
Abstract. Work on turbulent equipartitions in a plasma (i.e.
attractors characterized by Lagrangian invariants) is re-
viewed. Although such attractors also exist in the convective
zone of the Sun and in atmospheres, the primary emphasis is on
turbulent transport in tokamaks. By extending the hydrody-
namic concept of freezing-in to Vlasov's equation, it is ex-
plained why the magnetic field topology in a collisionless
plasma is conserved even though the conventional hydrody-
namic description breaks down. Arguments are presented to
support the conjecture that the canonical profiles of tokamak
plasma are due to an attractor with a plasma frozen into the
poloidal magnetic field. In fact, the exclusion from the conven-
tional set of frozen-in integrals of the one for the toroidal
magnetic field is all what is needed. The reason for the break-
down of this invariant is the poloidal noninvariancy of the
magnetic field, an effect to which trapped particles are particu-
larly sensitive. The predictions of the attractor and of two
attraction basin boundaries (H-mode and transport suppres-
sion by the reversed shear) are confirmed experimentally to a
reasonable accuracy.

1. Introduction

It is well known that even ordinary nonlinear differential
equations are in general globally nonintegrable. The more so

it is true for partial differential equations of turbulence. There
are many definitions of nonintegrability but the exponential
instability of at least a fraction of the solutions can be taken as
its major indication, because the global solution cannot be
presented in this case as a smooth function involving a
required number of arbitrary constants (arbitrary functions
for partial differential equations). Exact specific solutions,
like fully integrable equations, exhibit atypical behaviour and
describe idealized models. It is quite understandable that
integrable examples fill up scientific journals but we must
not forget about the more general nonintegrable case. It may
seem that nonintegrability leads to incognisability of the
object at hand. However the general solution is not required
because nonintegrable systems spend almost all the time near
attractors.

The idea behind attractors is not new and is expressed in
the old law of mechanics stating that the energy of a system
tends to a minimum. Aristotle made an absolute of this law
andwrote that amotion proceeds until there is a driving force.
The equations of a nonlinear two-dimensional oscillator with
friction are nonintegrable but an attraction to the bottom of
the potential well is clear and quite sufficient for a qualitative
understanding. A potential minimum is the simplest example
of an attractor; in the presence of driving forcesmore complex
strange attractors with fractal structures have been revealed
in recent decades [1 ± 3]. In the current review we confine
ourselves to another type of attractors known for a long
while. In modern terminology the Maxwell ± Boltzmann ±
Gibbs thermodynamic equilibrium is none other than a
statistical attractor for which the law of conservation of
energy and Lagrangian invariant (Liouville's theorem) hold.
The adjective statistical emphasizes that the solution can
deviate, though slightly, from such an attractor as a result of
fluctuation. We are reminded that Liouville's theorem does
not prohibit statistical attractors in the case of many degrees
of freedom. In physics, dissipation appears as a result of
approximating the Hamiltonian systems with many degrees
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of freedom (it is required for common and strange attractors
to exist). With turbulence, the conservation of energy may be
replaced by other invariants and the statistical attractor will
be referred to as a turbulent equipartition (TEP).

Although the importance of invariants has long been
known, I cannot refrain from dithyrambs. Invariants, as
well as the results derived from them, are more fundamental
and more reliable than equations of motions and the ensuing
findings. For example, energy is conserved in many situations
when the equations of motion are unknown or they are
known only approximately. Practically all the valuable
equations in physics were derived from laws of conservation
of previously known invariants. `Derivation' of invariants
from equations of motion offers usually just an ordinary
check. Scarce results are the fee for the reliability of the
method. The more complex the system, the more important
the role of invariants. Relations between people are purely
described by equations of motion but they are governed and
described by such an invariant as money.

In this review, turbulent plasma in tokamaks is the main
object to which I apply the method of invariants. Canonical
plasma profiles will be interpreted as turbulent equipartitions
and this is the reason why we confine ourselves to one type of
attractor only.

The tokamak is not nearly the first thermonuclear reactor.
TEPs have long been known in natural fusion reactors with
turbulent energy transport to the surface: stars. Energy
released in thermonuclear reactions in the vicinity of the star
centre is transferred by radiative heat conduction and, with a
temperature decrease towards the surface, radiative heat
transfer grades into convection. Convection conserves the
Lagrangian invariant, specific entropy, and mixing results in
turbulent equipartition, i.e. constant distribution of specific
entropy in space, not only along trajectories:

T

n2=3
� const :

Here we assume full ionization. In combination with the
hydrostatic equilibrium condition, TEP immediately yields
the universal canonical density profile. Near the edge of a star
the force of gravity may be considered to be constant and this
leads to the hydrostatic equilibrium equation d�n5=3�=dx � n
and to the density distribution n / x3=2, where the x distance
is measured from the upper boundary of the atmosphere. In
contrast to an exponential, isothermal atmosphere, an
isentropic atmosphere has a distinct upper boundary and it
may be seen without a theory, merely by looking at the Sun.

Recently the Sun profile wasmeasuredwith high precision
by helioseismology methods [4]. The frequencies of natural
oscillations of the Sun can be found from measurements of
spectral line shifts and the radial distribution of the speed of
sound can be inferred from the frequency spectrum.With due
regard for the equilibrium condition we obtain temperature
and density profiles. It turned out that the adiabaticity
condition is satisfied in the convective zone with an accuracy
better than one percent. The accuracy is unbelievable for the
theory of turbulence and it is reached because the Lagrangian
invariant Ð specific entropy Ð is conserved with high
accuracy under convection. In an isentropic dry earth's
atmosphere the temperature would drop by 10 degrees per
kilometre but meteorologists count only 6 degrees per kilo-
metre for the standard atmosphere. Zaslavski|̄ evidences that
artillery-men when calculating the distance to their object
also assume the gradient of 6 degrees per kilometre in the

absence of direct measurements. This deviation from the
simplest model is due to vapor condensation and radiative
heat transfer, as a result of which the simplified Lagrangian
invariant is not conserved with the accuracy we expect.
Getting somewhat ahead I say that the accuracy of the
results in tokamak is closer to that for the Earth than for the
Sun.

Turbulent transport has been declared the main and most
complicated problem to be solved on the way to the
controlled thermonuclear synthesis and tokamaks have been
declared the leading type of installations. There are plenty of
reviews on turbulent transport in tokamaks (see, for example,
Refs [5 ± 8]) but the topic is not settled. Wagner and Stroth [7]
emphasized that neither the type of turbulence, nor the nature
of transport, nor the stabilizing elements were known as far as
several years ago. Recent experiments, especially transport
suppression by reversed magnetic shear [9 ± 11] make it
possible to select a better theoretical model. However, this
choice is not unique and the opinions of specialists are
controversial. In our opinion, advents in theory, and
especially in experiment, have verified that the convection of
trapped particles is the chief cause of transport as it had been
suggested in the very first review on this subject [5]. Large-
scale magnetohydrodynamic (MHD) instabilities are usually
not coupled with the problem of turbulent transport and are
considered separately [12 ± 14].

The traditional scheme of studying the turbulent trans-
port in tokamaks usually starts with the linear analysis of
instabilities on the base of equations of motion; then
transport coefficients are evaluated by general nonlinear
speculations; and finally, the transport equations are solved.
This is a good direct program and it could be the best one if it
was realized with simple means. Though there have been
thousands of works and all the power of computers has been
harnessed, a satisfactory accuracy has been attained only in
individual cases and new enhanced confinement modes were
found basically in experiments (one exception is transport
suppression by reversed shear predicted from various ideas [5,
15, 16]).

The aim of this review is to start from invariants (instead
of equations of motion) and then to find an attractor and its
attraction basin.

All the method of magnetic confinement is based on the
invariants of `freezing-in', pasting of plasma particles into
magnetic field lines. If freezing-in is ideal and field lines lie on
embedded tori then there is no turbulent transport. Analysis
of turbulent transport essentially reduces to an analysis of the
breakdown of the frozen-in invariants. Here at the outset, a
researcher meets an unpleasant surprise: there are no correct
three-dimensional MHD equations for weak-collisional and
collisionless plasmas, and hence, the question arises of how
we can find invariants? The magnetized plasma provides a
very complex multidimensional system. In a tokamak or a
slellarator the distribution function depends on at least six
distinct variables: small radius, toroidal angle, poloidal angle,
time, longitudinal velocity, and transverse velocity. In a six-
dimensional strongly anisotropic space many different
objects may be placed. Therefore, it is quite natural that
there are no simple MHD equations that adequately describe
turbulent transport. If we try to write downMHD equations,
then it turns out that the pressure is a poor-defined tensor
rather than a scalar function and the notion of freezing-in
cannot be inserted theoretically although frozen-in effects are
found in experiments.
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Frozen-in invariants can, however, be conserved even in
the absence of MHD equations of motion. The extension of
the notion of freezing-in to the Vlasov equation using the
Poincare invariant yields a new most important tool of
analysis. Along with the assumption of the integrable
behaviour of a bunch of plasma particles, this leads to a new
important general conclusion that the topology of the
magnetic field is conserved in collisionless plasma.

Using the toroidal symmetry of the tokamak we shall
show that over transport times the freezing-in of plasma is
preserved in the poloidal field and breaks down in the toroidal
field as has long been known for trapped particles [5], and
thus that convection becomes possible. If freezing-in is
conserved in the poloidal field, then the quantity nr=Bp is a
Lagrangian invariant and leads to the attractor n / 1=q. This
canonical density profile explains the turbulent pinching
paradox and is close to that observed in supershots and with
the L-mode. If we adopt an unfounded, but natural polytrope
distribution of temperature, then the attractor profiles
(density, temperature, and magnetic field) in the ohmic
regime are uniquely defined and very close to those of
experiment.

