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Spontaneous ordering of semiconductor
nanostructures

D Bimberg, I P Ipatova, P S Kop'ev,
N N Ledentsov, V G Malyshkin, V A Shchukin

1. Introduction
Composition-modulated structures in solid semiconductor
solutions along with periodically faceted surfaces, surface
structures of plain domains, and ordered arrays of three-
dimensional coherently stressed islands are all described

within the unified picture of the equilibrium structures of
elastic domains. Although a homogeneous state is unstable
for different reasons in different classes of nanostructures,
one common factor, the elastic interaction, is responsible for
the formation of an ordered structure in the inhomogeneous
state.

In this paper we consider spontaneously ordered composi-
tion-modulated structures present in epitaxial films of semi-
conductor solid solutions (Fig. 1a), periodically faceted
surfaces (Fig. 1b), periodic structures of plane domains on a
surface (Fig. 1c), and ordered arrays of three-dimensional
coherently stressed islands in heteroepitaxy systems (Fig. 1d).
Since neighbouring domains in all these systems differ in the
lattice constants and/or surface structure, domain boundaries
act as sources of long-range elastic stress fields. A general
approach is proposed, treating all such structures as equili-
brium systems of elastic domains found at the free-energy
minimum. This approach is relevant, for example, to
experiments which involve annealing and growth interrup-
tion. References to experimental work are given in [1].

2. Elastic concentration domains
in solid semiconductor solutions
The formation of composition-modulated structures in
A1ÿcBcC solid solutions is due to a homogeneous solid
solution being unstable to composition fluctuations dc�r�.
This instability implies that a solid solution with a nonuni-
form composition profile c�r� � �c� dc�r� has a lower free
energy than its homogeneous counterpart with the composi-
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Figure 1. Various classes of spontaneously ordered nanostructures: (a)

composition-modulated solid solution structures; (b) periodically faceted

surfaces; (c) periodic structures of plane domains; (d) ordered arrays of

coherently stressed islands 2 on the substrate 1.



tion c�r� � �c. The change in the free energy of the system due
to composition fluctuations dc�r� equals

dF �
�n�

H
ÿ
�c� dc�r��ÿ TSmix

ÿ
�c� dc�r���

ÿ �H��c� ÿ TSmix��c�
�o

dV� Eel ; �1�

whereH is the enthalpy, Smin is the entropy of mixing, T is the
temperature, and Eel is the elastic energy. A homogeneous
solid solution becomes unstable to composition fluctuations
when the enthalpy of the solid solution A1ÿcBcC formation
from binary components AC and BC is positive: DHform �
H�A1ÿcBcC� ÿ �1ÿ c�H�AC� ÿ cH�BC� > 0. Then for
T � 0 the two-phase mixture of pure AC and BC has a
lower free energy than the homogeneous solid solution
A1ÿcBcC, making this latter unstable. For finite T, the Smin

contribution to the free energy will aid in mixing the
components and stabilizing the homogeneous solid solution.

The elastic energy is due to the equilibrium variation of
the lattice constant a of the solid solution with the composi-
tion c according to Vegard's rule. Solid-solution regions of
various composition show different equilibrium values of
lattice constants. Two adjacent regions conjugate via elastic
deformation, with which the elastic energy is related. Since
Eel � 0 in a homogeneous solution and Eel > 0 in an
inhomogeneous solution, it follows that the elastic energy
acts to stabilize the homogeneous solid solution.

The `soft mode' corresponding to the most unstable
composition fluctuations depends on the elastic anisotropy
of the crystal andmay be viewed as a compositionwave with a
wave vector parallel to the direction of easiest compression in
the crystal [2]. For most cubic materials, these are the [100],
[010], and [001]. The final state of a decomposing solid
solution is a layered 1D array of elastic concentration
domains that alternate along one of the easiest compression
directions [3].

The theory of Refs [2, 3] has been extended to epitaxial
solid-solution films on the (001) substrate of a cubic crystal
matched (with respect to the lattice constant) with a
homogeneous solid solution of average composition �c [4]. It
was shown that the `soft mode' of the composition fluctua-
tions is localized near the free surface z � 0 of the film and
decays inward exponentially, dc�r� / exp�ÿjkzj� exp�ikx�,
where the wave vector k is directed along the easiest
compression axis [100] (or [010]) in the surface plane. Due to
elastic stress relaxation near the free surface, the elastic energy
in the `soft mode' is reduced by a factor of ' 1=3 from its
value in the bulk. The equilibrium composition profile makes

a combination of `soft modes' with different values of k. The
modulation amplitude has a maximum at the free surface of
the film and decays inward (Fig. 2), while the composition
modulation period D is comparable to the epitaxial film
thickness h: D ' h.

Composition-modulated solid solution structures have
been observed in many metal alloys and shown to be
equilibrium based on annealing experiments [3]. For semi-
conductor solid solutions, further experiments are needed to
find out whether the observed structures are equilibrium or
nonequilibrium by nature.

3. Periodically faceted surfaces
Spontaneously formed periodically faceted surfaces and
surface structures of plane domains were treated theoretically
by Andreev [6] and Marchenko [5, 7]. As we rely heavily on
their theory in our analysis of arrays of three-dimensional
stressed islands, a brief outline is appropriate here.

The spontaneous faceting of crystal plane surfaces is due
to the orientation dependence of the surface free energy. If the
specific surface energy of the plane surface is large, then it
transforms spontaneously to the `hill-and-valley' structure
(Fig. 1b), which lowers the total free energy of the surface
even though its area increases.

Since the surface tension tensor ti j is different for
neighbouring faces, a jump in its value occurs at the edges
between faces. It is this jump of t

i j
tensor which gives rise to

elastic strain fields.
For a periodically faceted surface of period D, the total

free energy per unit area of the originally plane surface equals
[5]

F � Fsurf � Eedges � DEel ; �2�
where Fsurf � const�D� is the surface free energy of the tilted
faces, Eedges � C1D

ÿ1 is the short-range component of the
edge energy, and DEel � ÿC2D

ÿ1 ln�D=a� is the elastic
relaxation energy. Because the strains are exerted by linear
sources (edges), DEel varies logarithmically with D. There-
fore, free energy (2) always has a minimum at a certain
optimal period Dopt � a exp�C1=C2 � 1�.

4. Surface structures of plane domains
Plane domain structures are generated on a surface on which
different phases, such as reconstruction phases (2� 1) and
(1� 2) on Si(001), monolayer islands in heterophase systems,
etc., may coexist [6]. Adjacent domains then have different
values of the surface tension tensor ti j, thus leading to elastic
relaxation. The total energy of a system of plane domains
equals [7]

E � Esurf � Ebound � DEel : �3�
The surface energyEsurf is independent of the structure period
D, the domain boundary energy isEbound � C1D

ÿ1, the elastic
relaxation energy is DEel � ÿC2D

ÿ1 ln�D=a�, and the total
energy (3) always has a minimum at a certain optimal period
Dopt. Thus, it is the elastic relaxation due to the jump in ti j at
domain boundaries which causes the generation of surface
structures based on plane domains.

5. Ordered arrays of three-dimensional
coherently stressed islands
The formation of 3D coherently stressed islands in mis-
matched heteroepitaxy systems is due to the bulk elastic
relaxation, i.e. to the fact that island formation reduces the
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Figure 2. Equilibrium solid-solution composition profile in an epitaxial

film 2 on a substrate 1.
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elastic energy compared to that of a uniformly stressed
epitaxial film [8]. In a 3D array of islands there appear two
sources of elastic deformations: first, the lattice constant
mismatch between the island and substrate materials, and,
second, the jumps in the surface tension tensor at the island
edges. Thus, the change in the total energy of the system due
to the formation of a single coherently stressed island of linear
dimension L equals

eEisl � fDEV
el � fDEsurf � eEedges � fDE edges

el : �4�

Here fDEV
el / ÿL3 is the bulk elastic relaxation energy;fDEsurf / �L2 is the change in the surface free energy due to

the formation of tilted island faces, the disappearance of the
plane surface, and the development of an interface between
the 3D island and the substrate; the latter quantity may have
either sign; eEedges / L is the short-range energy contribution
from the edges, and fDE edges

el / ÿL lnL is the contribution
from the island edges to the elastic relaxation energy.

For a rarefied island array, the energy per unit area
comprises E � N eEisl, where N is the island concentration.
Equilibrium conditions imply that islands can exchange
atoms by means of surface migration, the total amount of
material in all the islands being fixed, NL3 � const. Then the
energy of the island array per unit area is E � eEislL

ÿ3 and its
dependence on the island size L follows from (4) as

E � ÿconst� C0

L
� C1

L2
ÿ C2

L2
ln

�
L

a

�
: �5�

The relation between Eedges and DE edges
el [the third and fourth

terms in (5)] sets the characteristic length scale of the problem,
L0 � a exp�C1=C2 � 1=2�. The dependence of E on L in (5)
differs considerably from the faceted case because the surface
energy DEsurf depends on the island size L. The function E�L�
shown in Fig. 3 behaves differently depending on the
parameter a � exp�1=2�C0L0=C2. For a > 1, the absolute
minimum of energy is approached asymptotically as
L!1. This means that the system tends to decrease its
total surface area, and the whole of the deposited material

gathers into a macroscopic cluster, i.e. a coalescence occurs.
For a4 1, the absolute minimum of energy E is achieved at a
finite island size Lopt, implying the formation of single-sized
islands and no coalescence [9, 10]. Of particular interest is the
case of a < 0, in which island formation is followed by a
decrease not only in the elastic energy but also in the surface
energy of the system. Notice that the minimum in the energy
E�L� obtained for the rarefied island array is also conserved
for a dense array, with the elastic interaction between the
islands taken into account [10].

