
Abstract. A systematic study is made of the tÿJ model as a
working model for copper oxide high-Tc superconductors. The
main focus is on the near-half-filling region (low hole concen-
trations) relevant to these materials. The theory of the magnetic
polaron, which is a charge carrier traveling in an antiferromag-
netic matrix, and the theory of antiferromagnetic ordering are
discussed in a unified framework. The spin liquid state beyond
the antiferromagnetic phase is examined. The Hamiltonian
parameters ± hole concentration phase diagram for the model
is described and compared with that for the Hubbard model in
the strong correlation limit. Two extensions of the tÿJ model,
the tÿt 0ÿJ model and the three-center interaction model, are
discussed. Mostly analytic strong correlation techniques are
employed in this review.

1. Introduction

1.1 Two fundamental models in the theory
of strongly correlated systems
For more than thirty years the Hubbard model [1] was the
main model in the theory of metallic magnetic materials.
Initially it was introduced to describe magnetism in transi-
tion d metals and their compounds in an effort to overcome
the contradictions between the itinerant (band) nature of d
electrons and the presence of localized magnetic moments in
such systems. Actually, as was shown by Hubbard [2], the
applicability range of the model proved to be much broader:
the model made it possible, among other things, to describe
the metal ± insulator phase transition initiated by changes in
the Hamiltonian parameters. The simplest single-band
Hubbard model contains two such parameters: the width
W of the initial band and the magnitude U of the Coulomb
repulsion between two electrons at the same site. It occurred
that for sufficiently large U5Uc �W the ground state of
the system is an insulator state, while for U < Uc it is a
metallic state. The reason is that for large U the appearance
of two electrons at the same site is energetically unfavorable
and the initial band splits into two Hubbard sub-bands with
a gap at the band center. Thus, when the band is half-filled,
the Fermi level is in the gap, and the ground state is an
insulator state. The electrons become localized at the lattice
sites and behave like localized magnetic moments with spin
S � 1=2. An indirect exchange interaction arises between
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such electrons, so that the system in the insulator state is an
antiferromagnet.

Of course, at deviations from the half-filled state of the
band the system acquires finite conductivity, but clearly, there
exists a strong interaction between the charge carriers and the
magnetic order, which may initiate deviations from the
Fermi-liquid behavior of the electron system. All these
effects Ð the metal ± insulator phase transition, the emer-
gence of localized magnetic moments, and the deviations
from the Fermi-liquid behavior Ð are manifestations of
strong correlations existing in the system, i.e., the tendency
of electrons to avoid each other. Systems with U0W have
become known as strongly correlated electron systems
(SCES). The described behavior of the system with the
variation of the on-site Coulomb repulsion has been corro-
borated by theoretical work on the Hubbard model (see Ref.
[3]), and the interested reader can find the analysis of the
properties of narrow-band magnetic materials based on this
model in many sources (e.g., see Ref. [4]).

The success of the Hubbard model is due to its simplicity,
and at the same time, to its rich content. The model
Hamiltonian can be estimated by the criterion usually
applied to true works of art: `it contains everything that is
needed and nothing superfluous'. Indeed, the Hamiltonian

H � ÿt
X
ijs

C
y
isCjs �U

X
i

ni"ni# �1:1�

contains a kinetic term describing the electron motion from
site to site and the energy of repulsion at a single site. Here
Cis �Cyis� is the Fermi annihilation (creation) operator for an
electron at site iwith spin s, and nis � C

y
isCis is the number of

electrons at a site with a given spin. The kinetic term is written
in the nearest-neighbor approximation for the transition
matrix element, so that in this case the initial-band width is
W � 2zt, where z is the number of nearest neighbors.

In the limitU4W in second-order perturbation theory in
W=U, we obtain (see Section 2.1) the following effective
Hamiltonian:

H � ÿt
X
ijs

�1ÿ ni�s�CyisCjs�1ÿ nj�s� � J
X
ij

SiSj ; �1:2�

where J � 2t 2=U is the indirect exchange integral [5], and
ni �

P
s nis is the number of electrons at site i. The factors

1ÿ ni�s reflect the fact that an electron with spin s is forbidden
to be at a site with another electron (with spin �s � ÿs). Thus,
the Hubbard model in the U4W limit describes the motion
of electrons from one unoccupied site to another. The
exclusion of states with electron pairs at a site (`doublons')
is, in effect, equivalent to the appearance of an indirect
exchange interaction of electrons at neighboring sites with
an exchange integral of the antiferromagnetic sign.

The model with Hamiltonian (1.2) is the famous tÿJ
model. It is the limiting case of the Hubbard model with
U4W, but it is sometimes regarded (without the ÿninj=4
term) as a separate phenomenological model, in which the
parameters t and J are independent. The model was devel-
oped to describe electron motion in an antiferromagnetic
matrix. It has gained popularity in recent years after
Anderson [6] suggested that the electron properties of high-
Tc superconductors of themetal-oxide group are described by
Hamiltonian (1.2). To see that this is indeed the case we must
discuss in detail the electron structure of high-Tc compounds.

1.2 tÿJ Model as the basic electron model for high-Tc

superconductors of the copper-oxide group
An important structural element of all high-Tc copper-oxide
compounds are the CuO2 planes, with which the super-
conducting properties are associated.Depending on composi-
tion, the unit cell of a high-Tc compound may contain one,
two, or three such planes, with the transition temperature (the
highest Tc for the given class of compounds) increasing with
the number of these planes. The distance between neighbor-
ing planes is much greater than the spacing between the
nearest-neighbor copper atoms in a plane, which is the cause
of a large anisotropy in the properties, including the super-
conducting properties. In particular, the correlation length x
(the size of the Cooper pair) in the plane is severalfold larger
than the same quantity in the direction perpendicular to the
plane (e.g., see Ref. [7]). A unique feature of these materials is
the very small value of x. For instance, inside a plane x is three
to four times larger than the lattice parameter, while in the
perpendicular direction it is smaller than the distance between
the planes. This suggests that the charge carriers within a
plane are strongly isolated from those in other planes and that
the electronic states in such planes are two-dimensional.

All electronic properties are strongly dependent on
doping. For two classes of compounds, the lanthanum system
(La2ÿxSrxCuO4ÿy) and the yttrium ±barium system
(YBa2Cu3O6�x), the transition temperature Tc and other
physical characteristics depend on the strontium or oxygen
content.What is remarkable is that the initial systems without
dopants, La2CuO4 and YBa2Cu3O6, are insulators and
antiferromagnets. As the concentration x grows, the NeÂ el
temperature TN sharply drops, and the substances become
metals, although their conductivity is poor. Superconductiv-
ity emerges at higher values of x, outside the magnetically
ordered phase (Figs 1 and 2). Measurements of the Hall
constant show that the charge carriers are holes in all classes
of high-Tc compounds with the exception of the neodymium
system, where electrons are the charge carriers. It has been
established that the holes emerging as a result of doping are
formed in theCuO2 planes at copper and oxygen atoms, and it
is these holes that are the charge carriers.
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Figure 1. Phase diagram for the lanthanum and neodymium systems in

high-Tc materials. The phases are denoted as follows: A is the antiferro-

magnetic phase, S is the superconducting phase, and SL is the spin-liquid

phase.
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Lately an important problem in this field of research has
been resolved: high-Tc superconductivity in compounds of
the metal-oxide group has been found to be related to certain
features in the behavior of such systems in the normal phase.
These features consist in the deviation of the electron
properties from those of a Fermi liquid. It appears that the
magnetic susceptibility and the Hall constant are tempera-
ture-dependent, contrary to the predictions of the theory of
an ordinary Fermi liquid. Moreover, all classes of high-Tc

materials with hole conductivity and compositions that allow
high-Tc superconductivity exhibit a linear growth of the
electrical conductivity with T within a broad temperature
range above Tc.

As the phase diagrams in Figs 1 and 2 show, the
superconducting state emerges near the antiferromagnetic
phase. In the yttrium ±barium system the regions of anti-
ferromagnetism and superconductivity are adjacent, while in
the lanthanum system the two are separated by a region
without long-range magnetic order but with strong quantum
fluctuations. This region became known as the spin-liquid
region. We observe, therefore, the ordinary interrelationship
betweenmagnetic order and superconductivity: the two avoid
each other. At the same time, experiments in inelastic
magnetic scattering of neutrons in the lanthanum and
yttrium ±barium systems indicate that there are strong
magnetic fluctuations for a broad range of doping levels
outside the antiferromagnetic phase, a range that even
penetrates the superconducting-phase region. This,
obviously, is an indication of how important antiferromag-
netic fluctuations are in the mechanism of high-Tc super-
conductivity.

Comparing these features of high-Tc materials with what
was said in Section 1.1 about the Hubbard model, we see that
the model has the potential to describe the main electronic
properties of high-Tc compounds. The estimates of the
parameters U and W extracted from the experimental data
on high-Tc compounds show that we are dealing with strong
correlations, U4W, so that the tÿJ model with Hamilto-
nian (1.2) can be applied to such materials (Anderson was the

first to point out this possibility). Understanding the proper-
ties of high-Tc materials requires studying the two-dimen-
sional tÿJmodel near the half-filled band state. This explains
the huge body of theoretical research in this field (several
hundred papers devoted to this problem have been published
since 1987).

The case of a half-filled band [meaning the band corre-
sponding to the model Hamiltonian (1.2)] leads to an
insulator state with localized magnetic moments (S � 1=2)
corresponding to the d9 state of the copper ions in the CuO2

planes. Upon doping, a fraction of the copper atoms lose one
electron each, so that hole type charge carriers are created.
Strictly speaking, holes are created upon doping not only at
copper atoms but also at oxygen atoms. These holes form
what is known as Zhang ±Rice singlets [8] centered at copper
sites, and it is such singlets that Hamiltonian (1.2) of the tÿJ
model refers to, so that the Cis and C

y
is operators annihilate

and create such a singlet at site i.

1.3 Difficulties encountered in theoretical studies
of the tÿJ-model
Despite the simple structure of Hamiltonian (1.2), what
complicates matters considerably is the presence of the
factors 1ÿ ni�s in the kinetic term, factors that exclude
`doublons' from the picture. Although the exchange term is
small compared to the kinetic term (because J=t � t=U5 1),
it is difficult to use the latter as a zeroth approximation since
there are no known approaches to solving this problem even
in the U!1 limit. For this reason the literature contains a
large number of papers devoted to various methods of
reducing the problem to simplified models, but the validity
of these methods is questionable (or at least is not obvious).
The kinetic term in (1.2) can be expressed in terms of the
operators X s0

i � C
y
is�1ÿ ni�s� and X 0s

i � Cis�1ÿ ni�s�, which
coincide with the ordinary Fermi operators only at sites
without a second electron. The numerous attempts to
calculate the various physical properties in the tÿJ model,
such as the elementary excitation spectrum, the density of
states, and the characteristics of the magnetic states of the
system, are associated with the representation of the X
operators, with their complicated commutation relations, by
products of Fermi and Bose operators with simple commuta-
tion relations. This method became known as the auxiliary
boson or fermion method. The price for introducing the well-
known second-quantization Fermi and Bose operators is
extremely high: one must allow for certain constraints to
ensure that the appearance of unavoidable non-physical
states is excluded. Physically the constraints are equivalent
to the initial condition of exclusion of `doublon' states. Thus,
the auxiliary particle method shifts the initial difficulties of
the problem to another place, and sometimes this proves
useful. Because such a representation of X operators lacks
uniqueness, it is difficult to compare the results and to
estimate the adopted approximation.

This explains the presence of other approaches to solving
the same problems. Among these are the mean-field approx-
imations, although for the tÿJmodel the formulation of such
an approach is not as trivial (in view of the specific features of
the Hamiltonian) as it is for ordinary Fermi systems with a
weak Coulomb interaction. In this situation numerical
methods of the quantum Monte Carlo (QMC) type or the
exact diagonalization of small clusters become important. In
the most important two-dimensional case modern computers
can perform such calculations well. It appears that small
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Figure 2. Phase diagram for the yttrium ± barium system.
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clusters (e.g., 4� 4) provide stable results with an increasing
number of sites in the cluster, so that they reflect the physics of
an infinite lattice. The numerical methods used in studying
the tÿJ model, on the one hand, are extremely informative,
and on the other, make it possible to monitor the approxima-
tions in analytic calculations. As a result, there has been
considerable progress in understanding the physics of systems
described by the tÿJmodel.

But what quantities must one calculate in the tÿJ model
and what problems must the model solve? The central
problem is finding the quasiparticle spectrum. Since low
hole concentrations are important, the problem reduces to
that of a single hole moving in an antiferromagnetic matrix.
Since, as noted earlier, there is strong interaction between the
charge and spin degrees of freedom, a hole distorts the
antiferromagnetic structure within a certain neighborhood
of radius Rp. Long-range magnetic order disappears if the
distorted regions associatedwith different holes overlap.Here
the critical hole concentration dc can easily be estimated: for a
two-dimensional lattice, obviously, dc � a2=R2

p, where a is the
lattice parameter. Figures 1 and 2 show that for high-Tc

materials the antiferromagnetic phase occupies a small
region, with the result that dc 5 1, which implies that Rp

amounts to several lattice parameters. The above reasoning
implies that the charge carrier in the tÿJ model near half-
filling can only be a complex particle such as a hole
surrounded by a region of destroyed antiferromagnetic
order, or a magnetic polaron. The detailed theoretical
analysis in Sections 3 and 4 supports this picture and gives
all the quasiparticle characteristics: the dispersion law, the
damping, and the spatial size Rp. The reader will also see that
the structure of the quasiparticle states is closely related to
that of the antiferromagnetic phase at a given hole concentra-
tion. The objective of the theory is to calculate the critical
concentration dc and the NeÂ el temperature TN as functions of
the hole concentration. Section 5 is devoted to this aspect of
the problem. Analysis becomes difficult when one examines
the region d > dc, where antiferromagnetic correlations are
absent and the spin-liquid state sets in. What is needed here is
an approach based on the theory of gage fields (Section 6).
Finally, in Section 7 we briefly discuss the general structure of
the phase diagram for the tÿJmodel and compare it with that
of the phase diagram for the Hubbard model in the U4W
limit. This, in a nutshell, is the plan of the review.

The reader could notice that the superconductivity aspects
of the model are ignored entirely. The earlier approaches to
this problem can be found in review [9]. Since that review was
published, there has been considerable progress in under-
standing the problem and the role that spin fluctuations play
in the formation of high-Tc superconductivity. This requires a
separate review. The reader must bear in mind that the
research in superconductivity is based on studies of the
properties of the tÿJmodel in the normal phase. The present
review generalizes the results of this research.

Another aspect worth noting is that the present review
does not touch on approaches based on numerical methods,
since there is a comprehensive review [7] specially devoted to
this problem, a review that also compares in detail the
theoretical results and the experimental data on high-Tc

compounds, and the interested reader is advised to study
that review. We note once more that our goal was to describe
the studies of the tÿJ model by analytic methods, just as we
did in the case of the Hubbard model in review [3]. Together
the two reviews, [3] and the present one, make it possible to

determine the status of current studies of the problem of
strongly correlated systems.

2. Formulation of the model

2.1 Deriving the tÿJ-model Hamiltonian
from the Hubbard-model Hamiltonian
The tÿJ model was proposed in Refs [10 ± 12], and the
effective Hamiltonian (1.2) was derived by a number of
researchers (see Refs [11,12]) from the Hubbard Hamiltonian
in the U4W limit. Thus, the two energy parameters in the
tÿJ model obey the following inequality: J5 t. Below we
derive the Hamiltonian of the tÿJ model by a new method,
which clarifies the position of the model in the hierarchy of
models of the SCES theory.

