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Abstract. Effects of nonlinearity in the classical field theory for
non-integrable systems are considered, such as soliton scatter-
ing, soliton bound states, the fractal nature of resonant struc-
tures, kink scattering by inhomogeneities, and bubble collapse.
The results are presented in both (1 + 1) and higher dimensions.
Both neutral and charged scalar fields are considered. Possible
application areas for the nonlinearity effects are discussed.

To the memory of Igor’ Kobzarev

1. Introduction

This review is a summary of our current knowledge of
interaction of solitary waves in non-integrable field systems.
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Almost all the main material of the review has been
stimulated by the ideas of spontaneous violation of symme-
try, the Higgs mechanism [1], and the electroweak Wein-
berg—Salam theory [2, 3]. The reader will find detailed
discussions of these problems and the relevant references in
Ref. [4].

We do not touch upon the issues associated with the
interactions of monopoles, skyrmions and instantons for
various field models. These indubitably interesting questions
have received comprehensive treatment in other reviews and
original papers [4—8].

The great interest in the theory of nonlinear exactly
integrable equations bearing a concrete physical content,
such as the Korteweg—de Vries equation (KdV), the non-
linear Schrédinger equation (NSE), the sine-Gordon equa-
tion (sG) and the like, was associated with the development of
the method of inverse scattering problem (MISP) (see, for
example, Refs [9—11] in the late 1960s and early 70s. The
presence of the relativistic-invariant sG-equation on this list
enhanced the interest to this range of problems from the
standpoint of the field theory. Using the MISP-based
canonical transform, it was possible to express the Hamilto-
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nian which generates the sG-equation as a function of
action—angle variables [12]. The Hamiltonian in these new
variables was represented as a sum of contributions from the
initial particles, as well as solitons and their bound states
known as breathers. In this way, the spectrum of the theory
turned out to be broad enough without introducing any
additional fields: along with the point particles it also
included extended objects — solitons.

The scattering S-matrix of particles in the sG-equation,
however, is rather peculiar: it does not take into account the
birth of new particles [13], whereas collisions are always
associated with the generation of new particles in the real
physics of elementary particles. Because of this, starting from
the mid-70s much attention has been paid to studying the
properties of solutions of the classical field equations which
are not exactly integrable [14, 15], under the assumption that
the information obtained by solving the classical nonlinear
equations of motion can be extended to the quantum case —
for example, in the approximation of the weak coupling [16].

Unfortunately, the existence of three-dimensional time-
independent stable solitons is prohibited by the Hobbard —
Derrick (HD) theorem [17, 18] (see also Refs [19, 20]). Here it
is worth recalling the main methods of bypassing the HD
prohibition.

The first option is to seek stationary topologically
nontrivial solutions of the field theory like a ‘hedgehog’ or a
monopole [21]. Conservation of the topological quantum
numbers then guarantees separation of the sector of solu-
tions with a given topological number from solutions in the
vacuum sector. The solutions found in the sector with a given
nontrivial topology may, however, turn out to be unstable.
Then the stability can be achieved by introducing terms with
higher derivatives of Skyrmion type into the Lagrangian [22].
Under the scale transforms (dilatations) such terms behave
differently from the kinetic and the potential terms, and so the
HD prohibition is evaded.

Another method consists in considering the classical
solutions for fields with constraints of the o-field type. In
this case, if the stationary solution of equations of motion is
represented in terms of o-fields, the straightforward applica-
tion of the dilatation transform may be not possible without
leaving the class of functions which satisfy the constraints. If
the constraints are actually resolved, the Lagrangians in terms
of the transformed fields assume a more complicated form,
and do not fall directly under the HD prohibition [23].

The HD theorem for stationary solutions can also be
evaded for fields defined on compacted manifolds or in a
space with nontrivial metric [24].

The HD theorem in the case of stationary solutions
imposes serious restrictions on the theories which permit the
existence of solitons. There are no such restrictions, however,
when the solutions depend on time. The latter may be divided
into two main classes.

Firstly, it is the breather type solutions, which are
stationary or quasi-stationary periodical solutions for real
fields. The evolution of collapsing domain bubble was studied
in the pioneering paper by Ya B Zel’dovich, I Yu Kobzarev,
L B Okun’[25]. This paper (see also Refs [26, 27]) stimulated a
whole series of studies which led to discovery of breather
solutions in both one-dimensional and three-dimensional
cases.

Secondly, it is the solutions for complex fields with time-
dependent phase:

U(x,t) = exp(iof)y(x,0) . (1)

The solutions of this type were first discussed in Ref. [28],
where it was demonstrated that the existence of additional
conservation laws, like the charge conservation law, apart
from those of energy and momentum, may lead to stable
soliton-like solutions.

In this review we discuss in detail the time-dependent
soliton-like solutions for various Lorentz-invariant classical
field theories. Sections 2—4 deal with the search for and the
properties of time-dependent solutionsin (1 4 1)-dimensional
field theories; in Sections 5 and 6 the same is done for (2 + 1)-
and (3 4+ 1)-dimensional cases.

Section 2 is devoted to one-dimensional pulsating solitons
of the Ginzburg—Landau—Higgs equation (GLH). We show
that the routine search for new solutions by means of
numerical integration of equations of motion has led to the
discovery of an absolutely new phenomenon in the physics of
solitons which became known as the mechanism of resonant
redistribution of energy (RRE).

In Section 3 we consider other equations which admit
long-lived breather-type solutions, and which also display the
RRE effect.

The behavior of solitons near an inhomogeneity also bears
a resonant nature. In particular, a soliton may be bounced
back by an attracting impurity, which is not feasible in the
potential models. These problems are discussed in Section 4.

In Section 5 we consider pulsating breather-type three-
dimensional and two-dimensional solutions which arise in
connection with the problem of collapsing bubbles.

Finally, Section 6 is devoted to the solutions of Q-ball type
for charged fields, and to their ranges of stability.

Although the studies have been heavily biased from the
start towards field theory and the physics of elementary
particles, the results go far beyond the limits of these
branches and can be employed in cosmology, astrophysics,
solid state physics, the physics of low temperatures, etc.

We conclude by listing the main applications of the
phenomena discussed in the review and giving a glossary of
terms used in this review and in the relevant original
papers.

This study differs from earlier topical reviews [6, 7, 15, 16,
29, 30] in that here for the first time we discuss the mechanism
of RRE in the collisions of solitons, the fractal nature of
capture and bouncing of colliding solitons, the resonant
mechanism of reflection of solitons from impurities. For the
first time we discuss in detail the properties of two-dimen-
sional pulsating solutions, and the resonant mechanism of
pulsating solutions in the three-dimensional case.

2. Resonance interaction of solitons for scalar
Higgs field (one-dimensional case)

The ideas of spontaneous symmetry violation in field theory,
and the requirement of the renormalizability of the theory,
have drawn attention to the real scalar Higgs field [1]. This
model of field theory (in the static limit) has been discussed in
the paper of V L Ginzburg and L D Landau [31] dealing with
the phenomenological theory of phase transitions of the
second kind. In this section we shall be mainly concerned
with the classical solutions of equations of motion derived
from the Lagrangian of the M)g theory.
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2.1 Kink of the M);l theory
It is convenient to start from the classical solutions of the A¢*
theory in two-dimensional space—time; this case is denoted
hereafter by },qb‘;. The density of Lagrangian in this theory is
L Loy = Loy + 1 argr - 1 g 2
(1) =5 @) =5 (@) +5 079" =3 28* ()
[note the sign of the term with m? in Eqn (2)]. This model is
often used as the paradigm of spontaneous violation of
symmetry. Observe that the classical solutions discussed
below can be reasonably extended to the quantum systems
only in the limit of the weak constraint, A/m? — 0.

The equation of motion for the field ¢(x, ) (hereafter
referred to as GLH) is

¢r1 - ¢.>:x - mzqs + ;qu? =0, (3)

and the Hamiltonian H[¢] of the system is
1 A
g =5 [ax {w v g -migt S0tk w0 @

The constant solutions of Eqn (3)

¢y = i% (5)

correspond to the degenerate absolute minima of the
Hamiltonian H[¢], and the solution ¢, = 0 corresponds to
the unstable state with non-violated symmetry. A more
comprehensive inventory of known solutions of Eqn (3) can
be found, for example, in Refs [32—34]. The most interesting
from the standpoint of field theory are the classical solutions
with finite energy. In the first place, such are the vacuum
solutions. Small deviations from the vacuum solutions
¢d=¢,.+n, |n <|p.| are described by the linearized
equation

Mt = Nxx + 2’/”277 =0. (6)

The solutions of Eqn (6) are plane waves with a dispersion
law ? = k% 4 2m?; in other words, the excitations above the
vacua correspond to particles of mass u = mv/2.

A static solution of Eqn (3) with finite energy is a solution
in the form of a solitary wave hereafter referred to as a kink
(antikink) [K(K)]:

ﬂh tanh m(x — Xo)

Vi i @
where xq is the coordinate of the center of the kink. In three
dimensions this solution looks like a wall which divides the
space into two regions with different vacuum values ¢ [25].
The density of energy for solution (7) differs only locally (in
the neighborhood of x = xy) from the vacuum value, and the
total energy exceeds the vacuum value by

i
My = E[¢g] — E[¢,] :%57 . (3)

Prk) ==*

It is convenient to call My the mass of the kink; it becomes
large compared to the mass p of particles excited above the
vacuum in the limit of the weak constraint /m? — 0.

The solution

PrR) = i% tanh{m(x —x0— V1) [2(1 _ Vz)}—l/z}’ )

obviously corresponds to a kink traveling at a speed V. Then
the field momentum

PK:—j¢,<z>xdx:MKVv, y=(1 -1 (10)

and the field energy (minus the energy of vacuum)

EKIMK’V (11)

are linked by the common relativistic relation between energy
and momentum

Eg = Mg + P§. (12)
This relation justifies using solutions of the kink type (7) as
the basis for constructing a heavy composite particle in two-
dimensional field theory [21, 35—38].

The kink (7) realizes a local extreme of the Hamiltonian
H[¢]. Indeed, let us see what happens with the energy of the
system when we add small perturbations to the kink (7) [6].
We seek solutions for small deviations from ¢ of the form

¢(X, l) = d)K(X) + n(xa [)7 |'1| < ‘¢| . (13)

Then in the linear approximation with respect to #, from Eqn
(13) we get the following equation for the function #(x, 7):

Ny — e — M2 4 3m?* tanh? (ﬂ)n =0. (14)

V2
Substituting
n = exp(—iw)x(x),

for y(x) we get an equation which coincides with the
stationary Schrédinger equation:

dz 2 —p mx 2 2
(—@—3/11 cosh ﬁ)/(x) = (w” =2m)y(x). (15)

Among the solutions of Eqn (15) are two which correspond to
the bound states:

(x) = <ﬂ> l/zsechz my
X0 - 4\/5 \/27

which is the ground state of the system with wy = 0 (zero or
translation mode), and

3m\ 2 mx mx
=(—= tanh — cosh™! —= |
1) (Ni) V2 V2

which is the first excited state,
@? = (3/2)m?. The solution of Eqn (14)

(16)

(17)

corresponding to

n(x, 1) = exp(—iw 1)y (x)

is the discrete mode of excitation of the kink. This solution is
localized on the kink and plays an important role in the
dynamics of kinks discussed below. Apart from solutions (16)
and (17), Eqn (15) admits solutions corresponding to the
continuum with @7 > 2m?.

Observe that all w? > 0; this implies that solution (7) is
stable: small deviations from this solution do not grow with
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time. When small perturbations are added to the kink, the
energy of the system increases. The only exception is the zero
mode y,(x). Observe that y,(x) [see Eqn (16)] is the derivative
of the kink (17). Because of this, when a small perturbation
proportional to y,(x) is added to the kink, it gives rise to a
new kink which is displaced with respect to the old one.
Accordingly, we have the following profile of the energy
functional in the small neighborhood of the kink: the energy
increases in all directions in the functional space except one —
the energy of the system does not change in the direction

of y4(x).

2.2 Non-topological solutions of small amplitude
The kink (7) is also stable because of the nontrivial topology
by virtue of the boundary conditions

¢Kq¢ia

X — to0. (18)
The same boundary conditions do not allow the expansion of
the solution for the kink into a Fourier series with finite
coefficients with respect to excitations over the vacuum
solutions [39]. In other words, one may say that the number
of conventional particles in the kink is infinite. This gives rise
to the problem of searching for solutions of Eqn (3) with the
same boundary conditions at +oo with respect to x. A
solution of this kind for the sG-equation

(19)

was found in Ref. [40], and has been discussed at length
[41—44]. Such a solution, known as a breather, has the form

Uy — Uy +sInu =10

u= 4arctan{(r2 - 1)1/ cos sech[( — 1)1/2 ﬂ } , (20)

and is a periodical (with period T = 2nt) space-localized
solution. Depending on the parameter 7, the amplitude of
solution (20) varies from 2 to 0.

A consistent method of finding localized small-amplitude
breather-type solutions for one-dimensional nonlinear equa-
tions of the general form

) =0

was developed in Ref. [45]. The Bogolyubov—Mitropol’skii
method [46] was generalized in this paper for systems with an
infinite number of degrees of freedom. If, for example,
f(u) = —u+ pu’, the solution of Eqn (21) is sought in the
form

(1)

U — Uxx

u(x) = A(x)coswt + B(x)cos3wt + ... . (22)

Assuming that the series converges — that is, |4| > |B] —in
the leading approximation we get a sequence of equations

d’4 3

gz~ (l-o)a+7 pa =0, (23)
d’B I

F+(9w —1)B=—, pa. (24)

Then there is a unique localized solution for the function
A(x):

g\ 1/2
A(x) = (ﬁ) gcosh™'ex

whereas all the other functions B, C, ..., and the corrections
to A(x), can be found by the method of successive approx-
imations with respect to parameter ¢ < 1. A procedure
somewhat improved upon that used in Ref. [45] was
explicitly implemented for the GLH equation (3). Redefin-
ing the field as

12
¢ = (%2) (l +Z)7

for the field z(x, 7) we get the following expansion:

o0
z(x, 1) = = ¢ a1(8) + Z 2”“/2 +1(8sin(2n+ 1)t
n=0

+ & g20() cos(2n + 2)1]

where

2 1/2 2 1/2
T = <—1 +82) s é: 8x<—] +82> y

and ¢ < 1. Substituting Eqn (26) into the equation of motion,
and equalizing the terms of similar time harmonics, we come
to the following solution of the problem in the lowest
approximation in ¢ for each term:

2
AO=cosh e, m=—2 1,

V3

1 1
==/t h=—ge S (27)
It is also possible to find analytically the subsequent terms in
¢” for each of the functions f; and g;. In this way we have
obtained a strong argument in favor of the existence of a
time-periodical (bion) small-amplitude solution of the GLH
equation. In the approximation of expansion (26) the
solution is stable, and its energy is

2/2m ( 37

Epion = =5 | 26+ 55 83) +0(&). (28)

Observe that expansion (26) is asymptotical, and only holds
for small bion amplitudes, ¢ < 1. Shortly afterwards the
Kosevich method of Ref. [45] was extended to the three-
dimensional case in Refs [47, 48]. The counterpart of Eqn (23)
for the leading function of the expansion in ¢ in the three-
dimensional case is

3

AA—A+§A3=0. (29)

Equation (29) with boundary conditions
d4
dr |,

leads, unlike the one-dimensional equation, to an infinite set
of solutions [49—51]. Because of this, the number of possible
oscillating solutions for the GLH equation in the three-
dimensional case is much greater.