The ordering of islands in a plane is due to the
elastic island-island interaction. It has been shown [10]
that, of various possible arrays on the (001) surface of
elastically anisotropic cubic crystal, one minimizing the
elastic energy is the periodic square lattice with unit cell
vectors lying along the easiest compression directions
[100] and [010] (Fig. 1d).

The theory agrees well with the experimental data [11] on
the spontaneous formation of an InAs island array on the
GaAs(001) surface, where the islands have the same (pyr-
amidal) shape and a narrow size distribution, and each of
them has four nearest neighbours as is typical for a square
lattice, thus indicating the presence of a short-range order in
the system.

The distinguishing feature of 3D arrays of coherently
stressed islands as compared to other nanostructure classes is
that for island arrays both the island-ordering and coales-
cence regimes are possible. Accordingly, a crossover from the
former to the lattermay be realizedÐ for example, by varying
the pressure in As and thereby all the surface energies in the
system. Such a phase transition from the ordering regime to
the coalescence regime has been identified experimentally
[12].

6. Conclusion
Theoretical approaches to the spontaneous formation of
periodic nanostructures have been reviewed within a unified
framework in which a number of nanostructure classes are
considered as equilibrium structures of elastic domains. For
all of them the ordering mechanism is due to long-range
elastic forces, with elastic anisotropy often determining the
way the domain array is spatially oriented relative to the
crystal axes. The phenomena of spontaneous ordering of
nanostructures find wide application in the technology of
quantum wire and quantum dot superlattices.

The support of the RFBR through Grant No 96-02-
17943a, State Program `Solid State Nanostructures Physics'
(Grant No 2-001), and Deutsche Forschungsgemeinschaft
(Sfb 296) is gratefully acknowledged.
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Experimental verification
of the skyrmion concept

I V Kukushkin

In Laughlin's theory [1] of the fractional quantum Hall effect
(FQHE) for the filling factor n � 1=m (with m being an odd
integer), electron states are deemed to be fully spin polarized.
However, as was first noted in [2], in a weak magnetic field it
may happen that in some FQHE states, because of the small
electron g-factor, an energy minimum will correspond to an
electron system without spin polarization. This has been
verified by numerical calculations [3, 4] which show that in
the zero-Zeeman-energy limit the ground state of an electron
system may correspond to both a complete, and partial or
zero spin polarization at various fractional values of the
filling factor. The exchange-correlation energy competition
was indicated as the reason why ground states may have
different spin polarizations in various FQHE states [5].
Although this theoretical discordance has been indirectly
confirmed by transport-related activation gap measurements
in a canted magnetic field [6, 7], thus far no direct experi-
mental method has been available to measure the spin
polarization coefficient of an electron system in various
FQHE states.

The appearance [8, 9] and experimental confirmation [10]
of the skyrmion theory have recently given an impetus to
studies on the spin polarization of two-dimensional electron
systems in a perpendicular magnetic field. In this theory,
although the ground state at n � 1 and low g-factor is fully
spin-polarized, even a slight deviation from the full filling
causes a strong depolarization. The ground state of the
electron system with n close to 1 and an extra electron with
reversed spin does not imply a single reversed spin but rather
corresponds to a macroscopically large spin defect which
secures a smooth rotation of the spin field from the
antiparallel to the parallel spin. Such a defect is referred to
as the `skyrmion' [8]. The size of the skyrmion depends on the
competition between the Coulomb interaction energy and the
Zeeman energy and increases logarithmically as the electron
g-factor tends to zero [8]. Due to a small value of the electron
g-factor in GaAs (g � ÿ 0.44), two-dimensional systems
appear to be good candidates for skyrmion excitations,
especially in weak-magnetic-field experiments, when the
Zeeman energy is small compared to the Coulomb energy.

The method we employ here involves an analysis of the
circular polarization for the radiative recombination of two-
dimensional electrons with photoexcited holes bonded to
acceptors. This approach allows a direct measurement of the
spin polarization coefficient of the electron system in various
FQHE states and near n � 1. It is found that in weak
magnetic fields some fractional states possess no spin
polarization and it is also shown that with increasing
magnetic field the electron spin polarization in these states
grows from zero to unity. Although there is no evidence for
the existence of skyrmion excitations in a strong magnetic

field limit (B > 4 T), the spin depolarization of the electron
system observed in small magnetic fields (B < 2 T) near n � 1
indicates that skyrmions require the suppression of the
Zeeman energy for their existence.

The present study was made on a group of high-quality
single GaAs/AlGaAs heterojunctions [mobility of two-
dimensional electrons ranged (0.5 ± 2)�106 cm2 (V s)ÿ1 at
densities of (0.28 ± 2.4)�1011 cmÿ2] with a Be-acceptor
monolayer placed distance 300A from the interface [11]. We
used titanium-sapphire laser pulses of wavelength of about
800 nm, duration 20 ns, and peak power of 0.1 mW cmÿ2 to
create photoexcitation and a photon counting system to
detect time-resolved luminescence spectra. For a spectral
apparatus we employed the double monochromator Rama-
nor U-1000 with a resolving power of 0.03 meV. The circular
luminescence polarization at low temperatures (up to 30 mK)
was analyzed using a light guide optical system with a linear
polarizer and a l=4 plate located in the solution cryostat
between the sample and the light guide. With this system, s�-
to sÿ-polarization signal ratios of up to 100 (corresponding
to the depolarization coefficient of 0.02) could be measured.

Figure 1 shows the luminescence spectra for s�- and sÿ-
polarizations measured for n � 5 (B � 1.95 T) and two
different temperatures (0.6 and 1.0 K). It is seen that the
degree of the circular luminescence polarization is determined
by the temperature and is markedly varied for fully occupied
(two low-energy lines) and spin-polarized (the high-energy
line) levels. The important point to note is that the
temperature determining the degree of the circular lumines-
cence polarization corresponds to the effective temperature of
hole photoexcitation and it was therefore crucial for us that
the hole system be in thermal balance with the helium
thermostat. This was achieved via the time resolution
technique by examining the luminescence spectra measured
with a long time delay para to the photoexcitation pulse. That
the time delay was taken to be much longer than the energy
relaxation time for the photoexcited holes ensured that the
holes cooled down to the bath temperature. Notice that this
relaxation time, relatively short at high temperatures (1 to 3 ns
at 4 K [12]), grows significantly with cooling and is close to
100 ns at 0.5 KÐ the reason why the time delay was typically
in the range 300 to 600 ns in our measurements.

There are two independent factors determining the degree
of circular polarization of the radiative recombination of two-
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Figure 1. Luminescence spectra at B � 1.95 T (n � 5) for s�- and sÿ-
polarisations at T � 1.0 K and 0.6 K measured with a 300-ns delay after

the photoexcitation pulse.
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dimensional electrons with acceptor-bonded photoexcited
holes. First, these holes become spin-polarized due to the
Zeeman effect, the degree of polarization being determined by
the magnetic field and the hole temperature (i.e. by the
population of the Zeeman hole sublevels). The second factor
is the spin polarization of the two-dimensional electrons,
dependent primarily on the filling factor and the temperature.
Since these two factors are experimentally separable and can
be examined independently [13], the contribution from the
spin polarization of the electron system can be decoupled
through the analysis of the circular luminescence polarization.

Using this method, the degree of circular luminescence
polarization and the degree of spin polarization of two-
dimensional electrons were obtained as functions of the
magnetic field for three samples with a low density of two-
dimensional electrons (see Fig. 2). For one of the samples, a
comparison between the magnetooptical and transport data
was carried out which indicated that the 5/3, 4/3, 2/3, 3/5, and
2/5 FQHE states show up in both the magnetoresistance and
the electron spin polarization, virtually all of these states
(except for 5/3 [13]) being not fully polarized for spin. On the
contrary, the electron spin polarization at n � 2/3 and

B � 1.8 T, for example, is only 0.1, while for FQHE states at
n � 3/5 and n � 2/5 it is close to 0.3 (in 2 T and 3 T fields,
respectively).

As seen in Fig. 2, increasing the magnetic field to 3 ± 4 T
markedly adds to the electron spin polarization in all of the
FQHE states studied. For B > 3 T, the n � 3/5 and n � 2/5
states become completely spin polarized, and the degree of
spin polarization at n � 2/3 grows with the magnetic field,
reaching 0.5 at B � 2.7 T and 0.9 at 3.4 T. Although the
observed behaviour of the spin polarization of two-dimen-
sional electrons in various FQHE states is qualitatively
consistent with theory, experimentally the transformation of
the spin polarization of fractional states occurs at magnetic
fields much weaker than predicted by the theory [4]. This
discrepancy is most likely due to the neglect of theoretical
corrections for the finite width of the two-dimensional
channel.