Turbulent equipartitions are fully described by invariants;
and without any exaggeration, invariants show up as rapid
rails through the swamp of variables. The knowledge of the
invariants of turbulent attractors makes it possible to predict
under which conditions turbulent transport is suppressed. If
the atmosphere is heated from above or if the force of gravity
is reversed, then there are no reasons for convection. In
tokamaks, the negative sign (i.e. the inversion) of magnetic
shear means the contraction of plasma in its motion towards
the outside, but this contraction is unfavourable in terms of
energy and suppresses convection. This 30-year old conclu-
sion has been recently confirmed by experiments [9 ± 11].

The toroidal component of the law of freezing-in is broken
down by trapped particles. If plasma rotates in the poloidal
direction and trapped ions are absent, then there is no cause
for freezing-in to break down and, as a consequence,
turbulent transport is suppressed. This prediction of the H-
mode has been also made 30 years ago [17, 18] but for some
reasons it was not discussed after the experimental discovery
of the pattern [19].

Thus, the analysis of the breakdown of one invariant
makes it possible to explain three totally different regimes of
confinement in tokamaks corresponding to an attractor and
two boundaries of its attraction basin. This economy of
means is usually an indication of a correct choice although it
cannot be considered a proof.

2. Turbulent equipartition

The evolution of nonlinear systems with a large number of
degrees of freedom depends on the shape of the hypersur-
face in the phase space. At the same time the latter shape is
defined by the laws of conservation. If the hypersurface is
open and its area is concentrated at infinity, then the
evolution of the system is normally described in terms of
energy fluxes and other invariants after the Kolmogorov
model of turbulence [20]. This case is known as mostly
widespread but it fails to be the only one possible. If the
hypersurface is closed then the fluxes cannot flow anywhere
and there appears the natural attraction to the statistical
attractor, or an equipartition of integrals of motion on the
hypersurface. Quantities that are constant along trajectories

(Lagrangian invariants) give a principal tool for the study of
equipartitions. In this section I shall deduce the diffusion
equation describing relaxation to spatially inhomogeneous
TEPs. The difference between this diffusion equation and
the one conventionally used for tokamaks is that it includes
some additional fluxes.

2.1 Salt in dough
Humanity had its first experience with turbulent equiparti-
tion thousands of years ago. It is sufficient to knead a salted
dough long enough to get a uniformly salted dough, although
the stirring intensity may be nonuniform in space. Ancient
people knew this although they did not know the causes of
equipartition. Today we can formulate these causes explicitly.

1. The total amount of salt is conserved.
2. The motion is incompressible, namely divv � 0. It

follows from these two suppositions that the salt concentra-
tion c is conserved along trajectories, i.e. the Lagrangian
invariant

dc

dt
� 0 �1�

is involved. It should be emphasized that the Lagrangian
invariant carries more information than the integral one
because it is conserved along an infinite number of trajec-
tories. The integral invariant (the total amount of salt) follows
from the Lagrangian invariant but not vice versa. When the
dough is kneaded, molecular diffusion smooths out sharp salt
density oscillations. If the stirring and diffusion combined
have once made c � const, then the density cannot be
changed by any incompressing stirring, i.e. the solution
c � const is an attractor. These considerations make it
possible to write out the diffusion equation governing
relaxation to the equipartition in the local approximation.
(The equipartition itself does not require the local approx-
imation to be true.)

But the matter does not disappear, and hence

qc
qt
� divq � 0 :

The q flux must vanish on equipartition, so that assuming
also isotropy we arrive at

q � ÿDHc :

Finally one obtains

qc
qt
� divD � Hc : �2�

The diffusion coefficient D is determined by the turbu-
lence features but the equation structure is dictated by the
Lagrangian invariant.

In nature, though, not only incompressible motions
occur. Atmospheric turbulence yields the next simple, but
important example provided that the turbulent pulsations are
slow in comparison to the speed of sound. Air expands on
elevating and it contracts on being sunk. Therefore, air
density is no longer a Lagrangian invariant. Temperature
also experiences adiabatic changes, so that mixing does not
produce an isothermic atmosphere. The specific entropy s
represents, however, a Lagrangian invariant and it satisfies
both the exact transport equation ds=dt � 0 and the averaged
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transport equation

qs
qt
� divD � Hs :

The relaxed equilibrium state corresponds to the isentropic
atmosphere neutrally stable to convection. The value of this
example is that when compressibility comes into play the
turbulent heat flux vanishes by no means on the background
of the isothermic distribution and the system does not relax to
it. Consideration of nondiagonal fluxes is insufficient. This
fact is usually ignored in discussions on heat and particle
fluxes in tokamaks but it has been long known in atmospheric
physics (see, for example, Ref. [21]).

For an isentropic profile to establish it is essential that the
atmosphere is heated from below, though instability develops
only when the temperature gradient exceeds the critical value.
When the atmosphere is heated from above, there is no cause
for instability and there will be no TEPs unless an additional
source of turbulence such as wind appears.

2.2 Structure of the turbulent transport matrix
and the Onsager symmetry
If a system is multidimensional and anisotropic, then a tensor
replaces the scalar diffusion coefficient, its structure depend-
ing on Lagrangian invariants. In this section we shall show
that turbulence not only breaks the Onsager symmetry but
also brings about fluxes in the absence of the gradients of
thermodynamic variables.

If turbulent transport is ignored, then the major contribu-
tion to transport processes is made by Coulomb collisions,
and neoclassical coefficients [22, 23] feature Onsager symme-
try [24], i.e. the fluxes of particles, heat, charge, toroidal
momentum and other quantities are proportional to the
gradients of thermodynamic variables:

qi � aikHjk ; �3�

where the factors aik are either symmetric or antisymmetric
[24]. The turbulent contribution is usually allowed for by
adding a term to the transport matrix:

qi � �aik � Tik�Hjk : �4�

There exist a dozen papers in which turbulent transport in
tokamaks features a symmetry, and there are a dozen papers
in which the authors show that the symmetry is absent (see
discussions in Ref. [25]). We shall show that symmetry can
present for simplified models of turbulence but that in general
the symmetry is broken, and moreover, the matrix equation
(4) itself does not hold because turbulence brings about fluxes
in the absence of gradients of thermodynamic variables [16].
This conclusion is the main result of the present section.

The availability or absence of the symmetry is not specific
for turbulence in tokamaks: this pertains to a general problem
of turbulent motion. Therefore, we shall try to consider it
using a minimal number of assumptions. The major limita-
tion results from the phase flow incompressibility as it follows
from the Hamiltonian behaviour of the system (Liouville's
theorem). First we shall see how the one-dimensional
transport equation appears. Let the incompressible rearran-
gements be accomplished in the two-dimensional plane, i.e.

df�x; y�
dt

� 0 ;

and the mean distribution function f0 depends solely on x.
Then for the flux q one obtains

qx � hdf dxi � qf0
qx
hdx2i ;

whence

qf0
qt
� qq

qx
� q

qx
Dxx

qf0
qx

:

This is true, for example, for quasi-linear particle diffusion
conditioned by waves [26]. Notice that the quasi-linear
diffusion coefficient is uniquely determined from the condi-
tion of energy conservation

gW � Dxx
mv2

2

qf
qv

;

where g is the Landau damping factor, and W is the wave
energy density.

If diffusion is essentially two-dimensional and turbulence
is anisotropic but not gyrotropic, then there occur funda-
mental rearrangements like those in Fig. 1a, from which a
general incompressible rearrangement can be constructed.
Here one has

qx � hdf dxi � qf0
qx
hdx2i � qf0

qy
hdxdyi ;

qy � hdf dyi � qf0
qx
hdxdyi � qf0

qy
hdy2i :

We see that in this special case the transport matrix is
symmetric and can be brought to a diagonal form by rotation.

In the special case of two-dimensional gyrotropic and yet
isotropic turbulence the fundamental rearrangement looks
like a local rotation by a small angle and it is presented in
Fig. 1b. Similar evaluations show that in this case the
transport matrix is antisymmetric. In a more general case
the sum of the symmetric and antisymmetric matrices has no
symmetry. In the case of the original Onsager symmetry, the

x

y
a

dx

dy

dx

dy

x

y

b

Figure 1. (a) An incompressible rearrangement typical for anysotropic and

yet nongyrotropic turbulence; (b) an incompressible rearrangement

typical for isotropic and yet gyrotropic turbulence.
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change of the magnetic field sign is provided for; analogous
suggestions can be made for turbulence. The resultant
relationships appear not very useful for experiment. The real
situation, however, is even worse. The reason is that in the
multidimensional case (the Vlasov equation is governed in a
six-dimensional phase space), the two-dimensional rearrange-
ments can be compressible because of a compensating
compression in other directions. As a result, fluxes become
possible at zero gradients of the thermodynamic variables and
can even be directed against the gradients. This does not seem
contrary to the basic principles of thermodynamics (see
Ref. [27]). The reader should remember that the matrix
elements can depend on gradients of the thermodynamic
variables quadratically or otherwise.

