Последующие авторы пренебрегли этим важным замечанием. Уже к работе Эйнштейна редактор русского издания [2] сделал примечание, что "формулы преобразования выводятся проще прямо из условия" шарообразной формы волны, как это описано выше (см. [2], с. 146). Да, проще, но обходя физически неясное. Этот метод распространился всюду. Даже в замечательном курсе Л.Д. Ландау и Е.М. Лифпица, на котором выросло несколько поколений физиков, сделано то же самое, и множество физиков удовлетворяется этим простым выводом, не задумываясь о физическом смысле сокращения и замедления. Они убеждены, что это эффекты кинематические ("просто наблюдаем из другой системы координат"), и динамика здесь не при чем.

Разумеется, сам Ландау понимал все прекрасно. Это видно хотя бы из его замечательной гидродинамической теории множественного рождения частиц при соударении ядер ультрарелятивистской энергии: лоренц-сжатые в тонкие лепестки эти ядра, столкнувшись, в системе центра инерции останавливаются, но не становятся мгновенно шарообразными, как "полагается" покоящимся, а, взаимодействуя друг с другом, постепенно расширяются и образуют цилиндрическую сплошную среду, распространяющуюся в обоих направлениях.

Отсюда урок всем лекторам, популяризаторам и авторам курсов специальной теории относительности: не замалчивайте этот сложный динамический процесс.

Список литературы

- 1. Фейнберг Е Л *УФН* **116** 709 (1975)
- Эйнштейн А К электродинамике движущихся тел, в сб. Принцип относительности (М.: ОНТИ, 1935)
- Паули В Теория относительности (М.: ОГИЗ Гостехиздат, 1941)
- 4. Von Laue M Die Relativitätstheorie Bd.l. (Leipzig: BG Teubner, 1921)
- Lorentz H A Die Relativitätstheorie für gleichformige Translationen (Leipzig, 1929)
- Пуанкаре А Электромагнитные явления в системе, движущейся с любой скоростью, меньшей скорости света, в сб. Принцип относительности (М.: ОНТИ, 1935)
- Энштейн А Автобиографические заметки. Собр. трудов Т. IV (М.: Наука, 1967)

PACS number: 74.25.Fy

О "гигантском" термоэлектрическом эффекте в полом сверхпроводящем цилиндре

Р.М. Арутюнян, В.Л. Гинзбург, Г.Ф. Жарков

Известно, что в полом сверхпроводящем биметаллическом цилиндре под действием градиента температуры должен возникать небольшой магнитный поток, порядка $10^{-2}\phi_0$, где $\phi_0 = 2 \times 10^{-7}$ Гс см² — квант потока (см. подробнее обзор [1]). Действительно, поле в полости складывается из поля, связанного с захваченным потоком $m\phi_0$ (*m* — число первоначально захваченных квантов), и поля H_{th} , индуцированного термотоком $\mathbf{j}_{\text{th}} = b\nabla T$ (*b* — термоэлектрический коэффициент системы). Вклад, индуцированный термотоком в сверхпроводнике, оказывается сильно подавленным по сравнению с нормальным металлом. (Последнее следует из того, что в толще сверхпроводника текут два компенсирующие друг друга противотока, $\mathbf{j}_{\rm s} + \mathbf{j}_{\rm th} = 0$, см [1].) В результате связанный с термотоком поток и должен быть порядка $10^{-2}\phi_0$, а измерены [2] гораздо большие потоки, порядка десятков и сотен ϕ_0 , на несколько порядков величины превосходящие ожидаемые значения. Общепринятого объяснения этого "гигантского" термоэлектрического эффекта в настоящее время нет.