A convenient formalism in the U4W limit is that of
Hubbard X operators [13]. The operator X

pq
i is specified at

each site and describes the transitions between the four
possible states jsi, j2i, and j0i with a single electron at a site
(with spins s �"; #), with two electrons, and without an
electron, respectively. The ordinary electron operators are
linear combinations of two Fermi X operators:

C
y
is � X s0

i � sX 2�s
i ; Cis � X 0s

i � sX �s2
i : �2:1�

We see that a single-particle state is formed via the creation of
an electron from the vacuum state or the appearance of a
second electron at a site that already contains an electron. The
operators X s0

i andX 2s
i generate one- and two-electron states,

and these states form the upper and lower Hubbard sub-
bands, respectively. The X operators can be expressed in
terms of the electron operators as follows:

X s0
i � C

y
is�1ÿ ni�s� ; X 2s

i � sCyi�snis ;
X s�s

i � C
y
isCi�s ; X 20

i � sCyi�sCyis ;
X 00

i � �1ÿ ni"��1ÿ ni#� ;
Xss

i � nis�1ÿ ni�s� ; X 22
i � ni"ni# : �2:2�

The above formulasmake it possible to derive the effective
model Hamiltonian in the U4W limit when the Coulomb
term is taken as the zeroth-order Hamiltonian and the kinetic
term is considered a perturbation. In terms of theX operators,
the Hubbard model Hamiltonian (1.1) can be written as the
sum of three terms:

H � H1 �H 01 �H0 � ÿt
X
ijs

X s0
i X 0s

j � X 2�s
i X �s2

j

� �
ÿ t
X
ijs

s X s0
i X �s2

j � X 2�s
i X 0s

j

� �
�U

X
i

X 22
i : �2:3�

Let us now apply a canonical transformation to the
Hamiltonian,

H! ~H � eSHeÿS � H� �S;H� � 1

2

�
S; �S;H��� . . .

with the operator

S � x
X
ijs

s X s0
i X �s2

j ÿ X 2�s
i X 0s

j

� �
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containing an arbitrary parameter x. The parameter is fixed
by the condition that

H 01 � �S;H0� � 0

which excludes all band-to-band terms from the Hamilto-
nian; this yields x � ÿt=U. Since we have adopted the
condition that U4W, we can limit ourselves to the terms in
the Hamiltonian that are second-order in t=U, with the result
that

~H � H0 �H1 � �S;H1� � 1

2
�S;H 01� :

Calculating the commutators, we see that the term �S;H1�
allows for band-to-band transitions only in the second order
in t=U, and can be discarded. Thus, we arrive at the following
effective Hamiltonian:

~H � ÿt
X
ijs

X s0
i X 0s

j �
t 2

U

X
ijs

�X s�s
i X �ss

j ÿ X ss
i X �s�s

j �

� t 2

U

X
ijls

�X �s0
i X s�s

l X 0s
j ÿ X s0

i X �s�s
l X 0s

j � �H2 ; �2:4�

whereH2 is the part of the Hamiltonian that allows for states
with two electrons at a site:

H2 � U
X
i

X 22
i ÿ t

X
ijs

X 2�s
i X �s2

j : �2:5�

The second term in (2.4) can be expressed in terms of the
spin operator Si,

Si � 1

2

X
ss 0

C
y
issss 0Cis 0 ; �2:6�

where s is a vector composed of Pauli matrices. In particular,
for the circular S�i � Sx

i � iS
y
i and longitudinal Sz

i projec-
tions of the spin vector we have

S�i � C
y
i"Ci# � X�ÿi ; Sÿi � C

y
i#Ci" � Xÿ�i ;

Sz
i �

1

2
�Cyi"Ci" ÿ C

y
i#Ci#� � 1

2
�X��i ÿ Xÿÿi � : �2:7�

Thus, the effective Hamiltonian (2.4) can be written as

~H � ÿt
X
ijs

X s0
i X 0s

j � J
X
ij

�
SiSj ÿ 1

4
ninj

�

� 1

2
J
X
ijls

�X �s0
i X s�s

l X 0s
j ÿ X s0

i X �s�s
l X 0s

j � �H2 ; �2:8�

where J � 2t 2=U is the effective exchange integral, and
ni � ni" � ni# is the operator of the number of electrons at
site i.

The sum of the first two terms on the right-hand side of
Eqn (2.8) comprises the Hamiltonian of the tÿJmodel. Thus,
going from the effective Hamiltonian (2.8) to that of the tÿJ
model requires dropping the term H2 (i.e., projecting the
Hamiltonian onto the lower Hubbard sub-band) and ignor-
ing the term that depends on three sites. Note that in the three-
site term the sites i and j are the nearest neighbors of the third
site l but are not necessarily each other's nearest neighbors.
The triple term describes a transition from site i to site j with

or without an electron spin flip, with an electron spin flip at
the third site l in the first case or without a spin flip in the
second. In such transitions the matrix element is not t but a
much smaller quantity of order t 2=U.

Thus, projecting the effective Hamiltonian (2.8) onto the
space of states describing the lower Hubbard sub-band and
discarding the triple term, we arrive at the Hamiltonian

H � ÿt
X
ijs

X s0
i X 0s

j � J
X
ij

�
SiSj ÿ 1

4
ninj

�
: �2:9�

In deriving this Hamiltonian we imposed no restrictions on
the electron concentration. For an almost half-filled band, we
have hnii � 1, and the ninj in (2.9) is often dropped. There is
also another way of writing Hamiltonian (2.9) in which,
instead of spin operators, only X operators are used:

H � ÿt
X
ijs

X s0
i X 0s

j �
1

2
J
X
ijs

�X s�s
i X �ss

j ÿ X ss
i X �s�s

j � : �2:10�

This is exactly the sum of the first two terms on the right-hand
side of expression (2.4) for the effective Hamiltonian.

2.2 Representation in terms of auxiliary particles
Since X operators obey complicated commutation relations,
there have been many attempts to represent them in the form
of a product of ordinary Fermi and Bose creation and
annihilation operators, e.g., X 0s

i � fibis. This provides a
number of technical advantages but introduces a consider-
able difficulty, namely, the need to allow for constraints that
ensure the absence of non-physical states unavoidably
introduced by these representations. Such representations
are ambiguous and are classified primarily by the operator
to which the spin label of the X operator representing the
creation and annihilation of a physical electron is attached. If
the spin label is attached to a Bose operator, the correspond-
ing representation is called a slave-fermion representation,
while if the label is attached to a Fermi operator, the
representation is called slave-boson.

Note, for the sake of reference, that in addition to the
mentioned slave-fermion [14 ± 17] and slave-boson [15 ± 19]
representations, a number of new representations [20 ± 27]
have lately been proposed. For instance, Chang [25] intro-
duced a representation that employs, in addition to slave-
fermion and slave-boson operators, the Goldstein ± Primak-
off representation well-known in the theory of magnetism. Le
Guillou and Ragoucy [26] did a special study of the problem
of the sum rules that are valid for different types of
representation. Other representations have been employed,
and we consider these below. The ambiguity in representing
the X operators by Fermi and Bose operators reflects the
multitude of representations of the algebra ofX operators and
the reason why it is often difficult to verify the validity of the
various representations.

Of special interest is the slave-fermion representation in
which the spin operator for S � 1=2 is used instead of the
Bose operators. The first to suggest such an approach were
Richard and Yushankhai [20], and their results were
improved in Refs [21 ± 24] by a rigorous derivation of the
Hamiltonian of the tÿJ model in this new representation.
Since we use this approach in analyzing the magnetic-polaron
problem, let us discuss it in greater detail. The idea consists in
the following. When a band is half-filled, all sites have
localized electrons with spin S � 1=2; however, in the
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presence of holes one can expect that S � 0 at some sites.
Therefore, we have a lattice filled by spins of different
magnitudes. This fact can be expressed by the following
equality for the number of electrons at a site, which is either
0 or 1:

C
y
i"Ci" � C

y
i#Ci# � 1ÿ h

y
i hi ; �2:11�

where h
y
i hi is the operator of the number of holes (unoccupied

sites), whose eigenvalues are 0 and 1. Actually the operators
S�i and Sz

i in (2.7) are not spin operators, since although they
obey the same commutation relations as spin operators�

S�i ;S
ÿ
j

� � 2Sz
i dij;

�
Sz
i ;S

�
j

� � �S�i dij ; �2:12�

they do not yield a correct expression for the square of spin:

SiSi � 3

4
�ni" � ni# ÿ ni"ni#� � 3

4
�ni" � ni#� � 3

4
�1ÿ h

y
i hi� :

This combination is equal to 3/4 for a site occupied by a single
electron and to 0 for a site carrying a hole. In other words,
Eqns (2.7) define spin operators with a variable value of S,
equal to 1/2 or 0. At the same time, we can introduce spin
operators si with s � 1=2 for each site (we call these
pseudospin operators). Since for these operators we can
always write sisi � 3=4, the following relationship exists
between the operators of the physical spin Si and the
pseudospin si:

Si � si�1ÿ h
y
i hi� ; �2:13�

where the Fermi operators hi and h
y
i commute with the

operators si. In view of the projection properties of the
operator �1ÿ h

y
i hi�2 � 1ÿ h

y
i hi, the commutation relations

(2.12) for the spin are also valid here.
The kinetic term in Hamiltonian (2.9) can be expressed in

terms of the Fermi hole operators and the pseudospin
operators. As a result, the Hamiltonian of the tÿJ model,
(1.2) or (2.9), in the new representation assumes the form

H � t
X
ij

2h
y
i hj

�
sisj � 1

4

�

� J
X
ij

�1ÿ h
y
i hi�

�
sisj ÿ 1

4

�
�1ÿ h

y
j hj� : �2:14�

It describes the interaction of holes and pseudospins. In
contrast to the initial Hamiltonian (1.2), a pseudospin of
magnitude s � 1=2 is placed at each site. In representation
(2.14), the spin and charge degrees of freedom are separated.
This representation proves convenient in discussing the
aspects of the interaction of the charge carriers in the model
and the various states of the spin system. Note that
Hamiltonian (2.14) was introduced by Wang and Rice [21],
and was postulated earlier by Khaliullin [22].

Hamiltonian (2.14) describes the tÿJ model for n < 1,
when the lower Hubbard sub-band is less than half-filled and
holes are the carriers. For n > 1 the upper sub-band begins to
fill, and the electrons which fill it serve as carriers. The
number of electrons at a site is given by the following
relationship:

C
y
i"Ci" � C

y
i#Ci# � 1� d

y
i di ; �2:15�

where di is the Fermi operator generating a state with two
electrons at a site. In this case the physical spin Si is related to
the pseudospin si as follows: Si � �1ÿ d

y
i di�si. Here, instead

of (2.14), we have the Hamiltonian

H � ÿt
X
ij

2d
y
i dj

�
sisj � 1

4

�
� J

X
ij

�1ÿ d
y
i di�

�
sisj ÿ 1

4

�
�1ÿ d

y
j dj� : �2:16�

The difference in the sign in front of the first term on the right-
hand sides of Eqns (2.14) and (2.16) reflects the electron ± hole
symmetry of the Hubbard model.

RecentlyWang [23] developed a slave-fermion representa-
tion for the total Hubbard Hamiltonian (1.1). In this case, in
addition to the hole creation operators h

y
i , onemust introduce

the `doublon' creation operators d
y
i . TheHamiltonian has the

form of [23]

H � t
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ij
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where

Pij �
�
1

2
� szi

�
sÿj �

�
1

2
ÿ szj

�
s�i ÿ

�
1

2
� szj

�
sÿi ÿ

�
1

2
ÿ szi

�
s�j :

�2:18�

Note that (2.17) is invariant with respect to time reversal,
since in this case szi ! ÿszi and s�i ! ÿs�i .

In contrast to the other slave-fermion [14 ± 17] and slave-
boson [18 ± 23] representations, which require the taking into
account of several complicated constraints, representation
(2.17) contains only one local constraint h

y
i hid
y
i di � 0, which

is automatically satisfied in the U4W limit. Moreover,
(2.17) contains no constraint on the relationship between the
spin and charge degrees of freedom. In the U4W limit one
can apply a canonical transformation and readily obtain the
effective Hamiltonian. For n < 1, we obtain Hamiltonian
(2.14) of the tÿJmodel with an additional term

ÿ 1

4
J
X
ijl

hih
y
j �1ÿ h

y
l hl�PilP

y
jl ; �2:19�

where i and j are different sites that are the nearest neighbors
of site l. Clearly,

PilP
y
jl �

1

4
� sisj ÿ sisl ÿ sjsl � szj �s�i sÿl ÿ sÿi s

�
l �

� szi �s�l sÿj ÿ sÿl s
�
j � ÿ szl �s�i sÿj ÿ sÿi s

�
j � : �2:20�

The additional three-particle term in (2.20) corresponds to the
three-particle term in Hamiltonian (2.8) expressed in terms of
X operators. It describes the transfer of a hole between nearest
neighbors. Although the corresponding matrix element
/ J5 t, the importance of the triple term rapidly increases
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with hole concentration. In Section 4 we use the pseudospin
representation of the tÿJ model to study the magnetic-
polaron problem.

3. Hole in an antiferromagnetic matrix

3.1 The retraceable-path approximation
The problem of describing the behavior of an isolated hole
in a quantum antiferromagnet was formulated long before
high-Tc compounds were discovered [28 ± 30]. Bulaevski|̄,
Khomski|̄, and Nagaev [28, 29] and Brinkman and Rice [30]
laid the foundation for the theory of many-body quantum
systems (a hole plus a NeÂ el state of the matrix). Recent years
have seen extensive research in this field. The approaches
proposed in Refs [28 ± 30] have made it possible to interpret
the physics of the problem in simple terms.

Let us examine Fig. 3, which depicts the state of a system
for two positions of a hole: the initial position (a) and the final
position (b). When the hole travels over a distance of an
integral number l of lattice parameters through the antiferro-
magnetic matrix, the spins form a `wrong' pattern (in relation
to the NeÂ el state), with the result that the exchange energy of
the system increases by an amount of the order of lJ. This
makes the process in which the hole leaves its initial position,
where the NeÂ el order is maintained everywhere, energetically
unfavorable; as a result, the hole becomes autolocalized.
Figure 3 shows that the hole may be interpreted as a particle
moving in a linear potential. In the continuum limit the
problem reduces, obviously, to solving the SchroÈ dinger
equation for a particle in a linear potential, which is simply
the Airy equation. Its eigenvalue spectrum is well-knownÐ it
consists of a system of discrete levels with separations of the
order of �J=t�2=3t [29]. The lowest level is located near the
bottom of the initial band and corresponds to the ground
state of the localized hole, called a quasi-oscillator inRef. [28].
Note that in our discussion we assume the Ising approxima-
tion of the exchange interaction to be valid, J�SiSj� ! JSz

i S
z
j ,

which means that the ground state of the entire matrix is a
NeÂ el state. The transverse part of the exchange Hamiltonian,
J�Sx

i S
x
j � S

y
i S

y
j �, initiates spin deviations, which allow the

hole to move. Thus, a discrete quasi-oscillator level spreads
out to form a band.Determining the position andwidth of the
band, or more precisely, the dispersion law and the decay of
the single-particle state, constitutes the main problem.

Let us examine the Green's function of a hole moving in a
matrix with a certain configuration of spins s (the ensemble of
spins at all the lattice sites) [30]

Gs
ij�o� �

X
s

�
s

����Cyis 1

oÿH
Cjs

����s� : �3:1�

Knowing the diagonal elements, we can calculate the density
of single-particle states

rs�o� � ÿ 1

p

X
i

ImGs
ii�o� : �3:2�

Employing the identity
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�n
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we can write Gs
ii�o� in the form of a series

Gs
ii�o� �

1

o
� 1

o

X1
n�2

As
in

�
t

o

�n

: �3:4�

The coefficientsAs
in give the number of paths that the hole can

follow starting from site i and hopping n times in such a way
that after it returns to the initial site the spin configuration of
the matrix is the same as at the beginning.

In writing (3.4) we allowed only for the kinetic term in the
Hamiltonian, which corresponds to the limit U!1. Thus,
calculating the Green's function reduces to finding all the
possible paths and coefficients As

in. These coefficients have
long been tabulated for various types of lattices in connection
with the problem of phase transitions in the Ising and
Heisenberg models. Analysis of these results shows, for
instance, that for a cubic lattice, self-avoiding paths, i.e.,
those along which the hole travels to a certain site and back (a
retraceable path), contribute the most; this remains valid for
any spin configuration s. The contributions from all such
paths for a hypercubic lattice with z nearest neighbors to (3.4)
lead to the following result [30]:

Gii�o� � 1

o

(
1ÿ z

2�zÿ 1�

"
1ÿ

�����������������������������
1ÿ 4�zÿ 1�t 2

o2

r #)ÿ1
:

�3:5�

This expression is real for frequencies
joj > 2

�����������
zÿ 1
p

t � Zzt, but in the interval

ÿztZ < o < ztZ �3:6�

there exists a finite density of states corresponding to a
continuous spectrum. Since the frequency interval is nar-
rower than that for free electrons, a correlation narrowing of
the band occurs. This is, of course, an interesting effect, but
the corresponding approximation (the retraceable-path
approximation) is still purely heuristic. Recently a physical
substantiation of this approximation was given in byMetzner
et al. [31] in their studies of a space that in the limit has an
infinite number of dimensions.

a

b

Figure 3.Motion of a hole in an antiferromagnetic matrix accompanied by

violation of spin order.
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3.2 The limit of a space of infinite dimensionality
The limit d!1 is of great importance to the SCES theory.
In this limit, the equations of the theory become extremely
simple and can be considered as the true-mean-field approx-
imation for such systems (see review [3]). Methods have also
been developed for obtaining systematic corrections of the
order of 1=d, which make it possible to examine systems with
a finite number d of spatial dimensions. Before passing to the
limit d!1, we must first scale the parameters of the system.
In particular, for Hamiltonian (1.2) of the tÿJmodel wemust
put

t � t ����
z
p ; J � J �

z
; �3:7�

where t � � const and J � � const [31]. For a hypercubic
lattice, z � 2d tends to infinity as d!1. This scaling
makes it possible to calculate the mean kinetic and exchange
energies per lattice site, which remain finite as d!1. It is
well known (see [32]) that in this limit the initial electron
spectrum is Gaussian, i.e.,

r�o� � 1������
2p
p

t �
exp

�
ÿ o2

2t �2

�
: �3:8�

The two quantities t � and J � serve as natural scales for the
kinetic and exchange energies in the system.