Thus, turbulent fluxes in a tokamak for a half dozen
variables (density, electron and ion heat, toroidal rotation
velocity, poloidal magnetic field, radial electric field, etc.)
generally depend on the full matrix plus terms in the absence
of gradients, i.e. on several tens of independent factors, which
are impossible to be calculated. Fortunately, an attractor can
be examined without knowledge of these coefficients.

2.3 Marginal stability and proximity to an attractor
Potentially, marginal stability yields more information than
TEP but the latter approach is simpler.

The marginal stability principle supposes that the fluxes
responsible for the deviation from equilibrium are so small
that even a weak instability would suffice to reach a new
equilibrium. Instability appears when the gradients exceed
some critical values (critical gradients can be found from the
condition that instability increments are zero). In the simplest
case for the Sun, the marginal instability causes the specific
entropy to be constant as well as TEP does. Proximity to the
attractor is evident as the energy flux is small in comparison
with the gas-dynamic flux (the product of the thermal energy
density into the speed of sound).

For a tokamak the marginal stability principle was
prescribed in Ref. [28]. It has still not been realized because
of the complexity of the linear stability problem, though fast-
evolving numerical methods are much promising [29 ± 32].
Kadomtsev and Pogutse derived a confinement time close to
the Bohm estimate due to trapped particles [5] when gradients
exceed their critical values by a factor of the order of unity.
The heat fluxes due to heating in experiments are much less
than the Bohm fluxes and this is sometimes erroneously
considered as an argument against the Kadomtsev ± Pogutse
theory. In fact this only means that gradients are close to the
critical ones. That the observed static transport coefficients
are small in comparison to the dynamic ones is a more evident
indication of proximity to the attractor. The static coefficients
can even coincide with the dynamic ones but in any case the
gradients should be measured from the critical gradients.

The attractor that coincides with marginal stability was
considered by Pastukhov for the transient layer in a magne-
toelectrostatic trap [33].

The well-known plateau appearing in the one-dimen-
sional quasi-linear relaxation of particles on waves yields
another example of TEP. Thus, turbulent equipartition is
closely related to marginal stability and increment vanishes
when equilibrium relaxation cannot proceed any further. In
the simplest cases TEP and marginal stability yield the same
results but they are different when we allow for decay and
excitation of waves by collisions and by nonlinear beats.
Analysis of TEP, however, is simpler because it suffices to

know the invariants of motion. For this reason throughout
the paper we shall apply the TEP method and turn to
marginal stability only if necessary.

2.4 A simple two-dimensional TEP model
in planar geometry and in a z-pinch
Even the simplest two-dimensional model, in which the
magnetic field has one component, reveals important features
of TEP: particle and heat pinching, and its relationship with
frozen-in invariants. A similar model is feasible also in z-
pinches.

We shall consider below four examples of TEP of
increasing complexity.

The simplest example is a home refrigerator. It produces
heat fluxes in the absence of an initial temperature gradient.
As with turbulence, the refrigerator is active and conse-
quently such fluxes are not prohibited.

The refrigerator example may seem artificial. We remem-
ber therefore the adiabatic agitation of an initially isothermic
atmosphere in thermodynamically equilibrium state from the
Introduction. The raised volumes of air expand and cool; the
lowered volumes contract and heat up. Hence, a downward
heat flux arises. Certainly, an isothermal atmosphere is
convectively stable and requires an external turbulent
source, for example, a horizontal wind. The equation for the
heat flux can easily be derived from the condition that the flux
vanishes in an isentropic atmosphere s � const:

q � D
qs
qz
:

The coefficient D depends on a turbulent behaviour. Of
course, we do not pretend that this process is significant for
the atmosphere but it is rather clear and physical. In
tokamaks a similar process would be referred to as a thermal
pinch.

The two-dimensional idealized model of magnetic con-
finement is of fundamental interest. We assume the magnetic
field to be given and that it possesses only a z-component and
depends on two other coordinates, i.e. B � Bz�x; y�. We also
assume that the plasma is described by an ideal single-fluid
MHD. This implies that the Lagrangian invariant n=B is
frozen-in. If plasma is mixed by drift flows, then the spatially
inhomogeneous TEP naturally appears for the equipartition
of the invariant:

n�x; y� / B�x; y� :

The simplicity, with which we obtained this answer, should
not be deluding. Pinching in this mechanism is ignored in
almost all papers on turbulent transport. The numerical
verification of the attraction to this attractor was performed
in Ref. [34] in the context of MHD approach and the result
follows the analytical theory with a high accuracy. A similar
result was obtained through simulating the Vlasov equation
[35]. Figure 2 shows the steady-state density profile and the
model magnetic field profile (turbulence was simulated by a
random set of harmonics). Obviously, the profiles coincide
though the hydrodynamic frozen-in invariant, fromwhich the
analytical result n=B � const was obtained, is not applicable.
The answer is in the extension of frozen-in effect to the Vlasov
equation (see the next section).

Equipartitions were also considered in z-pinches. First
Kadomtsev [36] obtained the marginal stability criterion in
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the form

rp3=5

B
� const �5�

for the interchange instability of an axially symmetric z-pinch
in the context of an ideal MHD model.

This criterion has a clear physical meaning. The thermal
pressure per unit magnetic flux produces an instability if it is
larger near the pinch axis. This is in full analogy with
convection in the atmosphere.

Then Sasorov [37] supposed that a region in which
invariant (5) has approximately the same value is formed
near the axis when a sausage-type instability develops as the
pinch wrenches inside out. Experimental data on plasma foci
agree rather well with the hypothesis. In fact, this is the TEP
method and it raises the following question. In contrast to the
atmospheric case, the pinch has two independent Lagrangian
invariants: the frozen-in function (5) and the specific entropy.
Why do we ignore the entropy? The answer is clear: marginal
stability andMHD are sensitive only to a single invariant (5);
therefore, the trend to equipartition will manifest itself more
strongly. In other words, there are passive invariants besides
the active invariants as, for example, salt in dough. The
absence of TEP for specific entropy does not entail MHD
instabilities but if the turbulence is intensive, then entropy
TEP can also arise. In fact, MHD equations have a third
Lagrangian invariant which is the particle density per unit
magnetic flux nr=B depending on the two other invariants.
Therefore the turbulent diffusive flux, which for simplicity we
write out in the pinch corona where the magnetic field drops
down inversely proportional to the radius, has the form

qn � D
q�nr2�
qr

:

Here one unit in the exponent of r2 appears because of
dependence of the magnetic field on radius, and the other
does because of cylindrical symmetry. The equipartition is
reached on a strongly inhomogeneous profile; in tokamaks
this effect is referred to as a particle pinching. However, there
is no marginal instability for specific entropy and density but
in the context of the model adopted they play a role similar to
salt in dough. These invariants are passive scalars.

Equipartitions based on hydrodynamic Lagrangian
invariants are relatively simple. They are close to the familiar
MHD theories of relaxed states by Taylor [38] and Kadomt-
sev [39] with a lower dimensionality of invariant surface and
to the less known and more complex equipartitions for
nonintegrable nonlinear wave equations with a higher
dimensionality. In the last case the statistical attractors are
solitary waves (solitons) [40, 41].

The examples we have considered in this section were
studied earlier in MHD in connection with plasma foci [37]
and ion diodes [42], and also with the problem of the Onsager
symmetry and pinching in tokamaks [43]. These simple
examples show that Onsager symmetry is broken by turbu-
lence [25, 44, 45], and moreover, the equilibrium itself should
be reconsidered. Equilibria, or in other words attractors are
described by Lagrangian invariants.

3. Frozen-in integrals in collisionless plasma

The ordinary law of freezing-in is not applicable to collision-
less plasma because thermal pressure forces have a tensor
nature. The extension of the frozen-in notion to the Vlasov
equation shows that the magnetic field topology can be
conserved even if thermal forces are present, but in general
plasma is no more frozen in this field. In a toroidally
symmetric tokamak the plasma is frozen in the poloidal
field: nr=Bp � const.

3.1 The frozen-in notion and Poincare invariants
The fundamental cause, for which the law of freezing-in
appears in plasma, is that forces are potential. This law is
related to the conservation of vorticity in an ideal fluid, to the
canonical form of Hamilton's equations for a fluid particle,
and to Poincare's invariant. Poincare's invariant helps to
generalize the law of freezing-in.

In nature, forces are usually potential, and as a result,
angular momentum is conserved. In condensed media the
potential nature of forces manifests itself in the conservation
of vorticity in an ideal fluid, in freezing of themagnetic field in
a plasma, and in generalized vorticity. The stability of a
whipping top and magnetic confinement have the same
nature. Unfortunately, this question is barely touched in
most textbooks and magnetic field freezing-in is presented as
a special property of the equations of motion. In the
differential formulation the freezing-in means that the
evolution of a magnetic field B is governed by the equation

Bt � HH� �v�B
�
; �6�

where v is the plasma velocity. In the equivalent integral
formulation the magnetic field flux B through any closed
contour is conserved if the contour travels with the plasma
velocity v.

Equation (6) can be deduced by taking the rotor of the
hydrodynamic equation of the electron motion, and by
setting zero current velocity and zero electron mass. In the
mean time, even if the mass is finite, the equation of motion of
each plasma component can be represented in the form of
conservation of the generalized vorticityX:

Xt � HH� �v�X
�
; �7�

where X � HH� p, and p � mv� eA=c is the generalized
momentum of a particle. If the mechanical component

ÿ15 ÿ10 0 5ÿ5 10 15

0.6

0.4

0.2

0

0.8

1.0B; n

r, arb. units

Figure 2. Magnetic field (dashed line) and density (solid line) profiles

obtained from the numerical simulation of kinetics in Ref. [35].
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dominates in the generalized momentum, then we arrive at
the Kelvin theorem on circulation in an ideal fluid, known
since last century; if the electromagnetic component dom-
inates, then particles are frozen into the magnetic field. On
introducing the finite electron mass, the integral of motionX

does not disappear, but its definition is slightly changed.
Consequently, there is neither plasma leakage, nor collision-
less reconnection. Studies in this field frequently overlook the
conservation of generalized vorticity.