Measuring the spin polarization of a two-dimensional
electron system as a function of the filling factor near n � 1
may serve as a direct experimental test for the skyrmion
theory. That the electron spin polarization for B > 3 T and
n < 1 is close to 1 (see Fig. 2) is clearly inconsistent with the
skyrmion model in which the skyrmion has a noticeable size
of about three magnetic lengths (total spin of about 3) for
g � ÿ 0.44 and B � 7 T [8] thus suggesting a marked spin
depolarization at n < 1. Under certain experimental condi-
tions, however, an effective spin depolarization of the electron
system close to both the theoretical predictions and the
measured data of Ref. [10] was obtained at about n � 1.
Figure 3a shows the magnetic-field dependence of the spin
polarization of the two-dimensional electrons as measured
near n � 1 under normal conditions (open circles) and for a
heating electric current (j � 30 mA) passed through the
system of two-dimensional electrons (closed circles). It is
seen that under normal conditions the system is completely
spin polarized at n < 1 and that heating by a 30-mA current,
while leading to an effective spin depolarization at both n < 1
and n > 1, practically does not affect the electron polarization
at n � 1. The explanation is that the Ohmic heating of
electrons in the electric field is proportional to the diagonal
resistivity rxx (the Joule power W � j 2rxx), and since rxx
reaches a minimum at n � 1, so does the effective heating of
two-dimensional electrons. A similar effect observed in
transport measurements for both even and odd integer filling
factors is called the QHE breakdown [14] and is one-particle
in nature. Although the electric-current-induced spin depo-
larization observed near n � 1 is most unlikely connected
with skyrmion excitations (which are due to the Coulomb
interaction), effects like these still have to be considered in
interpreting the experimental data.

In weakmagnetic fields (B < 2 T), the electron systemwas
observed to be spin-depolarized near n � 1, but this may be
due in part to the presence of 2/3 and 3/4 states which, as
discussed above, possess a nonpolarized ground state in weak
fields. The dependence of the electron spin polarization on the
filling factor is shown in Fig. 3b for three different samples
of very low electron density, in which the n � 1 filling was
achieved at B � 2.3, 1.15, and 0.8 T, respectively. Weak field
measurements are particularly interesting in that in this case
a reduced Zeeman (EZ) to Coulomb (EC) energy ratio Ð
and hence stronger skyrmion effects Ð are expected. As it
can be seen from Fig. 3b, decreasing the field from 2.3 T to
1.15 T (at n � 1) leads to virtually complete spin depolariza-
tion in the 2/3 and 4/3 states. In a weaker field (B � 0.8 T,

0.9

0.7

0.5

0.3

ge

2=3

4=3
n � 1

b
T � 0:90 K

1

2
3

4

1.0

0.8

0.6

0.4

0.2

ge
2=5

2=3

4=3
n � 1

3=5
a

T � 0:28 K

1
2

3 4

1.0

0.8

ge

0.6

0.4

0.2

0 1 2 3
B, T

4

2=34=35=3 n � 1

c
T � 0:95 K

1

2

3

4

Figure 2. Variation of the degree of circular luminescence polarization for

three samples with low density of two-dimensional electrons:

2:8� 1010 cmÿ2 (a); 4:4� 1010 cmÿ2 (b); 5:5� 1010 cmÿ2 (c). For

comparison, magnetotransport oscillations measured in one of the

samples at T � 70 mK are also shown. Dashed curves represent calcula-

tions for the various values of electron spin polarization: 1 Ð 100%, 2 Ð

67%, 3Ð 33%, 4Ð 0%.

May, 1997 Conferences and symposia 533



n � 1) these spin polarization minima are broadened at n � 4/
3 and n � 2/3 such that a significant spin polarization only
survives for filling factors in a narrow region near n � 1. This
weak-field behaviour of the spin polarization may be
interpreted as being due to skyrmion excitations and is
indicative of the fact that the skyrmion model describes the
ground state of an electron system adequately only when the
Zeeman energy is strongly reduced. Since, as is well known,
the g-factor of electrons in GaAs can be reduced to zero by
applying the hydrostatic pressure, further work on skyrmion
effects requires magnetooptical measurements to be made
under pressure in which, by smoothly varying the electron g-
factor, an unbounded increase in both the size and the
effective spin of skyrmions could be obtained.

This work was supported by the `Solid-State Nanostruc-
ture Physics' Program through Grant No 1-062/3 and by
INTAS through Grant No 95-IN/RU-675.
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Effect of electric field redistribution
on the electronic and optical properties
of nanostructures

N A Gippius, V D Kulakovski|̄, S G Tikhodeev

1. Introduction
The behaviour of superlattice and quantum-well semiconduc-
tor nanostructures on the base of GaAs/AlGaAs and
InGaAs/GaAs heterojunctions depends heavily on the
spatial localization of electrons and holes [1]. The dielectric
constant difference is too small to produce any significant
effects (except for the distributed Bragg mirrors and micro-
resonators on their base [2]). However, nanostructures exist
whose permittivity variations rather strongly affect the
electronic and optical properties of the material. These are,
first and foremost, superlattices and quantum wells with
strongly different layer permittivities (such as InGaN/GaN
[3] and GaAS/ZnSe [4] structures) and semiconductor/
insulator (e.g., semiconductor/oxide [5]) structures. Some of
the important realizations of such nanostructures are semi-
conductor nanocrystals [6] or quantum filaments [7] in a
dielectric matrix, and also porous silicon [8]. For subsurface
quantum wells [9] and for open quantum filaments and
quantum dots fabricated from such wells by nanolithogra-
phy [10 ± 12], the small value of the permittivity of vacuum as
compared to the semiconductor permittivity is a crucial
factor. In all such structures the difference in permittivities
of neighbouring nanostructure regions results in a redistribu-
tion of the electric component of the local electromagnetic
field ( for example, an emitted or absorbed wave, the electron-
hole binding field with creation of exciton, etc.). It is the
purpose of this work to analyze (a) the light polarization
properties for absorption, emission, and scattering by
anisotropic structures like open semiconductor quantum
filaments or nonspherical nanocrystals in a dielectric matrix,
(b) the image-charge-interaction-related exciton enhance-
ment, and (c) the effect of permittivity nonlocality on the
polariton modes.

As a consequence of the standard boundary conditions
for the normal and tangential electric field components

e1E1n � e2E2n ; E1t � E2t ; �1�

the electromagnetic field present in the nanostructure under-
goes a redistribution if En 6� 0. The necessity of including the
nonlocal response and a complex geometry of the nanos-
tructure dramatically complicates the theoretical analysis of
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the problem. In some cases however, where, say, the
nanostructure dimensions are much less than the wavelength
of light, or in the exciton problem (in which low-frequency
and small-wave-vector response is important), the quasi-
electrostatic approach is adequate enough to rely upon.

2. Absorption, photoluminescence,
and Raman scattering polarization in quantum filaments
The strong linear polarization of photoluminescence from
quantum filaments bordering vacuum was first discovered in
Ref. [13]. Attempts to explain the effect by the anisotropy of
the dipole matrix element have proved a failure [14]: for
realistic filament sizes, the calculated degree of linear
polarization did not exceed 5 ± 10%, to be compared with
experimental values of up to 60 ± 70% [15]. At the same time,
for perpendicular light polarization (the electric wave
component is normal to the filament axis) and also in the
presence of a difference between the filament and the host
material permittivities, the electric field will clearly be
nonuniform, specifically weakening within the filament
where transitions of interest, involving the absorption,
emission, or scattering of light, take place. As a result, in the
transition region the local effective electric field of the wave
depends on its orientation relative to the filament, and the
absorption, emission, and scattering of light occur with
different probabilities for polarizations along and perpendi-
cular to the filament [16]. The well-familiar dependence of the
molecular spontaneous radiation probability on the permit-
tivity of ambient particles [17] is in fact of the same nature (see
also [18] and references therein).

If the filament has a transverse dimension which is small
compared with the wavelength of light, the electric field
distribution in it can be found by solving the electrostatic
Poisson equation H2E � 0 with the boundary conditions (1).
For parallel polarization, clearly no field redistribution
occurs. The distribution in the perpendicular case is illu-
strated in Fig. 1 for two quantum filaments of rectangular
cross section and different height-to-width ratios h=w.
Neglecting for the sake of simplicity the dipole moment
anisotropy (which will not introduce an error as large as 5%
in the case of filaments around the InGaAs quantum wells
[14]), the linear absorption (emission) polarization coefficient

in the dipole approximation is defined as

s ' hEki
2 ÿ hE?i2

hEki2 � hE?i2
; �2�

where E is the correspondingly-polarized local field strength
averaged over the wave functions of the filament-confined
electrons and holes. From (2) and the electric field distribu-
tion in the filament (Fig. 1) it is evident that the degree of
polarization increases with h=w and depends on the position
of the localization region within the filament. Theoretical
evaluations for open InGaAs/GaAs and InGaAs/InP fila-
ments using formula (2) are in excellent agreement with the
experimental data [19] on the linear exciton-photolumines-
cence polarization (see Fig. 2, where structure cross sections
are also shown schematically).