Metzner et al. [31] and Strack and Vollhardt [33] used the
d!1 limit for the tÿJ model. The basic problem still
amounts to calculating the Green's function of a hole using
representation (3.4). To this end, we must calculate the
contributions from the various paths along which the
particles travel in the lattice. In the d4 1 limit, the various
paths can be classified according to powers of 1=d. As a result,
we find that in the d!1 limit the only graphs that survive
are of the form of loop trees along which a particle can travel
only once.

According to representation (3.4), the paths along which
the particle travels must be such that after the particle returns
to the initial point the spin configuration of the matrix does
not change. It can be shown that for a NeÂ el ground state the
presence of closed loops traversed only once changes the spin
configuration of the matrix, with the result that they
contribute nothing to Gii�o�. We are therefore left with
contributions from retraceable paths. The sum of all such
contributions can be written as follows (for details see [33]):

Gii�o�

� 1

oÿ t �2
1

oÿ J �

2
ÿ t �2

1

oÿ 2
J �

2
ÿ t �2

1

oÿ 3
J �

2
ÿ t �2 . . .

:

�3:9�
This non-terminating continued fraction is equivalent to the
functional equation

Gii�o� � 1

oÿ t �2Gii�oÿ J �=2� : �3:10�

At J � � 0 the equation becomes quadratic and leads to the
following result:

Gii�o� � o
2t �2

 
1ÿ

�����������������
1ÿ 4t �2

o2

r !
; �3:11�

r�o� � 1

2pt �2
��������������������
4t �2 ÿ o2

p
; joj < 2t � : �3:12�

Equation (3.11) coincides with Eqn (3.5) in the limit z!1 if
we substitute t � ���

z
p

t �. Thus, the result obtained in the
retraceable-path approximation proves to be exact in the
d!1 limit. This correspondence clarifies the physical
meaning of this approximation.

Let us take the more general case, where J � 6� 0. The
solution of Eqn (3.10) can be expressed in terms of Bessel
functions of the first kind, Jn�x�, with [34]

Gii�o� � 1

t �
X1
n�1

�
1

xÿ jnÿ1; n
� 1

x� jnÿ1; n

�
; �3:13�

where x � 4t �=J �, n � ÿ2o=J �, and jn; n are the zeros of the
function xnJn�x�. Thus, the poles of the Green's function can
be found by solving the following equations: x� jnÿ1; n � 0.
For large n these can be solved exactly, with the position of the
poles near the bottom of the band given by the expression

on � ÿ2t � ÿ J �

2
ÿ ant

�
�
J �

2t �

�2=3

; �3:14�

where an are zeros of the Airy function. For the first values of
n we have

a1 � ÿ2:33 ; a2 � ÿ4:08 ; a3 � ÿ5:52 ; . . . �3:15�
Formula (3.14) shows that there are discrete levels near the
bottom �o � ÿ2t �� of the initial band, and the level separa-
tion is of the order of �J �=t ��2=3t �. The density of states
calculated by formula (3.2) is depicted in Fig. 4. We see that
for finite J �, there is indeed a system of discrete peaks; at
J � � 0 the peaks merge, and their envelope is depicted in
Fig. 4 by a dashed curve.

Earlier the �J �=t ��2=3 dependence for the positions of the
discrete levels was obtained by Bulaevski|̄ et al. [29] in the

ÿ2 0 2
0

o=t�

r�o�t�

4

3

2

1

Figure 4.Density of states for a hole in an antiferromagnetic matrix in the

d � 1 limit for J �=t � � 0 (the dashed curve) and J �=t � � 0:1 (the solid

line) [33].
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continuum approximation, in which the problem of a hole in
an antiferromagnetic matrix reduces in the three-dimensional
case to solving the SchroÈ dinger equation with a linear
potential

tDc� J �

2
rc �

�
E� 2t � � J �

2

�
c : �3:16�

Here r is the distance from the hole to point r, and 2t � � J �=2
determines the point from which energy is measured (the
bottom of the continuous band). For the orbital angular
moment l � 0 the Airy equation (3.16) has the quantities
(3.14) obtained in the d!1 limit as its eigenvalues. Thus,
the continuum approximation [29] is exact in the limit of an
infinite-dimensional space for large values of o=J �.

The continuum approximation uses only the Ising part of
the exchangeHamiltonian. The transverse part would seem to
smear the discrete levels (3.14). However, as the methods of
exact diagonalization of small clusters in a square lattice show
[35], this is not the case: the hole spectrum retains its discrete
nature. On the other hand, the results of examining the
d!1 limit in the theory [33] with the complete exchange
Hamiltonian lead to the discrete spectrum (3.14). This means
that in such a limit the transverse part of the exchange
interaction is irrelevant. It turns out that even at d � 2 the
main features of the behavior of the model in the d!1 limit
are retained, i.e., the spectrum of a hole in an antiferromag-
netic matrix is discrete. Matching the results for the d!1
limit with those for finite d would require developing a
method by which the corrections would be taken into
account systematically in powers of the parameter 1=d.

Allowance for first-order corrections often leads to non-
physical results (a negative density of states) [36], which
suggests that an infinite series in powers of 1=d must be
taken into account. One way to resolve the problem in this
manner is to obtain self-consistent equations for the Green's
function. Reasoning along similar lines, Brinkman and Rice
[30] obtained, for the particular case of J � � 0, the following
expression for the Green's function:

Gii�o� � o�1ÿ 1=d� ÿ
������������������������������������������
o2 ÿ 4t �2�1ÿ 1=2d�

p
2t �2 ÿ o2=d

; �3:17�

which incorporates the 1=d-corrections to separate terms in
the numerator and denominator. If we substitute t � � �����

2d
p

t
into (3.17), we see that (3.17) coincides with (3.5) obtained in
the retraceable-path approximation, which suggests that in
the case of a finite-dimensional space the approximation is
equivalent to the self-consistent approach with 1=d-correc-
tions in the theory with d � 1. In this way we have
determined the status of the heuristic approximation that
allows only for retraceable paths. It would be interesting to go
beyond the scope of this approximation, say, in discussing
spin-wave excitations of a quantum antiferromagnet with
embedded holes.

We have discussed the results of studies of the behavior of
a hole in an antiferromagnetic matrix. Similar research for
other spin configurations in the d!1 limit was done by
Metzner et al. [31]. It appears that in a ferromagnetic matrix a
particle moves freely and that the corresponding density of
states is given by the Gaussian function (3.8). This means that
the d � 1 approximation does not take into account the
contribution of large ferromagnetic clusters, which lead to
long Lifshitz tails in the density of states [37]. Nevertheless,

the Green's function obtained in the d � 1 approximation
obeys all the necessary sum rules, as does the conductivity
s�o� calculated in this approximation [36].

Now let us go back to the problem of a hole moving in an
antiferromagnetic matrix. In the Ising approximation for the
exchange interaction, the hole spectrum is determined by
(3.14), with the hole remaining immobile. The ground state
corresponds to the lower level n � 1, located at a distance of
the order of �J �=t ��2=3t � from the bottom of the initial
spectrum. The transverse terms in the exchange interaction
can generate spin waves, and because the hole interacts with
these waves, it acquires a finite mass and begins to move. This
motion through the lattice manifests itself in the broadening
of the first discrete level. The width of the band attributed to
the generation of spin waves must be of the order of the
exchange interaction, with the result that the presence of the
next discrete levels cannot significantly affect the hole motion
in the lower band, since J �5 t �. This suggests that the hole
moving through the lattice because of deformations in the
NeÂ el structure (spin-wave excitation) becomes a magnetic
polaron and forms a band of quasiparticle states with a width
of the order of J �. The higher discrete levels broaden because
of spin waves and form an incoherent spectrum in an energy
range of the order of the width of the initial band. In Section 4
we show that such a structure of quasiparticle states emerges
as a result of the motion of a hole in an antiferromagnetic
matrix.

4. The magnetic polaron

4.1 The effective Hamiltonian of a hole moving
in an antiferromagnetic matrix
The fact that a quasiparticle spectrum for a hole in an
antiferromagnetic matrix actually exists was demonstrated
by a number of researchers (see Refs [38 ± 45]) who used
numerical methods of exact diagonalization of small clusters
in two-dimensional space (d � 2). In the low-energy region
(measured from the bottom of the hole band) the spectrum
exhibits a characteristic peak distinctly separated from the
broad incoherent part of the spectrum of width �6ÿ7�t. The
coherent propagation of a quasiparticle is described by a
dispersion relation that has minima at the points
k � ��p=2;�p=2� lying at the edge of the Brillouin zone for
an antiferromagnetic NeÂ el lattice.

Kane et al. [47] were the first to corroborate this picture of
the quasiparticle spectrum analytically. The method of self-
consistent perturbation theory they used has been since
developed by other researchers (see Refs [48 ± 53]). It is
based on deriving an effective Hamiltonian for an antiferro-
magnetic matrix containing a single hole. When the band is
exactly half-filled, the Hamiltonian of the tÿJmodel reduces
to a Heisenberg Hamiltonian with antiferromagnetic
exchange interaction, whose weakly excited states are
described by spin waves. The loss of a single electron induces
a local perturbation of the spectrum of the magnetic matrix,
which must be described by an effective interaction between
the hole and the spin waves. To derive the corresponding
effective Hamiltonian we use the slave-fermion representa-
tion [46, 54] of the electron operators in Hamiltonian (1.2).
Below, we demonstrate some of the steps in transforming the
Hamiltonian.

We assume that the matrix spins are NeÂ el-ordered, so that
we have two sublattices with the spins either `up' or `down' on
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each of them. At this point it is convenient to rotate the local
system of coordinates connected with the sites of the #-
sublattice through 180� with respect to the x axis. The
operators at the sites of the #-sublattice are then transformed
as

S�j ! S�j ; Sz
j ! ÿSz

j ; Cjs ! Cj�s ; �4:1�

which leads to the following transformation of the Hamilto-
nian (1.2):

H! ÿt
X
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� J
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�
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2
�S�i S�j � Sÿi S

ÿ
j � ÿ Sz

i S
z
j ÿ

1

4
ninj

�
; �4:2�

where ~Cis � Cis�1ÿ ni�s� � X 0s
i . This canonical transforma-

tion transforms the NeÂ el state into a ferromagnetic state with
the spins directed up, so that now there is no need to
distinguish between the sublattices. Next, we go from the
electron ( ~Cis) and spin (Si) operators to the spinless Fermi
operators hi and pseudospin operators si via the following
formulas [50]:
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y
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� szi

�
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i ; Si � sihih

y
i : �4:3�

In this representation the Hamiltonian of the tÿJ model
assumes the form
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The third step in deriving the effective Hamiltonian
consists in using the Goldstein ± Primakoff representation
for spin operators, a representation that expresses these
operators in terms of the Bose operators b

y
i and bi of spin

deviations. For spin s � 1=2 we have

s�i �
�����������������
1ÿ b

y
i bi

q
bi � bi ; sÿi � b

y
i

�����������������
1ÿ b

y
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q
� b
y
i ;

szi �
1

2
ÿ b
y
i bi :

The linear approximation in (4.4) provides a good description
of the spin dynamics of an antiferromagnet at low tempera-
tures, since the average value of the spin deviations at a site is
small: hbyi bii5 1. We employ this approximation and replace
the hole number operator in the second term on the right-
hand side of Eqn (4.4) with its expectation value

hih
y
i � 1ÿ h

y
i hi ! 1ÿ hhyi hii � 1ÿ d ;

where d is the hole concentration. Hamiltonian (4.4) can then
be written as

H � t
X
ij
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� J
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ij
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2
�byi byj � bibj� � b

y
i bi � b

y
j bj

�
�4:5�

[we have dropped the constant term, since it only shifts the
energy origin, and have replaced J�1ÿ d2� by J to simplify the
notation]. After expanding the operators in a Fourier series
and applying the canonical transformation

bq � uqbq � vq b
y
ÿq �4:6�

to the new Bose operators bq, we arrive at the final expression
for the effective Hamiltonian [47]
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which contains a term with the chemical potential. Here,

Mq�k� � zt�uqgkÿq � vqgk� �4:8�

is the hole ± spin-wave interaction amplitude, and
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We see that in the case of a half-filled band theHamiltonian of
the tÿJ model reduces to the spin-wave Hamiltonian of a
NeÂ el antiferromagnet interacting with spinless fermions,
which are holes. This closely resembles the polaron problem,
but also has a dramatic difference: Hamiltonian (4.7) has no
initial term of the type

P
k ekh

y
khk for holes. The kinetic term

of the tÿJ model becomes a term describing fermion ±
magnon coupling. Since the interaction amplitude t4 J, we
are dealing with strong coupling.

Due to the presence of an interaction term a fermion
acquires a self-energy. We will see later that the self-energy
has a dispersion and corresponds to a quasiparticle, which
can be called a magnetic polaron. Note that the interaction
amplitude vanishes at q � 0 and q � �p; p; . . .� but becomes
large at intermediate values of themomentum transfer q. This
implies that the interaction between a hole and short-
wavelength spin waves plays an important role in the
magnetic-polaron problem. This means that the magnetic
polaron is well-localized in space.

4.2 The Green's function for holes
Hamiltonian (4.7) for a single hole in an antiferromagnetic
matrix was first derived by Kane et al. [47], who also
calculated the Green's function for holes at absolute zero
using the self-consistent perturbation theory. Analytic results
were obtained only in the pole approximation, where the
contributions of incoherent states are ignored. The results
confirm the expected structure of the spectrum of hole states
described in Section 4.1. To describe the system analytically at
finite temperatures and finite (but low) hole concentrations,
we introduce (following [49]) a retarded Green's function



hk�t�
��hyk�t 0��� � ÿiY�tÿ t 0�
�hk�t�; hyk�t 0�

	�
; �4:9�
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where Y�t� is the step function, equal to 0 for t < 0 and to 1
for t > 0, and f. . . ; . . .g stands for an anticommutator. Its
Fourier transform in the variable tÿ t 0

G�k;o� � 

hk

��hyk��o
�
�1
ÿ1

d�tÿ t 0� exp�io�tÿ t 0��

hk�t�
��hyk�t 0���

with an infinitesimal positive imaginary addition id to o
makes it possible to calculate the spectral density of the hole
states

A�k;o� � ÿ 1

p
ImG�k;o� : �4:10�

Now we can easily write the equations of motion for the
Green's function by first differentiating (4.9) with respect to t
and then with respect to t 0 [56]. After a Fourier transforma-
tion with respect to tÿ t 0 we arrive at a pair of coupled
equations

�o� m�G�k;o� � 1�
X

q




hkÿqB�k;q�

��hyk��o ; �4:11�

�o� m�

hkÿqB�k;q�
��hyk��o

�
X
q 0




hkÿqB�k;q�

��hykÿq 0B
y�k;q0���o ; �4:12�

where

B�k;q� � Mq�k� q�bq �M0
q�k�byÿq :

Here Mq�k� is defined in (4.8) and M0
q�k� �

zt�uqgk � vqgkÿq�. Substituting (4.12) into (4.11) and introdu-
cing the zeroth hole Green's function G0�k;o� � �o� m�ÿ1,
we obtain the equation

G�k;o� � G0�k;o� � G0�k;o�T�k;o�G0�k;o� ; �4:13�

where the scattering matrix T�k;o� is a higher-order Green's
function

T�k;o� �
X
qq 0




hkÿqB�k;q�

��hykÿq 0B
y�k;q0���o : �4:14�

Comparing Eqn (4.13) with the Dyson equation

G�k;o� � G0�k;o� � G0�k;o�S�k;o�G�k;o� ;

we find the relation between the Tmatrix and the self-energy
part S

T � S� SG0T :

We see that S is the irreducible part of the scattering matrix:

S�k;o� � Tirr�k;o� : �4:15�

It can be calculated by simply decoupling the correlation
functions in (4.14):


h
y
kÿq 0B

y�k;q0�hkÿq�t�B�k;q; t��
� dqq 0



h
y
kÿqhkÿq�t�

�

By�k;q�B�k;q; t�� :

Now we can use the spectral theorem to express the single-
particle correlators of the fermion and boson operators in
terms of the corresponding Green's functions. As a result, we
arrive at the following expression for the self-energy part of
the hole:

S�k;o� �
X

q

�
do1

p
do2

p

� exp
�
b�o1 � o2�

�� 1�
exp�bo1� � 1

��
exp�bo2� ÿ 1

� Im

hkÿq

��hykÿq

��
o1

oÿ o1 ÿ o2 � id

�
n
M2

q�k� Im



bq

��byq��o2
�M0 2

q �k� Im



byÿq

��bÿq

��
o2

o
:

�4:16�
If we ignore the self-energy parts in the spin-wave Green's

function



bq

��byq��o, we have
ÿ 1

p
Im



bq

��byq��o � d�oÿ o0
q� ;

ÿ 1

p
Im



byÿq

��bÿq

��
o � ÿd�o� o0

q� :

We substitute this into (4.16) and write the self-energy part of
the holes in the following form [49]:

S�k;o�

�
X

q

M2
q�k�

�
de

A�kÿ q; e�
oÿ eÿ o0

q � id

�
1ÿ f�e� �N�o0

q�
�

�
X

q

M0 2
q �k�

�
de

A�kÿ q; e�
oÿ e� o0

q � id

�
f�e� �N�o0

q�
�
:

�4:17�
Here,

f�e� � 1

exp�be� � 1
; N�o� � 1

exp�bo� ÿ 1
:

Since, according to (4.10), the spectral density is deter-
mined by the exact hole Green's function, the latter can be
found from Eqn (4.17) in a self-consistent manner. To make
this equation complete, we must augment it by the chemical
potential equation

d � 1

N

X
k

�
deA�k; e�f�e� : �4:18�

Plakida et al. [49] found that at T � 0 formula (4.17)
transforms into the well-known result [47, 48] obtained for
causal Green's functions by summing a certain class of
diagrams. From the point of view of perturbation theory,
the results of Refs [47, 48] and Eqn (4.17) correspond to the
self-consistent Born approximation (SCBA). If we substitute
the spectral density of the corresponding initial Green's
function into the right-hand side of Eqn (4.17), we obtain
the Born approximation corresponding to the second order in
the interaction amplitude. SCBA amounts to replacing the
initial spectral density by the exact spectral density, which is
absolutely necessary for ourmagnetic-polaron problem, since
the interaction amplitude contains no small parameter.