В работе [3] была высказана и затем в [4-8] развивалась гипотеза о том, что "гигантский" термоэффект можно объяснить квантовыми переходами системы, при которых число "захваченных" в полости квантов потока спонтанно увеличивается под действием термотока (т.е. происходит рождение магнитного поля в полости). Эта гипотеза вызывала, однако, серьезные возражения. Действительно, квантовое число т в полом сверхпроводнике является топологическим инвариантом (см., например, [9]) и потому может измениться ($m \to m + 1$) только за счет вхождения вихря (несущего один квант потока ϕ_0) через внешнюю границу образца. Однако, если внешнее поле отсутствует, то на внешний границе имеется потенциальный барьер [10], препятствующий вхождению вихря в сверхпроводник. Внутри же образца вихрь не может родиться по топологическим соображениям. Поэтому высказанная в [3-8] гипотеза оставалась неподтвержденной, поскольку механизм таких переходов не был расшифрован. В настоящей работе показано, что такой механизм имеется, т.е. дано обоснование гипотезы [3].

В [3] была рассмотрена модельная задача о поведении однородного полого цилиндра с внешним радиусом r_1 и внутренним r_2 в присутствии циркулирующего вокруг полости заданного нормального тока \mathbf{j}_{th} (рис. 1). Ток \mathbf{j}_{th} в модели [3], имитирующий реальный термоэлектрический ток, записывается в виде $j_{th} = b\Delta T/\pi r$, где b — термоэлектрический коэффициент системы, $\Delta T = T - T_1$, температура образца T отвечает температуре горячего спая, (см. подробнее [3]).

Пусть в толще сверхпроводника второго рода (с толщиной стенки $d = r_2 - r_1 \gg \lambda$, где λ — глубина проникновения магнитного поля в сверхпроводник) на расстоянии x_1 от границы полости (r_1) находится вихрь с потоком $\mu_1 \phi_0$ (μ_1 — вектор, указывающий направление

Рис. 1. Цилиндр внешним радиусом r_1 и внутренним r_2 , $d = r_2 - r_1 \ge \lambda$, поле в полости $\mathbf{H}_i = \mathbf{m}\phi_0/\pi r_1^2$; вихрь $\boldsymbol{\mu}\phi_0$ находится на расстоянии *x* от границы полости. Вокруг полости течет заданный нормальный термоток \mathbf{j}_{th} .

потока вдоль или против оси z цилиндра). Другой вихрь с потоком $\mu_2\phi_0$ пусть находится на расстоянии x_2 от границы полости, оба вихря расположены вдоль радиуса один за другим. Термодинамический потенциал (т.е. энергия Гиббса) такой системы записывается в виде интеграла по объему образца, который можно выразить через поверхностные интегралы (см. аналогичные преобразования в [3]):

$$G_{s}(x_{1}, x_{2}) = \mathcal{F}_{s0} + \frac{\varphi_{0}}{8\pi} \left[\mathbf{m} \cdot \mathbf{H}_{i}(x_{1}, x_{2}) + \mathbf{\mu}_{1} \cdot \mathbf{H}_{\mu 1}(0; x_{1}, x_{2}) + \mathbf{\mu}_{2} \cdot \mathbf{H}_{\mu 2}(0; x_{1}, x_{2}) \right] - \frac{\varphi_{0}}{4\pi} \left[\mathbf{m} \cdot \mathbf{H}_{th} + \mathbf{\mu}_{1} \cdot \mathbf{H}_{th} \frac{\mathcal{L}(x_{1})}{\mathcal{L}_{0}} + \mathbf{\mu}_{2} \cdot \mathbf{H}_{th} \frac{\mathcal{L}(x_{2})}{\mathcal{L}_{0}} \right] + \frac{\lambda^{2}}{4\mathcal{L}_{0}} \mathbf{H}_{th} \cdot \left(\mathbf{H}_{i}(x_{1}, x_{2}) - \mathbf{H}_{th} \right).$$
(1)