A somewhat more general assumption was made in
Ref. [52] concerning the possible existence of localized bion-
type solutions of many-dimensional equations of the type

Ou=V'(u) (30)

A(r) =0,

Fr—00

=0
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when the function V(u) is expanded in even powers of the
field u. Observe, however, that this general assumption was
subjected to constructive criticism in Ref. [53], where
evidence was given of the possible loss of self-localization
(instability) of the solutions discussed in Ref. [52].

The issue of stability of small-amplitude bions was first
raised in Ref. [54], where it was indicated that the flux of
radiation may be proportional to exp(—c/¢), thus not
belonging to the asymptotic series of Kosevich—Kovalev.

The instability of a small-amplitude bion for the GLH
equation was proved in Ref. [55], where a term exponentially
small with respect to the field was explicitly added to the
solution (26),

/6

3P g = 472 exp( 5 ) [sin(V6x + 201) + O(e)], (31)

where the coefficient v, 2 —(4.5 £ 1.0) x 1073 was obtained

numerically. As a consequence, it was found that as t — oo

the total energy of the localized solution falls off slowly as
const

E ~
In¢

(32)

This implies that, on the one hand, there is no stable solution
(breather) in the mathematical sense. On the other hand,
there exists a long-lived solution (bion) for the M)g theory.
Since the radiation correction is small, the approximate
description of bion quantization in Ref. [43] on the basis of
the classical solution (26) is probably justified.

2.3 Quantization of small-amplitude bions
The procedure of quasi-classical quantization of the breather
of the sG-equation was carried out in Refs [41, 43, 56— 59].
The exact equation for the quantum S-matrix of soliton—
antisoliton scattering was derived in Ref. [60], where it was
also shown that the formulas obtained in the quasi-classical
approximation for the breather mass spectrum are correct.
In addition, the quasi-classical quantization of the bion of
the 7~¢3 theory was performed in Ref. [43]. The reported
spectrum of small-amplitude quantum bions is

E, =nmvV2 —3v2? 004 . (33)

3
32
Thus, in the limit of the weak coupling, and when 7 is not too
large, the excited state of the quantum bion may be regarded
as a bound state of n nonrelativistic particles. A detailed
description of the Wentzel —Kramers— Brillouin method
(WKB) in the field theory can be found in Ref. [6]. The
quantization of bion was also discussed in Ref. [61].

2.4 Discovery of large-amplitude bions

in the ¢, field theory

So, small-amplitude bions for the GLH equation in the
classical approximation have been discovered and studied in
the one-dimensional case. A localized oscillating solution of
large amplitude was discovered in Ref. [62] by numerical
integration of Eqn (3). The initial condition had the form of
two walls (a KK system). This statement of the problem is a
one-dimensional analogue of the problem of the collapsing
bubble, discussed for the case of three dimensions in Ref. [25].
The solution was found to be long-lived (in other words, the
radiation from the region of localization of the large-
amplitude solution was low). Similar time-dependent solu-

tions in (24 1)- and (3 + 1)-dimensional spaces will be
discussed in Section 5.

Actually, in Ref. [62] it was the Cauchy problem that was
solved for the GLH equation (3) with the initial conditions
m

¢(x> 0) = \/j

+ tanh [m(—x + x0)272(1 - Vz)fl/z] - 1} ,(34)

{tanh [m(x +x0)2*1/2(1 _ VZ)fl/Z}

and the time derivative ¢,(x,0) corresponding to kinks
traveling towards each other at a speed V. The function
¢(x,0) is plotted in Fig. 1. Observe that the initial condition
for the function ¢(x,0) coincides with the vacuum ¢_ at
|x| — co. Because of this, one might expect that this state will
annihilate quickly as soon as the kinks collide, and will take
the form of small oscillations with respect to the vacuum ¢_
(see, for example, Ref. [6]).

¢
/N )
X
1f 2/ 3//4
5
R N P
6

Figure 1. Field solution ¢ (x, ;) vs. x for selected times ; (i = 1,...,6).

The actual situation, however, was unexpected. For
V = 0.1 (the speed of light is ¢ = 1) the KK was found to
result in a long-lived bound state. The solutions ¢(x, ¢) for a
few selected characteristic time values ¢; are shown in Fig. 1.
Figure 2 shows the time dependence of the field function at
the origin ¢(0, 7). The period of the large amplitude oscilla-
tions was found to be of the order of m~!. It was also found
that fast-moving kinks bounce off after collision with little
loss of energy, and a bound state is not formed. Observe that
the phenomenon of reflection of kinks by itself, which was not
observed in the case of sG-equation, does not yet imply that
the system is not completely integrable. An example of such a
solution is a completely elastic reflection in the soliton—
antisoliton system for the integrable classical Gross—Nevue
model [63].

The formation of a bion was also soon discovered in Ref.
[32]. A more detailed numerical analysis of the patterns of KK

$(0,1)

Figure 2. Time dependence of field ¢(0, ) at x = 0.
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collisions was carried out in Refs [64, 65]. It was found that
the time dependence of the solution steadies after the initial
rather irregular pulsations, although the main harmonic
remains slightly modulated. At the same time the loss of
energy by radiation was found to be quite small: assuming
exponential dependence of the bion energy at large times,
Getmanov [65] found that the energy of localized oscillations
decreased to one-half of its initial value over the time
T ~ 1750m~".

Subsequently the damping of bions over larger periods of
time was studied in greater detail [66]. It was found that the
damping decrement depends on the amplitude itself, and
decreases as the amplitude falls off. Challenging the assump-
tion of Ref. [65], the system was found to lose energy slower
than by the exponential law.

Thus, the discovered localized oscillating weakly damped
large-amplitude solution (bion) in the iq’)g theory is an
analogue of the breather in the sG-theory, and in the limit of
small amplitudes seems to coincide with the solution (27). The
weak damping of this solution, found numerically, is also in
general agreement with the conclusion of Ref. [55].

2.5 Search for other solutions

of the Ginzburg — Landau— Higgs equation

The discovery of the bion stimulated the search for other
relatively stable solutions of the GLH equation. A relatively
long-lived excited oscillating state of a kink was soon
discovered [65]. Having been discovered in the KK collision
in the field of a kink at rest, it became known as a triton.
Sometimes this solution is also referred to as a wobbling kink.
The lifetime of this solution, however, is less than that of the
bion. Its energy as function of time may be approximated by

E(1) = M [1 + 2exp(—6,1)], (35)
where §; = (3.0 £0.1) x 10~%m.

The potential description of the triton solution in the
symmetric configuration was discussed in Ref. [67].

The Kosevich —Kovalev expansion [45] as applied to the
wobbling kink was discussed in Ref. [68]. Obviously, in the
limit of small-amplitude oscillations this solution becomes a
kink with an added first vibration mode (17).

It was not possible to discover the birth of the supplemen-
tary KK pair in the kink —antikink collisions at near-thresh-
old energies. Observe that in the quantum approximation the
birth of the KK pair of the GLH equation may be detected
when the external field is strong enough [69].

2.6 Potential approximation

The first attempt to explain the formation of bions using
numerical experiments has already been made in Ref. [62]. By
assumption, at low energies it is possible to introduce the
effective potential of KK interaction U(X). Itis defined as the
energy of the static configuration of kink and antikink
separated by a distance X:

000 =3 | ax (62 -nig? 45 8*). (36)

The configuration function was function (34) with X = 2xy.
The potential of interaction then has the form shown in Fig. 3.
When the distance is infinitely large, the potential energy is
constant and equal to the mass of the two kinks. The
potential is zero when X = 0. When X is negative, the KK

U
P ——
il A 2My
S=-+->
0 X

Figure 3. The potential of soliton—antisoliton interaction in the GLH
theory.

system displays strong repulsion which grows linearly with
increasing | X].

It is interesting that a similar potential description has
been employed in Ref. [40] for the two-soliton solutions of the
sG-equation. The method of collective coordinates in the field
theories with extensive objects — for example, with the kinks
in the A¢* theory — was developed in Refs [70—73]. A
somewhat different method of introducing the potential
between two solitons on the basis of a coherent state was
proposed in Ref. [74] for the sG-system. A more consistent
definition of the nonrelativistic potential leading to the
correct behavior of the S-matrix of soliton—soliton scatter-
ing for the sG-equation was discussed in Ref. [75].

Observe, however, that the definition of potential (36) is
quite sufficient for the qualitative description of the nature of
motion of the kinks. Indeed, if we assume that the behavior of
the KK system reduces to a nonrelativistic problem of two
point particles with mass My and potential of interaction
U(X), then we must first of all note that there are two kinds of
motion in this problem: finite motion in a well (an analogue of
a bion) at E < 2My, and infinite motion at E > 2My which
corresponds to the scattering problem. As suggested in Ref.
[62], the presence of friction in the system (that is, emission of
small-amplitude waves) may lead to the capture of a kink by
the potential, which was duly observed in the numerical
experiment. Note that the KK potential was subsequently
calculated with greater precision in a number of studies [61,
76—78].

It ought to be emphasized once again that the potential
approximation taking into account the possible loss of energy
due to friction generally portrays the results of numerical
experiments in a quite satisfactory way.

Note also that there have been other attempts at
explaining the discovered long-lived states. In Ref. [79], for
example, the general reason d’etre of long-lived pulsating
objects in field theories was attributed to their sufficient
extensiveness in space. The pulse distribution of particles in
the object is then soft, and the properties of the system are
close to nonrelativistic. The system exhibits an additional
approximate integral of motion: the number of particles in the
system. As follows, for example, from Fig. 2, the character-
istic rates of change of field in the bion are quite relativistic.
Because of this, the observation made in Ref. [79] cannot be
applied literally to the bion of the GLH equation. A
convenient approximate parametric representation of the
bion of the GLH equation, suitable also for large-amplitude
bions, was proposed in Ref. [80].
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2.7 Discrepancy found in the potential description

At the same time, not all phenomena discovered in the early
numerical simulations can be explained within the framework
of the proposed potential approach. And indeed, it is hard to
explain the irregular oscillations of the bion which are readily
discernible in Fig. 2 if there is only friction in the system.

Apart from that, even in the early papers there was
already some disagreement concerning the value of the
critical capture velocity. In Ref. [62] it was assumed to be
equal to 0.25; in Ref. [65] it was defined as V., = 0.2 £+ 0.01.
One could attribute such differences in the value of V; to
certain inaccuracies in the calculations. The situation,
however, turned out to be much more complicated.

As early as in Ref. [32] it was found that capture takes
place not at any arbitrary initial velocity of colliding kinks
below a certain V. In particular, capture was reported in
Ref. [32] at V' = 0.25, whereas scattering of kinks occurred at
V=0.22and V' = 0.26.

Another peculiar feature in the behavior of kinks near the
capture threshold was discovered in Ref. [81]. In particular, it
was found that when the initial velocity of the kinks is
Vin = 0.3, after collision they recoil with final velocity
Vi =0.135. At Vi, = 0.25 the kinks merge to form a bion.
At Vi, = 0.2 the kinks again recoil with ¥y = 0.155. We see
that the elasticity of collision in the bounce window near
Vin = 0.2 is higher than at ¥V, = 0.3! This resonance-like
effect points to the existence of a nontrivial mechanism of
capture, different from the initially assumed capture due to
energy loss by radiation (friction).

2.8 Bounce windows and mechanism of resonant
redistribution of energy

The ‘bounce windows’ of Refs [32, 8§1] turned out to be just
the tip of the iceberg, and led to the discovery of the complex
structure of the transition region between the continuous
range of Vi, > V. =20.2598, where the kinks always
rebound, and the range of Vi, < 0.192575, where the kinks
always merge to form bions.

Studies in the wake of Ref. [81] resulted in both the
discovery of new bounce windows, and in the more precise
definition of their location [77, 82, 83] in the transition range
of initial velocities.

The peculiar behavior of kinks in bounce windows was
detected in Refs [77, 82]. While at V' > V¢, the kinks collide
just once, having once collided in the bounce windows the
kinks retreat to a considerable distance, stop, and collide
again, whereupon they rebound to infinity. The coordinates
of the kink center as a function of time for V' > V. and for a
bounce window are plotted in Fig. 4a, b. The range of
velocities where the kinks rebound after a double collision is
referred to as a two-bounce window.

A careful study of bounce windows which threw light on
the reasons of their existence in the transition region was
carried out in Ref. [84] (see also Ref. [85]). Nine two-bounce
windows were discovered in Ref. [84]. After the first collision
in the bounce windows the kinks rebound to a considerable
distance but cannot leave the sphere of interaction. After the
second collision, however, the separation of the kinks
becomes possible. Accordingly, it was necessary to propose
amechanism by which the kinetic energy of the kinks could be
removed in the first collision and returned at the time of the
second collision.

Such a mechanism of redistribution and conservation of
energy was suggested in Ref. [84]. The following explanation

V' =0.195

—11.5 —4.5 2.5 9.5 16.5 ¢

—11.5 —4.5 2.5 9.5 165 t

Figure 4. Time dependence of the coordinate of the center of the colliding
kink for the initial velocity corresponding to (a) the bounce window; (b)
V> V.

was put forward: the discrete mode (17) may be excited in the
kinks receding after the first collision. This mode is associated
with the kink — that is, it is a localized solution which stores
energy near the center of the kink. The frequency of
oscillation of this solution is fixed, w} = 3/2. If at the time
of the second collision the phase of the discrete mode and the
relative motion of the kinks are tuned appropriately, some of
the energy of the discrete mode may be reconverted into
kinetic energy of the kinks to ensure that they rebound to
infinity. If this explanation is correct, then the energy is
mainly stored in the discrete mode of the kink. Figure 5
shows the function ¢(0, ¢) in the region of the first eight two-
bounce windows. The solutions for different initial velocities
Vin in Fig. 5 differ in the number of periods of small
oscillations occurring between the collisions of the kinks
themselves, which correspond to large-amplitude oscilla-
tions. If this hypothesis is correct, the period of small-
amplitude oscillations must be close to the period of the first
discrete mode of the kink. The numerical value of the period
of small oscillations was found to be T¢y, 2 5.2, which is very
close to 71 = 2n/w; = 5.13! Thus, the proposed mechanism
of the energy being stored in the discrete mode of kink
excitation was confirmed by numerical experiment.