The first and second terms on the right-hand side of Eqn
(4.17) correspond to magnon emission and absorption by the
hole.
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4.3 Results of numerical calculations
Numerical solution of the system of equations (4.17) and
(4.18) allowing for (4.10) and the Dyson equation was carried
out for a cluster on a 16-by-16 square lattice �z � 4� [48, 49].
The results for a single hole atT � 0 are in full agreement with
those obtained earlier by Martinez and Horsch [48]. Below,
we display the results for the spectral density at absolute zero
for two values of hole concentration and two values of the
wave vector, �p=2; p=2� and �0; 0�, at the center and edge of
the magnetic Brillouin zone (Fig. 5).

For both values of k, Fig. 6 clearly demonstrates a narrow
quasiparticle peak at o � 0 and a broad incoherent back-
ground extending to energies of about 7t. The finite width of
the quasiparticle peak is due to the finiteness of the imaginary
addition Z to the frequency, which in the present calculation is
set equal to 0:01t. The results correspond to the following
form of the hole density of states:

A�k;o� � Zkd
ÿ
oÿ E�k� � m

�� Ainc�k;o� ; �4:19�
where Zk is the intensity of the quasiparticle state (defined as
the integral over the peak's area), and Ainc�k;o� is the
incoherent part of the spectrum. At k � �p=2; p=2� and
d � 3%, we have Zk � 0:353, which is somewhat larger than
the valueZk � 0:329 foranextremely lowhole concentration,
corresponding to an isolated impurity. As the concentration
rises to 10%, the spectrum for the state with k � 0 acquires
new features: at o < 0, there appears a region of incoherent
states, and the peak's intensity decreases accordingly. But at
k � �p=2; p=2� the intensity of the coherent peak hardly
changes. It grows to a value Zk � 0:369. The insignificant
increase in the peak's height is retained on a further increase
in concentration: Zk � 0:373 at d � 10%. The calculations
made for different values of k suggest that the point
k � �p=2; p=2� corresponds to the minimum in energy, and
for this reason we must study the quasiparticle peak at
k � �p=2; p=2� in greater detail. Figure 7 depicts the calcu-
lated dispersion curves of an isolated hole for different values
of the exchange integral J [39] (Fig. 7a). The main feature of
the obtained solution is the presence of a local maximum at
point �0; p� and an absolute minimum at point �p=2; p=2�.
The presence of a minimum on the GM line is clearly visible,

but the minimum proves to be a saddle point if one takes into
account the dispersion in the direction perpendicular to this
line. The minimum at point �p=2; p=2� corresponds to one of
the four pockets of the Fermi surface. The numerical results in
Fig. 7a were approximated by the function

E�k� � e0 � x1�cos kx � cos ky�2 � x2�cos 2kx � cos 2ky� ;
�4:20�

which corresponds to electron transfer between nearest
neighbors and next-nearest neighbors in the same NeÂ el
sublattice. The adjustable coefficients increase with J=t up to
values of the order of unity. For instance, at J=t � 0:3 we find
that e0=t � ÿ2:305, x1=t � 0:131, and x2=t � 0:027. The
dispersion relation shows that the hole forms a band at the
lower edge of the initial band, and the width of this `hole'
band is of the order of the exchange interaction, as expected.
The results expressed by a dispersion curve are equivalent to a
pattern of equal-energy lines in Fig. 8, with closed sections of
the Fermi surface (pockets) centered at points ��p=2;�p=2�
clearly visible.

0ÿp p

ÿp

p

Figure 5. The Brillouin zone for a square lattice (hatched areas) and for an

antiferromagnetic NeÂ el structure (solid line).
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Figure 6. Spectral function A�k;o� for J=t � 0:4, T � 0, and d � 3% at

k � �p=2; p=2� (a) and k � �0; 0� (b). All energies here and in what follows

are expressed in units of t; frequencies are measured from the chemical

potential m [49].
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Let us now return to the paper of Plakida et al. [49], where
calculations were also made for finite temperatures. First we
note that the quasiparticle peak oQP�k �� � E�k �� ÿ m at
point k � � �p=2; p=2� shifts toward higher frequencies

linearly with rising concentration:

oQP�k �� � ÿ1:5dJ �d > 1:5%� ;

and that oQP�k �� < 0. The quantity mÿ E�k �� should be
identified with the quasiparticle Fermi energy. We define the
temperature of degeneracy of the quasiparticle gas as

Td � mÿ E�k �� � 1:5dJ �4:21�

(the Boltzmann constant is set to unity). The behavior of the
quasiparticle gas for T5Td is expected to be different from
that for T > Td.

Analysis of the calculations made for different tempera-
tures shows no significant changes in the shape of the
spectrum up to T � Td. At a fixed d the only temperature
effect is a uniform shift in A�k;o� toward higher values of o
for all values of k. It particular, it appears that the
quasiparticle peak at k � k� is close to oQP � 0 for T9Td.
At higher temperatures the sharp structure of the spectrum
evens out, but the quasiparticle peaks remain and only lower
slightly as T increases. The pattern is repeated for other hole
concentrations. It appears, therefore, that in a broad range of
hole concentrations and temperatures the spectral density
A�k;o� for the state k � k� contains a quasiparticle peak
whose intensity changes only slightly as d and T grow. The
peak moves toward higher frequencies as the temperature
increases.

Now let us study the momentum distribution function of
frequencies

N�k� �
�
doA�k;o� f�o� : �4:22�

Generally, coherent and incoherent states with o < 0 con-
tribute to this function (the chemical potential m is zero on the
adopted energy scale). To understand the nature of the
incoherent contribution to A�k;o� it is advisable to analyze
the imaginary part of the self-energy of the holes,

G�k;o� � ÿImS�k;o� :

The results of calculations of this imaginary part for a 3%
hole concentration are depicted in Fig. 9. Using (4.10), we can
write

A�k;o� � 1

p
G�k;o��

oÿReS�k;o� � m
�2 � �G�k;o��2 : �4:23�

The position of the peak of this function of o (the smaller the
G, the sharper the peak) can be found from the equation

E�k� � ReS
ÿ
k;E�k��ÿ m : �4:24�

For the state k � k� the value of E�k�� ÿ m at d � 3% is close
to zero, and in this neighborhood, as Fig. 9 clearly demon-
strates, G � 0, with the result that (4.23) reduces to the
function Zk �d

ÿ
oÿ oQP�k ��

�
, where

Zk �
�
1ÿ q

qo
ReS�k;o�

����
o�E�k�

�ÿ1
: �4:25�

On the other hand, in the region where o > oQP�k� we have
G�k;o�4 ��oÿReS�k;o� � m

��, so that (4.23) yields the
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Figure 7.Dispersion curves for amagnetic polaron: (a) calculated in SCBA

at J=t � 0:01 (curve 1), J=t � 0:8 (curve 2), and in the limit of large J (curve

3) [39]; and (b) calculated in the ordinary magnetic-polaron theory at

J=t � 0:4 [68].
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Figure 8. Constant-energy curves in the limit of large values of J [39].
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following approximate expression for the spectral density of
incoherent states:

Ainc�k;o� � 1

pG�k;o� : �4:26�

Now let us go back to expression (4.22) for N�k�. For
points that are far from k� the quasiparticle peaks are in the
o > 0 range, with the result that N�k� is determined by the
contribution of incoherent states witho < 0, with an integral
contribution of such states of order d (Fig. 6b). Thus, far from
k� we have N�k� � d5 1. For the point k � k� there can be
no contribution when o < 0, but on the other hand, there is a
quasiparticle peak in the o < 0 range (see Fig. 6). This peak
determines that N�k� � Zk near k � k�. Outside the neigh-
borhood of point k� we have oQP�k� > 0, with the result that
N�k� becomes small. This reasoning suggests that the
quasiparticles in k-space are distributed near four pockets
centered at ��p=2;�p=2�. The integral volume of each pocket
must be of order d.

The N�k� distribution for a 3% hole concentration at
T � 0 is depicted in Fig. 10. The absence of a jump inN�k� at
the Fermi surface is due to the finiteness of the imaginary
addition Z used in calculations. At a 10% hole concentration,

the distribution undergoes a dramatic change: the ridge in
N�k� along the boundaries of the magnetic Brillouin zone
grows. At d � 20%, this ridge is retained, but there are also
peaks near the �p; 0� type points, with the background of
incoherent states not changing significantly. Thus, as the hole
concentration grows, the states forming pockets in the
neighborhood of the point �p=2; p=2� tend to form pockets
in the neighborhood of the �p; 0� type points.

At finite temperatures the coherent peaks inN�k� become
much lower. For instance, calculations with d � 3% at
T � 0:017t > Td show that the intensity of the peaks at the
points ��p=2;�p=2� decreases tenfold, while elsewhere N�k�
increases significantly. Note that the spread of the four-
pocket structure of N�k� with increasing temperature is
caused not by the broadening of the quasiparticle peaks, as
could be expected, but by the temperature shift of the
quasiparticle energies oQP�k�. As mentioned earlier, at
d � 3% andT � 0 we haveoQP�k� < 0, and the quasiparticle
states form peaks in N�k� in the neighborhood of point k�.
However, for T > Td quasiparticle peaks emerge above the
chemical potential level, with the result that oQP�k� > 0. The
Fermi factor in (4.22) strongly suppresses the contribution of
coherent states to N�k� and leads to the disappearance of the
four-pocket structure. Thus, Plakida et al. [49] established by
their numerical calculations that the spectral density A�k;o�
is weakly dependent on the hole concentration and tempera-
ture, while the momentum distribution function varies
rapidly as the temperature increases to T > Td � 1:5dJ.

How do various approximations limit the applicability of
themagnetic-polaron theory [47 ± 55]? First, it is assumed that
there is long-range antiferromagnetic order. At the same time,
it is known (see below) that this order disappears at low hole
concentrations, of the order of several percent. At high
concentrations, however, there is still a significant short-
range order characterized by a correlation length x. Such a
state of the tÿJ model is commonly called the spin-liquid
state. Dagotto and Riera [43] have shown by their numerical
calculations that the position of the minimum of the
quasiparticle band at k � �p=2; p=2� does not depend on the
type of system, i.e., the position is the same irrespective of
whether we are dealing with a NeÂ el antiferromagnet or a spin
liquid. Richard andYushankhai [50] found that theminimum
in energy at the point �p=2; p=2� is retained as long as x4Rp,
whereRp is the polaron radius. Only at x � Rp does a pattern
emerge corresponding to a hole `freely' propagating through
a lattice with a large Fermi surface close to the edges of the
magnetic Brillouin zone.
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Figure 9. Imaginary part of the self-energy of the holes for d � 3% at

T � 0 (a) and at T � 0:1t (b) [49].
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In another important approximation the renormalization
of the magnon spectrum is ignored completely. However, for
high concentrations d one should expect a large renormaliza-
tion of the spin-wave energy [57]. Such a renormalization can
be taken into account in a totally self-consistent theory not
only for the hole states but for the spin states as well. Thus, the
magnetic-polaron theory under discussion is valid up to
moderate hole concentrations d, when the system is still in
the spin-liquid state but renormalization of the magnon
spectrum does not play too large a role.

As noted earlier, for an isolated impurity SCBA produces
results that are in good agreement with those of numerical
calculations for small clusters. Note that the success of this
approximation is due to the fact that the renormalization of
the vertex parts of Hamiltonian (4.7) proves unimportant.
This aspect was specially studied by Liu andManousakis [45]
and Martinez and Horsch [48].

A magnetic polaron has a complicated structure and
consists of a hole and the surrounding deformation of the
NeÂ el structure. The spatial distribution of this deformation
was studied by Ramsak and Horsch [57] at absolute zero.
They calculated a correlation function of the type

NR �


h
y
0h0S

z
R

�
: �4:27�

This function describes the correlation between a hole at site 0
and the spin deviations at site R. Using the spin-wave
approximation for Sz

R, they found the following asymptotic
formula for the function (4.27):

NR � 8
�
g2k � 2�vkn�2� t 2

JR2
; �4:28�

where vk � Hgk, and n � R=R. Thus, the spin deformation
surrounding a hole falls off according to the power law
NR � 1=R2, so that there can be no concept of a polaron
radius. Calculations of (4.27) via SCBA wave functions [58]
for sites closest to the hole produce results that are in good
agreement with those obtained by the method of exact
diagonalization of small clusters.

4.4 Non-Fermi liquid behavior of holes
Here we discuss the results of SCBA calculations that ignore
the renormalization of the spin-wave spectrum. A self-
consistent approach that allows for mutual renormalization
of the hole and spin-wave spectra was developed by Jian-Xin
Li and Chang-De Gong [52], Igarashi and Fulde [53, 59], and
Khaliullin and Horsch [54]. They defined the Green's
functions of holes, G, and magnons, D, by similar relations




bk�t�

��byk�t0��� � ÿiY�tÿ t 0�
D�

bk�t�; byk�t 0�
�E
: �4:29�

Using Hamiltonian (4.7), an equation of motion for the
magnon Green's function is set up and solved similarly to the
case of holes. Let us write theDyson equations for theGreen's
functions

G�k;o� � �oÿ S�k;o� � m
�ÿ1

; �4:30�

D�k;o� � �oÿ o0
k ÿP�k;o��ÿ1 �4:31�

with the self-energy parts S and P given by the following
expressions [52]:

S�k;o� �
X

q

�
do1

p
do2

p

�
tanh

o1

2T
� coth

o2

2T

�
M2

kÿq�k�

� ImG�q;o1� ImD�kÿ q;o2�
oÿ o1 ÿ o2 � id

; �4:32�

P�k;o� � ÿ
X

q

�
do1

p
do2

p

�
tanh

o1

2T
ÿ tanh

o2

2T

�
M2

k�q�

� ImG�q;o1� ImG�kÿ q;o2�
oÿ o1 � o2 � id

: �4:33�

We can easily verify that the expression (4.32) for the self-
energy part of holes is a different form of (4.16). Both are
obtained as a result of SCBA calculations and correspond to
the emission of a spin wave by a hole or to the decay of the
spin wave into an electron ± hole pair.