Здесь \mathcal{F}_{s0} — энергия конденсации сверхпроводника, $\mathbf{m} = m\mathbf{e}_z, m$ — число первоначально захваченных в полости квантов потока, \mathbf{e}_z — единичный вектор вдоль оси $z; \mathbf{H}_i(x_1, x_2)$ — поле внутри полости (при $r = r_1$), зависящее от положения вихрей 1 и 2; $\mathbf{H}_{\mu 1}(0; x_1, x_2)$ поле на оси вихря 1 (аналогично для вихря 2);

$$\begin{aligned} \mathbf{H}_{\rm th} &= \mathbf{e}_z H_{\rm th} \,, \qquad H_{\rm th} = \frac{4\pi}{c} \, b \mathcal{L}_0 \frac{\Delta T}{\pi} \,, \\ \mathcal{L}_0 &= \log \frac{r_2}{r_1} \,, \qquad \mathcal{L}(x) = \log \frac{r_2}{r_1 + x} \,. \end{aligned}$$

Положив в (1) $\mu_1 = \mu_2 = 0$, получим выражение для G_{s0} в отсутствие вихрей [3]. При $\mu_1 = 0$ (или при $\mu_2 = 0$) получим энергию Гиббса $G_s(x)$ для полого сверхпроводника с одним вихрем в присутствии тока \mathbf{j}_{th} .

Выражения для магнитного поля на осях вихрей μ_1 и μ_2 имеют вид

$$\begin{aligned} \mathbf{H}_{\mu 1}(0; x_1 x_2) &= \mathbf{\mu}_1 H_{c0} f(x_1) + \mathbf{\mu}_2 H_{c0} f(x_1, x_2) + \\ &+ \mathbf{H}_i(x_1, x_2) \exp\left(-\frac{x_1}{\lambda}\right), \\ \mathbf{H}_{\mu 2}(0; x_1, x_2) &= \mathbf{\mu}_2 H_{c0} f(x_2) + \mathbf{\mu}_1 H_{c0} f(x_1, x_2) + \\ &+ \mathbf{H}_i(x_1, x_2) \exp\left(-\frac{x_2}{\lambda}\right), \end{aligned}$$
(2)

причем

$$H_{c0} = \frac{\phi_0}{2\pi\lambda^2} ,$$

$$f(x) = K_0(0) - K_0\left(\frac{2x}{\lambda}\right) - K_0\left(\frac{2d-2x}{\lambda}\right) ,$$

$$f(x_1, x_2) = K_0\left(\frac{|x_1 - x_2|}{\lambda}\right) - K_0\left(\frac{x_1 + x_2}{\lambda}\right) - K_0\left(\frac{2d-x_1 - x_2}{\lambda}\right) .$$
(3)

Функции $f(x_1), f(x_2)$ и $f(x_1, x_2)$ учитывают как собственное поле каждого из вихрей, так и поле другого вихря, а также вклад зеркальных изображений вихрей [11, 12] от границ цилиндра. (При $r_1 \ge \lambda$ можно пренебречь кривизной поверхности и считать ее плоской.) Функция Бесселя мнимого аргумента $K_0(\rho)$ описывает поле вокруг оси вихря на тех расстояниях, где можно пренебречь влиянием поля, связанного с вихрем, на параметр порядка сверхпроводника ($\rho > \xi, \xi$ — длина когерентности). На оси вихря, как показывают численные расчеты типа проведенных в [13], необходимо положить $K_0(0) = \log \varkappa$ и $K_1(0) = \varkappa$, где $\varkappa \ge 1$ — известный параметр теории Гинзбурга – Ландау.