Turning now to the Raman scattering of light in a
filament, this process involves two photons, and in the dipole
approximation we have instead of (2) the relationship [20]

sRaman '
hEki4 ÿ hE?i4
hEki4 � hE?i4

: �3�

Thus Raman scattering should be even more polarization
dependent, which agrees well with the measurements of Ref.
[20] (see Fig. 3) on the same structures. A strong linear
photoluminescence polarization of a presumably similar
nature was also seen in open CdTe/ZnTe filaments [11]. It is
to be emphasized that this effect has nothing to do with the
diffraction grating effect [21] and occurs for isolated filaments
as well as for their random arrays provided the filament
separation is much greater than w, h.

Notice also that these polarization effects are not of
course limited to quantum filaments but may also be
observed in any set of anisotropic semiconductor nanostruc-
tures found in a dielectric matrix. Thus, this effect accounts
for the strong photoluminescence polarization properties of
porous silicon [22] if one assumes this material to be an
ensemble of nonspherical nanocrystallites embedded in a

Figure 1. Spatial distribution of the electric field in an open quantum

filament (after [19]).
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dielectric matrix [23, 24]. In particular, the experimental
angular behaviour of the intensity of polarized photolumines-
cence has been shown [24] to depend on exactly how the
shapes and orientations of nanocrystallites are distributed
over a porous silicon sample. By comparison with experi-
ment, the nanocrystallite distribution function was partially
reconstructed.

Polarization effects of the type discussed enable relatively
simple nondestructive measurements of the geometrical
parameters of open nanostructures to be made Ð not always
an easy task, especially if the region of spatial localization of
the electronic transition is to be determined.

3. Dielectric enhancement of excitons
The binding energy of excitons in semiconducting films and
semiconductor/insulator quantum wells greatly exceeds that
of three-dimensional excitons in corresponding bulk semi-
conductors. In such systems, in addition to dimensional
quantization which renders the exciton quasi-two-dimen-
sional (thus increasing the binding energy by at most{ 4
times [1]), a crucial role in determining the electron-hole
interaction is also played by the image potentials that result
from the large permittivity difference between the semicon-
ductor and the insulator (or vacuum in the case of semi-
conducting films). Image potentials cause a marked increase
in the electron-hole attraction, and as a consequence, produce
stronger excitons (the so-called dielectric confinement or
dielectric enhancement of excitons) [26 ± 28].

In a semiconductor quantum filament (or dot) embedded
in a dielectric, an electron and a hole find themselves even
more strongly bound because their dielectric surrounding is
larger compared to the planar well case. The exciton
enhancement effect has been treated in detail theoretically
for a variety of structure types (see, e.g., [29 ± 38] and the
review [38]). Although the change in the binding energy has
been observed in thin semiconductor (CdTe) films on the
dielectric substrate [39], its detailed study was significantly
hindered by the complexity of the absorption spectra
observed.

Later, more detailed studies on self-organizing lead-
iodide-based semiconductor/insulator superlattices were car-
ried out [40 ± 43]. These intercalation structures, in which
variously shaped semiconducting lead-iodide layers are
surrounded by various organic (dielectric) compounds,
represent an extremely diverse family of structures like
superlattices based on dielectric-matrix-embedded quantum
wells, filaments, and dots [44]. With increasing spatial
localization the exciton binding energy in these structures
grows from about 45 meV in a pure semiconductor to 300
meV in quantum wells, 700 meV in quantum filaments, and
upwards of 1 eV in quantum dots [44], primarily due to the
effect of the dielectric surrounding [37, 45]. However, because
of the small size of the exciton (of the order of 3 interatomic
distances), the Wannier ±Mott approximation in such struc-
tures is at the applicability boundary, and predictions of the
dielectric model are in fact nomore than qualitative in nature.
Recently, many growth techniques have been proposed for
high-quality semiconducting quantum filaments in pores in
dielectric materials Ð for example, GaAs filaments in
asbestos nanotubes [7] (for theoretical estimations of exciton
parameters in such filaments, see [45]).

Recently it has been found [46, 47] that InGaAs/GaAs
quantum wells near the vacuum interface hold considerable
promise for the study of the dielectric enhancement of
excitons. This structure is the simplest realization of a system
in which dielectric permittivity varies very strongly Ð indeed
by more than an order of magnitude Ð in the immediate
vicinity of an exciton. In Ref. [46], the diamagnetic coefficient
of the 1s-level and the frequencies of the 1s- and 2s-exciton
transitions were measured as functions of the thickness of the
well-vacuum barrier layer using photoluminescence and
photoexcitation spectra. And it was found that the exciton
strengthens significantly as the barrier thickness is decreased,
which is in good quantitative agreement with calculations
taking account of the interaction of carriers with their images.
In Ref. [47], the behaviour of excitons in a subsurface well in a
perpendicular magnetic field B < 14 T was studied both
experimentally and theoretically. The magnetic field enables
the exciton state size to be controlled and thus the effect of
dielectric enhancement of the exciton to be quantitatively
examined.

A system involving a quantum well near the surface has
proved to be a very convenient model with which to vividly
demonstrate the effects leading to exciton enhancement and
on which to rely in carrying out detailed experimental studies
of these effects. The dielectric enhancement of the exciton
binding energy may be interpreted as being due to an
additional attraction that arises between the electron and
the hole image and between the hole and the electron image.
(Recall that if a charge e finds itself in a medium with
permittivity e near a plane interface with a medium posses-
sing the refraction index e1, then the charge of the image
equals

e0 � eÿ e1
e� e1

e ; �4�

i.e. its sign is the same as that of the charge, provided e > e1).
In terms of the position of exciton lines in the absorption
spectrum, it would seem that increasing a binding energy will
shift them towards the red (i.e. to lower exciton transition
energies). In actual fact, however, exciton lines must always
shift towards the violet! The reason is that apart from the
attraction between the electron and the hole image (and vice

{ Since the Coulomb binding energy is infinite in the one-dimensional case

[25], quasi-one-dimensional spatial localization may be stronger.

0 1 2 3 4 5 6

1.0

0.8

0.6

0.4

0.2

sRaman

h=w

0:75 0:5

ÿ0:2

0

h=z � 0:25

Figure 3. The behaviour of the degree of linear polarization of Raman

scattering from open quantum filaments: theory and experiment (after

[20]).

536 Conferences and symposia Physics ±Uspekhi 40 (5)



versa), the electron and the hole are also repelled by their own
images (the so-called self-action effect [31]), and because a
charge is always closer to its own image than to that of any
other charge, the net effect is that the repulsion dominates
over the attraction.

Changes in the one-particle potential profiles of a subsur-
face quantum well have been obtained by allowing for the
self-action forces and are shown schematically in Fig. 4.
Figure 5a for a subsurface InGaAs/GaAs quantum well
illustrates the theoretical prediction of how the transition
energy between unbound electrons and holes (the upper two
curves) and the energy of 1s-exciton transition behave as the
thickness of the barrier layer between the quantum well and
vacuum decreases (dashed curves have been calculated by
neglecting the image charge effect). It is seen that the violet
shift of the energy of transition between free carriers is
dominated by the self-action. For the exciton transition, the
violet shift is primarily due to tunnelling (i.e. to the wave
function localization by the high vacuum-produced potential
barrier). The electrostatic interaction is virtually suppressed
because of the electrical neutrality of the exciton (the only
remaining force is the weak dipole repulsion from the inter-
face with the vacuum). It is clearly impossible to identify the
exciton enhancement effect experimentally from the 1s-
transition shift (see experimental points in Fig. 5a) and one
should therefore measure the binding energies of exciton
states in a direct way. Experimentally, however, the splitting
between the 1s- and 2s-lines is easier to measure (because the
exciton ionization energy is hard to identify in practice). As
shown in Fig. 5b, this splitting increases as the barrier layer
thickness decreasesÐprimarily due to the dielectric enhance-

ment of the exciton Ð which is precisely the dependence
obtained in experiment (see data points in Fig. 5b).