To estimate expressions (4.32) and (4.33), we allow for the
fact that the hole spectrum of a two-dimensional antiferro-
magnet has fourminima at the points k � � ��p=2;�p=2� and
that in the neighborhood of a minimum the spectrum can be
approximated by a quadratic form. If we ignore the
spectrum's anisotropy (although numerical calculations
show that the anisotropy is large), at a point k in the
neighborhood of a minimum we have

E�k� � E�k �i � �
1

2m
k 0 2 : �4:34�

The Green's function of holes in the pole approximation can
be written as

G�k;o� � Zk

oÿ E�k� � m� id
; �4:35�

where Zk � J=t must remain small, and the effective hole
mass m � t=J must remain large. Estimates of (4.32) via the
zeroth Green's function of spin waves yield [60]

Z 2
k �

2

p

�
J

t

�2

: �4:36�

Since both k0 and q are small, the initial vertex part can be
approximated by the function

M2
q�k� �

X4
i�1
M2

q�ki� � t 2

2
���
2
p �

qk 0 2 ÿ 2
���
2
p
�qk0� � 2q

�
:

�4:37�
If we take all the approximations (4.34) ± (4.47) into account,
we have the following estimate for (4.33) [52]:

ImP�k;o� �
ÿZ 2

kt
2mkF

16
���
2
p

p

�
o
T

�
; o < T ;

ÿZ 2
kt

2mkF

8
���
2
p

p
; o > T :

8>>>><>>>>: �4:38�

For the real part ofP�k;o� we have the following expression
when the momentum and energy transfers are small:

ReP�k;o� � ÿZ 2
kt

2mk

8
���
2
p

p

�
1� kF

2

�
� Z 2

kt
2m2

8p
o : �4:39�
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Let us now write the approximate expression for the
imaginary part of the magnon Green's function in two
limiting cases for the frequency-temperature ratio [52]:

ImD�k;o�

�
ÿ CkF�

�1ÿ2 ��2p mC�oÿ
� ��

2
p

JÿC�2�kF�
�
k
	2

o
T
; o < T ;

ÿ 2CkF�
�1ÿ2 ��2p mC�oÿ

� ��
2
p

JÿC�2�kF�
�
k
	2 ; o > T ;

8><>:
where C � Z 2

kt
2m=16p

���
2
p

. Using these relationships in
formula (4.32) for S�k;o�, we obtain the following estimates
for the imaginary part of the self-energy of a hole [52]:

ImS�k;o�

�

ÿ mkFJt
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���
2
p
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�
p2 ÿmJ�2� kF�
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(4.40a)
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These estimates show that holes behave like a non-Fermi
liquid (in Fermi-liquid theory, quasiparticle damping is
proportional to o2). The frequency and temperature beha-
vior of damping described by (4.40a) and (4.40b) corresponds
to a marginal Fermi liquid [61]. The result (4.40) immediately
leads to a linear temperature dependence of resistance, which
is characteristic of high-Tc materials.

The estimates (4.38) and (4.40) were made in the pole
approximation for the Green's function. At the same time, we
established earlier that the hole ± quasiparticle spectrum
contains a broad region of incoherent states. The first to
discover this region below the quasiparticle spectrum were
Igarashi and Fulde [53]. This part of the spectrum is weakly
dependent on momentum, although it does exhibit a peculiar
frequency dependence (see Fig. 9). Igarashi and Fulde [53]
approximated the incoherent part of the spectrum by the
function [see Eqn (4.19)]

Ainc�k;o� � 1

2G
Y
ÿ
Gÿ joj� ; �4:41�

where G � zt is the half-width of the initial band. Since G4T
and J > T, for frequencieso below the cutoff frequency of the
spin-wave spectrum the introduction of the incoherent part
into the spectral density only slightly alters the results (4.40)
that characterize the behavior of holes [52].

However, the contribution of incoherent states to the
polarization operator P�k;o� of spin waves is extremely
important. Equation (4.33) shows that three types of
transitions contribute to P�k;o�: between coherent states
(Pcc), between incoherent states (Pii), and mixed transitions
(Pic). Estimates show [53] that

Pcc � ÿ J

t 2
d ; Pic � d

t
; Pii � d

2t
ln

zt

2J
: �4:42�

Thus, it is true that incoherent states contribute the most to
polarizability. Because polarization is finite, the spin-wave
spectrum undergoes renormalization. As the hole concentra-
tion rises, the spin-wave frequency (at a fixed q) lowers, and at
certain concentration dc vanishes. The numerical calculations
made in Refs [53, 54] show that dc amounts to several percent.
At d � dc the long-range antiferromagnetic order is

destroyed. The various aspects of spin dynamics in a two-
dimensional antiferromagnetic system are discussed in detail
in Section 5, where the critical hole concentration dc is
calculated with an accuracy higher than that achieved in
Refs [53, 54]. Here, we continue our general study of the hole
spectrum.

4.5 Ferrons
As J becomes smaller, the tendency toward the formation of
an antiferromagnetic state weakens, and at J � 0, according
to Nagaoka's theorem, the system becomes ferromagnetic.
But does this transition go directly from one phase to the
other or through an intermediate (say, mixed) phase? Part of
this general question is the problem of the structure of a
single-particle hole state at small values of J. The idea that a
hole introduced into an antiferromagnetic matrix can form a
region of ferromagnetic order around itself (since this leads to
a gain in kinetic energy, which for a weak exchange
interaction may exceed the loss in exchange energy) has a
long history [62]. Such an object, i.e., a hole in an
antiferromagnetic matrix dressed in a ferromagnetically
polarized region, was called a ferron [63]. The energetical
advantage of a ferron was analyzed in the Ising limit of the
exchange interaction. Allowance for the transverse compo-
nents of spin leads, as it does in the magnetic-polaron
problem, to a finite mobility of the ferron, and therefore, to
the formation of a band of quasiparticle states for small
values of J.

This problem has been studied by Sabczynski et al. [64,
65]. The researchers started with Hamiltonian (4.7), which
describes a hole interacting with an antiferromagnetic matrix
in the spin-wave approximation. Since the total spin commu-
tes with the Hamiltonian, the eigenfunctions of a single-
particle state can be characterized by the value of the total
spin Sz � 1=2; . . . This value is the sum of the spin (1/2) of the
hole and the flipped spins (with respect to the NeÂ el state) of
the nearest neighbors and those of the next-nearest neighbors.
Since for a square lattice the number of nearest neighbors is
even, only odd values Sz � 1=2; 3=2; 5=2; . . . are possible
(from symmetry considerations). In accordance with the
fixed value of Sz, the wave function of a single-particle state
is written as a linear combination of wave functions with
different numbers of spin deviations at the sites. In [64] the
eigenfunctions and the energy eigenvalues were found for the
0:01 < J=t < 1:00 interval by Lanczos's method with about
100 successive steps. This guaranteed a 2% accuracy in
calculations. The results of the calculations of the energy of
single-particle states for Sz � 1=2 and 3=2 at J=t � 0:15 are
depicted in Fig. 11.

The band spectrum for Sz � 1=2 has four minima at
points X with k � ��p=2;�p=2�, which agrees with the
results of earlier calculations (see above). Near these minima
the spectrum is quasi-one-dimensional: the effective mass in
the direction perpendicular to the edges of the magnetic
Brillouin zone is smaller than the effective mass in the
parallel direction by a factor of ten. In the case opposite to
Sz � 1=2, i.e., Sz � 3=2, the spectrum has a minimum at the
point G, and the maxima are on the lines of the magnetic
Brillouin zone. Clearly, these spectra overlap, and there is a
region in the k-space where states with Sz � 3=2 lie below (on
the energy scale) the states with Sz � 1=2. Only for J=t > 0:92
does the ground state have spin Sz � 1=2. Near J=t � 0:053
the state with k � ��p=2;�p=2� and Sz � 1=2 changes to the
ground state with k � 0 and Sz � 3=2. Calculations show
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that for fixed k the energy increasesmonotonically with Sz, so
that the greater the value of Sz, the smaller the value of J=t at
which the corresponding state is the ground state. Thus, we
see that the hole state with total spin Sz � 1=2 is the ground
state for J=t > 0:053. In the interval 0:02 < J=t < 0:053 this
state has a higher energy than the state with Sz � 15=2, and
for J=t < 0:02 the ground state has Sz > 15=2. The ferron
structure, i.e., the spatial distribution of the spin deviations
near the hole, allowing for the symmetry of the square lattice,
was discussed by Sherman and Schreiber [60] for several
symmetry points of the Brillouin zone. As J diminishes, Sz

grows, and so does the ferron radius. These numerical results
reflect the tendency to the limit J! 0, where the entire
volume around the hole is filled by ferromagnetically
oriented spins, which is required by Nagaoka's theorem [66].

4.6 The canonical form of the magnetic-polaron theory
The effective Hamiltonian in the form of (4.5) or (4.7), which
describes a hole moving in an antiferromagnetic matrix, has
the structure of the FroÈ hlich Hamiltonian for the electron ±
phonon model of metals. In the case of strong coupling
between the electrons and the lattice, the FroÈ hlich Hamilto-
nian is used in the small-radius polaron problem, whose
solution is based not on employing perturbation theory
techniques but on using a canonical transformation (e.g., see
[67]). This approach can also be applied to the Hamiltonian
(4.5), in which magnons act as phonons [68 ± 70]. Below, we

single out the main steps in this canonical approach in
magnetic-polaron theory.

First, we note that the problem has several integrals of
motion. Among these is the number of fermions

N �
X
i

h
y
i hi �4:43�

and the total momentum

P �
X

k

kh
y
khk �

X
q

qbyqbq � K�Q : �4:44�

This means that a common basis consisting of the eigenvalues
of the operators H and P can be chosen. In the ordinary
polaron theory [67] this is achieved by employing the unitary
Jost transformation U � exp

�ÿiQr
�
, where r is the electron

radius vector. A similar transformation can also be intro-
duced for the magnetic polaron [70]:

U � exp

�
ÿi
X
i

QRih
y
i hi

�
; �4:45�

which can be considered a Jost transformation on a lattice.
For a single hole the transformation can be written as follows:

U �
X
i

Tih
y
i hi ; Ti � exp

�ÿiQRi

�
: �4:46�

Upon this transformation, the Fermi and Bose operators
transform in the following manner:

Uyhyi hjU � Tjÿih
y
i hj ; UybiU �

X
j

biÿjh
y
j hj :

By transforming Hamiltonian (4.5) directly, we can easily
show that the Hamiltonian becomes diagonal in the Fermi
operators:

UyHU �
X

k

Hkh
y
khk ; �4:47�

withHk depending only on the Bose operators.
In diagonalizing Hk, two additional unitary transforma-

tions must be made:

V � exp

�
1

2

X
q

yq�byqbyÿq ÿ c:c:�
�
; �4:48�

W �
X

k

Wkh
y
khk ; Wk � exp

�
1����
N
p

X
q

lq�k��bq ÿ byq�
�
:

�4:49�
Provided that the parameters yq are chosen correctly, the first
transformation diagonalizes the purely magnon part of
Hamiltonian (4.5) [transformation (4.48) is equivalent to the
uÿv transformation (4.6) of the Bose operators]. The second
transformation, (4.49), produces a linear shift in the Bose
operators:

W
y
kbqWk � bq ÿ 1����

N
p lq�k� : �4:50�

The quantities lq�k� are interpreted as variational para-
meters, and they are selected from the condition that the
terms in �VWk�yHk�VWk� that are linear in the operators bq

vanish.
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Figure 11. Band spectrum of holes in the magnetic Brillouin zone for two

total-spin values: (a) Sz � 1=2, and (b) Sz � 3=2 [64].
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As a result of three unitary transformations the initial
Hamiltonian becomes completely diagonalized in the spaces
of states with one hole, i.e.,

�UVW�yH�UVW� �
X

k

E�k�hykhk ; �4:51�

where

E�k� � ÿ2zO�k� � 1

N

X
q

oql
2
q�k� �4:52�

is the dispersion curve of a single-particle state (a magnetic
polaron). Here,

O�k� � 1

N

X
q

lq�k�Mq�k�F�k� ;

F�k� � exp

�
ÿ 1

N

X
q

l2q�k�
�
; �4:53�

and Mq�k� is the hole ±magnon interaction amplitude
defined in (4.7).

The variational parameter is given by the following
expression:

lq�k� � F�k�Mq�k�
oq � 2O�k� ; �4:54�

which is a complicated nonlinear equation in lq�k�. The
numerical solution of this equation for a given k and
parameter J=t makes it possible, via (4.52), to calculate the
dispersion curve for a magnetic polaron. The results are
depicted in Fig. 7b for symmetry directions in the Brillouin
zone. They are in good agreement with the results of SCBA
numerical calculations made by Dagotto et al. [71] via the
quantum Monte Carlo method with the same value of J=t,
and with those of calculations done by Bulut et al. [72] using
theHubbardmodel. The calculations show that the results for
the dispersion curves are only weakly sensitive to the value of
J=t. Thus, the characteristic features of the spin ± polaron
spectrum, i.e., the absolute minimum at point �p=2; p=2�, the
maximum at point �0; 0�, and the broad flat section at point
�p; 0�, remain unchanged within a broad range of values of
parameter J=t. It is these features that are observed in the hole
spectrum of copper cuprates [71].

The quantity a � 2t=J is the dimensionless coupling
parameter of the magnetic-polaron theory; in the tÿJ theory
this parameter is much larger than unity. Comparison of the
results of the canonical theory briefly discussed above with
results of numerical calculations shows that the theory
operates well when a95, i.e., in the intermediate region
inaccessible for standard perturbation theory.

4.7 tÿt 0ÿJ Model
There are several reasons why allowing for electron hopping
to a next-nearest-neighbor site is important. Firstly, the initial
electron spectrum changes the topology of the Fermi surface
near corresponding to the half-filled band [73 ± 75]. Indeed,
the dispersion law for free electrons in this case has the form

e�k� � ÿ2t�cos kx � cos ky�
ÿ 2t 0

�
cos�kx � ky� � cos�kx ÿ ky�

�
: �4:55�

The shape of the constant-energy surfaces depends on the sign
of t 0, while in the model with electron hopping to the nearest

site nothing depends on the sign of t. Near half-filling, the
electron paths are open, at high hole concentrations they
become closed, and at intermediate concentrations the
curvature changes sign upon motion along the Fermi sur-
face. This pattern is retained in theÿ0:5t < t 0 < 0 interval. In
the model with t 0 � 0, the Fermi surface in the case of a half-
filled band is flat, i.e., there is ideal nesting, which ensures that
antiferromagnetic order is present.When t 0 6� 0, the nesting is
violated, and the occurrence of antiferromagnetism in such a
system is under question. The anomalies in the initial
magnetic susceptibility at different t 0 < 0 were studied by
Benard et al. [74]. Of course, for U0W the Coulomb
interaction has a strong effect on the behavior of the dc
magnetic susceptibility and the shape of the true Fermi
surface, but some anomalies originating from the initial
spectrum (4.55) remain when we go over to the case of
interacting electrons [74].

Another reason was pointed out by Lee [76], who
especially emphasized that the hopping between next-near-
est-neighbors couples the sites belonging to the same
sublattice of a NeÂ el antiferromagnet, with the result that
such electron motion takes place without violating the
magnetic order and must be taken into account in determin-
ing the phase boundaries of the antiferromagnetic state.
Finally, Benard et al. [74] and Si et al. [75] stated that the
experimental results of angle-resolved photoemission spec-
troscopy studies of high-Tc materials can be explained only
on the basis of the lattice model with t 0 hopping. Tohyama
and Maekawa [77] suggested that the sign of t 0 in copper
cuprates depends on the carrier type. For the almost half-
filled band, t 0 < 0 for hole carriers and t 0 > 0 for electron
carriers.

The Hubbard model and the tÿJ model with hopping
between next-nearest-neighbors became known as the
Uÿtÿt 0 and tÿt 0ÿJ models, respectively. The Uÿtÿt 0
model with weak Coulomb interactions was discussed in
Refs [74, 75], and the tÿt 0ÿJ model in Refs [73, 77 ± 86].
Kotliar and Ruckenstein [87] studied the Uÿtÿt 0 model
numerically using the quantum Monte Carlo method at
moderate values of U �W in order to establish how the
initial parameter t 0 renormalizes the Coulomb interaction.
Their results suggest that there is considerable renormaliza-
tion, so that determining the parameter t 0 by comparing the
empirical photoemission data with the results of calculations
involving the initial spectrum is a risky business. They also
studied the effect of t 0 hopping on the magnetic properties of
the system. Their findings revealed that for systems with low
hole concentrations and t 0 < 0 the antiferromagnetic correla-
tions weaken in comparison with the case where t 0 � 0. This
result can be understood from the following simple qualita-
tive reasoning. Hopping to a neighboring site induces an
effective antiferromagnetic interaction J � t 2=U, while t 0

hopping induces an additional antiferromagnetic interaction
J 0 � t 0 2=J between the sites that are next-nearest. This leads
to frustration, which disrupts the NeÂ el order to an extent
determined by the ratio J 0=J. Furthermore, earlier studies of
the Hubbard model using the quantumMonte Carlo method
have shown that deviations from half-filled states lead to the
emergence of incommensurate magnetic structures with a
wavevector of modulation of the NeÂ el state that increases
with hole concentration. Inclusion of the t 0 term facilitates the
emergence of incommensurate structures at lower values of d
for t 0 < 0 in comparison with t 0 > 0.
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But when we are dealing with a strong Coulomb
interaction (for the tÿt 0ÿJ model), the effects of the t 0 term
on the antiferromagnetic correlations are just the opposite.
Deeg et al. [83] investigated the tÿt 0ÿJ model in the mean-
field approximation for the effective Hamiltonian that
emerges in the slave-boson representation technique (initi-
ally used with the Hubbard model by Kotliar and Rucken-
stein [87] and Li et al. [88]). They studied a representation
invariant with respect to spin rotation [81], in which the
electron operators are expressed in terms of boson and
pseudospin operators, which represent the charge and spin
degrees of freedom, respectively. The phase diagram in Fig.
12 in the �t 0=t; d� plane was obtained by comparing the
energies of several homogeneous phases. In the absence of a
t 0 term, the incommensurate phases arise immediately after
deviations from the half-filled state. Thus, in the tÿJ model
the antiferromagnetic NeÂ el phase in this approximation
proves unstable with respect to the formation of incommen-
surate spiral phases. However, we see that in the presence of
even a small t 0 term there is a stable NeÂ el phase near n � 1,
and the region occupied by the phase broadens as jt 0j grows;
at jt 0j > jt 0cj � 1:4t, the phase becomes stable at any electron
concentration.