2.9 Verification of implications of mechanism

of resonant energy transfer

First of all we ought to mention that the importance of the
discrete mode of kink excitation in KK collisions had been
noted earlier in Ref. [78]. In the same study the critical
velocity of capture was calculated on the basis of the
hypothesis of the predominance of the discrete mode, and
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Figure 5. The function ¢(0, ¢) in the region of two-bounce windows (first eight windows).

was found to be V., =2 0.25, which is close to the exact value
of Vo =0.2598.. ..

As an implication of the proposed mechanism, the
following phenomenological condition was written out in
Ref. [84] for the feasibility of the reconversion of energy into
kinetic energy of the KK system:

(U]T]z(V”) =5+2TEI’!, (37)

where n is a whole number, and T1,(V,) is the time between
the two collisions of the kinks. This formula was checked by
numerical simulation, which resulted in the experimental
value of T, 2 5.2, quoted in Section 2.8.

Further, starting with the asymptotic expression for the
potential of the KK interaction [6, 78], phenomenological
relations were obtained in Ref. [84] between the initial velocity
of collisions in the nth window, and the critical velocity:

V2=y2-1372n+1)". (38)

Relation (38) was found to be in good agreement with the
experiment for all bounce windows. It was also demonstrated
that the width of the bounce windows is accurately described
by the condition

AV, =092n+1)7, (39)

which follows from the potential approximation (¥ is a
numerical constant).

Numerically it was confirmed that the energy loss by
radiation is small. The energy contained in the discrete mode
of kink excitation dominates up to very high initial velocities

Vin ~ 0.7—0.8. At Vi, < 0.4 it is greater than the radiation
energy by an order of magnitude.

2.10 Discovery of multi-bounce windows. Quasi-fractals

The study of bounce windows was continued in Refs [86, 87].
For instance, 35 two-bounce windows were discovered in
Ref. [86]. Their arrangement and width as a function of the
number # of small oscillations between collisions of the kinks
are shown in Fig. 6. From the diagram it follows that V.,
looks like a condensation point of resonances. Apart from
that, multi-bounce windows of multiple KK collisions were
discovered in Ref. [86], whose feasibility had been discussed
in Ref. [84]. The solutions corresponding to bounce windows

1 11 11

025 | 1t

0.20 H

| | |
0 10 20 30 n

Figure 6. Locations and widths of regions of two-bounce windows vs. 7.
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were termed, according to Ref. [86], quasi-closed orbits. The
field in these solutions behaved much differently from the
chaotic pattern in a bion. It was noted that the three-bounce
windows are located near the two-bounce windows — in
other words, there is a kind of hierarchy in the arrangement
of the bounce windows. A typical three-bounce window is
shown in Fig. 7.

$(0,1)

—0.5

0 20 40 60 80 100 120 140 160

Figure 7. Time dependence of function ¢(0, ¢) for a typical three-bounce
window.

Further study of multi-bounce windows in Ref. [87]
revealed that their arrangement is fairly regular: each two-
bounce window is associated with a series of three-bounce
windows; each three-bounce window is associated with a
series of four-bounce windows, etc. In this way, the arrange-
ment of multi-bounce windows displays an obvious fractal
structure. The scale change in the transitions

n-bounce — (n 4+ 1)-bounce — (n + 2)-bounce — ... .

is shown schematically in Fig. 8. Figure 8a shows the black
two-bounce windows with a continuous black band to the
right, which corresponds to the continuum of single-bounce
collisions at Vi, > V.. The region in the box is shown to a
larger scale in Fig. 8b. The black region on the left
corresponds to the two-bounce window, and the black
bands to the right mark the locations of the three-bounce
windows. The region in the box is again shown to a larger
scale in Fig. 8c, which shows the arrangement of the four-
bounce windows. In connection with the discovered fractal
structure of the multi-bounce windows, a certain universal
formula was proposed in Ref. [87] for calculating the width of
bounce windows depending on the number n of small

Figure 8. The fractal structure of locations and widths of bounce windows
and capture regions.

oscillations between collisions of the kinks:

AV, xcn P, (40)

where f is a certain universal constant, which does not
depend either on n or the order of the bounce window.
Normalizing to the least n in each series, it was possible to
obtain a good description of the width of two-bounce and
three-bounce series using the same value of f.

Another point discussed in Ref. [87] was whether the
motion in the bion region (that is, outside the bounce
windows) is chaotic. The solution was studied for
Vin = 0.18, where there are no bounce windows, and a bion
is formed. Observations were based on the time dependence
of the function ¢(0,7). According to Refs [88—90], this
dependence was used for constructing a series of d-dimen-
sional vectors V;,

Vi= {Vl(li)» Va(ty), ..., Vd(l,-)},

where d is the assumed dimensionality of the attractor,
Vi(t;) = V[ti+ (k — 1)1], and 7 is the time lag. In fact, the
time dependence of the distance between a pair of vectors V)
and ¥/ was studied such that initially

Vo = Vol < 0o, (41)
where dy < 1075, The following quantity was calculated at
each time step:

dj11

2 5_/ . (42)

4j = log

The largest Lyapunov index A; was calculated as the average
of 4; over the time interval At

, dt
Al _BZ’II

For large times, /; is close to 4; =2 0.31. This is an indication
that oscillations in a bion are chaotic, because a positive
Lyapunov index /; implies that any two initially close points
in the phase space of a dynamic system diverge exponentially
with time.

Further studies of the quasi-fractal behavior of bounce
windows for KK scattering have led to the conclusion that
exact fractals would only have been possible in the absence of
radiation [91].

(43)

2.11 Effective Lagrangian for bion

The method of collective coordinates [70— 73] applied to the
KK system in an approximation improved over the potential
approximation of Refs [62, 76, 61, 77] was first discussed in
Ref. [78]. Neglecting the excitation of the continuum, the field
configuration at any time is assumed to have the form

P(x,1) = gy [x + X(1)] — Py [x — X(0)] — 1 + A(1)

< {u[x +X(0)] =[x = X0}, (44)
where y;(x) is the solution (17) corresponding to a discrete
mode of kink excitation. The variable X(¢) is the collective
coordinate corresponding to the translation mode — that is,
one half of the distance between the kink and the antikink.
The variable A(7) characterizes the excitation of the discrete
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mode. The effective Lagrangian is defined as

Lar = J dxL(x, 1, X, 4), (45)

where L(x, t, X, A) is given by Eqn (2) with ¢(x, t) as defined
by Eqn (44) [78, 86]. Integration of Eqn (45) with respect to x
leads to the following expression for Leg:

Lr(X, X, 4,A) = [Mx + I(X)]|X* — U(X) + A*

— 0} A* +2F(X)A 4+ 2C(X)AX, (46)

where o? = 3/2 is the frequency of the discrete mode of kink
excitation, and the functions /(X), U(X), F(X), and C(X) are
written out explicitly (see, for example, Ref. [78]). This
Lagrangian is a natural generalization of the potential
approximation proposed in Ref. [62] and discussed in
Section 2.6. Observe that the higher terms in 4 and X are
dropped in Eqn (46).

The Lagrangian (46) was used in Ref. [78] for evaluating
the critical velocity of capture. The motion with respect to X
was assumed to be classical, whereas the excitation of
oscillator A(¢) was treated as a quantum problem given the
motion of the kinks (adiabatic approximation). Accordingly,
the return of energy from the discrete mode A(¢) into the X ()
mode in Ref. [78] was neglected, and the bounce windows
were not discovered.

The importance of the exact solution of the classical
equations of motion defined by the Lagrangian (46) was
first pointed out in Ref. [92]. This idea was successfully
implemented in Ref. [86]. It was found that even a system
simplified with respect to Eqn (46) (C = 0) beautifully
portrays all the features of the solution: the region of single-
bounce collisions of the kinks above the critical velocity, the
two and three-bounce windows below V¢;, and the formation
of bions. The behavior of the function ¢(0,7) in Eqn (44),
reconstructed with the aid of equations of motion for X(z) and
A(t), is shown for different initial velocities in the model
problem in Fig. 9, and differs little from similar solutions of
the exact problem.

In Ref. [87] it was proved that the hierarchy in the
arrangement of bounce windows, discovered for the exact
field problem, is faithfully reproduced for the reduced
problem (46), and the retrieved parameter f# (40) is very
close to that for the exact problem.

In Ref. [87] it was pointed out that a bion is not formed in
the reduced problem because of the absence of friction in the
transition region: for any initial velocity there exists such a
time after which the kinks will scatter apart. This constitutes
an important distinction from the exact field problem, in
which a bion may also be formed in the transition region. At
the same time, when the initial velocity is low, the behavior of
solutions below the region of bounce windows for the reduced
system (46) is close to chaotic up to very large times. This is
confirmed by the everywhere-dense Poincaré mapping in the
(4,A4) plane for the initial velocity Vi, = 0.02. Simulta-
neously, the maximum Lyapunov index, o1 =2 0.32, was
calculated for the reduced system, which turned out to be
close to the value 4; =2 0.31 for the exact system.

In this way, the analysis of the KK interaction has led to
the discovery of a number of new phenomena in the classical
field theory: long-lived solutions (bions), bounce windows
and their hierarchical fractal nature, chaotic motion in the
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Figure 9. The behavior of function ¢(0, 7), reconstructed from the solution
of equations for the effective Lagrangian: (a) two-bounce window; (b)
three-bounce window; (c) scattering of kinks in continuum.

bion, and the feasibility of reducing the exact problem in field
theory to the description based on the effective Lagrangian
with a finite number of degrees of freedom. An important role
in shaping the peculiar properties of the KK system in the M)é
theory is played by the discrete mode 2 of kink excitation.
Further on we shall demonstrate that the presence of the
discrete mode leads to a pattern, similar to that discovered in
the )»qbg GLH theory, in many other systems as well.

3. Some examples of problems
with Kink interactions

3.1 Kink — antikink interaction in
the modified sine-Gordon (MsG) equation
Consider a system defined by the Lagrangian

£l = | ax |3 67 -5 0 - U0 @)

with the potential U(¢):

U(p,r) = (1= )(1 —cos§)[1 + 77 +2rcos ¢] ',
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where r € (—1, 1). This system was first discussed in Ref. [93].
Analytical solutions for kinks were found in Ref. [94]. For
any r, ¢g (x,r) — 0 when x — —oo, and ¢y (x,7) — 2 when
X — 4o00. Certain interactions in the KK system were studied
in Ref. [95], and some evidence of a bion being formed at
r = 0.5 was found. The system in question was analyzed in
greater detail in Ref. [96].

First of all, the spectrum of small excitations near ¢ (x, r)
was studied in Ref. [96]. (A similar task for the GLH equation
was discussed in Section 2.) It was found that the spectrum of
excitations in the system depends considerably on the
parameter r. When r is positive, the spectrum exhibits one
discrete mode, corresponding to the translation mode with
wo =0, and the continuum. When r goes negative, the
number N of discrete excitation modes starts to increase,
and N — oo as r — —1. The spectrum of excitations of the
kink, obtained numerically, is shown in Fig. 10. In this way,
studying the interactions in the KK system at different values
of r, it is possible to derive information about the role of
discrete excitation modes. Observe that r = 0 corresponds to
a system described by the exactly integrable sG-equation,
whose soliton —antisoliton solution has been obtained analy-
tically.

70
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Figure 10. Spectrum of kink excitations in the theory of the MsG-equation
(52) as function of parameter r.

3.1.1 The case of small negative r. The case of r = —0.1 has
been considered. The system is then close to that described by
the sG-equation. At the same time, the excitation spectrum of
the kink already contains one discrete excited level with
w; = 1.1205 (see Fig. 10). The continuous spectrum starts
from weone = 1.2222. As in the iqf)‘zt theory, in the case of KK
the interaction there is a certain critical velocity above which

the kinks pass losing part of their energy. In addition, bounce
windows and a passage window were discovered below
V < V. In the bounce windows the behavior of the kinks is
similar to the two-bounce collisions in the i(bg theory. The
kinks collide, pass through each other to a considerable
distance, stop and collide again. Accordingly, these solutions
correspond to back scattering of the kinks. In the passage
window the kinks collide three times, and the result
corresponds to the forward passage of the kink.

3.1.2. The case of small positive r. In the case of » = 0.1 the
continuum starts at wgon = 0.8182, and there is only one
trivial discrete mode with wg = 0. As in the case of r = —0.1,
capture occurs below, and scattering above the critical
velocity V. = 0.234. This time, however, the passage and
scattering windows are not observed. In the capture region, as
opposed to the /lqﬁg theory, the KK system does not form a
long-lived state, and soon disintegrates into non-localized
divergent waves.

In case of r=0.05, owing to the smallness of r, the
properties of the system ought to be similar to those of the
integrable system. As a result, the critical velocity is low,
Ver = 0.112. The capture of kinks occurs below V.. There
are no passage or scattering windows. It should be noted
that, by contrast to the case of r = 0.1, the bion at r = 0.05
is rather stable. In addition, in Ref. [96] it was found that at
certain velocities below ¥V the periods of the first few
oscillations in the bion are notably greater than at other
values of V. Since scattering of kinks does not take place,
this pattern of bion formation at certain initial velocities
was named a quasi-resonance. Initial velocities correspond-
ing to quasi-resonances are given by the simple phenomen-
ological formula

Vi=Va—AQ2n+1)7, (48)
where 4 = 5.84, and n =4,...,15 is the index of the quasi-
resonance. Since the discrete mode of kink excitation is
absent, one may only conjecture that quasi-resonances result
from the interaction of the translation mode of the kinks with
a certain distinguished frequency of excitation of continuum
Mcont- In our present case we have r=0.05, and
@cont = 1.159, which is beyond the limit of the continuum
oMt = 0.9048. For large positive r the pattern of KK
interactions remains essentially the same: there are no
passage or scattering windows below V.