4. Anisotropy of polariton reflection spectra
in layered structures
Properties of layered semiconductor/insulator structures in
the vicinity of the polariton resonance are significantly
affected by the response nonlocality due to the spatial
localization of excitons in thin (compared to the wavelength
of light) semiconducting layers. The polarizability of the
system can be written in the form [48, 49]

wNL�q;o; z; z0� � wex�q;o�F �z�F�z0�; �5�

where the exciton form factor F�z� � ce�z�ch�z� is the
product of the envelope wave functions of the exciton-
forming electron and hole, the coordinate z is directed
normal to the layers, and

wex�q;o� � e2V2
cvF�0�2
o2

2Eex�q�
E2ex�q� ÿ ��ho�2

;

whereo is the frequency of the electromagnetic wave, and q is
its wave vector in the layer plane, Eex�q� is the exciton
dispersion relation, and Vcv is the interband matrix element
of velocity. As the polariton resonance is approached, an
additional resonant increase in the dielectric susceptibility
occurs accordingly the larger field-redistribution effects. For
instance, the reflection coefficient becomes strongly depen-
dent on the wave polarization relative to the layers [50]. Such
dependences were found experimentally in lead-iodide-based
compounds [42] and were adequately described [51] by the
Maxwell equations with the susceptibility of the form (5). In
the immediate neighbourhood of the exciton resonance, the
field distribution depends strongly on the exciton form factor,

Vacuum GaAs InGaAs GaAs

Ve

E�g Eg

Ee0

Eh0

Vh

Ev

Ec

z
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which enables the wave function shapes to be examined using
then effects like resonance Raman scattering as the base [50].

5. Conclusion
Effects due to the difference in permittivities relating to
adjacent regions are considered for nanostructures such as
superlattices, semiconductor/insulator quantum wells, sub-
surface semiconductor quantum wells, and `open' (free-
standing on the semiconductor surface) quantum filaments
and dots. In such structures the permittivity difference causes
a spatial redistribution of the electric field (for example, in the
electromagnetic wave or in the field binding the electron and
the hole in an exciton) thus producing dramatic changes in the
optical and electronic properties of the nanostructures
involved. Examples are the strong linear polarization of
emission, absorption and Raman scattering in open quan-
tum filaments, the so-called dielectric enhancement of
excitons in semiconductor/insulator or semiconductor/
vacuum nanostructures, and the strong anisotropy of polar-
iton reflection spectra.
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PACS number: 73.20.Dx

Momentum dependence of electron
state dimensionality in heterostructures

V V Kapaev, Yu V Kopaev, I V Tokatly

1. The electronic properties of quantum wells and wires are
usually treated by the method of enveloping wave functions,
in which the periodic potential influence in each material is
accounted for by an appropriate effective mass in the kinetic
energy operator, and interface changes in the dispersion law
act as effective potentials.

For quantum wells, the wave vector components (kz; ky)
are conserved along the layers. Due to the difference in the
effective mass components of the adjacent materials the
effective potentials depend on kx; ky. This may even reverse
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the sign of the effective potential, thus converting a potential
well to a barrier and vice versa.

2. The wave function in a quantum well may be taken in the
form

c�x; y; z� � Z�z� exp�ikr� ;
where z is the coordinate along the growth axis, r lies in the
layer plane, and k � �k2x � k2y�1=2. The SchroÈ dinger equation
for Z�z�, assuming an isotropic mass for each of the
heterostructure-forming layers, is of the form

Z00�z� � 2mn

�h2

�
Eÿ �h2k2

2mn
ÿUn

�
Z�z� � 0 ; �1�

where mn and Un are the effective mass and potential in the
nth layer. The quantities Z and Z0=mn are continuous at the
layer interfaces. For a single quantum well of thickness d we
thus have the following dispersion equation for the bound
state energy E:�

K1
m1
� K2
m2

�
cos�Kd� �

�
K1K2
m1m2

m

K
ÿ K
m

�
sin�Kd� � 0 ; �2�

where

K�
�
2m

�h2
�
EÿV0�k�

��1=2

; K1;2 �
�
2m1;2

�h2
�
V1;2�k�ÿE

��1=2

;

here m1; m2; and m are the effective masses for the left and
right barriers and for the well, respectively; in addition

V1;2�k� � U1;2 � �h2k2

2m1;2
; V0�k� � �h2k2

2m

are the barrier andwell potentials for finite k, andUi are those
for k � 0.

For U1 6� U2, a bound state arises when the well width
exceeds the critical value [1]. The asymmetry of a barrier may
be characterized by the parameter

b�k� � V2�k� ÿ V0�k�
V1�k� ÿ V0�k� :

For m < m1, the derivative qb�k�=qk has the same sign as the
parameter

a � U2

U1
ÿm2 ÿm

m1 ÿm

m1

m2
; �3�

i.e. at a > 0 (a < 0) the system becomes more asymmetric
(symmetric) as k increases (we takeU2 > U1 to be specific). If
m > m1, the sign of qb�k�=qk is opposite to that of a.

For type I heterostructures typicallym < m1 < m2. In this
case at

ki �
�

2Ui mmi

�h2�mi ÿm�

�1=2
either the left (i � 1) or the right (i � 2) barrier disappears,
whereas for

ks �
�
2�U2 ÿU1�m1m2

�h2�m2 ÿm1�

�1=2
the barrier heights become equal. The mutual positions of k1,
k2, and ks are determined by the sign of a. For a > 0 we have
k1 < ks < k2, whereas for a < 0ÿ ks, the inequality k2 < k1
holds.

The asymmetry of the barriers results in the disappearance
of the bound state at kc values substantially less than k1 and
for k2. To determine kc, one has to solve (2) for k under the
additional condition E � Vi�kci�. For a > 0 there exists one
critical value kc1, which obeys the equation

d

l
� 1

2p~K
arctan

�
m

m2

�
b�kc1� ÿ 1

��1=2

� n

2~K
; �4�

where

~K �
�
1ÿ

�
kc1
k0

�2�
1ÿ m

m1

��1=2
;

k0 � 2p
l
; l �

�
2p2�h2

2mU1

�1=2

;

n � 0; 1; . . . specifies the subband. For a < 0 there exists a
second value of kc2, which is obtained from (4) by setting

~K �
�
U2

U1
ÿ
�
kc2
k0

�2�
1ÿ m

m2

��1=2
;

then interchanging m1 $ m2, and replacing b by 1/b.
Figure 1 illustrates the d�k� state diagram describing the

boundary between the bound (2D) and unbound (3D)
states. The lines 1, 2, and 3 correspond to the condition
E � V1, and the lines 2 0 and 3 0 to E � V2. The line 1 suits
to the case a > 0. The bound state exists both above and
below this line. For d < dc1, it is absent for any k. For
d > dc1, it occurs in the interval 0 < k < kc1, the value of kc1
increasing from zero to k1 with a rise in d. For symmetrical
barriers, the bound state disappears at kc � k1 independent
of d. The dependence E�k� for d > d1 is shown in insert (a)
to Fig. 1, the solid and dashed lines illustrating the 2D- and
3D-states, respectively.

The lines 2 and 2 0 correspond to E � V1 and E � V2 for
a < 0; the insert (b), to the case d < dc2; and (c), to d > dc2.
For a < 0 the dependence d�kc�may have a maximum (line 3
in Fig. 1). In this case, in the narrow layer-thickness range

0 1 2 3

0.6

0.4

0.2 dc1

dc3

dc2

2 3

20

30
1

E

k=k0

k=k0

3D

2D

3D

d=l

a b c d

Figure 1.Quantumwell phase diagram. Lines 1, 2, and 3 correspond to the

condition E � V1, 2 0 and 3 0, to E � V2; m1 � 1:1m, m2 � 2:0m for

U2=U1 � 6 (line 1), 4 (2, 2 0), and 2 (3, 3 0). Inserts display dispersion lines

E�k�: (a) for line 1; (b, c) for 2 and 2 0; (d) for 3 and 3 0.
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dc2 < d < dmax there exist three critical values of kc (see insert
(d)). The disappearance of the state as k! kc1 is due to the
fact that, in spite of system symmetrization, the well depth
decreases faster than the barrier heights become equal.

If the mass in the well exceeds the barrier masses, the
reverse situation is possible in which a bound state arises as an
asymmetry increases due to the fact that the well depth
increases faster than the barrier heights difference.

The application of an electric field Fz modifies the relation
between the barrier potentials while leaving unchanged the
effective masses in the layers. The masses and potentials thus
`decouple,' making a a controllable parameter. If at the higher
barrier the voltage DU is positive we may have a transition
from a > 0 to a < 0, whereas for DU < 0 a reverse transition
is possible. We thus see that in structures of the same
composition all the situations discussed above may be
realized.

In single-well structures the probability of finding an
electron in a well w vanishes rather rapidly as one approaches
the turning point. Far away from kc, w depends weakly on k.
In multiwell structures a situation may occur in which
changing k redistributes the probabilities wi between the
wells quite significantly for k values much less than kc. This
takes place in systems near the dimensional quantization level
resonance. In this case a change in the barrier heights with k
significantly modifies the well-to-well electron tunnelling
conditions. With increasing k, a transition from one 2D-
state to another, with a different electron localization, takes
place. Thus, the electron density can be redislocated by
increasing k.

The fact that the effective mass in the well differs from
those in the barriers has the consequence that the law of
dispersion E�k� deviates from being parabolic even if the
initial dispersion's not being parabolic in the heterostructure
components is neglected. The effective mass
m � �h2�q2E=qk2�ÿ1 for the motion along the layers at k � 0
becomes different for various subbands, varying from the
effective well mass m in deep subbands to the mass of one of
the barriers in shallow subbands. In multiwell structures an
anomalous behaviour is observed, when m for a low lying
subband may exceed that for a higher energy one. Most
interestingly, the function E�k� changes its curvature near the
turning points thus making the effective mass negative over a
certain k region.