The conservation of generalized vorticity was introduced
by Dirac, and in plasma, by Sudan [46, 47]. In mathematical
terms the relationship between vorticity and the Hamiltonian
is set forth in monographs [48, 49].

This new notation helps to clarify the fundamental reason
for which the notion of freezing-in is introduced. It is notmere
chance that the generalized vorticity is conserved: the reason
should be sought in the canonical form of the Hamiltonian
equation for a fluid particle. In fact, the hydrodynamic
equations of motion for pressure depending solely on density
can be derived from the Hamiltonian

H � P�q� � ef�q� � �pÿ eA=c�2
2m

; �8�

where P�q� is the normalized pressure, f�q� and A�q� are the
electrostatic and vector potentials. The equations have a
canonical form

_p � ÿ dH
dq

; _q � dH
dp

: �9�

It follows then from (9) that the relative integral Poincare
invariant

I �
�

p dq �10�

is conserved if the integration contour is carried by the phase
flow. (This exact invariant should not be confused with the
approximate adiabatic invariant, which is derived from the
Poincare invariant having the same form. They differ in
integration contour: in the case of the adiabatic invariant
the integral is taken over the periodic trajectory of a particle.
The periodic trajectory coincides only approximately with the
contour that the phase flow carries.) Since in hydrodynamics
the generalized momentum is a function of coordinates and
time, the six-dimensional phase space can be projected onto
ordinary three-dimensional space. Then the contour integral
can be transformed into the flux HH� p through the surface
stretched over the contour. Thus, we arrive at the integral
formulation of the freezing-in for the quantity

X � HH� p :

The electric field is not potential because the magnetic
field is variable. Therefore, it may seem that the momentum
circulation should not be conserved. The answer is that the
generalized momentum change due to this mechanism is
hidden in its magnetic part and the canonical form of the
Hamilton equation is not disturbed.

Analogously, the law of freezing-in can also be introduced
into the general theory of relativity when the magnetic field
acquires a weight and space is curved. The law of freezing-in
can also be introduced for Yang ±Mills plasma.

3.2 Lagrangian invariants and the frozen-in property
for the Vlasov drift equation
A Lagrangian invariant is introduced for the Vlasov drift
equation, based on the relative integral Poincare invariant
and also on the transverse and longitudinal adiabatic
invariants. This section includes no calculations but some
efforts are required to generalize the frozen-in notion
introduced in hydrodynamics to kinetics. These efforts are
necessary to gain a complete understanding of the frozen-in
peculiarities in collisionless plasma.

The hydrodynamic frozen-in condition is justified purely
for themotion of plasmawith velocities being of the order of a
thermal drift velocity of particles but it can be extended to the
Vlasov equation. The Poincare invariant defined in six-
dimensional phase space can also be considered in the space
of the Vlasov equation, the difference being that the fields in
the Vlasov equation are known. It is right to say that the
Vlasov equation for electrons governs the sum of an infinite
number of electron hydrodynamics with a zero thermal
pressure, in each of which its own invariant (10) is con-
served. The initial integration contour is arbitrary and the
result depends on what choice we make. The value of an
integral is its ability to confine the motion. If the contour
remains on a two-dimensional surface, then the number of
particles inside the contour would be preserved because (a)
the line divides a surface, and (b) the line sticks to particles.

A line does not divide the six-dimensional space but the
dimensionality can be lowered to two by introducing
adiabatic invariants natural for magnetized plasma. The
transverse adiabatic invariant, or the magnetic moment

m � v2?
B

�11�

is especially simple and its conservation lowers the dimension-
ality by two dimensions at once. If we now consider the quasi-
periodical motion of the particle between magnetic mirrors
and introduce conservation of the longitudinal adiabatic
invariant

J �
�
vk dl ; �12�

then the dimensionality of space lowers by yet another two
units and the centres of banana orbits move onto a two-
dimensional hypersurface and this fact alone imposes severe
restrictions. Inside the contour not only the flux Bs but also
the number of particles nm; J s is conserved, and thus, the first
quantity can be divided by the second and the integration
contour can be `eliminated'. Since we have already passed to
the drift approximation, only the magnetic momentum
component should be retained in the Poincare invariant and
the contour integral takes the remarkably simple form of a
Lagrangian invariant. The quantity

L � B?
nm; J

�13�

is conserved along trajectories. Here the magnetic field
component B? is perpendicular to the surface of the centres
of banana drift orbits. This Lagrangian invariant extends the
frozen-in notion to the Vlasov equation and is very con-
venient to analyze the structure of the turbulent transport
equations. This is the principal tool we use in this paper. We
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recall that invariant (13) and both adiabatic invariants are
obtained from a single Poincare invariant: the difference is in
integration contours.

We shall consider now a simple example where the
magnetic field has only a z-component. In this case we can
take advantage of the conservation of the transverse adiabatic
invariant

m � v
2
?
B
;

and now the Vlasov drift equation preserves the Poincare
invariant (10) and the Lagrangian invariant nm=B, which is an
analogue of (13). The relevant TEP

nm�x; y� / B�x; y�

differs from the gas-dynamic one only in that the same TEP is
valid on each hypersurface m � const. Consequently, aver-
aging over different m is equivalent to omitting the index.

This result may be derived less rigorously, but more
clearly. A cold particle experiences only an electrostatic drift
along equipotential lines. Since the drift velocity is propor-
tional to Bÿ1, the particle spends more time in regions where
the magnetic field strength is higher. A hot particle experi-
ences an additional drift along the lines of constant magnetic
field but the density of the above TEP is constant on these
lines and therefore is not perturbed.

Thus, in this special case the hydrodynamic and Vlasov
TEPs fully coincide. The reason is that the Vlasov TEP is
independent of m. This example explains why in numerical
simulation of kinetics in Ref. [35] the authors obtained the
same turbulent equipartition as in numerical simulation of
hydrodynamics in Ref. [34]. Note one important and
attractive property: the density distribution follows the
collisionless TEP even if the transverse adiabatic invariant is
broken by collisions. The reason is that collisions do not
change the magnetic component of the momentum and only
the fact that the large-scale Poincare invariant is conserved
proves to be principal. Two-dimensional TEPs are considered
in more detail in Ref. [50].

In the general three-dimensional case the hydrodynamic
and Vlasov TEPs are not, broadly speaking, the same.

3.3 Semiideal MHD and Ing-Yan particles
The notion of freezing-in is used in collisionless plasma in
general and in tokamaks in particular without sufficient
reason since the nonpotential component of the thermal
pressure forces can break the magnetic field topology over
transport times. In this section we shall show that particles
with integrable behaviour provide an excellent longitudinal
plasma conductivity, and hence, conservation of themagnetic
topology, while particles with nonintegrable behaviour make
the main contribution to transverse leakage.

In the first tokamaks the temperature was low and classic
transport was less than turbulent transport, though not
negligible. As the plasma conductivity increased with the
electron temperature, a paradoxmanifested itself increasingly
more: the magnetic field diffusion became less than the
particle diffusion, although in MHD only one process Ð
electron-ion friction Ð is responsible for the two diffusions.
Attempts to explain it by magnetic surface splitting predict a
more extensive diffusion of fast electrons but it seems that this
prediction contradicts the experiment.

This paradox has a fundamental significance and subtle
physical causes but it was not discussed until recently. Boozer
formulated it explicitly in Ref. [51]: ``It is well known that in
laboratory plasma the by-pass voltage depends on the Spitzer
conductivity though the transverse transport can be greater
by a factor of 103 over the classic resistance prediction.''
Boozer has also shown that if the longitudinal conductivity is
infinite then the magnetic topology is preserved and the
magnetic field obeys the equation

Bt � HH� �u�B� ; �14�

where u is the velocity of an abstract frozen-in preserver,
differing from the plasma velocity v. The correlation between
themagnetic field topology conservation and the longitudinal
conductivity was also noted in Ref. [52] and Eqn (14) was
derived in Ref. [53] from the Poincare invariant for the
collisionless Vlasov equation.

Boozer set forth two possible reasons why longitudinal
and transverse conductivities differ so much. The first reason
is that perturbations in magnetized plasma are very elongated
along the magnetic field, k?4 kk. If k?=kk ' 103, then the
main momentum transfer to particles occurs transversely and
a larger transverse transport can be explained, although very
small-scale perturbations should be considered.

The second reason is more subtle and fundamental: ``The
longitudinal conductivity is close to the classical conductivity
if a fraction of passing particles has a low dissipation.'' This
cause acts even for k? ' kk. The same proposition was made
in Refs [16, 53] from an analysis of the Poincare invariant and
frozen-in presence in the Vlasov equation.

The coexistence of regions in phase space with integrable
and nonintegrable behaviour (nonresonance and resonance
particles in linear theory) is typical for Hamiltonian
mechanics [48, 49]. For brevity we shall refer to particles with
integrable trajectories as Ing-particles, and to particles with
nonintegrable trajectories as Yan-particles. In ancient Chi-
nese philosophy Ing-Yan symbolized opposing forces, female
and male, passive and active. This is in accord with the
meanings of the two types of behaviour of particles in
plasma, moreover Ing sounds like integrable and as it can be
easily remembered.