3.1.3. The case of large negative r. The case of r = —0.5 leads
to a much more sophisticated pattern of KK interaction,
which is shown in Fig. 11. Below V. = 0.34 there are two
scattering windows at V; = 0.315 and V; = 0.317. In addi-
tion, however, there is a passage band in the range
0.176 < V; < 0.278, corresponding to the three-bounce inter-
action. We ought to note that at r = —0.5 the spectrum of
kink excitations contains three discrete levels, and the pattern
of interactions between these levels can be quite complicated.

We see that the existence of passage and scattering
windows for the MsG-equation generally depends on the
availability of discrete modes of kink excitation. The newly
discovered phenomenon is the existence of quasi-resonances
at small positive values of r, which correspond to the
excitation of a distinguished frequency in the continuous
spectrum. The nature of this phenomenon is not yet entirely
clear.



370 T I Belova, A E Kudryavtsev

Physics— Uspekhi 40 (4)

03 r=-0.5
Ve [}
¢ ¢
02 t
t t
¢
0.1 -
t
0 1 1 1 1 |
0.10 0.15 0.20 0.25 0.30 v 0.35
i

Figure 11. The complex pattern of zones and passage windows for large
negative values of r.
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Figure 12. Structure of three-bounce windows near a two-bounce window
atn = —0.5.

3.2 Kink — antikink interaction

for the double sine-Gordon equation

Interactions in the kink — antikink system were studied in Ref.
[97] for the so-called double sine-Gordon (DsG) equation

b — P +2(1 + [45]) ™ (— sin §+ 2 sin ¢>> =0, (49)

where the parameter # may be assigned any arbitrary real
value (—oo < 1 < 400). This equation corresponds to the
potential of field self-action in the form

Ulg] = —4(1 + |4n]) " (— cos %Jr 1 cos d)) : (50)

Asn — +oo (as well as at n = 0), the potential U[¢] becomes
that of the sG-equation. In the range n < —1/4 the potential
exhibits a set of degenerate minima separated by non-
equivalent barriers. Accordingly, there are two types of
kinks: ‘major’ and ‘minor’. The spectrum of small excitations
of kinks contains translation modes with wy = 0, as well as
one discrete mode for the ‘minor’ kink. Owing to the fact that
the model potential U[¢p] with y < —1/4 was used in the
studies of superfluid 3He in phase B, the KK interactions
have been investigated extensively [98 —103]. In particular,
the critical velocity of capture of a ‘minor’ KK pair into a
bion was calculated in Ref. [103] (for —3.6 <y < —0.31). In
addition, the conversion of a minor pair into a major pair was
observed at large velocities V' > 0.92 (n = —1) [100], and the
conversion of a major pair into a minor pair at any velocity
[100, 103]. The structure of the solution for the collision of the
minor KK pair at # = —0.50 is in perfect agreement with the
model of resonant energy transfer into the discrete mode
considered above for the i¢3 theory. Above the critical
velocity the kinks experience single-bounce collisions.
Twenty two-bounce windows were discovered below Vi,
and their arrangement is in good agreement with the
phenomenological description. Three-bounce windows are
grouped near the two-bounce windows (Fig. 12). The
hierarchy of states can be detected at the next level: clusters
of four-bounce windows are located near the three-bounce
windows. The situation remains essentially the same when
other negative values of x are used.

Consider a kink —antikink scattering for —1/4 < < 0.
In this range the potential of the DsG-model is topologically
similar to the potential of the sG-model, and there is just one
type of kink that links the vacuum solutions. The kink
excitation spectrum in this range does not contain any
nontrivial discrete levels. Calculations made for this range
indicate, as ought to be expected, that there are no bounce
windows below the critical capture velocity.

At the same time, as in the case of the MsG-equation, the
lifetime of the bion increases as |17| becomes smaller — that is,
as we are approaching the exactly solvable sG-equation. It
seems that as 1 — 0 the behavior of the bion is strongly
influenced by the existence of the breather of the sG-equation
(n=0).

In the case of n > 0 the kink has one discrete excitation
level. While at 0 < 5 < 1/4 the potential remains topologi-
cally similar to the potential of the sG-equation, at n > 1/4
the maxima at ¢ = 4mn display local recessions (more detailed
information on the solutions of the DsG-equation can be
found in Ref. [104]). For # > 0 it is convenient to replace 7
with another variable R,

n:%sinth. (51)
The soliton of the DsG-equation in terms of R becomes very
simple:

sinh x
¢k (k) = 2n(2n) = 4arctan osh R

(52)

At R = 1.2 the pattern is very similar to the standard case
of kink scattering in the presence of the discrete mode of kink
excitation. Above V., = 0.2305 there is a continuous spec-
trum of pass-through kinks. Two-bounce windows are found
below V.

In the case of R = 0.5, which formally is no different from
the case of R = 1.2, scattering windows below the critical
velocity V., = 0.117 have not been found. It follows that the
mechanism of energy transfer into the discrete mode does not
work in this example even though a discrete mode is available!
Observe, however, that the frequency of the discrete mode
w1 = 0.96692 in this case is very close to the continuous
spectrum (@eont = 1). At the same time, one may argue that a
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certain mechanism of energy transfer still works, since the
formation of the bion is not a monotonic function of V;,. This
can be seen in Fig. 13, where the period between the second
and third collisions of the kink in the bion is by no means a
steady function of the initial velocity. This phenomenon
resembles the quasi-resonances discussed above for the
MsG-equation in Section 3.1.2.

Th3
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Figure 13. The time 75 3 between the second and third collisions vs. the
initial velocity for R = 0.5. The dashed line shows the time 77 ».

For large values of R > 2.4, the critical velocity of capture
becomes small, and the scattering windows are no longer
observed. Here, however, the KK collisions display the same
quasi-resonances as in case of R=0.5. The attempt to
describe quasi-resonances by the standard formula

o T=2nn+0o (53)
is only successful for the series of quasi-resonances with
@1 = 1.0456, whereas the actual frequency of the discrete
mode of kink excitation is entirely different, w; = 0.24822.
The resonances at large values of R are apparently associated
with the excitation of a group of levels in the continuous
spectrum. So far there is no reliable interpretation of this
effect.

The study of the kink—antikink interaction in the DsG-
equation generally confirms the established concept of the
mechanism of energy transfer to and storage in the discrete
excitation mode, and at the same time reveals a number of
certain new properties of the problem: it is the existence of
long-lived bions at small negative values of 5, and the
accumulation of convincing evidence concerning the exis-
tence of quasi-resonances which are observed in the MsG-
equation and correspond to the excitation of levels in the
continuous spectrum.

4. Resonant interaction of solitons
and kinks with impurity

It would be interesting to note that the discrete mode of kink
excitation may manifest itself not only in the case of kinks
interacting with one another, but also in the one-kink
configuration when the problem contains an inhomogeneity.
Moreover, some types of inhomogeneities may give rise to
certain specific discrete excitation modes in the system
(impurity modes), which may influence the interaction
between a kink or a soliton and the impurity.

The problem of interaction of solitons or kinks with
impurities has a history of its own. Let us discuss it in brief.

4.1 Potential approximation
The dynamic behavior of the soliton of the sG-equation in the
presence of a disturbance generated by a field interacting with
an inhomogeneity was discussed in Ref. [105]. This problem
has many applications.

As a matter of fact, in Ref. [105] the behavior of a soliton
for inhomogeneous sG-equation of the form

Uy — Uyy +mPsinu = i[&(x + x0) — o(x — xo)] . (54)
was considered. The constant A was assumed to be small.
Recall that the spectrum of small deviations from the soliton
solution for the homogeneous sG-equation has only one
discrete mode with wg = 0 (the zero mode), and the con-
tinuous spectrum with w? > m?. The time evolution of the
soliton solution wug(x — vt) was studied in the presence of
disturbance described by the right-hand side of Eqn (54). It
was found, neglecting excitations of the continuum, that the
action of impurity upon the soliton is similar to that of a
potential. Indeed, in the context of problem (54) the energy of
a static soliton depends on the distance to the impurity £. The
potential of interaction between the soliton and the impurity,
calculated in Ref. [105], has the form

sinh z(
U == 4;u t
&) arctan cosh &’

(55)

where zy = mxg, and & = mX. The potential is attractive or
repulsive depending on the sign of 4.

When the velocity of the soliton is high, the potential U(&)
of Eqn (55) may be regarded as a disturbance, and the
independently calculated energy loss due to excitation of the
continuum modes may be neglected. At low energies,
however, the energy loss due to excitation of the continuum
modes becomes considerable, and the theory predicts the
possible trapping of the traveling soliton by the impurity. As
predicted in Ref. [105], the soliton may be trapped by the
potential of the impurity if the kinetic energy of the soliton at
infinite distance from the impurity, Eyin(co), satisfies the
condition

Exin(00) < |U(&)

, at U =0. (56)

The critical velocity of capture of soliton by the impurity at
early stages was also discussed in Refs [106—108].

The behavior of the soliton trapped by an impurity was
also discussed in Ref. [105]. Then the center of the soliton
oscillate harmonically when the amplitude is small. When the
amplitude is large, these oscillations are described by elliptic
functions.

4.2 Adiabatic perturbation theory

Further investigations of this problem were mainly concerned
with more accurate calculation of the critical velocity of
capture of a soliton by an impurity. The foundation was
laid in Ref. [109], where the general formalism of the
adiabatic perturbation theory was developed for finding

solutions for equations of evolution of the form
u, = Slu] +eRu], e<1, (57)

which for ¢ = 0 are exactly integrable by the MISP. Within
the framework of perturbation theory for a small parameter
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¢, equations were constructed for the transmission and
reflection coefficients and residues in the poles of the S-
matrix of the inverse problem, which furnished a consistent
procedure for finding the corrections to solutions of the
unperturbed equations. In particular, corrections were
obtained for the one-soliton solutions of the KdV equation
and the NSE. In addition, the evolution equations for
polynomial integrals of motion I,[u, u*] of the unperturbed
equations in the presence of a disturbance were formulated in
Ref. [109] in the form

d/ > (31, o1,

R [u(x)] } ,

n=1,23..., (58)
which were used later in some form or other for practical
purposes.

It ought to be mentioned that a simpler method for
calculating the loss of energy in solitons is based on the
analysis of the evolution equations for integrals of motion of
the type of Eqn (58). For example, the integral of momentum
of the field for the soliton solution of the sG-equation is

P 7J woaty dx = V(1 — 212 (59)

where V is the velocity of the unperturbed soliton. On the
other hand, one could take into account the non-conserva-
tion of momentum of the soliton because of the disturbance:

dp JOO
=—¢

— X uyPlu .
T dx u, Plu

(60)

—00

In terms of velocity, equation (60) reconstructs the law of
variation of velocity of the center of soliton (see, for example,
Refs [110, 111]). In this way, the developed formalism of the
adiabatic perturbation theory, based on the assumption that
the system is close to integrable, allowed more precise
calculation, for example, of the critical velocities of capture
— that is, the phenomenological friction in the soliton
configuration. In Ref. [112], for example, a formula was
derived for the critical velocity of capture of a soliton of the
sG-equation by a d-shaped impurity (see Section 4.6).
Numerical simulation of the field problem revealed, how-
ever, that the applicability of adiabatic perturbation theory is
very limited when the impurities have their own discrete
modes, as will be discussed below.

4.3 Instability of perturbations around soliton

localized on an inhomogeneity

The perturbation theory discussed above can be used because
the Lagrangian system under investigation differs little from
the exactly integrable one. The limits of applicability of this
perturbation theory, however, have not been analyzed. In the
meantime, a number of independent studies appeared, where
the stability of solutions of classical nonlinear equations with
sources was discussed from the standpoint of the theory of
bifurcations and the theory of catastrophes (see, for example,
Refs [113, 34, 114]). References [115—117] were concerned
with the stability of a localized soliton for the equation

G — o — [l S >] sng —od,  (61)

which describes the behavior of fluxons for long Josephson
junctions. The behavior of the spectrum of small oscillations
was studied with respect to the stable points of such an
equation in the space of solutions

D(x, 1) = Pgap(X) + eXp<_%t>

XY a(x) [an exp(—iwnt) + @ exp(iont)] . (62)

The analysis was based on the expansion in eigenfunctions
7,(x) in the neighborhood of the stable solution (fluxon),
localized on an inhomogeneity. It was found that when the
external parameters of the problem are varied (for example,
the coefficients y;), some coefficients a, in the expansion (62)
may exhibit a sharp increase at certain values of y,;. This may
be associated with the possible vanishing of eigenfrequencies
— for example, the frequency wy:

o2

wf =@y + 5 - (63)
Numerical deviations of the exact solutions from the
potential oscillatory regime, discussed in Ref. [105], were
discovered in Refs [118—120]. The question of the changing
shape of a soliton passing over an impurity was discussed in
Ref. [118]; it was found that the distortion of the soliton
becomes stronger as the interaction constant increases.

The problem of trapping a slowly moving soliton by a
stand-alone impurity was considered in Refs [119, 120] for
Eqn (61) with the boundary condition ¢ (£/) = 0, where 2/is
the length of the transition layer. For small values of yu it was
found that, as anticipated, the soliton is attracted by the
microscopic impurity and starts to oscillate around the
impurity with very little distortion. However, as u increases
(u = 0.5-0.6), the pulsations of the soliton shape are quite
considerable. The nature of the pulsations allowed the
singling out of several harmonics, multiples of the main
frequency of oscillations of the center of soliton in the
potential created by the impurity. Possible manifestations of
the discovered instability of a soliton in a system with a large
number of inhomogeneities (Josephson lattice) were further
discussed in Ref. [121].

We see that the model of potential approximation with
friction, discussed in Sections 4.1 and 4.2, is only good for
the qualitative explanation of certain aspects of the
interaction between solitons and impurities. At the same
time, the deviations of the potential model from the
numerical simulation [119, 120] have been observed for a
problem with specially designed boundary conditions,
which could have augmented the effect. At the same time,
the frequency of pulsations did not quite correspond to the
frequency

u 2\
2

> 14+— - =
@ 2{( +16) 2}

suggested in Ref. [117]. Because of this, further efforts were
necessary to elucidate the causes of deviations from the
potential approximation, and to predict other possible
phenomena resulting from the non-potentiality of the
problem.

(64)
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4.4 Behavior of kinks in the Aqb‘zl theory
near an inhomogeneity
The problem of the interaction of a kink of the )Ld);‘ theory
with an inhomogeneity was first discussed in Ref. [122] (see
also Ref. [123]). While the cause of strong pulsations of the
soliton shape in the sG-equation theories with inhomogene-
ities is not quite clear; the M’; theory exhibits a discrete level
of kink excitation. The availability of this degree of freedom
allows for the RRE as in the case of the KK interaction
discussed in Section 2.

