is large (that is, when r is small), the Bessel functions
admit a quasi-classical asymptotic approximation in the
cosines. If we now set the boundary condition requiring that
Eqn (A.8) goes to zero at a certain value of x0 (that is, at close
range), we easily find that

C2

C1
� cos�x0 ÿ p=8�

cos�x0 ÿ 3p=8� : �A:9�

Now with the aid of Eqn (A.8), (A.9) we find the wave
function c�r� at long range:

c�r� �
�
4

g

�1=4
1

G�3=4�
�
1ÿ a

r

�
; �A:10�

where the scattering length a is given by

a �
���
g
p
2

G�3=4�
G�5=4�

cos�x0 ÿ p=8�
cos�x0 ÿ 3p=8� : �A:11�

We see that the order of magnitude of scattering length is
defined by the parameter,

���
g
p

. The scattering length for heavy
atoms may be as large as hundreds of Angstrm. The sign of
the scattering length is determined by the last term in Eqn
(A.11). Since x0 4 1, the phase x0 may be considered as a
random quantity; then, according to Eqn (A.11), the
`probability' of the scattering length being positive is 3/4.

The S-wave approximation and the concept of scattering
length may be used as long as the energy of relative motion is
small, or, more precisely, if

E5
�h3

m3=2b1=2
: �A:12�

This implies that the temperature of the condensate must be
considerably lower than 10ÿ3 K.
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