The methods by which Ing- and Yan-particles are
described totally differ. A long time ago Ptolemaeus took
advantage of the integrablemotion of the planets in his theory
of epicycles. In this case the consequence of integrability is
that trajectories discretely expand into Fourier series. At the
same time weak planet interactions and nearly circular orbits
result in rapid convergence and the successful application of
epicycles. This method can also be applied to describe Ing-
particles in tokamaks.

To describe Yan-particles, diffusion and TEP are
employed. If we want to distinguish Ing-particles from Yan-
particles, we must consider not only the linear Landau
resonance but also all nonlinearities, for which convective
cells, magnetic field imperfection, etc. are responsible. The
implications of the coexistence of Ing- and Yan-particles are
very important for collisionless plasma in tokamaks. Like
two-component superfluid helium and electrons in super-
conductors, electrons in plasma can be considered to be
comprised of Ing-particles, or the frozen-in preservers [51,
53] and Yan-particles responsible for transverse transport.

Integrability is more easily broken for trapped particles
and it seems that they comprise the larger fraction of Yan-
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particles andmake the major contribution to plasma leakage.
Passing Ing-particles provide excellent longitudinal conduc-
tivity. Certainly, their fraction cannot be too small but they
must be able to carry all the current almost without resistance.
It follows from the proximity of the experimental longitudinal
conductivity to that of Spitzer that the fraction of Ing-
particles cannot be much less than half, and this result seems
quite natural from the theoretical standpoint. Wave and
vortex dissipations are closely related to nonintegrability
because the continuous spectrum corresponds to Yan-
particles and any perturbations exhibit their own resonances.

The Poincare integral contour for Ing-particles is simple
as the small mechanical component of momentum can be
neglected. As a result the vector potential circulation and
magnetic field isofreezing-in are preserved. The Poincare
invariant is preserved for Yan-particles as well but in this
case the integration contour is exponentially elongated and
becomes entangled, and therefore, it is impossible to neglect
the mechanical component of momentum and the magnetic
field cannot be recovered from the invariant (the contour and
particle locations cannot be recovered from themagnetic field
either).

MHD with an infinite longitudinal conductivity of the
frozen-in preserver which satisfies Eqn (14), was called a
`semiideal MHD' [54]. A semiideal MHD preserves magnetic
topology and the poloidal magnetic field is frozen into a
toroidal one. The equation of plasmamotion is not defined in
this case and the evolutionary magnetic field equation also
includes an indeterminate velocity. However, valuable infor-
mation can be extracted even in such a situation. For
example, in a tokamak the magnetic field is fairly `rigid'
relative to the thermal pressure. Hence, we can neglect the
evolution of the magnetic field and consider the diffusion of
particles in a given field.

This interpretation differs somewhat from the original
interpretation of Boozer [51] in that the tensor nature of
thermal pressure (the direction of the hydrodynamic force is
current-independent), rather than finite transverse conduc-
tivity, is declared the cause of transverse transport.

Thus, the Ing-Yan dualism, and as a consequence, the
semiideal nature of MHD can be considered as an experi-
mental and theoretical fact. As for the nonideal part (plasma
motion), little is known about this item. We shall only
suppose that plasma is better frozen in a poloidal field than
in a toroidal field (see the next section).

3.4 Plasma frozen in a poloidal magnetic field
Due to the action of the nonpotential component of the
thermal pressure forces the plasma freezing in the magnetic
field is disturbed over transport times. In kinetics terminol-
ogy, trapped particles are only frozen in a poloidal magnetic
field while passing particles do not take part in the transport
and they are frozen in both components of the field. This
prompts the hypothesis that plasma is more strongly frozen in
poloidal than in toroidal fields.

In a weakly-collisional plasma in a tokamak, turbulent
perturbations of thermal pressure forces necessarily have a
tensor form and disturb the frozen-in property. There is no
way to express these perturbations correctly but the frozen-in
invariants of passing and trapped particles can be examined.
Following Kadomtsev and Pogutse [5] we assume that all the
passing particles are Ing-particles and do not take part in
transport while a fraction of the trapped particles are Yan-
particles. The frozen-in property for trapped particles in a

poloidal field was introduced into the Vlasov equation with
the Lagrangian invariant

L � nm; J
Bp :

Coulomb collisions change only the small mechanical
component of the generalized momentum and slightly affect
the total momentum. The role of collisions reduces to mixing
of trapped and passing particles. The natural hypothesis is
that only the poloidal component of the frozen-in law
survives as it was preserved by both groups of particles in
collisionless plasma. The relevant Lagrangian hydrodynamic
invariant, in which the density is defined in ordinary space
instead of the hypersurface of adiabatic invariants, takes the
form

L � nr

Bp
: �15�

The toroidal component is not conserved because physically
this corresponds to the well-known nonpotential poloidal
mirror forces (they appear when a plasma is rotated in the
poloidal direction).

It is yet unclear whether only one direction of positive Ing-
Yan duality and natural small parameters of the theory are
sufficient for this derivation of invariance. We recall that
there are no correct MHD equations by which turbulent
transport is described adequately.

4. The attractor in a tokamak and its attraction
basin

The turbulent attractor and two boundaries of its attraction
basin correspond to the three different confinement modes in
tokamaks. It appears that all three modes are observed in
experiment. Plasma freezing in the poloidal magnetic field at
ordinary positive magnetic shear causes instability, TEP, and
canonical profiles to appear. At reversed shear instability and
turbulent transport are suppressed and the profiles do not
follow TEPs. Elimination of trapped ions by poloidal plasma
rotation restores the full law of freezing-in and also
suppresses turbulence.

4.1 TEP and the minimal model of canonical profiles
for supershots and L-mode
The fact that plasma is frozen in a poloidal magnetic field and
the assumption of turbulent equipartition explain the cano-
nical profiles (for the ohmic regime) and the pinching
paradox.

It is interesting to note that some interpretations of an
experiment, almost equivalent to the observation of an
attractor, were made before a theory based on first princi-
ples; they are known as canonical, universal, or resilient
profiles [55 ± 60]. The particle pinch paradox is closely related
to canonical profiles. The pinching phenomenon is that a
density profile is formed and sustained with a peak at the
centre although the source of particles is at the periphery and
the ordinary diffusion is directed outward. Particle pinching
can conveniently be described phenomenologically by con-
vective particle transport to the centre with velocity v [58, 61]:

Q � ÿD qn
qr
� nv : �16�

This convective flow does not contradict the basic principles,
andmoreover, it is natural to inhomogeneous TEPs. The idea
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of inhomogeneous TEPs provides an explanation of convec-
tion and suggests that the flux should be rewritten in a form in
which the inhomogeneous equilibrium n0�r� is emphasized:

Q � ÿD1
q�n=n0�

qr
: �17�

Here n0�r� is a dimensionless presentation of TEP, D1 � Dn0
and deviations from it result in fluxes. In Ref. [60] it was
verified that the quantity D=av, where a is the small tokamak
radius, equals approximately 0.5 in various conditions
although diffusion and velocity vary over wide ranges. It
seems that this situation is typical for all tokamaks otherwise
density profiles would be flat or narrow.

The Vlasov equation with a collisional term has too many
dimensions and in addition it is anisotropic in order that the
causes of abnormal transport in tokamaks should be found
for sure from pure theoretical considerations. Any instability
enhances transport, therefore experimental data on the
confinement times do not make the choice easier. Paradoxical
particle pinch is a different matter. It exists in all tokamaks
but no simple explanations could be found for a long time.
(We do not consider Ware pinch [62], which is small in
comparison with turbulent diffusion, as well as other types
of neoclassical transport [22, 23].)

In what follows we shall be interested in the equilibrium
conditions and n0�r� but pay hardly any attention to fluxes
and D1. Turbulent equipartition is specified by plasma
freezing in poloidal field (15) and it leads to the density
profile [63 ± 65]

n0 / Bp

r
/ qÿ1 ; �18�

where q is the safety factor.
This is a principal formula in this review. Therefore we

shall deduce it in two more ways. This result can be explained
very simply by considering a pure toroidal electric field as in a
Galeev ±Ware pinch. Trapped particles drift radially with a
velocity v=c � E=Bp. Formula (18) follows directly from the
fact that the radial flux is constant: nvr � const. Of course,
the constant toroidal electric field in the tokamak is weak
because the conductivity along the magnetic field is too high.
But variable electrostatic field is not prohibited along the
magnetic field and it makes the major contribution in mixing.
With such a rough estimate it however remains unclear
whether collisions should be taken into account as well as
the fact that the fraction of trapped particles varies with
radius.

Collisionless distributions are frequently the same as
collisional ones. The reason is that the Poincare invariant is
not lost for one Coulomb collision when the integration
contour is wide, because the electromagnetic momentum
makes a major contribution. This is especially clear in the
following derivation of TEP. As Pastukhov has noted in Ref.
[33] TEPs are similar to a quasi-linear plateau [26]. In a
tokamak the toroidal direction is invariant. Therefore, we
consider a plateau on the generalized toroidal momentum
distribution function:

f � dN

dp
� const; p � mv� eA

c
: �19�

By neglecting the small mechanical component of momen-
tum, differentiating (19) in radius and substituting

dA=dr � Bp, dN=dr � 2prn we obtain

nr / Bp ;

i.e. the familiar already distribution. Here it is quite natural to
neglect Coulomb collisions because they vary only the small
mechanical component of momentum. Notice however that
assumptions based on which plateau was obtained have to be
examined carefully. These assumptions are that noninvariant
directions can be neglected and that the Liouville theorem is
valid in the invariant direction.