The problem of scattering an initially undistorted kink by
an inhomogeneity was considered in Ref. [122], which
amounted to solving the Cauchy problem for the equation

b — b + (97 = $)[1 = 18(x — x0)] = 0 (65)
with the boundary conditions
b (x,0) :tanh{(x—xo)[2(l - VZ)]*”Z}, (66a)

¢, (x,0) = —V[2(1 - Vz)}—l/z
X cosh*2{(x — xo0)[2(1 — VZ)]—I/Z}  (66b)

where ¥ is the initial velocity of the undistorted kink, and x,
is the initial distance between the kink and the impurity. The
problem may be solved either by straightforward numerical
integration of Eqn (65), or by using the approximate method
of collective coordinates discussed in Section 2.10 and in
Ref. [86] for KK interactions. By assumption, the solution of
the problem (65), (66) at any time has the form

¢(x,7) = tanh {(x\;;)} + Ay, [(x\;;()} 7

(67)

where X(7) and A(7) are the collective coordinates, and y; (x)
is the solution (17) of Eqn (14) for the discrete mode of the
kink. A procedure similar to that performed in Section 2.10
yields the following nonrelativistic effective Lagrangian:

LX,X,A,A) = Lo+ L1 + Lint, (68)
where
XZ
Lo = My <7 - 1) —V(X), VX)) =- <§> cosh™*(aX) ,
A A2
b=5775

Lint = —'HAT ”23/2 tanh? (X) cosh ™ (a.X)

n pA*(3/4)

V2

where My is the mass of the kink. The standard variation
procedure for the Lagrangian (68) leads to the dynamic
equations in X(¢) and A(¢), by analogy with the procedure
used earlier for the KK interactions.

Retaining only the term with £y in Eqn (68), we get the
potential model of interaction between the kink and the
impurity. In this approximation the kink either passes over
the impurity, or is engaged in a finite motion about the
impurity. The term L£; represents the Lagrangian which
describes the free oscillation of the first discrete mode of

tanh?(aX) cosh™*(euX) [3 tanh?(aX) — 1] ,

kink excitation with w} = 3/2m?. The term Ly describes the
interaction between the zero and first modes due to the
presence of the impurity. The time evolution of the functions
X(r) and A(r) was studied complying with the initial
conditions

X(0)=15, X(0)=V, A(0)=A4(0)=0,  (69)

where X(0) is the initial velocity of the kink. The solution of
the equations of motion for X(7) and A(r) was analyzed for
different values of the constant of interaction with the
impurity u (u = 0.3, 0.5,1.0, 2.0). Special attention was paid
to the case u = 0.3, for which the range of initial velocities
0.025 < V< 0.075 was calculated with a step of
AV =2.0 x 107*. The relative accuracy in terms of energy
was 1076,

It was found that for the model problem (68), (69), in
contrast to the potential approximation, the kink may be
trapped or scattered by the impurity.

1t follows, in spite of the attractive nature of the impurity,
that the kink may be bounced off.

Depending on the initial kink velocity, the following
situations may be realized in the model problem:

(a) passage of kink over the impurity at V' > Vi (p);

(b) windows of transmission and reflection, and a capture
band at V' < Ve (u).

The behavior of the center of mass of the kink for the exact
field problem (65), (66) depending on the initial velocity of the
kink V' is shown in Fig. 14. The distinction between capture
and scattering zones becomes clearer if we look at the
Poincaré mappings. Capture corresponds to a much more
uniform occupation of the mapping plane, which indicates
that the system is very close to chaotic.
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Figure 14. Paths of center of mass of the kink (a) passing over the impurity;
(b) captured by the impurity; (c) bounced off the impurity. The exact field
problem, u = 0.3.
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As noted in Ref. [120], the numerical solution of the exact
field problem (65), (66) is a quite complicated feat. As in Ref.
[120], the d-function for the exact field problem in Ref. [122]
was replaced by a Gaussian. Calculations were performed for
different values of the Gaussian parameter o, and the stability
of the results was checked for each value of o. The model
calculations (68), (69) for the exact field problem were
generally confirmed. For some of the observables — for
example, for V., — the model problem and the exact
calculations were in good quantitative agreement. For exam-
ple, for u = 0.3, the critical velocity is V. = 0.0686 for the
model, and V; = 0.0690 for the exact problem with o = 5. At
the same time, only one scattering window was found in the
field problem with ¢ = 0.3 and u = 0.5, the step in the initial
velocity being AVi, =2 x 1073. Passage windows were
observed below V¢;. It must be also noted that the period of
oscillations of the discrete mode of kink excitation in the
discovered scattering and passage windows, in accordance
with the observations made with the field problem, was many
times less than the period of oscillations of the kink about the
impurity. Accordingly, some of the passage and scattering
windows in the exact problem could have really disappeared
because of friction (radiation), becoming zones of capture.

We see that the impurity, whose action upon the kink is
generally attractive, may sometimes bounce the kink back by
amechanism of resonant exchange between the kinetic energy
of the kink and its discrete excitation mode. This phenom-
enon, predicted for the model effective Lagrangian, was
confirmed by calculations of the exact field problem. This
result completely disagrees with the notion of the potential
nature of interaction between the kink and the impurity
taking into account the energy loss by friction.

At the same time, the observed vigorous pulsations of the
soliton shape for the inhomogeneous sG-equation with the
dissipative term (61) do not fit in with the above mechanism of
energy transfer, since the soliton has no discrete excitation
mode. It was found, however, that, as in the system described
by Eqn (65), the spectrum of excitations of the system
described by Eqn (61) exhibits an additional discrete level
associated with the impurity.

4.5 Discrete impurity mode

It is well known that solitons were discussed not only for the
continuous theories like the sG- and KdV equations, but also
in the lattice approximation. An example is the Toda lattice
model [124], which admits exact soliton solutions. Since
lattices simulate the solid state, the question about the role
of impurities comes up quite naturally. For example, a defect
may be associated with an atom of different mass implanted
in the lattice or chain; or there may be defects on the
boundary of the lattice. More complex dislocations are also
possible. The existence of extrinsic vibration modes in
periodic lattices is well known. At the same time, the
existence of such modes in nonlinear systems depends on a
number of conditions (see, for example, Ref. [125]). In the
course of time, however, discrete extrinsic modes were found
in many discrete models. Moreover, it was discovered that the
interaction between a soliton and an impurity in some
theories is not trivial. For example, the interaction for the
Toda lattice [124] was studied numerically in Ref. [126]. The
soliton was found to lose some of its energy, and the vibration
mode of the impurity becomes strongly excited after the
passage of soliton. The soliton either travels past the
impurity or is bounced off.

The problem of the influence of the impurity mode on the
motion of kink in the lattice iqﬁg theory was formulated and
studied in Ref. [127]. It was found that, depending on the mass
of the impurity atom, the kink may either go past the impurity
or be bounced back. The vibration mode of the impurity
becomes strongly excited after the passage of kink. The
amplitude of the excited discrete impurity mode is a non-
monotonic function of the velocity of the incident kink. Thus,
the discrete mode of the impurity is excited when the kink
passes, taking away some of the energy of the kink.

Observe that the discrete impurity mode is not directly
associated with a kink or soliton, and may exist in their
absence. Let us consider the solution for the impurity mode
for the GLH i(l)g theory with an impurity [see Eqn (65)]. We
seek a solution in the form of small deviations from the
vacuum solution ¢, that is

O(x,t) = ¢, +3¢(x,t), where [3¢]| <, . (70)
Linearizing Eqn (65), we get
8y — 8¢pyy + 28¢ = 2udhd(x) (71)

(assuming that the impurity is located at x =0). If the
solution of Eqn (71) is sought in the form d¢(x,7) =
exp(—io?)y(x), then for the function y(x) we get the
stationary Schrodinger equation with the 8-function poten-
tial:

“Axx — 2#6()6))( = ((1)2 - 2)X .

This equation admits a unique discrete normalizable solution
7(x) = Aexp(—p|x|), and the frequency is given by
@* =2 — p?. Observe that Eqn (72) also admits solutions
corresponding to the continuous spectrum at @2 > 2. These
solutions, however, are not localized on the impurity and
therefore cannot account for the conservation of energy in the
kink —impurity system.

The discrete impurity mode may also exist outside the
linearized approximation used above. This was first studied in
Ref. [128], and was also discussed in Ref. [129] within the
framework of the nonrelativistic approximation. As different
from the linearized approach, the frequency @ in the non-
linear approximation depends on the amplitude of the
oscillations.

We see that the spectrum of excitation of the GLH system
with an impurity, like that of the sG-system with an impurity,
displays a spatially localized characteristic excitation mode
with a discrete frequency. This mode may play a role similar
to that of the discrete mode of kink excitation in the Aqﬁg
theory.

(72)

4.6 Critical velocity of soliton capture by impurity
The problem of the role of the discrete extrinsic mode in the
interaction of the soliton of the sG-equation with an impurity

Uy — Uy + [1 — ed(x)] sinu =0 (73)

was studied in Ref. [130]. At ¢ = 0 the soliton of Eqn (73) is

known to have the form

us(x, 1) = 4arctan[(x — xo — Vr)(1 — V)], (74)

As we have already discussed in Sections 4.1 and 4.2, the
adiabatic perturbation theory was used for predicting the
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critical velocity of capture of a soliton by an attractive
impurity (¢ > 0). The critical velocity for Eqn (73) was
calculated on the basis of such an approach in Ref. [112];
the resulting value was exponentially small:

Ve = 221/871/43/8 exp <—\/§> .
€

As found in Ref. [130], the actual value of the critical velocity
is entirely different from the result of the adiabatic theory.
The discrepancy is apparently due to the fact that the
adiabatic approximation completely ignores the possible
transfer of some of the energy into the discrete impurity
mode. At low energies, however, this mechanism accounts for
most of the energy lost by the soliton. The discrete impurity
mode for Eqn (73) has the form

(75)

Ugise (X, 1) = ap cos(Qt + 0y) exp (— M) ,

- (76)

where Q = (1 — 82/4)1/2. The energy contained in this mode
is
Qa?
Edisc == (77)
Straightforward experimental scattering of a soliton by an
impurity above the critical velocity indicates that the discrete
impurity mode is actually excited (Fig. 15).
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Figure 15. The displacement of the coordinate of the impurity after the
passage of the soliton at V' > V.

Calculation of the critical velocity was based on the
method of collective coordinates, discussed earlier in connec-
tion with the problem of interaction between a soliton and an
impurity in the id)é theory [122, 123]. Substitution of the real
field function

u(x, 1) = us(x, 1) + ugise = 4arctan|x — X(7)]

+ a(r) exp (— %) (78)
into the Lagrangian
—+00 1 ) 1 )
[Z:J dx FU 5 [1—&d(x)] (1 —cosu) ¢ (79)

yields the following expression for the effective Lagrangian:

Ler = 4X% + % (@* — Q*a*) — U(X) — aF(X), (80)
where U(X) = —2¢/cosh® X (same as in Ref. [118]), and
F(X) = —2¢tanh X/cosh X. Calculating the energy lost by a
soliton coming down on the impurity from a large distance
[X(0) = =7, X(0) = Viy > 0] due to the excitation of
oscillator a(r), the authors of Ref. [130] found the critical
velocity as function of ¢, which is entirely different from that
predicted by Eqn (75), and is in qualitative agreement with
the numerical solution of Eqn (73). Thus, the discrete
impurity mode accounts well for the energy lost by the
soliton.

4.7 Solitons scattering by impurity

for the sine-Gordon equation

As discussed above, a soliton moving at a velocity above
critical passes the impurity losing some of its energy on
excitation of the discrete mode. Below V¢, the pattern is
more complicated [131]. Back scattering windows occur at
certain velocities, in complete agreement with what was
found earlier for the w;‘ theory in Refs [122, 123] and
discussed in Section 4.4. By contrast to the GLH equation,
however, in the sG-theory we are dealing with the discrete
mode of the impurity rather than the discrete mode of the
soliton. For example, Eqn (73) with ¢=0.7 gives 11
scattering windows which may be qualified as two-bounce
interactions: the soliton collides with the impurity and moves
on, exciting oscillations of the discrete mode at the point
x =0, then stops and goes back to the impurity. In the
scattering windows some of the energy taken away in the
first collision is returned to the translational motion of the
soliton, and it goes to minus infinity. The basic mechanism of
resonant energy exchange is undoubtedly associated with the
discrete mode of the impurity. This was proved by noting
that, as in case of the KK interaction, in the M’é theory there
is a fairly accurate empirical formula which links the time 77,
between the two bounces in the scattering windows with the
number # of periods of small oscillations:

T12(V) = nTiser + 7, (81)
where Tyiser = 21/, and 7 is the phase constant for a given ¢.
The numerical results of Refs [130, 131] are discussed in
greater detail in Ref. [132], where the interaction of soliton
with impurity whose discrete mode has been excited before-
hand is also discussed. The importance of the observations
made in Refs [130—132] cannot be challenged. At the same
time it ought to be noted that the numerical solution of Eqn
[73] was obtained with the d-function being replaced with the
rectangular well 8(x) — 1/Ax on the interval Ax in the
neighborhood of x = 0. The effect of this replacement on
the results of the numerical calculation has not been
analyzed. Therefore, one has to be cautious about the
precision of the velocity values and the location of the
scattering windows.

Observe also that no passage windows have been dis-
covered for the sG-equation. Attention must also be paid to
the fact that for ¢ = 0.7 there were no scattering windows with
n < 6. At the same time, quasi-resonances were discovered at
those velocity values where the scattering windows were
anticipated with n < 6. This phenomenon consists in that
after the second interaction of the soliton with the impurity
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the soliton moved away to a considerable distance, but failed
to leave the sphere of attraction. In other words, the energy
returned to the soliton in the case of quasi-resonance was not
sufficient for the soliton to break out of the attraction sphere
of the impurity.

It may be said that in the sG-equation with an impurity
(73), following a similar discovery with the GLH equation, a
very beautiful effect of resonant reflection of soliton from an
attractive impurity was observed.