The following are some of the possibilities for detecting
the termination (emergence) lines in the bound state momen-
tum space (kx; ky):

(1) The nature of electron motion in a magnetic field will
change (see below), according to whether the field is oriented
along the layers or z-axis. Depending on the position of the
termination line and the Fermi line relative to each other,
oscillations in the kinetic and thermodynamic quantities with
magnetic field will correspond to either the two-dimensional
or three-dimensional case. The quantum Hall effect must
disappear upon the 2D ± 3D transformation, and the trans-
formation itself can be observed on one and the same sample
by using electric field to control the carrier density and
termination line positions.

(2) Upon the electric-field-induced 2D± 3D transforma-
tion a change in the nature of phase transformations may
occur. For example, ferromagnetism may disappear if the
ferromagnetic ordering in the material is determined by the
carrier-assisted indirect exchange interaction between mag-
netic ions located in the quantum wells.

(3) Because the coupling energy for the 2D case is 4 times
that for the 3D case, a sharp change in the exciton or
impurity-state coupling energies may be observed as the
sharp position of the termination (emergence) line is altered.
This sharp change will occur when the termination (emer-
gence) line momentum and the corresponding inverse Bohr
radius become equal.

(4) For superlattices of asymmetric quantum wells, the
inverse Franz ±Keldysh effect may be observed, in which the
forbidden miniband widens under the action of the field Fz as
a result of the 3D± 2D transformation. Due to the formation
of bound 2D states, the overlap integral of wave functions
from neighbouring quantum wells decreases and the allowed
minibands therefore become narrower.

(5) A direct observation of the 2D ± 3D transformation
under a lateral electric field is yet another possibility. The
2D± 3D defocusing (or 3D± 2D focusing) of electronic states
which takes place in this case may be seen in transient
phenomena. In time-resolution experiments, the shift in the
exciton line position will be determined by the change in the
coupling energy.

(6) A system of two quantum wells, one of them with
asymmetric barriers, may prove useful for reducing the
threshold current in the quantum cascade laser, whose lasing
frequency depends on the energy separation between the
subband minima of neighbouring wells. If the lower subband
corresponds to the asymmetric well, its termination line may
be well below the minimum of the upper subband, with the
result that the one-phonon intersubband relaxation will be
suppressed and the threshold current reduced.

3. Let us consider the behaviour of electrons in a quantum
well with asymmetric barriers subjected to a quantizing
magnetic field B parallel to the growth axis z of the
structure. We take the zero of energy to coincide with the
lower (right) barrierU1 and place the left boundary of the well
at z � 0. Letting now ÿU1 � ÿV for the well depth and
U2 ÿU1 � U for the left barrier height, the SchroÈ dinger
equation takes the form�

k̂2z �
�
k̂ÿ �e=c�A�r��2
2m�z� � u�z�

�
c�r; z� � ec�r; z� ; �5�

where

1

m�z� �
1

m2
y�ÿz� � 1

m

�
y�z� ÿ y�zÿ d��� 1

m1
y�zÿ d� ;

u�z� � Uy�ÿz� ÿ V
�
y�z� ÿ y�zÿ d�� : �6�

In (5), k̂ denotes the momentum operator component in the
xy-plane, and the vector-potentialA�r� is related tomagnetic
field in the standard way, so that B � qxAx ÿ qyAy. For a
uniform magnetic field the variables z and r in (5) separate to
give

cn�r; z� � wn�z�fn�r� ; �7�

with fn�r� obeying
1

2

�
k̂ÿ e

c
A�r�

�2
fn�r� � xnfn�r� : �8�

The eigenvalues xn in (8) are
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xn �
1

l2B

�
n� 1

2

�
; n � 0; 1; 2; . . . ;

1

l2B
� eB

�hc
: �9�

and the equation for the function wn�z� is�
k̂2z � 2xn
2m�z� � u�z�

�
wn�z� � enwn�z� : �10�

The dependence m�z� in (10) yields the magnetic-field
dependence of the effective potential. In particular, the
effective well depth Vn for the nth Landau subband is found
to be

Vn � Vÿ
�
1

m
ÿ 1

m1

�
xn � Vÿ �oW ÿ oR�

�
n� 1

2

�
; �11�

and the effective height of the left barrier is

Un � Uÿ
�

1

m1
ÿ 1

m2

�
xn � Uÿ �oR ÿ oL�

�
n� 1

2

�
; �12�

whereoW andoR,oL are the cyclotron frequencies in the well
and in the barriers, respectively.

Thus we find, for the eigenvalues of (10), the expression

e2Dn � �hoR

�
n� 1

2

�
ÿ K2Rn

2m1
; �13�

KRn� 2m1Vnd

1ÿm1=m2

(
1ÿ

������������������������������������������������������������
m1

m2

�
1�
�
1ÿm1

m2

�
Un

2m1�Vnd�2
�s )

:

�14�

For symmetrical barriers (U � 0, m1 � m2 � mB,
oR � oL � oB) from (13) and (14) we obtain

e2Dn � �hoB

�
n� 1

2

�
ÿ 1

2
mB�Vd�2

�
1ÿ oB

Oe

�
n� 1

2

��2
; �15�

where

Oe � Vm

�h�mB ÿm� :

Equation (15) implies that two-dimensional energy levels
exist until the transverse motion energy �hoB�n� 1=2�
becomes equal to �hOe, when the effective well potential Vn,
Eq. (11), comes to nought. Thus, for every level n there exists a
critical magnetic fieldBn

c abovewhich the nth 2DLandau level
moves to a 3D Landau subband:

Bn
c �

mmB

mB ÿm

cV

e�h�n� 1=2� : �16�

Notice that in the magnetic field B0
c the last level (i.e. the

ground level with n � 0) disappears.
An important point to note about the energy spectrum

(15) is that the Landau levels are not equidistant. This can be
seen either directly in optical experiments or from the
violation of the inverse-magnetic-field periodicity of Shubni-
kov ± de Haas magnetoresistance oscillations.

In the case of asymmetric barriers, a more complex and
diverse behaviour is displayed by the system. Depending on
the relation between the parameters

a � m1

8m2

1ÿ �m1=m2�V
m1=mÿ 1

V

e0
; b � 1

4

m1U

m2e0
�17�

(e0 � 0:5m1�Vd�2 being a level in a shallow symmetric well),
five different types of behaviour are possible for the 2D
spectrum of electrons in a magnetic field.

The (a; b) phase diagram for these five regions is shown in
Fig. 2. The system behaviour in region 1 is qualitatively the
same as that in the symmetric case: 2D states exist at B � 0
and disappear when oR�n� 1=2� > Oe, which implies the
vanishing of the effective potential (11).

In region 2, 2D states are absent in zero field but do exist
in the interval

0 < y�Oe < oR

�
n� 1

2

�
< Oe ;

y� � 1ÿ a�
���������������������������������
�1ÿ a�2 ÿ 1� b

q
:

There is an analogy here to case `b' of Fig. 1.
In region 3, 2D Landau states are absent for any magnetic

fields, analogous to case d < dc1 for line 1 in Fig. 1. In region 4
of Fig. 2, 2D states exist in the interval

0 < oR

�
n� 1

2

�
< yÿOe < Oe :

Here 2D Landau levels may have a much narrower existence
domain compared to a symmetric structure. In Fig. 1, line 2
for d > dc2 corresponds to this case.

A very nontrivial behaviour is seen in region 5. Here 2D
levels exist in the zero field but as the field is increased, they
disappear at oR�n� 1=2�5Oeyÿ and then reappear in the
interval Oey� < oR�n� 1=2� < Oe. This situation is analo-
gous to case `d' in Fig. 1.

3
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1
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Figure 2. Phase diagram in variables (a; b) for a quantum well with

asymmetric barriers in a magnetic field.
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There is a significant difference here, compared with the
case of identical well and barrier masses, in the way the
occupation of 2D Landau levels varies with the magnetic
field. In the identical case, atB � 0 the number n0 of 2D states
lying below 3D states is

n0 � m

�h2p
e0 :

An applied magnetic field produces Landau levels, each of
which has a degeneracy (including spin)

nL � m

p�h
oc :

The number of levels below the zeroth 3D Landau subband
(E0 � �hoc=2) is n � �e0=�ho0� and hence the total number of
states in these levels is

m

�hp
oc

�
e0

�hoc

�
4 n0 :

Thus, if the total number of particles n < n0 (for B � 0 all of
them were in the 2D region) then the applied magnetic field
does not alter this condition and all the particles are two-
dimensional. In other words, as the field increases, the nth 2D
Landau levels one by one cross the bottom of the zeroth 3D
Landau subband, but given n < n0 they always prove to be
empty when crossing the bottom. Thus the 3D subband is
always empty.