Поле в полости складывается из двух частей: $\mathbf{H}_i(x_1, x_2) = \mathbf{H}_{i0} + \delta \mathbf{H}_i(x_1, x_2)$, где $\mathbf{H}_{i0} = \mathbf{m}\phi_0/\pi r_1^2$ — поле в полости с *m* захваченными квантами потока, а прирост поля в полости за счет прихода в полость части потока от вихрей $\mathbf{\mu}_1$ и $\mathbf{\mu}_2$ есть

$$\delta \mathbf{H}_{i}(x_{1}, x_{2}) = \boldsymbol{\mu}_{1} \frac{\phi_{0}}{\pi r_{1}^{2}} \exp\left(-\frac{x_{1}}{\lambda}\right) + \boldsymbol{\mu}_{2} \frac{\phi_{0}}{\pi r_{1}^{2}} \exp\left(-\frac{x_{2}}{\lambda}\right).$$
(4)

Представив энергию G_s в виде $G_s = G_{s0} + \mathcal{G}(x_1, x_2)$, где G_{s0} — потенциал Гиббса в отсутствие вихрей [3], найдем для связанной с вихрями добавки выражение

$$\mathcal{G}(x_1, x_2) = g(x_1, x_2) \, \frac{\phi_0 H_{c0}}{8\pi} \, ,$$

где

$$g(x_1, x_2) = \mu_1^2 f(x_1) + \mu_2^2 f(x_2) + 2\mathbf{\mu}_1 \cdot \mathbf{\mu}_2 f(x_1, x_2) + + 2\frac{\lambda^2}{r_1^2} \left[\mu_1^2 \exp\left(-\frac{2x_1}{\lambda}\right) + \mu_2^2 \exp\left(-\frac{2x_2}{\lambda}\right) + + 2\mathbf{\mu}_1 \cdot \mathbf{\mu}_2 \exp\left(-\frac{x_1 + x_2}{\lambda}\right) + 2\mathbf{\mu}_1 \cdot \mathbf{m} \exp\left(-\frac{x_1}{\lambda}\right) + + 2\mathbf{\mu}_2 \cdot \mathbf{m} \exp\left(-\frac{x_2}{\lambda}\right) \right] - a \left[\mathbf{\mu}_1 \cdot \mathbf{e}_{\mathrm{th}} \mathcal{L}(x_1) + + \mathbf{\mu}_2 \cdot \mathbf{e}_{\mathrm{th}} \mathcal{L}(x_2) \right].$$
(5)

Здесь $\mathbf{e}_{th} = \mathbf{H}_{th}/H_{th}$, $a = 2H_{th}/\mathcal{L}_0 H_{c0}$. (При $\boldsymbol{\mu}_2 = 0$ функция *g* описывает поведение одиночного вихря в присутствии термотока; она аналогична той, которая возникает в теории Бина–Ливингстона [10–12] при описании одиночного вихря в присутствии внешнего поля $H_{e.}$)

Из (5) следует, что при $\mu_2 = -\mu_1$ функция $g(x_1, x_2)$ равна нулю при любом значении x₁. Другими словами, наличие вихря и антивихря (т.е. вихря с противоположно направленным потоком) в одной и той же точке сверхпроводника не меняет энергию системы, поскольку связанное с ними поле полностью скомпенсировано $(\mu_1 \phi_0 + \mu_2 \phi_0 = 0)$, а стало быть, оно не влияет и на параметр порядка сверхпроводника. Это значит, что в любой точке сверхпроводника возможно флуктуационное зарождение пары вихрь-антивихрь, для чего не требуется затраты энергии. Однако при удалении вихря и антивихря друг от друга на них действуют противоположно направленные силы. Действительно, вихрь и антивихрь притягиваются друг к другу (см. [11, 12]); в то же время термоток стремится их раздвинуть, смещая вихрь к полости, а антивихрь наружу (это следует из того, что последние два члена в (5) при $\mu_2 = -\mu_1$ имеют разные знаки). Функция $g(x_1, x_2)$ (5) отражает наличие различных противоборствующих факторов, в том числе взаимодействие вихрей друг с другом и с границами сверхпроводника.

Можно убедиться, что при $\mu_2 = -\mu_1$ наиболее выгодным будет процесс, когда пара вихрь – антивихрь образуется вблизи полости ($x_1 = x_2 = 0$), где поле $H_{\text{th}}(x)$, создаваемое током j_{th} , максимально по величине и смещает в разные стороны вихрь и антивихрь. При этом образовавшийся антивихрь будет двигаться наружу, унося с собой поток $-\phi_0$, а вихрь, передав свой поток в полость, превратится в дополнительный ток, обтекающий полость, где теперь будет заключен поток $(m+1)\phi_0$.