4.8 Behavior of kink in the /1¢‘21 theory near

an inhomogeneity. Interaction of two discrete modes
Further to Ref. [122], in Ref. [133] the problem of kink
scattering by impurity for Eqn (65) was discussed in detail.
The cases of ¢t = 0.5 and u = 0.7 were considered. Unfortu-
nately, the case of u = 0.3, treated more thoroughly in Ref.
[122], was left out in Ref. [133]. Because of this, it is not
possible to compare quantitatively the results of the numer-
ical calculations obtained in Refs. [122] and [133]. The main
features of the interaction between kink and impurity, found
earlier in Ref. [122], were confirmed in Ref. [133]: the
existence of the critical velocity, the scattering windows and
the passage (three-bounce) windows.

Greater attention, however, was paid to the problem of
the actual path of the kinetic energy of the kink interacting
with the impurity. While in Ref. [122] the excitation of the
discrete mode of the impurity was not discussed, in Ref. [133]
a quantitative analysis was carried out to determine which of
the discrete modes is excited more strongly. It was found that,
both for V' > V. and for scattering windows, the energy
transferred to the discrete mode of kink excitation is greater
than the energy used for exciting the discrete mode of the
impurity.

In the present case, unlike the sG-equation with an
impurity (73), the linear relation for the time between two
bounces and the period 7 of the high-frequency field
oscillations at the location of the impurity (81) more or less
holds, but is far from establishing a correspondence between
the value of T and the period of the discrete mode of the
impurity. For example, for g = 0.5 the empirically found
value is T = 5.30, which is closer to (and even slightly greater
than) the period 7} = 2n/w; = 5.13 of the discrete mode of
the kink excitation, while the period of the impurity mode is
much lower, Timp =2n/d =4.75. On the strength of this
result, the authors of Ref. [133] claimed that in the iq’)‘zl theory
the discrete mode of kink excitation is more important for the
mechanism of the RRE than the discrete mode of the
impurity. Unfortunately, the possible causes of T being
greater than 7 were not discussed in Ref. [133].

At the same time, the numerical data indicated quite
clearly that in some cases the excitation of the discrete mode
of the impurity strongly affects the behavior of the solution in
the region of the bounce windows. For illustration let us turn
to Fig. 16, where one readily detects the amplitude modula-
tion of the high-frequency field oscillations at x = 0 between
the two bounces. It seems, however, that the most conspic-
uous consequence of the interaction between the two modes is
the absence of some bounce windows, corresponding to
certain values of n, in the spectrum of windows. For
example, no bounce windows were found for u = 0.5 at the
anticipated velocity values V7 and Vs. Instead, quasi-
resonances were observed with a large time 7T»3; between the
second and third bounces, followed by the capture of the kink
by the impurity. In addition, it was found that the final
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Figure 16. Amplitude modulation of the impurity displacement in a high-
order resonance, V; = 0.3111 and ¢ = 0.7.

velocity in the bounce windows decreases upon approaching
the region of quasi-resonances.

This phenomenon may be regarded as evidence in favor of
the mechanism of resonant energy transfer into both discrete
modes. At the same time, the return of energy into the kinetic
mode of the kink at the second bounce is not phased for the
two modes, which for certain initial velocities may lead to a
situation where the energy acquired by the kink at the second
bounce is not sufficient for escaping from the sphere of action
of the attractive potential. Observe, however, that the
discovered pulsations can only tentatively be associated with
the superposition of the two discrete modes, since a spectral
analysis of the problem was not performed.

It would be interesting to note also that for ¢ = 0.7 in Ref.
[133] the frequency of the discrete mode @gjsc = 1.2288 is
rather close to the frequency w; = 1.2247 of the discrete mode
of kink excitation. Unfortunately, the most interesting case of
coincident frequencies has not been discussed in the existing
literature.

Observe finally that the solutions were analyzed in Ref.
[133] in the context of the effective Lagrangian which took
into account the possible excitation of both discrete modes in
addition to the potential interaction between the kink and the
impurity. It was possible to reproduce qualitatively the main
features of the field problem. In particular, the quasi-
resonances discussed for the exact problem were found —
that is, the absence of resonance scattering windows for
certain values of n.

5. Time-dependent many-dimensional solutions

5.1 Domain walls, bubbles, and such like

As is known, the field-theory models with spontaneous
symmetry violation have been used to construct the unified
theory of weak and electromagnetic processes [2, 3]. Cosmo-
logical problems of spontaneous symmetry violation have
been considered by many authors (see Ref. [134]).

The tentative domain structure of a vacuum and its
cosmological implications were discussed in Ref. [25]. The
theory for the real Higgs field [1] was considered, and the
discussion was concerned with what happens with the
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solutions in the presence of regions belonging to different
vacuums ¢, and ¢_. As is known, in the one-dimensional
case there is a topologically stable solution — a kink which
links the vacuums ¢, and ¢_. A similar solution in the three-
dimensional case, not depending on y and z, is a domain wall.
The additional energy associated with the transition from one
vacuum to the other is localized on the wall. If, however, one
of the vacuum solutions is contained within a restricted
domain, the stable stationary solutions are not realized. As a
matter of fact, the energy of the domain configuration turns
out to be proportional to the area of the domain surface:

E=uS. (82)

As a consequence, the system tends to reduce its volume, and
the solution becomes non-stationary. The evolution of a
spontaneously formed spherically symmetrical domain was
studied in Ref. [25]. Assuming that the wall / is narrow
compared with the dimensions of the domain, the following
equation of motion for the domain radius R(#) was proposed:

2(1 — R?)

R=— 83
=, (83)

which follows from the effective Lagrangian
L(R) = —4muR*(1 — R?)™'/? (84)

(see also Ref. [26], in which this treatment is applied to the
case when one of the vacuums is metastable). The analysis of
Eqn (83) reveals that the vacuum bubble, whose initial radius
is Ry, starts to collapse. The time of collapse is 7= 1.3Ry,
which means that the walls of the bubble are moving at nearly
the speed of light. The eventual fate of the bubble, however, is
not clear, since Eqn (83) no longer holds when R ~ /(the wall
thickness).

5.2 Discovery of pulsating solutions

The subsequent fate of the bubble was first investigated in
Ref. [135]. Special attention was paid to the fact that the
solution of Eqn (82) for the collapsing bubble at large times
leads to a periodical solution for the bubble radius R(7):

i,

R 2 (85)

R(t) = Ry cn(

where cn(z, 1/2) is the elliptic cosine modulo 1/2. Accord-
ingly, if Eqn (82) is at least an approximation of the solution
of the exact field problem, one could hope that at some point
the collapsing bubble could start to expand. In Ref. [135] this
hypothesis was checked by studying the Cauchy problem for
the equation

Uy — Upy — - U = —4u(u2 -1 (86)
with the initial conditions
u(r,0) = tanh[V2(r — Ro)],  u,(r,0)=0. (87)

It was found that the collapse of the bubble with an initial
radius Ry = 5 if followed by its expansion, is in agreement
with the solution (85). The results of Ref. [135], however,
could not be regarded as convincing proof of the existence of
pulsations, since the energy integral was poorly conserved in
the numerical simulation of the problem.

Shortly afterwards, a problem in the same formulation
was solved numerically with better accuracy [136]. The
pulsation of the bubble, observed in Ref. [135], was generally
confirmed. The higher accuracy allowed the studying of both
the evolution for longer times, and some important details of
the evolution. It was found that the anticipated bounce
pattern is realized not for any value of the initial bubble
radius Ry. The most regular bounce pattern was observed at
Ry = 3.875 (the results are quoted in units adopted in Ref.
[135]). This value of Ry corresponded to five periods of almost
elastic pulsations; after the sixth swing, however, the solution
started to fall apart rapidly into individual spherical layers. At
other initial values of Ry the energy loss by radiation after the
first expansion was much greater. Figure 17 shows the time
dependence of the energy localized in the bubble for the
radius of maximum expansion of the bubble. At Ry = 2.5, 3.5
and 7.5 no bubbles were observed which pulsated steadily
several times.

| | I
0 100 200 300 t

Figure 17. Time dependence of the energy of the bubble for different initial
values of Ry (Ry = 2Ry).

At the same time, in Ref. [136] it was found that the
collapse of a large-radius bubble is followed by the formation
of a pulsating solution in the center of the bubble, with an
amplitude of field oscillations of the order of unity, and a
lifetime of about a hundred periods of oscillations.

The study of large-radius solutions, started in Refs [135,
136], was continued in Ref. [54]. The range of the initial values
of bubble radius where the occurrence of repeated pulsations
was likely (3 < Ry <5) was carefully investigated. The
elasticity of the collision was found to depend strongly on
the initial value of Rj, and the energy loss is the least when
Ry = 3.8. Then the ratio R; /Ry is close to unity, being equal
to 0.98. Pulsating solutions of large radius R = 4 were also
studied in Ref. [137].

Finally, the results of detailed investigation of the field
function in the most elastic case, Ry = 3.875, were reported in
Ref. [138]. The time dependence of the solution indicates
clearly, that in addition to the large-radius and large-
amplitude pulsations of the bubble, the solution also
describes oscillations near r = 0 with amplitude of about 0.7
with respect to the lower vacuum u_ = —1, whose frequency
is several times that of the pulsations of the bubble. This is
also confirmed by the time evolution at the origin at
Ry = 3.875, shown in Fig. 18. The repeatedly collapsing
bubbles are regarded in Ref. [138] as a decaying resonant
structure. A similar behavior of large-amplitude pulsating
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u(0,1)
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Figure 18. Time dependence of function u(0, ¢) for Ry = 3.875.

solutions was also discovered for the spherically symmetrical
sG-equation [48, 137].

Attention in Ref. [139] was paid mainly to further study of
the properties of ‘pulsons’, associated with the collapsing
bubbles of the GLH and sG-equations. Differently from the
former statement of the problem, the initial solution for the
sG-equation

—Au+sinu=0 (88)
had the form of spherical bion,
4. ¢ (1 _ 212
u(r,0) = 4arctan oooshar? @ (I1—¢7)"7, (89)

with ¢/w = 10. It was noted that three main characteristic
stages of time evolution of the solution of the sG-equation
can be distinguished. At the first stage (r=20—200) the
pulson is formed, and half of the energy is lost by radiation.
The profile of the function varies quasi-periodically, with a
period T=7.4. At the second stage (f=200—630) the
amplitude of the pulson is clearly modulated with a period
Tmoa = 107, and falls off slowly from 2n to 4n/3. The
evolution of the full-fledged pulson practically does not
depend on the selection of the initial conditions. After
T = 630 the large-amplitude pulson rather rapidly (within
At ~ 80) emits a large part of its energy as spherical waves
and transforms into another pulson, whose amplitude is
small compared to unity.

The dynamic behavior of the pulson of the GLH equation
is similar to that of the pulson of the sG-equation, although at
the second stage of evolution the shape of the pulson of the
GLH equation is asymmetrical, and the modulation of the
solution is more pronounced. At the third stage the amplitude
decreases rapidly from 1 to 0.2 over a time Az ~ 300.

Observe finally that ‘heavy pulsons’ were found numeri-
cally for the sG-equation in Ref. [140]. By contrast to the
pulsons of the sG-equation discussed above, whose amplitude
is approximately 27, the range of stability of heavy pulsons
corresponds to an amplitude of 4%. These pulsons oscillate for
a long time, ¢ ~ 740, then their amplitude sharply decreases,
and at ¢ ~ 850 they turn into pulsons whose amplitude is
approximately 2n. This phenomenon is not observed in the
GLH theory, where the vacuum is only twice-degenerate.

5.3 Time-dependent cylindrically symmetric solutions
The time evolution of bubbles symmetrical with respect to
rotations for the two and three-dimensional sG-equation was
studied in Refs [137, 141]. The initial condition was chosen in
the form of the soliton of the sG-equation

u(r,0) = 4arctanexp[y(V)(r — R)], (90)
whose initial velocity corresponded to an expansion. The so-
called reflection effect was discovered: the initial expansion

went on to a certain radius, and then the bubble started to
collapse to R~ 1. In Ref. [142] this effect was explained
within the framework of the effective equation of motion for
the bubble radius R(¢), which in the three-dimensional case
coincided with Eqn [83] for the radius. In the two-dimen-
sional case the pulson was first discovered in Ref. [143]. It was
formed in the course of the evolution of the 2w soliton of the
sG-equation with initial radius Ry = 3. Two-dimensional
pulsons were discovered in Ref. [144] in a broader range of
initial conditions. A most comprehensive study of cylindri-
cally symmetrical two-dimensional pulsons was performed in
Ref. [145], where both the GLH and the sG-equations were
considered. For the GLH equation

1
¢rr+;¢r_¢tr:d)3_¢7 }"20, 120 (91)

solutions were studied corresponding to the initial conditions

¢(r,0) = tanh L\/ERO) . oy=(1=vH, (92a)
and
,(r,0) = — \’/I; cosh™> L\ERO) (92b)

for different initial values of Ry and V.

For the case of V= 0 the evolution of the solution was
analyzed in a broad range of values of Ry: 2 < Ry < 93. The
formation of pulsons is readily observed for small initial radii

=2 and Ry = 3. At these values of R; the pulsons have
large amplitudes and low modulation. At Ry = 3.7 the
formation of pulson is accompanied by a large loss of energy
by radiation and considerable amplitude modulation of the
pulson. In the range 4 < Ry < 33 the collapse of the bubble
did not result in a pulson, and all the initial energy was lost by
radiation. Then, a large-amplitude pulson was again formed
at Ry = 40. At Ry = 54 and Ry = 93 the wall was reflected
after the collapse down to R} =2 8 and R} = 39 respectively.
Observations reveal that at lower values of Ry (in case of
Ry = 54) the second collapse with R} = 8 resulted in the
generation of waves, whereas the second collapse for
Ry = 93 resulted in a large-amplitude pulson in the middle.
Thus, double pulsations of bubbles of macroscopic nature
were observed in the range of Ry > 54, similar to the
pulsations at 3 < Ry < 4 in the three-dimensional case.

The pulson of Eqn (91) was also studied in the arrange-
ment corresponding to the initial conditions

¢(r,0) = tanh - ;;0 —tanh T/;O +1 and

¢,(r,0) =0.

(93)

At Ry =2 the regular pulson region is formed practically
from the start of the numerical simulation. The evolution of
solutions was monitored up to the time # = 6000. Over this
time the amplitude of oscillations of the pulson decreased by
just 20%. It was found that the rate of amplitude fall-off
slows down with time. The main period of pulsations varied
slowly from 7 = 6.4 in the beginning to 7' = 5.2 at t = 6000.
At the same time, the observed period of amplitude modula-
tion increased from Tpoq =2 12 at the start to Thoq = 34 at
t = 6000.
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A similar trend with weak damping was also discovered
for the sG-equation.