The most exhaustive study of a quasiparticle state (a
magnetic polaron) in the tÿt 0ÿJ model was carried out by
Bala et al. [80], who used SCBA (the slave-fermion techni-
que). Two terms were added to Hamiltonian (4.7) that
describe the system of interacting holes and spin waves
above the NeÂ el state: the t 0 term, and the H3 term, which
takes into account the three-center interactions [see Eqn (2.8)
obtained from the Hubbard Hamiltonian via a canonical
transformation in the U4W limit]. Usually the second term
is discarded, although recently the important role of this term
in the formation of the quasiparticle spectrum was demon-
strated by Belinicher et al. [90] and Eskes and Oles [91]. The
additional terms alter the fermion ±magnon interaction
amplitude, so that instead of (4.7) we have

Mq�k� � zt�ukgkÿq � vqgk�

� ztt 0

U
�1ÿ d��Zkÿq ÿ Zk��ukgkÿq ÿ vqgk� :�4:56�

The second term on the right-hand side has its origin in the
combined action of the t 0 term and the three-center interac-
tion � t 2=U, with Zk � cos kx cos ky. On the other hand, in
contrast to the tÿJ model, the Hamiltonian acquires the
initial fermion spectrum with the dispersion law

e�k� � zt 0Zk �
zt 2

U
�1ÿ d� zg2k ÿ 1

ÿ �
: �4:57�

Here, the first term on the right-hand side describes the free
fermion propagation caused by hops to neighboring sites of
the same antiferromagnetic lattice, and the second term is
caused by the three-center interaction, as a result of which two
successive hops occur between nearest-neighbor sites. The
factor g2k can be written as the sum of two terms, / Zk and
/ g2k, so that, as a result, a fermion may fall onto a next-
nearest site (the term / Zk) or onto a next-next-nearest site
(the term / g2k).

The results of numerical calculations of the SCBA
equations with the new expressions for Mq�k� and e�k� at
t 0 < 0 show that in the tÿt 0ÿJmodel the width of the band of
quasiparticle states is determined not by the widthW � 2zjt 0j
of the initial fermion band, as one might expect, but
exclusively by the effects of strong hole ± spin-wave cou-
pling. The coherent motion of quasiparticles in the tÿt 0ÿJ
model is determined by the absorption and emission of spin
waves (just as it is in the tÿJ model). In other words, a hole
propagates along an antiferromagnetic lattice due to local
destruction of the antiferromagnetic order.

5. Spin dynamics of a quantum antiferromagnet

5.1 Spin-wave spectrum and damping
We start with the effective Hamiltonian (4.7), which describes
the system of interacting spin waves and holes in an
antiferromagnetic matrix. This interaction leads, on the one
hand, to the formation of Fermi quasiparticles in the system
(magnetic polarons), and on the other, to the renormalization
of the initial spin-wave spectrum that characterizes the spin
dynamics in the absence of holes. This renormalization proves
so large that at absolute zero and at a hole concentration of
the order of several percent, the spin-wave energy vanishes,
and as a result, long-range antiferromagnetic order disinte-
grates. This effect is caused by the fact that a hole introduced
into an antiferromagnetic matrix strongly distorts the
magnetic order in the vicinity of the hole, which means that
small hole concentrations (several percent) are sufficient for
the deformed regions to overlap, with the result that long-
range order completely disappears. The theory must have a
method for calculating the dispersion curves of the spin waves
and the wave damping and for establishing the dependence of
the sublatticemagnetizations and theNeÂ el temperatureTN on
the hole concentration d.

All these problems (except the problem of calculating TN)
can be solved by the linear spin-wave theory. In view of this,
we introduce a two-component operator of spin deviations,

Aq �
bq

byÿq

0@ 1A ; Ayq � �byq ; bÿq� �5:1�

and build a double-time retarded Green's function [92]
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Figure 12. Phase diagram of the two-dimensional tÿt 0ÿJ model at

J=t � 0:4 and T � 0 [83].
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Let us set up the equation ofmotion for this Green's function,
differentiating (5.2) first with respect to t and then with
respect to t 0. The resulting equation for



Aq

��Ayq��o can be
transformed into a Dyson type equation

Aq

��Ayq��o � 

Aq

��Ayq��0o � 

Aq

��Ayq��0oP�q;o�

Aq

��Ayq��o ;
�5:3�

where the `zeroth' Green's function satisfies the equation

o
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�Aq;Ayq
��
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��
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��ÿ1

Aq

��Ayq��0o ;
and P�q;o� denotes a polarization operator specified by the
following relationship [96]:
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Taking into account the equation of motion for operators,
i _Aq �

�Aq;H
�
, we see thatP�q;o� can be expressed using the

two-particle Green's function, which can be decoupled into a
product of one-particle Green's functions. Then from (5.4) we
find the matrix elements of the polarization operator

P11�q;o�
P12�q;o�

( )
� 1

N

X
k

M2
q�k�

Mq�k�Mÿq�kÿ q�

( )

�
�
do1 do2

�
f�o1�f�ÿo2� ÿ f�ÿo1�f�o2�

�
� A�kÿ q;o1�A�k;o2�

o� o1 ÿ o2 � id
: �5:5�

The other two matrix elements can be found from the
following relationships:

P22�q;o� � P11�ÿq;ÿo� ; P21�q;o� � P12�q;o� :

The Dyson equation (5.3) determines the Green's functions
matrix

Aq

��Ayq��o
� 1

Dq�o�
o� o0

q �P22�q;o� ÿP12�q;o�
ÿP21�q;o� ÿ o� o0

q �P11�q;o�

 !
;

�5:6�

where

Dq�o� �
�
o� o0

q �P22�q;o�
��
oÿ o0

q ÿP11�q;o�
�

�P12�q;o�P21�q;o� : �5:7�
The spin-wave spectrum corresponds to the poles of the

Green's function (5.6) or the zeros of (5.7). In calculating the
matrix elements (5.5) of the polarization operator, we allow
for the structure of the hole spectral density, more precisely,
the pole and incoherent contributions [see Eqn (4.19)]

A�k;o� � Zkd
ÿ
oÿ E�k� � m

�� 1

W
Y�oÿ J�Y�Wÿ o� ;

�5:8�

whereW � 2zt is the width of the initial band. The sum rule�1
ÿ1

do A�k;o� � 1 �5:9�

determines the intensity of the coherent contribution
Zk � J=W; we know that the width of the coherent-
quasiparticle band is of the order of J5W.

The chemical potential m can be found by solving the
equation for the number of holes

d � 1

N

X
k

�
do A�k;o� f�o� : �5:10�

Assuming that the Fermi surface consists of four spherical
pockets centered at the points ��p=2;�p=2�, we find from
(5.10) that

m � 2pW
mJ

d ; �5:11�

where m is the effective mass of holes.
If we substitute (5.8) into (5.5), we see that it can be

represented by a sum of four terms. The term containing
AcohAcoh is small because Zk 5 1, with the result, as was first
noted by Igarashi and Fulde [53], that the incoherent terms
provide the main contribution to the polarizability. The
greatest of these terms would be that containing AincAinc if
not for the fact that in our approximations, which use (5.8),
this contribution is simply zero [96] (Khaliullin and Horsch
[54] overlooked this fact), with the result that the main
contribution to the integrals in (5.5) is provided by terms
containing AcohAinc if we assume that m < J. Within this
approximation and in the first order in d, we arrive at the
following expression for the spin-wave energy valid for small
values of q:

oq � vq ; v � v0
�������������
1ÿ d

dc

s
; �5:12�

where v0 �
���
2
p

J is the velocity of unrenormalized spin waves
for an antiferromagnet at half-filling, and

dc � JW=4zt 2

ln�W=J� �5:13�

is the critical concentration at which the velocity becomes
zero. At t=J � 5we have dc � 0:027, which corresponds to the
critical concentration at which antiferromagnetism in high-Tc

materials disappears.
The numerical calculation of oq and Gq yields the

dispersion and damping of spin waves for different hole
concentrations (Fig. 13). We see that the spin-wave energies
`soften' as d increases, with the damping becoming stronger in
the process. For very low hole concentrations, i.e., when the
spin-wave velocity is much higher than the hole velocity at the
Fermi surface, vF, long-wavelength spin waves remain
virtually undamped since they cannot split into an electron ±
hole pair. But short-wavelength spin waves are attenuated, as
shown in Fig. 13. When v < vF, the spin-wave spectrum is
entirely within the electron ± hole pair continuum and the spin
waves become overdamped. Under these conditions the
antiferromagnetic order rapidly disintegrates.

As the velocity of the spin waves decreases with increasing
d, so does the sublattice magnetization m. The numerical
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calculations conducted by Belkasri and Richard [96] revealed
thatm becomes zero at the same concentration dc as the spin-
wave speed does. This immediately implies that dc is the
critical concentration for the disintegration of long-range
order. The results of Belkasri and Richard [96] are in good
agreement with the experimental data on high-Tc materials.

5.2 Antiferromagnet at a finite temperature
We have studied the renormalization of the spin-wave
spectrum caused by the interaction between spin waves and
holes at absolute zero and have determined the critical
impurity concentration at which both the spin-wave velocity
and the sublattice magnetization vanish. The problem was
investigated by applying the linear spin-wave theory. In this
section we examine the behavior of the system at finite

temperatures using a self-consistent approach to the spin
system, an approach similar to that employed in describing
the Heisenberg model in a broad range of temperatures [92].
This approach produces self-consistent equations for the
sublattice magnetization in the tÿJ model that enable
calculation of the NeÂ el temperature. Here, we follow the
work of Richard and Yushankhai [50, 93]. In the given
situation we must start with the total Hamiltonian (4.4),
which we write in a simplified form [93]

H � t
X
ij

h
y
i hj�s�i � sÿj � � J

X
ij

�
1

2
�s�i s�j � sÿi s

ÿ
j � ÿ szi s

z
j

�
:

�5:14�
Instead of (5.1), we introduce a two-component operator

consisting of spin operators

Bq �
s�q
sÿÿq

 !
; Byq � �sÿq ; s�ÿq� ; �5:15�

and then define the matrix (commutator) Green's function of
magnetic excitations as

D�q;o� � 

Bq

��Byq��o :
We write the equation of motion for the operator s�i and
linearize it in the same way as is done in theHeisenbergmodel
[92] by replacing the operator szi with its expectation value

szi ! hszi i � m : �5:16�
Since at zero hole concentration the tÿJmodel reduces to the
Heisenberg model, this approximation is more accurate the
smaller the value of d. We write the linearized equation in the
Fourier representation as follows:

i
qs�q
qt
� 2m

�
1����
N
p

X
k

e�kÿ q�hykÿqhk � J�0�s�q � J�q�sÿÿq

�
;

�5:17�
where J�q� � zJgq is the Fourier transform of the exchange
interaction. Since in a two-dimensional magnetic material
with a rotation-group symmetry (the tÿJ model has such a
symmetry), long-range order is possible only at T � 0, we
must consider the quasi-two-dimensional case by incorporat-
ing into the picture a small exchange interaction J?5 J in the
direction perpendicular to the layers. Then, for the three-
dimensional vectorq in the equation ofmotion (5.17) wemust
put

J�q� � zJ�gq � x cos qz� ; x � J?
2J

: �5:18�

We write the equation for the operator Bq in the form

i
qBq

qt
� 2mIqBq � jq ; �5:19�

where Iq is a two-row matrix and jq is a two-component
column

Iq �
J�0� J�q�

ÿ J�q� ÿ J�0�

 !
;

jq � 2m����
N
p

X
k

e�kÿ q�hykÿqhk

ÿe�k� q�hykhk�q
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Figure 13. Spin-wave spectrum (a) and damping (b) along q � �q; q� for
different hole concentrations at J=t � 0:2 [96].
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Now we can construct the equation of motion of the spin-
wave Green's function by differentiating the expression for

Bq

��Byq�� first with respect to t and then with respect to t 0. In
the Fourier representation this leads to a pair of coupled
equations

�oÿ 2mIq�


Bq

��Byq��o � 
�Bq;Byq
��� 

 jq��Byq��o ;



jq
��Byq��o oÿ 2mIq

ÿ � � 
� jq;Byq��� 

 jq�� jyq��o : �5:20�
The equation for



Bq

��Byq�� can be transformed into a Dyson
equation with the polarization operator expressed in terms of
the Green's function of the currents as follows:

P�q;o� � 1

2m




jq
�� jyq��otz : �5:21�

As a result we obtain

D�q;o� � 2m

oÿ 2mIq ÿP�q;o� tz ; �5:22�

where

P�q;o� � 2m
1

N

X
kk 0

wqkk 0 �o�

� e�kÿ q�e�k0 ÿ q� e�kÿ q�e�k0�
ÿ e�k�e�k0 ÿ q� ÿ e�k�e�k0�

 !
: �5:23�

Here, we have introduced the two-particleGreen's function of
holes

wqkk 0 �o� �



h
y
kÿqhk

��hyk 0hk 0ÿq

��
o : �5:24�

The standard decoupling procedure yields

wqkk 0 �o� � wqk�o�dkk 0 ;

where

wqk�o� �
�
do1 do2

f�o1� ÿ f�o2�
o� o1 ÿ o2 � id

A�kÿ q;o1�A�k;o2� :
�5:25�

Thus, the self-energy part of the magnon, P�q;o�, is
expressed in terms of integrals of the spectral density of the
hole Green's function. The poles of the Green's function
(5.22) determine the spin-wave frequencies oq renormalized
by the interaction with the holes.

5.3 NeÂ el temperature
We have not yet defined the parameter m, the average
sublattice magnetization. Just as in the theory of a Heisen-
berg magnet [92], this parameter should by defined as

m � 1

2
ÿ 1

N

X
q



sÿq s
�
q

�
; �5:26�

where the spin correlator is expressed in terms of the
corresponding element of the matrix Green's function



sÿq s
�
q

� � � do
ÿ�1=p� Im 

Bq

��Byq��11o
exp�bo� ÿ 1

: �5:27�

Earlier we found that for a two-dimensional antiferro-
magnet, the incoherent states contribute to the hole spectral
density. Now we employ approximation (4.41) for the
spectral density and ignore the pole contribution. P�q;o�
becomes independent of q and Eqn (5.27) becomes

1

�2m�2 �
1

N

X
q

J�0� ÿ �zt=2�2w�T; d�
oq

coth

�
oq

2T

�
: �5:28�

From equation (5.22), which determines the poles of the
Green's function, we can easily derive an expression for the
renormalized spin-wave frequencies of the lowest order in m

oq � 2mo0
q

�
1ÿ zt 2

4J
w�T; d�

�
: �5:29�

In both equations, (5.28) and (5.29), the quantity

w�T; d� � ÿ
�
do1 do2

f�o1� ÿ f�o2�
o1 ÿ o2

A�o1�A�o2� �5:30�

depends on the temperature and hole concentration. By
substituting (5.29) into Eqn (5.28) and expanding the result
in powers of m, we arrive at an equation for the sublattice
magnetization

m2 � 3

4Cx

TN�d� ÿ T

TN�d� ; �5:31�

where the NeÂ el temperature TN is given by the equation

TN�d�
TN�0� � 1ÿ zt 2

4J
w
�
TN�d�; d

�
; �5:32�

with TN�0� the NeÂ el temperature for the state where the band
is exactly half-filled:

TN�0� � 2J

Cx
; Cx � 1

N

X
q

�
1ÿ J�q�

J�0�
�ÿ1

: �5:33�

For a two-dimensional antiferromagnet,Cx is logarithmically
divergent and yields a zero NeÂ el temperature, as expected. If
we assume that the layers interact and select J�q� in the form
(5.18), for small values of x we have Cx � ln�1=x�, which
remains finite for all finite values of x.