In 1980 Coppi put forward a hypothesis that in tokamaks
the electron temperature profiles are canonical [55]. TEP
yields almost the same profiles as in experiment not only for
the temperature, but also for the density and safety factor.

Let us consider plasma profiles in tokamak under the
assumption that the density depends on the TEP we have
found above:

n / By

r
/ qÿ1 ; �20�

and that the temperature is described by a polytropic curve

T / n gÿ1 / qÿg�1 ;

where g is still arbitrary. Then the conductivity is also a
known function of q:

s / T 3=2 / q�1ÿg�3=2 :

If we assume that all the current in plasma is inductive and
that the electric field is constant, i.e. the profiles are steady,
then it follows from Ohm's law that

j / 1

r

d�rBy�
dr

� 1

r

d�r2=q�
dr

/ sE / q �1ÿg�3=2 :

This first-order ordinary differential equation is readily
integrated:

q � q0�1� r2b�1=b ; b � 3

2
�gÿ 1� ÿ 1 :

The important fact is that this profile is close for any b to the
profile q � q0�1� r2� that experimenters use. Hence the
specific heat ratio can be selected rather arbitrarily without
introducing a large error. If we recall that mainly the
longitudinal energy of trapped particles is changed in
mixing, then the one-dimensional adiabatic curve for tem-
perature

T / n2 / qÿ2

can be used. As a result we arrive at the minimal model of
canonical profiles [16]:

q � q0�1� r4�1=2 ; T / �1� r4�ÿ1 ; n / �1� r4�ÿ1=2 ;
�21�

where the radius is normalized in such a way as to obtain the
right value of safety factor at the boundary.

The model is minimal in that the simplest assumptions
were made whenever required, and thus different tokamaks
are not distinguished. For example, in divertor tokamaks the
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circular cross-section approximation q � q0�1� r4�1=2 is
known to be invalid near a separatrix where the magnetic
shear is divergent. Formula in (19) can easily be extended to
the case when a circular torus has a noncircular cross-section.
To this end it suffices to replace themomentA in (19) with the
angular moment M � Ar. Surfaces on which the angular
moment is constant coincide withmagnetic surfaces. Introdu-
cing the volume bounded by a magnetic surface V�M� we
arrive at the formula for the density

n / dM�V�
dV

: �22�

This formula, as well as the formula n / qÿ1, is also
applicable in divertor tokamaks and in experiment the
density and temperature gradients do increase near the
separatrix. Moreover, in the JET tokamak it was indepen-
dently revealed by data adjustment [66] that the density
profile depends mainly on the q profile and can be approxi-
mated by the law n / qÿ1=2.

It had been discovered even earlier that inmany tokamaks
the pressure and temperature profiles look similar when they
are normalized using the boundary value qa [56, 57]. More-
over, in reviews [56, 57] the peak of n�0�=hni increases with qa
in qualitative accord with (18).

An in-depth comparison with theoretical predictions
requires simultaneous measurements of radial profiles of
density and poloidal magnetic field. Figure 3 presents results
for the TEXT tokamak (my special thanks to Isichenko who
helped me to retrieve them from the magnetic confinement
database described in Ref. [67]). Plots of density n, q, and nq
are shown as functions of a small radius. Obviously,
nq � const with a good accuracy although we have done
calculations only for the equilibrium state but thermal fluxes
and saw-tooth oscillations must perturb it. I recall that
comparison with the attractor is appropriate only for modes
which are free of ELMs, MARFE, L ±H transitions and
MHD activity.

In the TFTR tokamak it was possible to obtain supershots
in which there are no saw-tooth oscillations [68, 69]. In this
mode nq is constant to a reasonable degree (Fig. 4a and 4b).
Theoretical and experimental results coincide similarly in
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Figure 3. Profiles of the density n, the safety factor q, and the Lagrangian

invariant nq in the TEXT tokamak (shots 88127 ± 124778) [67].
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other available supershots. In L-mode in the TFTR, the
density profiles are usually flattened because of saw-tooth
oscillations. Thus it is natural that there appears a deviation
from profile (18) (see comments in Ref. [70]). Moreover, even
in L-mode the available density profiles are only slightly more
flattened than nq � const curves, i.e. they deviate in the same
direction as the theory predicts (Fig. 4c).

Thus, density profile peaking in tokamaks clearly corre-
lates with the peaking of 1=q. When there exist detailed
measurements, peaking follows a quasi-linear plateau
nq � const or is weaker (the last fact is quite natural).
Particle pinch is difficult to explain while there occur many
flattening factors.

To explain the deviations from canonical profiles the
transport matrix should be considered and the analytical
theory loses its simplicity. Numerical codes are more
convenient for this goal [29 ± 32].

Canonical temperature and current profiles (21) agree
rather well with experiment though more comprehensive
comparisons are needed.

If particle pinch is explained, then thermal pinch [71]
presents no problem because heating is inevitable, at least
under the adiabatic law. It is interesting to note that the
thermal pinch was first discovered and interpreted in the
Earth's radiation belts [72]. In heating both longitudinal and
transverse invariants are conserved in a dipole magnetic field
B / rÿ3, and the Sun's energy provides mixing. Hasegawa
used this idea in his proposal for a dipole reactor with low
temperature and plasma density near the wall [73, 74].
Pressure in a dipole trap drops very sharply as p / rÿ20=3.
Recently Kadomtsev stated his belief that the physics of
radiation belts and the physics of tokamaks are similar [27,
72]. In a tokamak particle pinch is dependent on q and is not
so pronounced as in a dipole trap.

The pinch effect can be seen from the ordinary quasi-
linear diffusion equation for trapped particles in a tokamak
[75, 76]. This analysis was performed in Ref. [77] and showed
that particle pinch depends on the q profile. This approach is
far from straightforward because the diffusion coefficient is
unknown.

The method of invariants does not require comprehensive
information on the turbulence modes although large-scale
convection preserves plasma freezing in the poloidal field in a
more natural way. Short-wave electrostatic perturbations are
discussed more frequently because it is easier to measure and
study them theoretically. However, some measurements of
large-scale convection are also known [78].

It is essential that the theory of canonical profiles is
applicable only for a positive magnetic shear. For a negative
shear the used law of freezing-in prohibits turbulence and this
conclusion is corroborated by experiment as will be shown in
the next section.

4.2 Transport suppression by reversed shear
Experiments using a changed heat flux vector or a partially
inverted profile of q give new confirmation to the principle
that `plasma is frozen only in a poloidal field'.

If the atmosphere is heated not from below but at some
altitude then there is no turbulence source below this altitude.
A similar phenomenon was observed in tokamaks in experi-
ments with off-axis electron-cyclotron heating, when trans-
port decreased substantially in the central part without
perceptible changes in the profiles [59]. Turbulence suppres-
sion is also obtainable not with displacing the heat source in

the atmosphere but `turning over' the gravitational force. In a
tokamak this is achieved by a decrease of the safety factor
with radius and in fact an impressive suppression of transport
processes was observed in recent experiments [9 ± 11].

The poloidal magnetic field profile can substantially
diverge from the canonical profile over times smaller than
the skin timewhen the fraction of bootstrap current is large or
when current is maintained by a noninductive method. Thus,
a region in whichmagnetic shear is negative can be formed. In
the very first works on the instability of trapped particles
Kadomtsev and Pogutse pointed out that negative shear
suppresses this instability [5]. The energy of trapped particles
is sensitive to the profile q�r� since q�r� � rBj=�RBy� defines
the distance between the points of reflection. This distance is
about qR. Here r andR are small and large radii, respectively.
If the shear is negative, dq=dr < 0, then trapped particles
contract along the field when they drift outside and the
transverse �m� and longitudinal �J� adiabatic invariants are
conserved. The longitudinal energy therewith increases and
the instability is suppressed. This estimate is true only for a
typical particle, and in addition, the transverse energy is also
perturbed. Thus, the criterion is very approximate.

If we take the advantage of the Lagrangian invariant nq,
then the plasma contracts in its motion outward in the
negative shear region, it heats and the energy stability
criterion is uncommonly simple: dq=dr < 0 [16], and experi-
ments [9 ± 11] follow this criterion. Recall that this criterion is
derived from the principle that plasma is frozen in the
poloidal field.

Linear stability analysis is more complex and Kadomtsev
and Pogutse have pointed out that the condition

d�ln q�
d�ln r� < ÿ

3

2

leads to stability [5]. A more comprehensive analysis can be
made by numerical codes, in which case Kessel et al. showed
in Ref. [15] that negative shear stabilized trapped ion modes.
Some numerical codes yield other results and there is discord
in the analytical conclusions. All these indicate that the
problem is rather complex.

Energy analysis can be performed for collisionless plasma
in hydrodynamics as well as in kinetics using the Taylor
energy principle [79]. The total kinetic energy of particles can
be written as

E �
�
Wf dr dv ; �23�

where W is the energy per particle, and f is the distribution
function. We shall consider the mixing event when two
volumes exchange places in phase space. A sufficient condi-
tion of stability is that the energyE increases as a result of any
such event. Let us assume that the adiabatic invariants m and J
are conserved. Two elements dr dv must have the same
volume because the phase flow is incompressible, and f is a
Lagrangian invariant by the Liouville theorem. Stability
exists if�

qW
qr

�
m; J

�
qf
qr

�
m; J

< 0 : �24�

The Taylor energy principle [79] says that plasma is stable if in
the phase space the density is greater where the energy is at
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minimum. In a tokamak it is desirable that the energy
minimum was at the centre of the plasma, �qW=qr�m; J > 0.
According to (24) the instability is totally suppressed if
�qf=qr�m; J < 0.