We see that both equations in the cylindrically symme-
trical case give rise to long-lived pulsons, which are similar to
the three-dimensional pulsons and the bions of the one-
dimensional GLH equation. As regards the macroscopic
pulsations of the bubble, the cases of Ry = 54 and Ry = 93
studied for the GLH equation only revealed single reflections
of collapsing bubble with a considerable loss of energy.

5.4 The Kosevich—Kovalev approximation for spherically
symmetric ‘pulsons’ and the problem of stability
Cylindrically and spherically symmetrical solutions were
discovered in the two-dimensional and three-dimensional
cases for the sG- and GLH equations. They may be classified
as pulsons — high-frequency large-amplitude field oscilla-
tions localized over a short length. The second type of
solution is represented by repeated reflections of a collapsing
bubble. These solutions are only realized for certain parti-
cular initial conditions. It ought to be noted that spherically
symmetrical quasi-stable pulsons were discovered and stu-
died numerically for the nonlinear Klein—Gordon equation
(NKG) [48]:

Uy — Au4u—u’=0. (94)
They are localized weakly damped solutions with amplitude
|u| < 1. In spite of the absence of a degenerate vacuum in
the theory in question, such classical solutions may be
relevant, for example, to the problem of generation of
bubbles from the excited metastable vacuum. The possible
explanation of the reflection of the bubble after collapse was
discussed in Ref. [54] in terms of potentials. As noted, the
considerable distortion of the walls at the time of collapse,
and the strong radiation prevent the use of the potential
description suitable for the one-dimensional case (see
Section 2).

As far as the three-dimensional pulsons are concerned,
soon after their discovery for the GLH equation the
formalism for finding the small-amplitude pulsons was
developed in Ref. [47]. This formalism is a generalization of
the asymptotic Kosevich—Kovalev expansion [45] for the
three-dimensional case. The equation for the main harmonic
of the expansion of the field function (see Section 2) in the
three-dimensional case is

3 3
Apfl(O) _fl(O) +2 fl(o)} =0,

51 95)

with boundary conditions

dn”

dp =0.

p=0

fl(0> (p)—0 at p—ooo and

This equation, by contrast to the one-dimensional case, has a
countable number of solutions [50], which differ in the
number of nodes n =0, 1,2,.... In this way, the existence of
excited pulsons was predicted in Ref. [47]. Practically
simultaneously with Ref. [47], a similar method of description
of small-amplitude pulsons was applied in Ref. [48] to
pulsons of the NKG equation (94). In Ref. [48] it was
demonstrated numerically that pulsons with nodes are
indeed the quasi-stable solutions of Eqn (94). Soon the
method of asymptotic expansion was applied in Ref. [139]
to pulsons of the GLH equation; it was shown that the masses

of pulsons of the same amplitude with different number of
nodes 7 relate as

mo:myimp:...=1:2:3:4:9... (96)
Observe that the problem of stability of pulsons was
discussed in Refs [146, 147, 138] within the framework of
the exponential stability of solutions for the asymptotic series
of functions in the Kosevich —Kovalev expansion.

The analysis of the three-dimensional situation in Ref.
[138] revealed the zones of exponential instability which,
however, are hard to interpret in terms of the amplitude
dependence of the pulson.

In Ref. [54] it was noted that the Kosevich—Kovalev
expansion by definition does not include the terms exponen-
tially suppressed with respect to their amplitude ¢, like

du ~ exp(fg) ,

where ¢ is a certain constant. Such terms could have been
responsible for the emission of waves from the pulson. As is
known, in the one-dimensional case [55] the non-exponen-
tial corrections to the Kosevich—Kovalev expansions for
the bion of the GLH equation were actually found (see
Section 2). Shortly afterwards the exponentially damped
dependence of radiation was confirmed in the letter [148] by
estimates based on the perturbation theory applied to the
deviations of the bion from the breather of the sG-equation.
To our knowledge, the energy loss by a pulson in the three-
dimensional case has not been discussed in this aspect.

©7)

5.5 Interpretation of solutions of pulsating bubble type.
Resonant structures

Recall that in the one-dimensional case it was possible to give
a quite consistent interpretation of the solutions found in the
bounce windows, much different from the bions. In the three-
dimensional and two-dimensional cases the situation with the
resonant reflection of the collapsing bubble is not that clear.
An attempt to calculate the radiative energy loss by a
collapsing bubble for the sG-equation was made in
Ref. [149], treating the term (2/r)¢, as a perturbation. This
approximation, which holds for the early stages of collapse, is
certainly not valid when the dimensions of the bubble are
comparable with the size of the wall. Recall that in the
numerical experiments the radiation at the time of collapse
is the most important.

In Ref. [150] the problem of collapse of the bubble of the
GLH theory was considered on the basis of an approximation
(linearized with respect to ) which characterizes the
deviation of the exact solution from the kink:

¢(x, 1) =tanhz + y(x, 1),

where || < 1. Attention was paid to the fact that the
spectrum of the kink excitation in the (1 4 1)-dimensional
case includes a discrete mode. The energy spent on excitation
of this mode is not converted into radiation. Because of this,
the collapse of the bubble of the A¢* theory at the stages of
large bubble size must proceed slower than the collapse of the
bubble of the sG-equation. Unfortunately, this statement was
not proved by comparing the rates of bubble collapse for the
two equations.

The study of solution of the (3 + 1)-dimensional GLH
equation in Ref. [54] in the region of repeated reflection of the
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bubble (Ry = 3.875) revealed that the reflection in the region
of small values of r ~ 1—2 gives rise to a pulsating solution.
By analogy with the multiple resonance windows (see Ref.
[86]), a conclusion was drawn in Ref. [138] concerning the
existence of a resonance relation between the period of
oscillations of a bubble of radius Ry and the period of a
pulson of small amplitude ¢. The lifetime of this state was
estimated in Ref. [151]. Apparently, the formation of the
reflection zone in the two-dimensional case for the GLH
equation is also associated with the emergence of a pulson as
indicated in Ref. [145]. At the same time, the resonant
reflection of the collapsing bubble takes place for the
spherically symmetrical sG-equation [139], which is an
indication that the excitation of the discrete mode of an
antikink of the A¢* theory is of minor importance.

The situation with many-dimensional pulsating solutions
is not as clear as the one-dimensional case. As far as the
pulson of small amplitude of the order of unity is concerned,
its existence and long lifetime are well established. In all
likelihood, the spherically symmetrical pulson is the counter-
part of the bion of the GLH equation in the one-dimensional
case (see Section 2). At the same time, the observed peculia-
rities of emission of radiation by pulson at different stages of
its evolution are not quite clear. The developed technique of
finding asymptotic small-amplitude solutions is not yet
capable of explaining the last rather fast stage of the
disappearance of the pulson as observed in numerical
experiments. The problem of large resonant oscillations of
the bubble with the nascent pulson calls for further research.

6. Time-dependent non-topological solutions
of equations of charged fields

6.1 Q-balls: soliton solutions of
complex scalar field equations
As mentioned above, the existence of conservation laws in
addition to the conservation of energy and momentum lifts
the ban on the existence of stable solitons which follows from
the HD theorem [17, 18]. The first attempt to find stable
three-dimensional solitons in the class of complex scalar
fields with self-action was made in Ref. [28]. With this
purpose, the Lagrangian for a complex massive scalar field
with four-boson attraction was considered:
2
—mt e Lt

L=Y¥ —VPVP* 5

(98)

The solutions of the equation of motion for the field ¥ were
sought in the form

P(r,1) = $(r) exp(~ion), (99)
where w is a certain fixed frequency of the global phase of the
field. The Lagrangian being invariant with respect to the U(1)
transform ¥ — exp(—if)¥, the equations of motion con-
serve the integral of motion (the charge):

Q:—inDx('f"P,*—Y’*EP,). (100)

Accordingly, the HD theorem does not literally apply to such
fields, and therefore the solutions may be stable with respect
to variations of the fields as long as the charge is conserved.

However, no three-dimensional stable solutions for the
Lagrangian (98) were obtained in Ref. [28]. Stable soliton
solutions for complex fields were soon found in Ref. [152] for
a Lagrangian different from Eqn (98), which included the six-
boson repulsion:

s,czgwflp*ﬁ. (101)
It was found that for the values of the parameter
B = um?*(1 — @*)//? which fall within the interval

0<B<i

= (102)

(& = w/m), the corresponding equations of motion admit
stable soliton solutions. In this way, the stability of soliton
solutions for charged fields is not necessarily realized at all
values of the parameters of solitons: the solitons may be
stable at some values of charge and energy, and unstable at
others.

An important contribution to the study of solitons in
systems with charged fields was made in Refs [153—156].
These problems having been treated in numerous reviews (see,
for example, Refs [29, 15, 157, 158]), we shall confine
ourselves here to just a brief listing of the main results,
paying more attention to those issues which are not covered
in the above papers.

In the general case, the charge Q in Eqn (100) is linked
with the frequency w by the following relation:

Q:wa¢2(r)dr. (103)

For a sake of definition, we are going to consider theories
with a self-action potential U(]¥|) which have the following
property:

U—mP¥P* at  |¥|—0, (104)

where m? > 0. In terms of the field ¢(r), the equation of
motion takes the form

2
Vo +otp - S0 -0,

(105)

which may be interpreted as the equation for the scalar field ¢
with the potential

(106)

The condition of existence of a soliton for this problem may
be formulated as follows: if in the space of any dimensionality
there is a range of values of the field ¢ such that
U(¢?) — m*¢* < 0, then a non-topological soliton solutions
exist for values of w in the range

oLy < <t (107)

where wp, 1S found from the condition that the functions
U(¢) and wfnin¢72 have one point of contact ¢,. The soliton is
then a spherically symmetrical solution which has maximum
at its center and falls off exponentially at large distances:

¢~ (m* — ?)'? exp[—(m* — a)z)l/zr} . (108)
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The particular solutions at all distances depend on the form
of the potential, and in the three-dimensional cases are found
numerically. Analytical solutions for certain potentials are
only known for the one-dimensional case. For example, for
the potential

J
U(¥F) = e 5 1t e (109)
the function ¢(x) has the form [29, 159, 160]
m -
() == (1= %) gy(), (110)
where ® = w/m, 0 < o <1, ¢ =kx(1 — (2)2)1/2, and
do(&) = 2v/3 (acosh’ & — bsinh? &) '/2 | (111)

a=3+(9-48B)"> b=3—(9-48B)"/?,

2
pum ~2\1/2 3
B=—(1- B<—.
AR T:
Observe that at frequencies @? — w2, the shape of the

soliton becomes trivial and weakly depends on the model of
the potential. Indeed, squaring the equation of motion in the
stationary case for the field ¢, we get the equation

d[1/dg\’ v D—1 (d¢\*

dr [2 (dr) (¢)] N r (dr) '
In the case D = 1 this equation may be treated as the motion
of a point with coordinate ¢ at time r in the potential —V(¢).
At D > 1 the right-hand side may be regarded as friction.
Since at w? — w2. the ‘potential’ V(¢) at the point ¢,
touches the axis of abscissas, the point placed at ¢(0) =2 ¢,
will for a long time remain near its initial position. This means
that the field ¢ = ¢, inside the soliton is constant, and its size
R becomes large. Since a nonzero field ¢ = ¢, inside a sphere
corresponds to the constant charge density Zwmm¢2, this
solution may be regarded as a ‘charged’ sphere — termed a
Q-ball by Coleman [156]. The existence of such a solution as
this charged macroscopic ball has many applications which
will be mentioned below.

(112)

6.2 Stability of Q-balls with respect to large perturbations
Charged solitons are not the only type of solution in the class
of fields under consideration. Solutions of the plane wave
type also carry a charge. In view of this it would be interesting
to find which of the solutions with a given charge has less
energy — that is, which of the solutions is stable. In the one-
dimensional case the solution normalized to the charge Q in
the region of the size L is

0\
Y= (m) exp(ikx — iw?) . (113)

As L — oo the nonlinear effects can be disregarded, and in
this approximation the dispersion law for the solution (113)is

o* =k . (114)

It would be interesting to note that w® > m? for plane-wave
solutions, but w? < m? for solitons. Observe that for the

soliton solution the following relation holds:

dE
. 11
0= (115)
When w? — m?, the charge Q of the soliton in the one-
dimensional case tends to zero by virtue of the asymptotic
relation (108):

Q:Za)Jd)Q(x)de(mszz)l/z. (116)

By contrast, the charge of the system increases when
w? — 2., and up to terms of the order of O(1), the

followinlgl}elation holds:
E:wminQa (117)

which defines the ultimate slope of the curve E(Q) for the
soliton at large values of Q.

Thus, if the theory admits a soliton in the one-dimensional
case, the soliton will exist for any value of the charge Q. Its
energy is then less than the energy of the plane wave with the
same charge Q. In this sense the soliton solution may be
considered stable with respect to disintegration into solutions
of the wave type.

The situation is not that simple when the dimensionality
of the problem is higher. When w? — m?, the charge of the
system, as different from Eqn (116), is

const at
o~ {

00 at

D=2,

D>3. (118)

The most complicated situation is encountered when the
number of dimensions is D = 3. Then the energy of the
system is a two-valued function of the charge Q. When
w® — m?, the charge O — oo, and the energy E ~ Qm. The
difference £ — Qm is positive, which means that the upper
branch of the soliton solution approaches the plane-wave
limit £ = Qm from above. As o decreases, the graph E(Q)
goes to the point C, which lies above the plane-wave straight
line E = Qm by virtue of Eqn (115). As o continues to
decrease, the energy and the charge increase in accordance
with the lower branch. At > — 2, the charge Q again goes
to infinity. Then the ultimate slope of the function E(Q) is
defined by Eqn (115) with @ = wy,. The function E(Q) has
two critical points: a cusp-type singularity (point C), and the
point of ‘absolute’ stability S. There are no soliton solutions
for O < Qc. For Q > Qs the lower state in terms of energy is
always a soliton. This state cannot fall apart into waves, and
in this sense is absolutely stable. Neither can it split into two
solitons with smaller charges (fission) because the curvature
of the solution is 9 E/dQ? < 0. At the same time, the segment
CS of the lower branch is unstable with respect to disintegra-
tion into plane waves.

The above analysis of stability is not quite consistent. On
the one hand, the analysis reveals that the soliton cannot
break down into plane waves if the energy of the plane-wave
solution is large. On the other hand, it is not quite clear
whether or not the soliton and the plane wave are separated
by a barrier in the space of field configurations. Observe also
that other charge-carrying field configurations are also
possible in principle — for example, a singular solution
contracting into a point. Stability with respect to disintegra-
tion into such configurations has not been discussed. In this
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regard the study of stability with respect to small deforma-
tions is more consistent.