Clearly, (5.18) vanishes for extremely low hole concentra-
tions. Indeed, for an estimate we can set

w
ÿ
TN�d�; d

� � Pii � d
zt

ln
zt

2J
:

Then (5.32) immediately provides an estimate for the critical
concentration

dc � J

t

1

ln�zt=2J� 5 1 : �5:34�

Using approximation (4.41) for the spectral density of
incoherent states in evaluating the integrals in (5.30) and
passing to the limit of extremely low concentrations
Gd=T5 1, we find that

w�T; d� � d
G
ln

2G
T
: �5:35�
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With this estimate in mind, we can write Eqn (5.32) for TN�d�
as follows:

d � JG
t 2

1ÿ TN�d�=TN�0�
ln
�
2G=TN�0�

�ÿ ln
�
TN�d�=TN�0�

� : �5:36�

The results of solving this equation numerically are depicted
in Fig. 14. We see that in the important region of the
parameter the NeÂ el temperature TN�d� decreases with
increasing concentration. The critical hole concentration
dc � 0:04 for values of parameters typical of high-Tc materi-
als. This is in good agreement with the experimental data of
Rossat-Mignot et al. [94] and Shirane [95]. Finally, we note
that the spin-wave spectrum in the tÿt 0ÿJ model was
thoroughly studied by Onufrieva et al. [98].

6. Gage fields for the two-dimensional
tÿJ model

6.1 Slave-boson representation for the spin liquid
When the hole concentration is above the critical value
(d > dc), the system loses its long-range antiferromagnetic
order and becomes a spin liquid [100]. The system's ground
state in this case may prove ferromagnetic, but at high
temperatures the strongly correlated system falls into a state
with largemagnetic and charge fluctuations and behaves in an
unusual manner. Several approaches to describing such a
special state have been suggested, among which, we believe,
the one based on introducing gage fields is themost consistent
[101 ± 113]. The idea of such an approach was proposed by
Baskaran and Anderson [114].

In this case, researchers most often use the slave-boson
representation for the X-operators describing the correlated
motion of electrons in the lattice.Wewrite the operatorX 0s

i in
the form of a product of the Fermi ( fis) and Bose (bi)
operators:

X 0s
i � fisb

y
i �6:1�

with the additional condition thatX
s

f
y
isfis � b

y
i bi � 1 ; �6:2�

which guarantees that no `doublons' appear at the sites. Since
the spin label of the electron is transferred to the Fermi
operator, the representation is called slave-boson, with the
Bose operator describing the creation of a hole. The tÿJ
model becomes equivalent to a system of interacting fermions
and bosons, and the partition function can be written in the
form of a functional integral over Grassmann ( fis and f

�
is) and

complex-valued (bi and b�i ) fields [102]:

Z �
�
dli dbi db �i dfis df

�
is exp

�
ÿ
�b
0

�L0 �H� dt
�
; �6:3�

L0 �
X
is

f �is

�
q
qt
ÿ m
�
fis �

X
i

b �i
q
qt

bi�

�
X
i

li

�X
s

f �is fis � b �i bi ÿ 1

�
; �6:4�

H � ÿt
X
ijs

f �is fjsbi b
�
j �

J

2

X
ij

f �is fjs f
�
js 0 fis 0 : �6:5�

Here (6.5) coincides with Hamiltonian (2.9) in the slave-
boson representation. Below we ignore the fourth-order term
b �i bib

�
j bj, since the hole concentration is assumed to be low.L0

is the Lagrangian of a system of independent fermions and
bosons; it incorporates the chemical potential m, which takes
into account the conservation of the number of holes, and the
local Lagrangian multiplier li, which takes into account
constraint (6.2).

Further transformation of the functional integral is
standard: the fourth-order terms f �ff �f and f �fb �b are
transformed into the bilinear terms f �f and b�b by applying
the Hubbard ± Stratonovich identity, which introduces inte-
gration with respect to the complex variables wij and Zij. This
yields the following result for Z:

Z �
�
dli dwij dw

�
ij dZij dZ

�
ij dbi db

�
i dfis df

�
is

� exp

�
ÿ
�b
0

L�t� dt
�

�6:6�

with the linearized Lagrangian

L � L0 ÿ J

2
Zij f

�
is fjs � twijbib

�
j � c:c:

� J

2
�Zijw �ij � Z �ijwij� ÿ Jwijw

�
ij :

The gage-field integration is achieved by the stationary-
point method. We start by representing the fields in the
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Figure 14. Dependence of the NeÂ el temperature on hole concentration as

obtained by solving Eqn (5.36) at t � 0:5 eV, 2J=t � 0:2, G � 2
���
3
p

t, and

TN � 2J=3 [50].
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following form:

li � il0 � a0�ri� ;
wij � w0 exp�i#ij� ; Zij � Z0 exp�i#ij� : �6:7�

Thereby, we assume that we are dealing with a homogeneous
state in which l0 and the amplitudes w0 and Z0 are independent
of coordinates. The quantities a0�ri� and #ij describe a
perturbation of the gage fields. The stationary point
�l0; w0; Z0� corresponds to the mean-field approximation
with a Lagrangian LMF. We write the total Lagrangian in
the form of a sum of two terms L � LMF � Lf, where Lf

describes the contribution of fluctuations above the mean
field

Lf �
X
is

f �is

�
q
qt
ÿ mF � ia0�ri�

�
fis

�
X
i

b �i

�
q
qt
ÿ mF � ia0�ri�

�
biÿ

ÿ J

2
Z0
X
ij

exp�i#ij� f �is fjs � tw0
X
ij

exp�i#ij� b �i bj : �6:8�

Clearly, (6.8) is invariant under a gage transformation of the
field on the lattice:

fis ! fis exp�ifi� ; bi ! bi exp�ifi� ;

#ij ! #ij � fi ÿ fj ; a�ri� ! a�ri� ÿ qfi

qt
: �6:9�

Later we will see that long-wavelength fluctuations play
an important role in the system, so that in what follows we use
the continuum approximation. Then instead of the phase #ij
depending on two lattice sites that are nearest neighbors, we
can introduce a vector a�r� depending on one point
r � �ri � rj�=2. We define this vector as follows:

#ij � �ri ÿ rj�a
�

ri � rj
2

�
:

As a result, the Lagrangian becomes [103, 104]

L �
�
d2r

"X
s

f �s �r�
�
q
qt
ÿ mF � ia0

�
fs�r�

� b��r�
�
q
qt
ÿ mB � ia0

�
b�r�

ÿ 1

2mF

X
sa

f �s �r�
�

q
qxa
� iaa

�2

fs�r�

ÿ 1

2mB

X
a

b��r�
�

q
qxa
� iaa

�2

b�r�
#
: �6:10�

Here, we have introduced the effective fermion and boson
masses (in place of the parameters t and J) according to the
relations 1=mB � 2Ja2 and 1=mF � 2ta2, where a is the lattice
parameter. The Lagrangian obtained as a result of the above
transformations of the functional integral can be considered a
phenomenological Lagrangian for a system of fermions and
bosons interacting through the gage fields a0 and a. The gage

invariance of the Lagrangian is of the type

fs ! fs exp�iy� ; b! b exp�iy� ;

a! a� Hy ; a0 ! a0 ÿ qy
qt

; �6:11�

where y is a function of r and t.
To clarify the physical meaning of the fluctuations

described by the gage fields a, we study the correlation
function

P1234 �


f
y
1a f2a f

y
2b f3b f

y
3g f4g f

y
4d f1d

�
defined at four points, 1, 2, 3, and 4, that form a plaquette on a
square lattice. We set up the following combination:


P1234 ÿ P1432

� � w40
D
exp
�
i�#12 � #23 � #34 � #41�

�ÿ c:c:
E
;

�6:12�
which, being a gage invariant, may serve as an order
parameter. On the other hand, one can easily verify that

P1234 ÿ P1432 � 2i
��2ÿ r2�E134 � �2ÿ r4�E123

� �2ÿ r3�E124 ÿ r1E234

�
; �6:13�

where ri �
P

a f
y
ia fia is the fermion density operator, and

E123 � S1

�
S2 � S3

� �6:14�

is the chirality operator for the triangular plaquette with
vertices at points 1, 2, and 3. This operator violates spatial
parity and invariance with respect to time reversal. It plays an
important role in the chiral theory of spin liquid, where the
average value of hE123i in the ground state is finite. If
hE123i 6� 0, then, in view of (6.13), the average over the
square plaquette traversed clockwise and counterclockwise
is also finite. Thus, (6.12) shows that the fluctuations of the
gage fields inmodel (6.10) are related to the fluctuations in the
chirality of plaquettes on a two-dimensional lattice.

Now, let us discuss the limits of model (6.10). This
Lagrangian represents a system of fermions and bosons
interacting via the gage fields a0 and a. It describes fluctua-
tions above the homogeneous average field introduced by
(6.7), in which the fluctuations of the quantities l0, w0, and Z0
are coordinate-independent. For these quantities, we derive
the self-consistency equations from the condition that the
Lagrangian at the stationary point is at its minimum [104].
Here, we assume that the Bose system, represented by the
quantities bi and b�i , is at a temperature that is higher than the
temperature TB of Bose ± Einstein condensation, so that
b � 0. At T � 0, we must allow for the fact that b 6� 0.
Minimization yields

b2 � d :

The homogeneous state under consideration is stable if
td > cJ, where c is a dimensionless quantity of order unity.
Thus, at moderate hole concentrations andT � 0, the ground
state is a Fermi liquid with large chirality fluctuations (as we
know, at small values of d a NeÂ el type antiferromagnetic state
arises). Lee and Nagaosa [104] called the state that exists at
T > TB a `strange metal'. In this state, chirality fluctuations
play the main role in the formation of the excited-state
spectrum.
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6.2 Collective mode
Let us now study the system at T > TB in greater detail. The
integration in (6.10) over the Grassmann variables makes it
possible to obtain an effective action that is gage-field-
dependent. Isolating the term incorporating the vector fields
a�r�, and limiting discussion to the terms that are quadratic in
these fields, we arrive at the following expression for the
effective action:�b

0

dtLf�t� � T
X
on

�
d2q aa�q;on�Pab�q;on�ab�q;on� ;

�6:15�
where

Pab�q;on�

�
�
d2k

�
f
�
e�k� q=2��ÿ f

�
e�kÿ q=2��

ion ÿ e�k� q=2� � e�kÿ q=2�
qe
qqa

qe
qqb

� q2e
qqaqqb

f
�
e�k��� : �6:16�

This result, obviously, corresponds to the random-phase
approximation (RPA) in the theory of interacting fermions.
At low frequencies and momenta, we have

Pab�q;on� �
�
dab ÿ qaqb

q2

��
pjonj
vFq

� wFq
2

�
; �6:17�

where vF is the velocity at the Fermi surface, and wF is the
diamagnetic susceptibility in Landau's Fermi-liquid theory.

The functional integral (6.6) with the effective action
(6.15) makes it possible to write the Green's function for the
fluctuations of the gage field

Dab�r; t� �


Taa�r; t�ab�0; 0�

�
: �6:18�

Combining (6.15) and (6.17), which determine the tempera-
ture Green's function, and performing the analytic continua-
tion ion ! o, we arrive at the following expression for the
retarded Green's function [101]:

Dab�q;o� � dab ÿ qaqb=q
2

ipo=vFq� wFq2
: �6:19�

This expression corresponds to a non-propagator relaxa-
tion collective mode, which is mediating the indirect
fermion ± boson interaction in the system. Already in the
first-order approximation the interaction between the fer-
mions and the fluctuation mode (6.19) leads to anomalies of
the transport properties of the system, and in particular, to a
linear temperature dependence of electrical resistivity,
observed in the normal phase of high-Tc superconductors.
We note for the sake of reference that the behavior of the
system below the Bose-condensation temperature, and in
particular, at T � 0 was studied in detail by Tikofsky and
Laughlin [113], who applied the anion superconductivity
technique.

6.3 Magnetic susceptibility
A detailed study of the magnetic properties of the two-
dimensional tÿJ model near the critical concentration was
made by Tanamoto et al. [110]. They used the slave-boson
representation of the electron operators (6.1) and then wrote

the Hamiltonian in the mean-field approximation:

HMF �
X
ijs

�F �ij fyis fjs � c:c:� ÿ lF
X
is

f
y
is fis

�
X
ij

�B �ij byi bj � c:c:� ÿ lB
X
i

b
y
i bi ; �6:20�

where

Fij � ÿt
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s



f
y
is fjs

�
; Bij � ÿt

X
s



f
y
is fjs

�
;

�6:21�

lF � m� l� �1ÿ d�J ; lB � l : �6:22�

This Hamiltonian describes a system of independent fermions
(spinons) and bosons (holons) coupled by the effective
parameters Fij and Bij of the hops of these particles on the
lattice. The quantities lF and lB act as the chemical potentials
of spinons and holons.

In approximating the initial Hamiltonian of the tÿJ
model by (6.20), we replaced the local constraint by a global
one, with the result that the Lagrangian multiplier li lost its
dependence on the lattice site. We will deal below only with
spatially homogeneous states corresponding to Hamiltonian
(6.20). The energies of the spinons and holons, the quasipar-
ticles of the model, then, are given by the following
expressions:

eF�k� � 2F�cos kx � cos ky� ; eB�k� � 2B�cos kx � cos ky� ;
�6:23�

where F and B are the values of Fij and Bij for nearest
neighbors. Thus, the relationships (6.21) written for the
nearest neighbors constitute a system of self-consistent
equations for the quantities F and B. These equations must
be augmented by the equations that express the law of
conservation of the number of electrons and constraint (6.2)
averaged over the Gibbs ensemble. As is known, the mean-
field approximation would be exact if we could label the
electronic states by the index s � 1; 2; . . . ;NF (color) in the
NF !1 limit. In our case the spin index assumes only two
values, with the result that Eqns (6.21) are certainly approx-
imate. We are left to believe that their solutions belong to the
same universal class as the solutions in the NF !1 limit.
Equations (6.22) and (6.23) determine the large Fermi surface
for quasiparticles (as well as for free particles). The reader will
recall that in the case of low hole concentrations we used a
different approximation, the slave-fermion representation
(the magnetic-polaron concept), which yielded the small
Fermi surface for quasiparticles: four pockets near the points
��p=2;�p=2�. At d > dc all antiferromagnetic correlations
are suppressed, so that we are dealing with an entirely
different state of the system (a spin liquid). Since dc amounts
to several percent for meaningful values of the model
parameters, we can assume that the slave-boson representa-
tion is correct (and this means that the mean-field approxima-
tion is correct, too) when d00:1. The transitional region
between the spin-polaron and spin-liquid states cannot be
described in terms of auxiliary particles.

As in the case with theHubbardmodel, the random-phase
approximation makes it possible to apply the slave-boson
representation to the Hamiltonian of the tÿJ model and
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obtain the dynamic magnetic susceptibility [110]

w�q;o� � w0�q;o�
1� J�q�w0�q;o�

; �6:24�

where

w0�q;o� �
X

k

f�xk�q� ÿ f�xk�
o� xk ÿ xk�q � id

: �6:25�

Here, J�q� � J�cos qx � cos qy�, and xk � eF�k� ÿ lF. The
quantity w0�q;o� is the dynamic susceptibility of the system
described byHamiltonian (6.20), i.e., a system of independent
fermions. However, the width of their band depends on the
temperature and hole concentration through the parameterF.
Note that (6.24) has the same structure as the RPA
susceptibility in the Hubbard model. In the latter case,
instead of J�q�, we have the parameter U of Coulomb
attraction at a site and the spectrum of independent electrons
in the lattice instead of the fermion spectrum xk. These
differences lead to substantial differences in the behavior of
the magnetic susceptibility in the tÿJ model and in the
Hubbard model.

Here are the results of the numerical studies of Eqns
(6.21) ± (6.25) made by Tanamoto et al. [110]. Figures 15 and
16 depict the dc magnetic susceptibility as a function of the
wave vector and temperature. In their numerical calculations,
they used the typical ratio of the model parameters t and J,
i.e., t � 4J. Figure 15a clearly shows that there is a sharp
increase in magnetic susceptibility near the point q � Q for
w0�q;o� in the concentration interval d � 0:10ÿ0:15, while
Fig. 15b shows a sharp increase in susceptibility at q � Q,
which suggests the onset of an unstable non-magnetic state.

At low d and T, the magnetic susceptibility w�q� diverges at a
point near q � Q, which indicates instability with respect to
the formation of an incommensurate antiferromagnetic
structure. This divergence disappears as d grows, although
the maximum w�q; 0� rapidly decreases. Thus, in the concen-
tration interval d � 0:10ÿ0:15 the system remains non-
magnetic at low temperatures. Figure 16a shows that as T
rises, the susceptibility reaches its peak value at d � 0:10 but
vanishes by d � 0:15. The temperature dependence of the
reciprocal susceptibility (Fig. 16b) agrees with the Curie ±
Weiss law w / 1=T within a broad temperature range, but
w�q; 0� atq � 0 isvirtually temperature-independent.Thus, in
the spin-liquid state under consideration the system behaves
like a Pauli magnet in a uniform field, while in a non-uniform
field �q � Q� it behaves like a magnetic material with
localized magnetic moments.