The sign of �qW=qr�m; J depends essentially on the sign of
the magnetic shear. The dependence of the kinetic energy W
of a trapped particle on the small radius r and the first two
adiabatic invariants m and J provides the energy source for
turbulence. This dependence is related to the velocity of
`bananas' toroidal drift through the Hamilton equation

vj � qH
qpj
� ÿ 1

By

�
q�W� F�

qr

�
m; J
: �25�

Here H is a Hamiltonian, F is the electrostatic potential
averaged over the banana orbit, and pj is the toroidal
canonical moment. The poloidal field takes the form

By � ÿ qAj

qr
� ÿ qpj

qr
;

where we have neglected the mechanical component of the
moment. The toroidal drift has been calculated in Ref. [5]
whence it follows that�

qW
qr

�
m; J
� mB0

R

(
2

�
1� 2rq 0�r�

q

�

�
�
cos2

a
2
ÿ E

ÿ
sin�a=2��

K
ÿ
sin�a=2��

�
ÿ cos a

)
: �26�

Here a is the poloidal angle of the point of reflection, and E
and K are complete elliptic integrals. The sign of the energy
change depends essentially on the sign of the shear dq=dr.

It is very instructive to consider the energyW as a function
of radius at fixed m and J. Figure 5 presents the same
dependence for the shot 23100 in JET [80], for which the
shear was negative inside the region of r � 0:5. It is seen that
�qW=qr�m; J < 0 in the region of the positive shear for
practically all trapped particles, and �qW=qr�m; J > 0 for
almost all particles in the region of the negative shear. Not

all questions are solved by majority but this energy disadvan-
tage agrees well with the observed confinement improvement
in the negative shear region. Collisions of particles introduce
some averaging over the distribution function but it is
difficult to calculate. In tokamaks collisions are not frequent
enough for perturbations to be considered locally Maxwel-
lian, and not rare enough to be entirely neglected (especially
for electrons).

Although there are no strict results, the simple hydro-
dynamic and collisionless kinetic models give a clear indica-
tion of stabilization by negative shear. Recall that the
conservation of the invariant in the hydrodynamic model
follows also from the accord between the TEP theory and the
canonical profiles for a positive shear.

In modern experiments the electron temperature, and
hence, the conductivity and skin time are large. Thus, the
profiles of q depend on Ohm's law as well as on the shot
history, noninductive current maintenance, etc. In this case
profiles can deviate far from canonical ones and they can have
a negative shear at the central part of the plasma column [80,
81]. The large values of b in these experiments are usually
associated with the second zone of stability for ballooning
modes [14] but the transport suppression is also important.

Impressive results in the reversed shear zone were recently
obtained in several tokamaks simultaneously [9 ± 11]. In
TFTR heat and particle diffusion dropped by a factor of 40
to the neoclassical level and even lower [10]. Many believe
that the transport cannot be less than the neoclassical [22, 23]
but this is not quite so. Poloidal rotation can eliminate
trapped ions and the neoclassical transport along with them
(see Section 4.3). In the RTP tokamak [11], off-axis electron-
cyclotron heating caused a shear inversion, hollow electron
profiles, and abnormally low electron transport to occur.
Notice that experiments in TFTR indicate the strong
suppression of ion transport and give little data on electron
transport.

Since in tokamaks the transport of toroidal moment is
abnormal [82], turbulent transport suppression by a negative
shear naturally results in plasma spinning by an unbalanced
injection as was, perhaps, observed in Ref. [9]. Many believe
that this rotation makes a serious contribution to stabiliza-
tion although rotation is a natural consequence of stabiliza-
tion and the dependence may be reversed. In addition, the
strong transport suppression is observed some time after the
negative shear has appeared: a barrier formed by some
uncertain parameter is overcome. In TFTR the barrier is
related to the critical power, while inDIII-D it is related to the
size of the transition zone which is close to the thickness of the
ion banana.

Although the suppression of instabilities with trapped
particles by negative shear was predicted in various ways [5,
15, 16], transport suppression in experiment is so impressive
that the question arises as to where are the rest kinetic
instabilities that the theory predicted to be insensitive to
magnetic shear? The answer is yet to be found but the
following general hypothesis can be set forth. Particles with
nonintegrable behaviour are difficult to describe; therefore
theorists usually make assumptions to eliminate these
particles from consideration or retain only the linear Landau
resonance. Meanwhile, as was noted in the analysis of frozen-
in invariants, nonintegrability entails dissipation, and possi-
bly, additional attenuation of waves. This means that weak
instabilities can disappear if the theory gives up a simplifica-
tion of the planar geometry type. Experimental small-scale
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Figure 5. Radial dependence of the energy W�r� of trapped particles at

fixed adiabatic invariants.
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turbulence can be created by large gradients, for which large-
scale convection is responsible as is the case in the atmo-
sphere. In this situation small-scale turbulence must disap-
pear along with convection.

In general, the hypothesis that plasma is frozen in the
poloidal field agrees rather well with experiments on positive
shear as well as on reversed shear although its manifestations
are totally different.

4.3 H-mode
Canonical profiles of L-mode and supershots can be
explained by an attractor arising from breakdown of the
toroidal component of the law of freezing-in through trapped
particles. Transport suppression by negative shear relates to
energy prohibition of instabilities with trapped particles and
defines one of the boundaries of the attraction basin. After
that it is natural to expect that elimination of trapped ions by
fast poloidal rotation suppresses turbulence and defines
another boundary of the attraction basin. This boundary
corresponds with the phenomenology of the H-mode, and
moreover, was predicted 30 years ago.

The enhanced confinement mode, or H-mode, was
revealed in the ASDEX tokamak in 1982 [19]. Since then it
was obtained and investigated in many tokamaks [82 ± 84].
The confinement time in this mode is two or three times
greater than in L-mode, and the enhancement is due first and
foremost to a transport barrier on the plasma surface with a
slightly greater thickness than that of the ion banana. In these
layers noise is typically suppressed while the plasma rotates.
Hence, the radial electric field is much stronger here than in
the bulk of plasma. The dominant opinion is that transport is
suppressed as a result of decorrelation of turbulent fluctua-
tions attributable to the electric drift shear E�B [85, 86].

We shall concentrate our attention on anothermechanism
related directly to trapped ions and frozen-in invariants. An
H-like mode was proposed in 1967 by Berk and Galeev [17]
and by Galeev, Sagdeev, and Wong [18] long before experi-
mental discovery but it had rarely been mentioned in
literature till [87]. In Refs [17, 18] it was assumed that as a
result of ion loss from the surface layer, with a thickness
comparable with that of the ion banana, the plasma surface
layer starts to rotate, trapped ions disappear and the trapped
ion instabilities that Kadomtsev and Pogutse [5] had just
predicted disappear with them. Following [87] we compare
the Berk ±Galeev ± Sagdeev ±Wong idea with experimental
findings.

If a plasma rotates along the magnetic field with a velocity
v larger than the ion thermal velocity, v > vTi, then only ions
on the tail of the Maxwellian distribution remain trapped. In
experiment the plasma rotates not only along the magnetic
field but a criterion for themain part of ions not to be trapped
can be formulated by noting that a radially uniform toroidal
rotation is almost invariant and it does not change the
fraction of trapped ions. Thus, only the poloidal component
of velocity is important. By projecting the velocity onto the
poloidal direction we transform the criterion v > vTi into the
principal formula of this section, or in other words into the
criterion for the poloidal ion Mach number

M � vyB

vTiBy
> 1 : �27�

This condition is in qualitative agreement with experiment.
Figure 6 presents data for the JFT-2M tokamak [88], where

the valuesM > 3 correspond to H-mode. Unfortunately, the
velocity of hydrogen ions rotation was not measured in any
tokamak. In JFT-2M the poloidal velocity of impurities was
only measured by the spectral line shift. In the DIII-D
tokamak, the rotational parameters were measured for the
helium plasma, and the data in Fig. 4 from Ref. [89] indicate
clearly that the confinementmode correlateswith the poloidal
Mach number: M < 1 in L-mode, and M > 1 in H-mode. It
would be interesting to measure the poloidal rotation
velocities in VH-mode [90].

There exist also some other indications that trapped
particles play an important role in H-mode. For example, in
L-mode turbulence and transport are much stronger on the
outer side of the torus, i.e. where trapped particles are
concentrated. Transport suppression in the L ±H transition
affects mainly the outer side of the torus [91].

We do not discuss here the reasons why the plasma rotates
because they are covered in the review [82]. This may be the
loss of ions on the plasma boundary [85, 92, 93] as it has been
already assumed in Ref. [17]. Another mechanism was
considered in Ref. [94]. Plasma can be spun by applying the
force j�B using biasing electrodes [95]; the resistance
measured yields additional information [82]. The reader
should remember that the threshold M � 1 appears in many
theories since the poloidal friction (very similar to the Landau
damping of a magnetic wave as Galeev and Sagdeev pointed
out when the first neoclassic work had just appeared) peaks
near M � 1. For larger M the fraction of trapped particles
and the friction decrease [82, 84].