Including the mass difference alters the situation drama-
tically. For zero field, the number n0 of 2D states lying below
the minimum of 3D states equals n0 � �m=p�h�O�0�, where
O�0� is the solution to the equation

O�0� ÿ e0

�
O�0�
O0

�
� 0 :

In region 1,O0 � Oe and in regions 4 and 5,O0 � Oeyÿ. Let nnb
(nna) be the number of 2D states immediately before (after) the
nth 2D level crosses the zeroth 3D subband, so that

nnb �
m

�hp
on�n� 1�; nna �

m

�hp
onn

(on corresponds to the crossing field). Then from Eqs. (13)
and (14), it can be shown that the sequences of nnb and nna
numbers are arranged as follows:

. . . > nnÿ1b > nnb > nn�1b > . . . > n0 ; lim
n!1 nnb � n0 ;

n0 > . . . > nn�1a > nna > nnÿ1a > . . . ; lim
n!1 nna � n0 : �18�

Thus the sequences nnb and nna converge to n0 from above and
below, respectively, and for any number of particles n < n0
one can always indicate n such that nn�1a > n > nna. Notice
that, starting from n, the 2D levels are partially filled when
crossing the bottom of the lowest 3D subband and that they
become progressively unfilled so as the 3D pool of carriers
continues to form. Owing to this pool, and up to the point it
becomes fully depleted with the increasing field, the next level
will remain completely filled. Because the pool is depleted
before the (nÿ 1)th level approaches the 3D states, a step-by-
step change in the 2D Landau level filling will take place even
when the number of particles in, rather than the chemical
potential of, the system is fixed. Experimentally, this will
show up in that the integral quantum Hall steps will broaden
starting from a certain field dependent on the number of

particles in the system. Clearly, as the field increases above
B
�0�
c , the last 2D level will disappear thus making the quantum

Hall effect impossible.
In more complex heterostructures, a change in topology

due to a change in the longitudinal momentum is possible, for
example, when two wells transform into two barriers or a
transition from a `well-in-a-well' structure to two wells
separated by a barrier takes place. Similar topology changes
will also result frommagnetic field variation. Thus, onemight
expect new phenomena of the quantum Hall effect to be
detected in such structures.

The possibility of a 2D± 3D transformation at relatively
small longitudinal momenta in a magnetic field is not limited
to the quantum wells with strongly asymmetric barriers as
discussed above. Other candidates are symmetric hetero-
structures which, together with a small position difference
between the conduction band edge (for electrons) and the
valence band edge (for holes), also have very different gap
widths and hence very different effective masses. The former
situation applies, for example, in the GaAs/GaN hetero-
structure [2], the latter, in InGaAs/AlGaAs [3].

This work was supported by the Russian Foundation for
Basic Research, by INTAS, and by the `Solid State Nanos-
tructure Physics' Program.
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An experimental study of charge
effects in ultrasmall tunnel junctions

V A Krupenin, S V Lotkhov,
Yu A Pashkin, D E Presnov

1. Introduction
One major technological achievement in today's progress
toward miniaturization is that device elements less than one
tenth of a micron in size can now be fabricated in a
controllable way. The novel and spectacular effects exhib-
ited by such devices have given rise to the so-called
`nanophysics,' an entirely new direction in modern science.
Part of it, single-electronics, is concerned with effects
involving the discrete transport of charge through low-self-
capacity structures. The orthodox theory of single-electron
tunnelling, originally intended for tunnel junctions [1], was
later extended to other structures as well and has been
confirmed in many experiments [2]. Interest in the charge
effects stems from their high promise for fundamentally
novel recording-property devices.

2. Technology
Metal-insulator-metal tunnel junctions were fabricated using
the well-known oblique angle deposition technique [3]. This
technique has a soft-mask [4] and a rigid-mask variety [5]. In
the former, a two-layer resist deposited on the substrate is first
irradiated by an electron beam and then selectively developed
to form the desired pattern. The mask proper is the upper
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resist, through which both the lower and upper tunnel
junction electrodes are evaporated at different angles. Eva-
porating the upper electrode is preceded by the oxidation of
the lower one in an oxygen atmosphere, thus making the
technique self-compatible. As an electrode material, any
metal with a low evaporation temperature, good oxidizabil-
ity, and low graininess Ð for example, aluminium Ð may be
used. The resulting lines are typically about 0.1 mm in width,
and the tunnel junction that forms at the intersection of the
upper and lower electrodes is about 0.01 mm2 in area.

In the rigid-mask variety, a three-layer (electron resist ± a
germanium ± electron resist) structure is deposited on the
substrate. Following electron beam irradiation and the
development process, the desired pattern develops in the
upper layer of the resist. The pattern is then transferred to
the germanium layer using a plasmochemical etching techni-
que, and part of the resist is removed from the lower layer
during the process of anysotropic and isotropic etching in
oxygen. This is a more effective technique as far as complex
structures are concerned.

To ensure high external impedance, an additional deposi-
tion procedure was carried out in which, following chromium
deposition perpendicular to the substrate, properly oxidized
aluminium was deposited at two different angles. Chromium
is also compatible with our resists whose film shows good
reproducibility properties. With a 60A-thick chromium film
having a resistivity of 2 kO&ÿ1, an external circuit resistance
conservatively in excess of the quantized resistance
RQ � h=4e2 ' 6:5 kO was achieved.

3. Single tunnel junctions
The theory of correlated tunnelling predicts single-electron
and Bloch oscillations to occur in single-tunnel junctions
connected to a current source [1]. Experimentally this
requires that the external electrical circuit has a high
impedance, which is achieved by introducing high-resistance
thin-film resistors into the measuring electrodes in the
immediate vicinity of the junction. Both types of coherent
oscillations were found in Ref. [6] using high-frequency
irradiation of the single-tunnel junctions to detect oscilla-
tions. When the natural vibration frequency equalled that of
the irradiating signal, voltage steps arose on the current-
voltage characteristic of the transition. For the same irradia-
tion frequency, the step separation in the Bloch oscillations is
twice that in the single-electron oscillations. Using this
technique, Bloch oscillations in a chain of two Josephson
junctions have been detected [7].

The temperature dependence of the linewidth of the Bloch
oscillations in Josephson tunnel junctions has been measured
in [8]. It is found that at low temperatures the linewidth,
instead of following a linear temperature dependence as
predicted by theory, tends to saturate, the level of saturation
being dependent on the junction current. This behaviour is
nicely explained in qualitative way by a simple model
involving the electron superheating in thin-film chromium
resistors.

Kuzmin et al. [9] investigated experimentally the effect of
the critical current passing through a small high-external-
impedance Josephson junction on the ratio of the charge to
the Josephson transition energy. In the weak coupling region,
it is shown that the critical current is determined by Zener
tunnelling and that the experimental data are in good
quantitative agreement with the theory of Zener tunnelling
if Ohmic dissipation is taken into account.

4. Single-electron transistors
The single-electron transistor consists of two in-series tunnel
junctions and its central island potential can be controlled by
the gate voltage. If thermal and quantum fluctuations are
small, then owing to the spatial correlations between
tunnelling events in both the junctions, the current-voltage
characteristic of the device can be periodically modulated
using the gate voltage, with the period corresponding to a
single electron charge [1] and the charge sensitivity of the
system being a fraction of this charge [10]. For the transistor
with a nonzero Josephson coupling, a 2e-periodic current-
voltage characteristic modulation is predicted by the theory
[1], which has also been examined experimentally [11, 12].

There is a good deal of experimental evidence [13 ± 20] to
show that the limiting values of the basic characteristics of
single-electron devices (the charge sensitivity of the electro-
meter, the time of electron storage in the charge trap, the
turnstile and pump accuracy) depend significantly on the
fluctuation level of the electric field generated by the
immediate electrodynamic surrounding of the junction.
Isolated from the electrode by high-resistance tunnel junc-
tions, the conducting islands in the surrounding field acquire
a random background potential, or induced charge, usually
referred to as the background effective charge of the island.
Fluctuations of this charge play a dominant role in the low-
frequency (< 10 ± 100 Hz) portion of the noise spectrum of
single-electron structures. Therefore, an understanding of
noise production and localization mechanisms and the
search for noise reduction approaches are of extreme
importance for the design and practical application of
specific single-electron devices.

From experiments on single-electron transistor noise it is
known that:

(1) the fluctuation spectrum of the background charge
usually has a shape similar to 1=f and its cutoff frequency is of
the order of 1 kHz [13 ± 21];

(2) the charge noise level at 10 kHz is 10ÿ3ÿ10ÿ4eHzÿ1=2

[13 ± 17, 20, 21] and is virtually temperature independent for
T < 300 mK [17, 19];

(3) telegraph noise fluctuations of up to 0.1 ± 0.2 e
involving random switching between 2, 3 and more levels
have been observed [13, 14, 16, 19];

(4) the noise properties of chromium-based transistors
with a thermally oxidized tunnel barrier are identical to those
of their aluminium-based counterparts [20].

Based on the available experimental data we believe that
background charge fluctuations are to a large extent caused
by individual electrons randomly walking between charge
traps formed due to structural defects present in the dielectric
sublayer and to the natural oxide of the metallic islands of the
tunnel structure. Also, the partial localization of fluctuation
sources in the tunnel junction barrier cannot be ruled out.