Now let us investigate the frequency dependence of
w�q;o�. The spectral density of the spin excitations is
determined by the quantity

Im w�q;o� � Im w0�q;o��
1� J�q�Re w0�q;o�

�2 � �J�q� Im w0�q;o�
�2 ;

�6:26�
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Figure 15. The q-dependence of the dc spin susceptibility (a) w0�q� and (b)

w�q� for different values of d [110]: (1) d � 0, (2) d � 0:05, (3) d � 0:10, and
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where

Im w0�q;o� � p
X

k

d
�
eF�k� q� ÿ eF�k� ÿ o

�
� � fÿeF�k� ÿ lF

�ÿ f
ÿ
eF�k� � oÿ lF

��
: �6:27�

Equation (6.27) shows that Im w0�q;o� has a peak near
q � qM, where qM is the nesting vector. The peak shifts as o
increases, and ato � 2jlFj the peak is atq � Q, so that in this
case there is effective nesting at q � Q. The frequency
dependence w�q;o� at q � Q the wave vector Q is depicted
in Fig. 17 for two values of d. In both cases at low
temperatures there is no low-frequency branch of spin
fluctuation, as if there were a gap in the spectrum of
collective motions of the spin system. The phenomenon can
be explained if we write (6.27) as

Im w0�q;o� �
p
2
r
�
o
2

��
f

�
jlFj ÿ o

2

�
ÿ f

�
jlFj � o

2

��
;

�6:28�

where r�o� is the spinon density of states. From this equation
we find that at low temperatures Im w0�Q;o� is extremely
small when joj < 2jlFj.Wheno � 2jlFj, this quantity rapidly
increases, as Fig. 17 suggests. As the temperature grows, the
pseudo-gap in the spectrum becomes smeared.Moreover, as d

grows, the cut-off frequency in the spectrum increases but the
peak's height decreases considerably.

Suppression of the low-frequency portion of the spectrum
of fluctuations at low temperatures was discovered in the
studies of inelastic neutron scattering in high-Tc materials.
The problem has been intensively discussed in a number of
theoretical papers, but, as suggested by Tanamoto et al. [110],
the phenomenon is not related to a true pseudo-gap in the
spectrum; rather it is a direct consequence of violation of
nesting at q � Q in the case of low hole concentrations.

7. Phase diagram

7.1 Phase separation
Up to this point we have assumed that spatially homogeneous
phases are realized in the system, irrespective of the type of
magnetic order; the electron density was assumed constant at
each point. Simple physical considerations, however, suggest
that separation of the system into phases with different
electron (hole) densities is possible. The idea of phase
separation in the Hubbard model was first suggested in the
earlier works of Nagaev [115] and Visscher [116], and was
then realized in the tÿJ model by Ioffe and Larkin [117] and
Emery et al. [118]. The tendency toward phase separation at
large values of J can be realized from simple physical ideas. If
a hole is introduced into an antiferromagnet, the exchange
energy grows by zJ. For two holes separated by a large
distance the energy variation amounts to 2zJ, but for holes
that are nearest neighbors the variation is only 2�zÿ 1�J,
which implies that from the standpoint of exchange energy
the presence of regions with enhanced hole concentrations is
more favorable. Of course, the structure of a separated two-
phase system is determined by the minimization of the total
energy, i.e., allowing for the hopping energy in the lattice.

In view of the complexity of the problem, numerical
results play an important role. The results of the first
calculations are depicted in Fig. 18, which shows a phase
diagram in the �n; J=t� plane built for a two-dimensional tÿJ
model using an exact diagonalization of a 4� 4-cluster [118]
and high-temperature expansions up to the tenth order in 1=T
[119]. The boundary separating the homogeneous and two-
phase regions is marked by lozenges (the results of Emery et
al. [118]) and by a solid line (the results of Putikka et al. [119]).
Clearly, both methods show that the two-phase region
occupies a large area in the phase diagram. But the methods
yield different results in the region of small values of J and in
the vicinity of n � 1. According to Putikka et al. [119], near
half-filling separation occurs at J=t01, in contrast to the
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results of Emery et al. [118]. Dagotto et al. [120] re-examined
the calculations and concluded that the points in Fig. 18
should be interpreted not as a line that outlines the phase-
separation region, but as the edge of the region where holes
couple into pairs rather than into clusters, which is the case
for large values of J. Fehske et al. [121] and Prelovsek and
Zotos [122] arrived at similar conclusions using large clusters.

The results of studies of the problem of two or more holes
forming bound states can be found in Refs [123 ± 126]. Prior
to the numerical calculations made in [123], Poilblanc [126]
and Chernyshev et al. [127] studied the problem of the
interaction of two holes in an antiferromagnetic matrix by
variational methods, with the wave function incorporating
five states: a hole at a site and at each of the four nearest
neighbors. The solution of the two-particle Bethe ± Salpeter
equation revealed that there can be bound states of two holes
of d and p types, with the binding energy (considered as a
function of J=t) being in good agreement with Eder's results
of numerical calculations [129]. For small values of J, such as
t=J02ÿ3, there are no bound states. Poilblanc [123] showed,
using clusters consisting of up to 26 sites, that below Jc
�J=t > 0:5� four particles can form stable bound states; with
a further decrease in J �J=t > 0:02�, these bound states are
replaced by bound states of hole pairs of d symmetry. Thus,
within the 0:02 < J=t < Jc interval, a system of holes
introduced into an antiferromagnetic matrix is a liquid
consisting of bound aggregates of four or two holes, depend-
ing on the size of J. For J=t < 0:02, the hole liquid is in the
paramagnetic state, which, at very small values of J, is
replaced by the ferromagnetic state. Thus, if the hole
concentration is kept constant and J increases starting at
small values, the hole liquid first consists of bound pairs, of
bound fours, etc., and finally phase separation sets in. The
fact that there is a ferromagnetic state at extremely small
values of J is corroborated by the high-temperature expan-
sion [130] and by phase separation [119].

The results of Poilblanc [123] refer to the case of extremely
high hole concentrations, d � 0:15, where at T � 0 there can
be no long-range order. To establish the effect of short-range
magnetic order, Poilblanc [123] calculated the dc magnetic
susceptibility. A high peak near the point �p; p� was dis-
covered, and it was found that this peak could be used to
estimate the radius of short-wavelength magnetic correla-
tions. This radius amounted to approximately three lattice
constants; within such a length a pair of holes behaves as if it
were in an antiferromagnetic matrix. These short-wavelength
spin fluctuations generate an attraction between holes,
binding them into pairs, fours, etc.

The question of whether bound states are formed in the
tÿJ model at extremely high hole concentrations (low
electron densities) was studied by Hellberg and Manousakis
[131], who used the quantum Monte Carlo method, and
Kagan and Rice [132] and Chubukov [133], who used
analytic methods. Phase separation emerges at J=t03:5. As
the J=t ratio becomes smaller, a phase with bound s type
electron pairs emerges, which is replaced by a phase with
d type pairs, and then, at J=t91, with p type pairs. No stable
bound clusters with a larger number of particles appear at any
values of J=t.

7.2 From the Hubbard model to the tÿJ model
When dealing with the Heisenberg model, researchers often
use a semiclassical approach based on investigating the limit
of large atomic spin (S4 1), expanding the result in power

series in 1=S, and formally putting S � 1=2. One realization
of this approach is the Goldstein ± Primakoff formalism, in
which the spin operators are approximately replaced by the
Bose operators of spin deviations. A number of researchers
[134 ± 136] applied this formalism to the tÿJ model, with the
Hubbard X operators expressed approximately in terms of
the Bose and Fermi operators via a formal expansion in
powers of 1=N , whereN is the number of electrons allowed at
a site (in the tÿJ model proper, this number is one). At the
end of all calculations employing such expansions in powers
of 1=N , one must setN � 1. The problem of the spiral phase
in the tÿJ model was studied using this approach. Shraiman
and Siggia [137] were the first to discover that under
deviations from the half-filled state the NeÂ el antiferromag-
netic order may be distorted by long-wave modulations, so
that there emerges a spiral structure with a wave vector Q
diminished by a quantity proportional to the hole concentra-
tion. Similar results were obtained using other approaches
[138 ± 144]. We use the semiclassical approximation of
Psaltakis and Papanicolaou [136] to examine this problem.

When discussing the magnetic phase diagram of the tÿJ
model, one must employ the phase diagram of the Hubbard
model, since in the U4W limit the two must correspond.
Note that in deriving the tÿJ-model Hamiltonian from the
Hubbard model the three-center terms, which may produce
specific effects, are ignored.

Here we discuss only some aspects of the problem of
comparing the phase diagram of the tÿJ model with that
region in the phase diagram of the Hubbard model where
U4W. We begin by examining the question of how the NeÂ el
temperature TN depends on the Coulomb repulsion U when
the weak-correlation mode U5W is transformed into the
strong-correlation mode U4W. The studies of this question
are numerous; here we list the numerical results for the half-
filled state in the Hubbard model obtained through the exact
diagonalization of small clusters [145] (the light circles in
Fig. 19). The dark circles in Fig. 19 represent the results of
earlier QMC calculations [146]. The dashed curve was
obtained for U5W by the mean-field method, which leads
to an equation in TN
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Figure 19.NeÂ el temperature TN as a function ofU for the Hubbard model

[145].
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and the solid curve was obtained from high-temperature
expansions for the Heisenberg model with the exchange
integral J � 2t 2=U. All this leads to the following result:

TN � 3:8
t 2

U
: �7:2�

The theoretical curves may be interpreted as the asymptotes
of the true curve describing the crossover from the weak-
correlation mode to the strong-correlation mode. When
U4W, Eqn (7.2), which refers to the tÿJ model at n � 1,
describes a behavior that agrees qualitatively with the
behavior of the Hubbard model in the corresponding region.

Another aspect in which the two models must be
compared is the phase diagram in the �U=t; n� plane at
T � 0 (Fig. 20) [138]. We selected this paper because, in
addition to an antiferromagnetic phase, existing in particular
at n � 1 for allU, a special phasewas discovered in theU4W
region: the short-range-order paramagnetic (SRO-P) phase.
Trapper et al. [138] used the slave-boson four-field represen-
tation of Kotliar and Ruckenstein [139] and the saddle-point
method in the functional integral for the partition function.
This approach yielded results for different electron and
magnetic properties of the model that were found to be in
good agreement with those yielded by the numerical methods
of exact diagonalization of small clusters and the QMC
method. Trapper et al. [138] developed a procedure for
introducing a short-range order into the saddle-point
method. This resulted in considerable changes in the phase
diagram in the U0W range. Instead of the ferromagnetic
phase that is often present when U4W and d5 1, there is a
paramagnetic phase with short-range order. This phase
proves to be locally stable with respect to phase separation.

Because of the presence of this phase the antiferromagnetic
region shrinks in comparison to the case where short-range
order is ignored. However, the new boundary of the
antiferromagnetic-phase region agrees with the results dis-
cussed in Section 5. For instance, at U=t � 8 the critical
concentration is dc � 0:03.

The phase diagram in Fig. 20 must be considered a typical
example in which only the basic outlines have common
features, which depend only a little on the adopted approx-
imations. In other approximations other phases may emerge
in the �U=t; n� plane, e.g., a spiral phase, a ferromagnetic
phase, or a region of phase separation. The question of the full
phase diagram of theHubbardmodel, or even the tÿJmodel,
has yet to be resolved. In this situation one should rely more
on numerical calculations, say, the method of exact diagona-
lization of small clusters or the QMC method, than on
analytic methods.

8. Conclusion

This review's objective was to make a systematic study of the
tÿJ model chiefly near the half-filled states in two-dimen-
sional space (d � 2). Such a choice of topic reflects the
mainstream of research, which focuses primarily on studying
high-Tc compounds of the metal-oxide group. The progress
made in understanding the main properties of the model is
due to the exhaustive nature of the studies, in which numerical
methods, primarily the exact diagonalization of small clusters
and the QMC method, are used together with analytic
methods. The results of numerical studies can be found in
Dagotto's well-known review [7], which also contains a
detailed comparison with the experimental data on high-Tc

compounds. For this reason the present review focuses on the
analytic approaches.

It should be noted that, in view of the complexity of the
Hamiltonian of the tÿJ model, there can be no universal
mathematical approach that describes themodel over a broad
range of the parameters t, J, n, andT. ThemodelHamiltonian
can be expressed quite simply as a quadratic form of the
Hubbard X operators. However, this simplicity is misleading
because of the complexity of the commutation relations for
the X operators. For this reason the X operators are usually
expressed in the form of a product of Fermi and Bose
operators augmented by certain constraints that reflect
simple physical conditions: when U is large, each site can
carry not more than one electron. This procedure realizes a
specific representation of the algebra ofX operators, but there
can be many such representations, which means that the
obtained effective Hamiltonians are ambiguous. Choosing a
specific representation a priori is poorly justified; the mean-
ingfulness of the choice is only determined by the soundness
of the physical results. Experience has revealed that at low
concentrations, d < dc, i.e., when the antiferromagnetic state
is realized, the slave-fermion representation is adequate, while
at high concentrations, d > dc, in the spin-liquid state, slave-
boson representations are more effective.

In the first case the effective Hamiltonian is of the
FroÈ hlich type, in which the fermions interact with spin
waves. This leads to the formation of a magnetic polaron, a
quasiparticle transferring electric charge. The second case
usually leads to a representation in which fermions and
bosons interact with each other through gage fields emerging
from the constraints. In this case a collective relaxation mode
emerges in the system; this mode determines the dynamics of
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the entire system in the spin-liquid state. These two regions of
the phase diagram, the antiferromagnetic state and the spin-
liquid state, are the most firmly established regions for the
tÿJmodel.

As for the magnetic-polaron problem, most researchers
agree that the Fermi surface of the holes forms four pockets
centered at the points ��p=2;�p=2� of reciprocal space. The
width of the band of quasiparticle states is of the order of J,
and we have the following estimate for the intensity of the
quasiparticle peaks: Z � J=t. Moreover, there exists a broad
region of incoherent states, whose width is of order zt, which
corresponds to the excitation of the internal structure of the
polaron. These incoherent states provide the main contribu-
tion to one of the dynamic response functions, the magnetic
susceptibility. This pattern appears in SCBA and is corrobo-
rated by numerical methods. The spin-liquid region corre-
sponding to hole concentrations d > dc, where antiferromag-
netic order is suppressed, is characterized by the presence of
chirality fluctuations. Both regions correspond to the doped
states of high-Tc compounds. The different transport proper-
ties of the tÿJ model in these states provide a satisfactory
description of many physical properties of high-Tc com-
pounds (see Dagotto's review [7]).

The above picture is true in the region where d5 1 and
J5 t. As J increases, new phenomena emerge: the holes begin
to couple into pairs, then into fours, and finally, at J � t,
phase separation sets in, with the holes grouping into clusters
with ferromagnetic local order that are incorporated in the
antiferromagnetic lattice free from holes. Thus, in a certain
part of the phase diagram in the �J=t; n� plane there exists a
region with attraction between holes, which binds them into
pairs. Condensation of these pairs wouldmean the emergence
of a superconducting state. The problem of superconductivity
in the tÿJmodel is under intense study.We do not discuss the
problem here because it merits a separate large review. The
results of early research can be found in reviews [9, 7], and the
current results can be found inRefs [147 ± 174]. An idea that is
currently being developed is that the interaction between
holes through spin fluctuations leads to a superconducting
state in the tÿJ model with a d type symmetry of the order
parameter and a Tc of several tens of kelvins (see the most
recent papers [175 ± 180]).

Although the behavior of the tÿJ model in a broad
interval of electron concentrations 0 < n < 1 is less impor-
tant in the problem of high-Tc compounds, it is undoubtedly
of interest from the theoretical standpoint. The central
problem here is the description of the crossover, as the
electron concentration increases, from itinerant magnetism
to the mode with localized magnetic moments. The problem
has been studied by applying the diagrammatic technique
with X operators (see monograph [181]). The technique was
used to develop a generalized random-phase approximation
(GRPA) [182 ± 185], with which it was shown that starting at a
certain critical concentration nc � 0:6, the dynamic magnetic
susceptibility of the model contains both contributions: both
the Pauli contribution, which is temperature-independent,
and the Curie ±Weiss contribution, which is proportional to
1=T. The latter suggests that localized magnetic moments are
formed in the process. The results were presented in our
review [9]. We believe it important that other methods,
especially molecular dynamics numerical methods or the
method of exact diagonalization of small clusters, be used in
corroborating these results.
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