The hydrodynamic criterion M � 1 loses its accuracy if
the thickness of the transport barrier is comparable with that
of the ion banana. The turbulent transport of the angular
moment widens the transport barrier to some extent [96].

Recall that the traditional models of the H-mode con-
centrate on the rotation shear and on the change in radial
electric field taking the form

Er � dp

dr

1

nZe
ÿ vyBj � vjBy ; �28�
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Figure 6. The poloidal Mach number as a function of ion collision rate.

Data for the JFT-2M tokamak [88]. Open data points refer to L-mode,

solid data points refer to H-mode.
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where y is the poloidal angle, and j is the toroidal angle. The
reader should remember that two components of velocity
cannot be uniquely determined from the electric field even for
a zero pressure gradient, while the field is uniquely defined by
the velocity.

The difference between the traditional mechanism and the
mechanism Berk, Galeev, Sagdeev and Wong proposed is
important for the development of fusion reactors since the
latter does not require the velocity of rotation to increase
when the barrier widens. The V-H mode and the barrier on
the rational surface q � 3 [97] show the peculiarities of the
widening.

4.4 Summary for tokamaks
We used a relatively new tool, namely, the frozen-in property
for the Vlasov equation to study turbulent equipartitions in
tokamaks. Here three results appear clear and strict, and the
other three appear plausible.

(1) If turbulence preserves invariants and if these invar-
iants depend on the magnetic field, then an attractor can
appear and this attractor also depends on the magnetic field,
and hence, is inhomogeneous in space.

(2) The traditional structure of transport matrix is
simplified too much. If there is some level of turbulence,
then fluxes appear even in the absence of gradients of
thermodynamic quantities.

(3) The frozen-in property for the Vlasov drift equation is
followed by the trapped particle pinching and this pinch is
defined by the profile of q.

We set forth nonstrict arguments that collisional plasma
in tokamaks ceases to be frozen in the toroidal magnetic field
under the action of thermal pressure forces of a tensor nature
and the single invariant nr=By � const is conserved. Three
confinement modes (attractor and two boundaries of the
attraction basin) follow from this invariant and from the
limits of its applicability, and all three are in proper agreement
with experiment.

(4) The turbulent attractor (TEP) nq � const is predicted
for tokamaks with positive magnetic shear.

(5) Transport suppression follows for reversed shear.
(6) Poloidal rotation can eliminate trapped ions, restore

the frozen-in property in full measure, and suppress the
turbulent transport at velocities of rotation typical for the
H-mode.

Taken together, these results return us to the position of
the first review on turbulent transport in tokamaks [5]. Of
course, at that time nothing was known about attractors, and
more importantly there were not impressive experiments to
shed light on physics of confinement.

Small-scale turbulence has a rich theory but the latter
rather disagrees with experiment, especially in explaining the
radial dependence of transport and now in explaining
transport suppression by magnetic shear. In my opinion, it
is quite possible that small-scale turbulence in experiment is
caused by abrupt gradients attributable to the large-scale
convection by trapped particles. In this case it is a secondary
phenomenon like small-scale whirlwinds in the atmosphere,
where they are caused by large-scale convection. The simplest
example of this theory is the generation of ship waves [98].

Attractors and particle pinching can be studied also
without invariants using equations [77, 99].

The agreement between experiment [9 ± 11, 80, 81],
modelling [15, 31], and analytical theory suggests an impor-
tant role of negative shear in future tokamaks. Negative shear

can provide a large share of the bootstrap current and it also
stabilizes ballooning modes and favours large b [14].
Unfortunately, large currents near the boundary are inevi-
table in the case of reversed shear and they destabilize kink
modes [100], though kink modes can be stabilized by plasma
rotation [101, 102]. A review of the physics of future
tokamaks is given in Ref. [103].

Unfortunately, shear in tokamaks is difficult to reverse
globally because of the low conductivity of boundary plasma
and because of the kink modes but one can try to reach a
similar effect in a quasi-symmetric stellarator [104, 105]. In
this case the radial derivative of ÿB=r has to be considered
instead of the shear. Here B is a magnetic field component
perpendicular to the quasi-symmetry direction, and it is an
analogue of the poloidal field in a tokamak.

There exists also a less revolutionary way. Turbulence
may not be suppressed but the turbulent attractor peaking
must be enhanced through a sharper peaking of q as for
supershots in TFTRorwhen q increases near the separatrix as
in JET, in DIII-D, and especially in spheromaks (nearly
spherical tokamaks).

5. The history of turbulent equipartitions

In the textbook published in 1937 Fermi illustrated the
adiabatic law by the relaxation of atmosphere to an
isentropic attractor and thus he explained why temperature
drops with altitude [21]. The adiabatic law and the experi-
mental fact were known long before this publication, so the
history of isentropic attractor is lost in remote ages. In the
twentieth century the isentropic attractor became a common
approximation for a convective zone as soon as scientists
started to study combustion in stars.

In plasma the idea of turbulent equipartition appeared
initially in the form of a one-dimensional plateau in quasi-
linear relaxation [26]. The first spatially inhomogeneous TEP
in near perfect form was considered by Pastukhov as applied
to a magnetoelectrostatic trap [33]. Sasorov considered TEP
in a z-pinch [37] and this TEP was very close to that in
tokamaks.

The well-known Taylor theory of relaxation in pinches
with a reversed field is based on a helicity invariant [38]. This
invariant is not Lagrangian, and therefore the attractor
differs from TEP in type: this is a simpler energy minimum.
The Taylor theory is not discussed in this review because it is
widely known.

It should be noted that the idea of marginal stability in z-
pinches by Kadomtsev [36] and in tokamaks by Manheimer
and Antonsen [28, 106] is close to TEP.

As applied to tokamaks the idea of canonical profiles was
set forth by Coppi in 1980 [55], but the cause of this
phenomenon was not quite clear. The Coppi hypothesis was
then strongly supported by experiments of Esipchuk and
Razumova [56] and Murakami et al. [57]: the plasma profile
peaking enhances with the safety factor profile peaking, i.e.
the plasma profiles are defined by the geometry of the
magnetic field. Models of canonical profiles in tokamaks
were posed by Kadomtsev [39] and Taylor [107]. The
Kadomtsev model included a somewhat arbitrary assump-
tion of the pressure profile p / qÿ2. This assumption was
based on experimental data but later a similar profile was
derived from the theory of turbulent equipartitions. Heat and
particle fluxes in the absence of gradients of thermodynamic
quantities are an integral part of TEP and they were used
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many times in phenomenological simulation by the team
under the supervision of Dnestrovski|̄ (see, for example,
Ref. [58]). Lallia et al. [108] proposed that heat fluxes would
appear when the electron temperature gradient exceeded a
critical value. In the analytical theory of tokamaks, Weiland
and Norman [29] encountered fluxes which are not propor-
tional to gradients. The discovery of the H-mode [19] and
other confinement modes, whose profiles are different from
canonical ones, shook at first our confidence in canonical
profiles but the modern theory shows that H-mode and
transport suppression by reversed shear appear exactly when
the turbulent equipartition condition becomes no longer
applicable. The same range of applicability in theory and in
experiment additionally support the physical pattern of how
canonical profiles appear.

The description of TEPs in tokamaks is based on the
frozen-in notion. The most important observation implies
that trapped particles are frozen in the poloidal magnetic field
and that they are practically insensitive to the toroidal field; it
wasmade byKadomtsev and Pogutse in 1967. They proposed
convection by trapped particles as the principal cause of
turbulent transport. Almost at once Berk and Galeev [17],
Galeev, Sagdeev, and Wong [18] suggested the elimination of
trapped ions by plasma rotation, and thus they predicted the
H-mode and that the plasma would recover its frozen-in
property in the surface layer in full measure. Boozer put
forward in essence a semiideal hydrodynamics to describe an
experimental transport and he indicated the coexistence of
resonant and nonresonant particles as the cause of its
semiideal character [51].

6. Conclusions

The reader has surely paid attention to the fact that in the
method of invariants and attractors the formulae are very
short. The fee for simplicity of turbulent equipartitions is that
we can describe only profiles, not fluxes. Attractors possess
high noise immunity, especially if invariants describing
attractors are obtained from general principles rather than
from equations of motion. Therefore, it is quite natural that
the theoretical predictions are very close to the experimental
results.

The frozen-in property for the Vlasov equation, the
existence of Ing-Yan particles, and the consequences for the
law of freezing in collisionless plasma is interesting not only
for tokamaks and magnetic confinement. The study of
collisionless reconnection or of other plasma dynamics is
not complete without the use of these invariants.

The reader should not think that there is a common
opinion on above problems. If there is people's voice in
science, then it is surely the voice of an anonymous reviewer,
and therefore it deserves a special attention. Reviewer's
comments are generally formulated in terms of linear modes
and instabilities and this is a clear indication that they do not
quite believe in invariants and attractors. One may conclude
that the majority tends to discuss integrable phenomena
because more general nonintegrable case is difficult to study,
and therefore the position is as if it does not exist. The
nonintegrable case cannot boast strict results but the
accuracy of linear methods should not be overestimated
either.

Most of my work on attractors in tokamaks, without
which this review would be impossible, was performed
together with J Nycander, to whom I am very obliged. I am

pleased to thank K V Chukbar and Yu N Dnestrovski|̄ for
reading the manuscript and for correcting many inaccurate
points.
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Program ``Fundamental Issues of Nonlinear Physics'' and
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