6.3 Stability of Q-balls with respect to small deformations
Let us first consider the problem of the stability of the soliton
solution in the one-dimensional case, using the example of the
self-action potential (109) the soliton solutions for which are
known in analytical form [28, 152, 159, 160]. The stability of
solutions is determined by the time dependence of a small
deviation 8¥(x, f) from the soliton solution ¥y(x, ?):

Y(x,1) = Vo(x, 1) +0¥(x,1). (119)
By assumption, 8% (x, ) is small — in any case, at the early
stage of evolution, and the function Yo(x,7)=
exp(—iw?)¢y(x) is given by Eqn (110), (111). It is convenient
to represent the function 8¥(x, ¢) in the form

8 (x,1) = n(x) exp[—i(Q + w)t] + x*(x) exp[i(Q* — w)1],
(120)

where Q = Q. +iQ; is the complex parameter which is to be
defined. Linearizing the equation of motion with respect to
d% and 8", we obtain a set of linear differential equations in
the functions 7(x) and y(x), which is conveniently repre-
sented in matrix form

[VI—2vD — H(&)]{(¢) =0, (121)
where v = Q(1 — @)"/?, @ = Q/m; I and D are the diagonal
and the antidiagonal matrices of differential operators:

2
Hi(8) = =+ 1= 363(0) + SBC).
2
Hanld) = — 5+ 1= 43(0) + B0, (122)
The eigenfunctions are
C:<’j “) (123)
n =X

where the functions 7,  differ from #, x in the argument.
Now, if Q; # 0, then 3¥(x, ) will grow exponentially with
time and destroy the solution ¥(x, ), which means that Q,”!
is a measure of the ‘disintegration time’ of the soliton. As
found in Ref. [160], if the solutions {(£) are sought in the class
of continuous and limited functions, such that IC (dé < oo,
then the behavior of @; and Q, as functions in @ on the
interval 0 < @ < 1 is quite unambiguous. For any value of
the parameter B in the interval (102) there is a critical
frequency @, 0 < @ < 1, such that for @ > @ the
eigenvalues of Q are entirely real (the corresponding solitons
are stable), and entirely imaginary below the critical fre-
quency. The graph of ©; and Q; versus @ is plotted in Fig. 19.
At o — 1 the real values decrease, and . = 1 — @. The
existence of the real frequency @, points to the presence of a
discrete mode in the excitation spectrum of the soliton. In the
case of @ — 1, which corresponds to the nonrelativistic limit,
this discrete mode apparently corresponds to the known
bound two-soliton state for the NSE, found in Ref. [161] for
a particular relationship between the parameters of the
problem »? > 13 (in the notation of Ref. 161]). A relevant
remark can be also found in Ref. [162].

Figure 19. Real and imaginary eigenvalues of problem (121) as function of
o for different values of B.

The existence of the critical frequency @, clearly demon-
strates the importance of the infinitesimal analysis of stabi-
lity. Indeed, global analysis in the one-dimensional case tells
us that the soliton is stable with respect to disintegration into
plane waves. Now we see that the soliton is exponentially
unstable at @ < @;.

As follows from Ref. [29], in the three-dimensional case
the entire lower branch of the soliton solution is stable with
respect to small perturbations. Certain issues of stability of
charged solitons in three-dimensional cases have also been
discussed in Refs [163, 164].

6.4 Renormalizability of theory and Q-balls

The discovered stable solitons in the three-dimensional cases
exist in a much broader range of theories than discussed
above. Indeed, the requirement that the potential V(¢) in
Eqn (106) should be negative has made it necessary to
consider theories with self-action in at least the sixth degree.
In D = 3 such theories cannot be renormalized. However,
there are examples of renormalizable theories which admit
solutions of the Q-ball type. One such example was discussed
in Ref. [153]. This study was concerned with a system of
interacting scalar fields y and ¢, the former being real and the
latter complex. The Lagrangian of the theory in question is

1
L=0,¢"d"p+5 "0, — 10"~ Uln),
where the self-action of the field y has the form of the Higgs

self-action:

1
Ulx) =g €0 - L) -

(124)

(125)

In the vacuum state, the field y imparts a mass of m = fy,,. to
the field ¢. The search for soliton solutions is associated with
the substitution

X(r’ [) = XvacA(p) b

(126)

b(r.1) = % Foac B(p) exp(—ie)
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where p = gy,..r- Then for the functions 4 and B we get a
system of coupled differential equations

1
V’4 - #*B*4 —E(A2 —-14=0,

V2B — %2 A’B+v*B=0

(127)

with the boundary conditions d4/dp = dB/dp =0 at p = 0;
A — 1, B— 0atp — oo. As was defined for the system (127),
v =(0/g)Yyac> and % = (m/g)yyac- Numerical analysis indi-
cates that solutions with the specified boundary conditions
exist, and the energy of the system as function of the charge
behaves like E(Q) in the three-dimensional case.

6.5 Q-lumps
An interesting variety of Q-balls, which displays features of
topological solitons, is represented by the so-called Q-lumps
discussed in Ref. [165]. They exist for the modified o-model in
(2 + 1)-dimensions.

Consider a triplet ¢ = {¢;, ¢, d3}, d* =1 (the field ¢
takes on values on the sphere of unit radius). The Lagrangian
describing these fields is

71 1 _1 42
L= 0,00~ (1 ¢3). (128)

The finite-energy solutions at large distances must comply
with the asymptotics ¢; — 1. Thus, a point with the
coordinates (x,y) is mapped into the space of fields,
Sszpace - nglclcls' . .
The solutions are characterized by the degree of mapping
N of sphere into sphere (that is, by the topological charge N).
In terms of the newly-introduced complex function u =
(¢, +1i¢,)/(1 — ¢5) we have the Lagrangian
L = [8,ud"a+ o?ui| (1 + uit) >, (129)
and the equations of motion follow from this Lagrangian. In
terms of field u the topological charge N and the charge Q are

1 _ _ _\-2
N = EJ[GW Oyt — Oyu 6Xu] (1 + uu) d%x, (130a)
Q:i[[aa,u—ua,a](l + uit) 2 d%x . (130b)

Using the explicit representation of the energy, N, and Q, one
may prove the following inequality:

E = 2n|N| + |«Q| .
For given N and Q, the lowest value of energy is attained
when the function u satisfies the following conditions:

aiu + iaiyaju = 0,

Outiou=0

(131a)
(131b)

(i=x,y). The first of these, as in the case of pure O(3)-
symmetry, defines the dependence of u on only z = x + iy or
z=Xx —1y — that is, u is an analytical function. Then the
equation defines the time dependence of the solution:

u(z, t) = up(z) exp(Fior) . (132)

The expression (132) is the general solution. The simplest
solution with a given topological charge N has the form

AN
u(z, 1) = (7> exp(iot), (133)
zZ
and its energy is
2m2o2)?
E=2nN+—-—. 134
v NZsin Nn (134)

Observe that the energy is only finite when N > 2.

6.6 Q-ball type solitons interaction

Problems of the interaction of Q-ball type solitons in the one-
dimensional case were discussed in Refs [166, 30, 162, 151,
67]. In Ref. [162] the one-dimensional version of the A|¢|"
theory (n =4) was considered defined by the Lagrangian
(98). In this case the theory admits a one-soliton solution

2
s = (m* — )" exp(—iwr) cosh™! [x(m? — 0?)'/*]
(135)
which is stable at
1
O <OEmM, Og=——. (136)
V2

When o is close to m, m — w < m, the numerically studied
scattering of two solitons is almost elastic. This is due to the
fact that when w» — m the situation is close to nonrelativistic,
and the equation of motion for the field ¥ can be reduced to
the NSE, integrated by the MISP. The scattering of solitons
for the NSE is elastic [12]. It is interesting to note that the
interaction of solitons of opposite signs [that is, the interac-
tion between soliton (S) and antisoliton (A)] was also found
to be elastic at the collision velocity V' ~ 0.3—0.4. As
demonstrated in Ref. [62], the elasticity of interaction ought
to be violated at low velocities, when the time of interaction
between the solitons satisfies the condition

fint ~ m(’nz - w2)71/2

= fehar - (137)
When ¢ < fchar, the interaction of solitons may be neglected.
In the extreme case of zero velocity, a quasi-stable bound
soliton —antisoliton state was found in Ref. [166]. As far as
the SS collisions are concerned, the almost elastic collisions
at high velocities give way to instability and inelastic
collisions at low velocities. Numerical simulation reveals
that there is a certain critical velocity V., below which the
solution is changed dramatically. When solitons collide (in
the case of SS collisions [162], or SSS collisions [67]), the
function |¥(x,7)| near x =0 exhibits a tall narrow peak.
Because of the absence of a positively defined potential of
self-action in the case in question, a further increase in the
field amplitude at x =0 becomes energetically advanta-
geous, and the two-soliton (or three-soliton) solution
becomes singular.

However, in a narrow range of velocities near V¢, a bound
long-lived two-soliton state was discovered [162]. A similar
phenomenon was observed in Ref. [67] for the SSS system. In
case of the SS system with @ = 0.95, the critical velocity was
Ver 22 0.240. SS collisions with =2 0.255 result in ordinary
scattering of solitons. The study of a process with V' = 0.250
revealed that the solitons do not pass through one another,
but stick together. The behavior of the field ]‘1’(0, f)| in this
case is shown in Fig. 20. Apparently, the existence of large
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Figure 20. Function |‘P(0, t){ in the oscillating regime: w; = w, = 0.95;
Vi =V, =0.250.

period oscillations is associated with the solitons having a
discrete excitation mode in the region of exponential stability
[160].

7. Conclusions

Speaking of the practical applications of the results discussed
above, we shall first of all mention the problems of cosmology.
In this connection we refer to the studies [25—27, 135, 54],
concerned with domain structures in a degenerate vacuum,
their interactions and the formation of bubbles in both planar
and curved space [167]. As pointed out in Ref. [168], such
vacuum bubbles in the theory of the interacting complex
scalar field 2|¢|® and electromagnetic fields with due account
for gravity lead to the formation of black holes. In Ref. [169]
the interaction of broad domain walls with gravity taken into
account resulted in the collapse and formation of black holes.
The behavior of solitary soliton-type waves for scalar fields or
systems of scalar and complex charged fields was considered
in inflational cosmological models [170—172].

In astrophysics, the solutions of Q-ball type are widely
used for describing boson stars [173, 174]. The possibility of
the unconventional annihilation of such extensive objects
upon collision was noted in Ref. [162].

One of the sciences which make use of the phenomena
discussed in this review is solid state physics. Here the
formation and interaction of domain structures occur quite
naturally [92]. The details of interaction of solitary waves in
dynamic systems simulating solid-state problems can be
found in Ref. [175]. To give an example, we refer the reader
to Section 42, Chapter VIII in Ref. [175], where soliton waves
in Peierls systems and the pinning of kinks in the A¢* theory
are considered. The theory of superconductivity in *He also
allows for the existence of nontrivial topological objects (see
Chapter V in Ref. [176]).

It ought to be noted that the phenomena under considera-
tion are by themselves a beautiful example of fractal
structures (see also review [177]).

Some relevant mathematical aspects are considered in
Ref. [178]. The linkage between the nonlinearity of processes
with dynamic behavior and information theory was discussed
in review [179].

The problem of the domain structure of a vacuum was
first formulated in the paper by Ya B Zel’dovich, I Yu
Kobzarev and L B Okun’ [25], and was discussed at length

at the seminars of the Theoretical Department of the Institute
for Theoretical and Experimental Physics. In the same paper
the evolution of the domain bubble was discussed for the first
time. Further research of I Yu Kobzarev and his colleagues
was concerned with the detailed study of the evolution of
domain bubbles. This review is in homage to the memory of
I Yu Kobzarev.
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Glossary

Kink (loop, twist) — a term used historically (in the meaning
of loop) for a special solution for a circular pendulum; in the
meaning of twist, the time behavior of the phase of this
solution defines the profile of one-soliton solutions for the
sG-equation. Subsequently, all stationary solutions of non-
linear equations of a similar profile (with a twist) came to be
referred to as kinks. The exception is the sG-equation, where
the term ‘soliton’ is more common.

Q-ball — a spherically symmetrical solution for charged
scalar fields. A term coined by Coleman [156]. The solution
appears as a sphere of radius R and charge Q. Later this
definition was used for a broad class of soliton solutions with
the additional conservation of an integral of motion like U(1)-
charge.

Q-lump — a topologically nontrivial solution of Q-ball
type. Carries simultaneously conserved topological charge
(N) and conventional charge (U(1)).

Toda chain [125] — a model of a one-dimensional discrete
chain of atoms with an exponential interaction between
closest neighbors. Initially used for studying the propagation
of shock waves.

Lyapunov index — functional defined on the set of
functions { f(¢)} and given by

Alf] = lim B ln|f(t)}] .
1—00

The positive Lyapunov index for {f(¢)} = {exp Ar} implies

the exponential divergence of any two initially close points in

the phase space of a dynamic system.

Breather — a general name for localized solutions of
differential equations with time-periodic amplitude. First
used for a special solution of the sG-equation.

Bion — a breather in the (1 4 1)-dimensional problem,
arising as a bound state in the kink-antikink system.

Triton (wobbling kink) — an oscillating kink; a localized
excited state of a kink, first discovered in collision of three
kinks.

Bounce window — a term used for the solution in the
region of resonance reflection windows. Bounce windows are
distinguished by the number of bounces; for example, a two-
bounce window, etc.

Pinning of a kink — the capture (trapping) of a kink
(dislocation) by an inhomogeneity.
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Quasi-closed orbits — a representation in the phase space
of solutions of equations of motion for the effective
Lagrangian (the case of bounce windows)

Pulson — a spherically symmetrical breather for D > 2.

Resonant structure — a bound state of bubble and pulson
resulting from the first collapse for D = 2, 3 at certain initial
radii of the bubble (R = /).

Fluxon — a quantum of magnetic flux described by the
soliton of the sG-equation.

Abbreviations

KdV — Korteweg —de Vries (equation)

NSE — Nonlinear Schrédinger Equation

sG — sine-Gordon (equation)

GLH — Ginzburg— Landau—Higgs (equation)
MsG — Modified sine-Gordon (equation)
DsG — Double sine-Gordon (equation)

MISP — Method of Inverse Scattering Problem
HD — Hobbard — Derrick (theorem)

KK — kink —antikink (interaction)

SS — Soliton — Soliton (collision)

SA — Soliton — Antisoliton (collision)

SSS — three-soliton (collision)
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