The transistors studied varied in the size of their central
islands. The structures were fabricated on a Si substrate with a
200-nmAlOx layer using amagnetron evaporation technique.
Themeasured noise level at 10Hz is (2 ± 3)�10ÿ4 eHzÿ1=2 and
(5 ± 6)�10ÿ4 e Hzÿ1=2 for islands about 200 nm and 500 ± 600
nm in size, respectively. The observed increase in the noise
level with island size (see also [15]) may be attributed to the
increase in the effective capacitive coupling between the island
and the noise sources (presumably local charge traps) in the
electrodynamic surrounding.

In transistors fabricated on a dielectric AlOx 100-nm
sublayer separated by a metal screen from the Si substrate,
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both the noise level and the shape of the charge fluctuation
spectrum are virtually the same as those measured for the no-
screen case, which reduces the distance at which fluctuation
sources are felt to less than 100 nm.

Direct evidence for the existence of noise sources outside
the tunnel barrier in single-electron structures comes from
an experimental study [18] of fluctuation mutual correla-
tions in a system of two transistors a short distance apart.
For transistors fabricated on various dielectric sublayers
(200-nm AlOx, thermally grown 500-nm SiO2), the pair
correlation coefficient was 20 ± 40% for capacitive coupling
coefficients as low as 5 ± 15%. The results of this experiment
suggest that the noise sources which possibly exist in the
tunnel barrier andwhich only affect the background charge of
the adjacent island, do not dominate the situation and
contribute about as much as or even less than the sources
located in the dielectric sublayer.

5. Single-electron trap
Recently, the confinement of single electrons in a single-
electron trap was demonstrated [22 ± 25]. The trap used was
a chain of small-area (0:1� 0:1 mm2) tunnel junctions con-
nected to a conducting (or `memory') island located in the
electrostatic field of the control electrode. Because the
electron energy at an intermediate island greatly exceeds its
energy when at the memory island or the external electrode,
an electrostatic barrier arises, capable of holding a small
integer (positive or negative) number of extra electrons on this
particular island. Owing to the barrier, the amount of charge
isolated on the memory island depends hysteretically on the
gate voltage. Thus, for the same gate voltage within the
hysteresis loop, this charge may assume various values
depending on its previous history which differ by multiples
of the electron charge. A potential application for such charge
states is as a logical level, and for the system itself, as a single-
electron memory cell.

The width of the hysteresis loop is inherently related to the
length of time the charge state withstands destructive factors
such as thermal tunnelling activation [24], the co-tunnelling
mechanism [26], etc. Although the experimentally examined
times of electron storage are of the order of 8 to 12 hours [24,
25], still this is well below the theoretical predictions. In Ref.
[25], such factors were investigated as the drift of the
background effective charge and the backaction of the
current through the electrometer indicating the state of the
memory island charge. It is found that under static observa-
tion conditions one and the same hysteresis loop may narrow
by almost a half with the passage of time, and an increase in
the electrometer current from 5 to 300 pA is equivalent to
increasing the sample temperature from 35 to 250 mK. The
backaction of the electrometer is possibly due to the exciting
effect caused by the wideband telegraph-type voltage noise at
the electrometer's central island.

6. Conclusion
The experimental results on single-electron effects in the
metal thin-film tunnel junctions are briefly reviewed.

Experimental research on charge effects in ultrasmall
tunnel junctions is currently receiving support from RFBR
and the `Solid-State Nanostructure Physics' Program.

References

1. Averin DV, Likharev KK, inMesoscopic Phenomena in Solids (Eds

B L Altshuler, P A Lee, R A Webb) (Amsterdam: Elsevier, 1991)

p. 173

2. Grabert H, Devoret M H (Eds) Single Charge Tunnelling (New

York: Plenum Press, 1992)

3. Dolan G J Appl. Phys. Lett. 31 337 (1997)

4. Delsing P, PhD Thesis (GoÈ teborg, Sweden: Chalmers Univ. Techn.,

1990)

5. Geerlings L J PhD Thesis (Delft, Netherlands: Delft Univ. Techn.,

1989)

6. Kuzmin L S, Pashkin Yu A Physica B 194 ± 196 1713 (1994)

7. Kuzmin L S, Pashkin Yu A, Claeson T Supercond. Sci. Technol. 7

324 (1994)

8. Kuzmin L S et al. Physica B 203 376 (1994)

9. Kuzmin L S et al. Phys. Rev. B 54 10074 (1996)

10. Korotkov A N et al., in Single Electron Tunnelling and Mesoscopic

Devices (Eds H Koch, H Lubbig) (Berlin: Springer-Verlag, 1992) p.

45

11. Pashkin Yu A et al. Physica B 194 ± 196 1049 (1994)

12. Haviland DB, Pashkin YuA, Kuzmin L S Physica B 203 347 (1994)

13. Zimmerli G et al. Appl. Phys. Lett. 61 237 (1992)

14. Zimmerli G, Kautz R L, Martinis J M Appl. Phys. Lett. 61 2616

(1992)

15. Visscher E H et al. Appl. Phys. Lett. 66 305 (1995)

16. Verbrugh S M et al. J. Appl. Phys. 78 2830 (1995)

17. Martinis J M, NahumM, Jensen HD Phys. Rev. Lett. 72 904 (1994)

18. Ahlers F-J et al. Phys. Rev. B 53 13682 (1996)

19. Ahlers F-J et al., inDigest of the Conf. on Precision Electromagnetic

Measur. (CPEM '96) (Braunschweig, Germany, 1996) p. 507

20. Kuzmin L S et al. Appl. Phys. Lett. 68 2902 (1996)

21. Song D et al. IEEE Trans. Appl. Supercond. 5 3085 (1995)

22. Lafarge P et al. C. R. Acad. Sci. Paris 314 883 (1992)

23. Nakazato K, Blaikei R J, Ahmed H J. Appl. Phys. 75 5123 (1994)

24. Lukens J E et al. Physica B 203 354 (1994)

25. Krupenin V A, Lotkhov S V, Presnov D E Zh. Eksp. Teor. Fiz. 111

344 (1997) [Rus. Phys. JETP 84 190 (1997)]

26. Averin D V, Odintsov A A Phys. Lett. A 140 251 (1989)

544 Conferences and symposia Physics ±Uspekhi 40 (5)


	䰀䤀匀吀 伀䘀 倀唀䈀䰀䤀䌀䄀吀䤀伀一匀 嘀伀䰀 㐀　Ⰰ 一漀 㔀
	嘀伀䰀 㐀　Ⰰ 一漀 㔀
	匀挀椀攀渀琀椀昀椀挀 猀攀猀猀椀漀渀 漀昀 琀栀攀 䐀椀瘀椀猀椀漀渀 漀昀 䜀攀渀攀爀愀氀 倀栀礀猀椀挀猀
	䐀 䈀椀洀戀攀爀最Ⰰ 攀琀 愀氀⸀Ⰰ 匀瀀漀渀琀愀渀攀漀甀猀 漀爀搀攀爀椀渀最 椀渀 猀攀洀椀挀漀渀搀甀挀琀漀爀 渀愀渀漀猀琀爀甀挀琀甀爀攀猀
	䤀 嘀 䬀甀欀甀猀栀欀椀渀Ⰰ 䔀砀瀀攀爀椀洀攀渀琀愀氀 瘀攀爀椀昀椀挀愀琀椀漀渀 漀昀 琀栀攀 猀欀礀爀洀椀漀渀 挀漀渀挀攀瀀琀
	一 䄀 䜀椀瀀瀀椀甀猀Ⰰ 嘀 䐀 䬀甀氀愀欀漀瘀猀欀椀椀Ⰰ 匀 䜀 吀椀欀栀漀搀攀攀瘀Ⰰ 䔀昀昀攀挀琀 漀昀 攀氀攀挀琀爀椀挀 昀椀攀氀搀 爀攀搀椀猀琀爀椀戀甀琀椀漀渀 漀渀 琀栀攀 攀氀攀挀琀爀漀渀椀挀 愀渀搀 漀瀀琀椀挀愀氀 ⸀⸀⸀
	嘀 嘀 䬀愀瀀愀攀瘀Ⰰ 夀甀 嘀 䬀漀瀀愀攀瘀Ⰰ 䤀 嘀 吀漀欀愀琀氀礀Ⰰ 䴀漀洀攀渀琀甀洀 搀攀瀀攀渀搀攀渀挀攀 漀昀 攀氀攀挀琀爀漀渀 猀琀愀琀攀 搀椀洀攀渀猀椀漀渀愀氀椀琀礀 椀渀 栀攀琀攀爀漀猀爀琀甀挀琀甀爀攀猀
	嘀 䄀 䬀爀甀瀀攀渀椀渀Ⰰ 攀琀 愀氀⸀Ⰰ 䄀渀 攀砀瀀攀爀椀洀攀渀琀愀氀 猀琀甀搀礀 漀昀 挀栀愀爀最攀 攀昀昀攀挀琀猀 椀渀 甀氀琀爀愀猀洀愀氀氀 琀甀渀渀攀氀 樀甀渀挀琀椀漀渀猀