Положив в (5) $x_1 = 0$, найдем функцию $g(0, x_2)$, описывающую энергию системы при разном положении антивихря x_2 относительно границы полости. При этом вихрь формально лежит на внутренней границе, но поскольку его поле полностью перешло в полость, то он сам не отличается от тока, обтекающего полость. Поведение функции $g(0, x_2)$ при разных температурах *T* схематически изображено на рис. 2.

Рис. 2. Поведение функции $g(0, x_2)$ в зависимости от расстояния антивихря от границы полости x_2 при разных температурах: $1 - T < T_*, 2 - T = T_*, 3 - T > T_*$ (T_* — пороговая температура, при которой антивихрь начинает удаляться от полости). Функция $g(0, x_2)$ соединяет состояния с числом квантов в системе m (при $x_2 = 0$) и m + 1 (при x = d).

Из рисунка 2 видно, что у границы полости ($x_2 = 0$) существует потенциальный барьер, препятствующий отделению антивихря от границы (действующая на антивихрь сила $F = -\partial g(0, x_2)/\partial x_2$ направлена к полости). С ростом температуры T возрастает коэффициент $a \propto H_{\rm th} \propto j_{\rm th} \propto \Delta T = T - T_1$ и величина барьера уменьшается. Пороговая температура T_* , при которой барьер исчезает, находится из условия

$$g_0' = \frac{\partial g(0, x_2)}{\partial x_2} \Big|_{x_2=0} = 0,$$

которое можно записать в виде

$$\varkappa + 2m \frac{\lambda_1^2}{r_1^2} \frac{1}{1-t} - \frac{a_0}{2} \frac{\lambda_1}{r_1} \frac{t}{(1-t)^{3/2}} = 0.$$
 (6)

Приведенная температура $t = (T - T_1)/(T_c - T_1)$ меняется в интервале $0 \le t \le 1$; при получении (6) использованы формулы

$$a = a_0 \frac{t}{1-t}, \qquad a_0 = \frac{16\pi}{c} \frac{bT_c \lambda^2(0)}{\phi_0},$$
$$\lambda^2(T) = \frac{\lambda^2(0)}{1 - T_1/T_c} \frac{1}{1-t}, \qquad \lambda_1 = \frac{\lambda(0)}{\sqrt{1 - T_1/T_c}}.$$

Кубическое уравнение (6) решается с помошью формул Кардано. Проще найти из (6) зависимость m(t)(берется целая часть m):

$$[m] = \frac{r_1^2}{2\lambda_1^2} \left(\frac{a_0}{2} \frac{\lambda_1}{r_1} \frac{t}{\sqrt{1-t}} - \varkappa (1-t) \right), \tag{7}$$

т.е. найти зависимость полного потока в системе $\Phi = [m]\phi_0$ в точках ее переходов с уровня *m* на уровень m + 1. Для производной $d\Phi/dt$ имеем

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \phi_0 \frac{r_1^2}{2\lambda_1^2} \left[\frac{a_0}{2} \frac{\lambda_1}{r_1} \left(\frac{1}{\sqrt{1-t}} + \frac{t}{2(1-t)^{3/2}} \right) + \varkappa \right].$$
(8)

Заметим, что при $t \to 1$ (т.е. при $T \to T_c$) получаем закон

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} \propto \frac{1}{\left(1-t\right)^{3/2}} \propto \frac{1}{\left(T_{\mathrm{c}}-T\right)^{3/2}}$$

Развитая выше теория, в принципе, позволяет объяснить результаты эксперимента [2]. Действительно, в случае рождения в любой точке сверхпроводника пары вихрь-антивихрь квантовое число *m* системы (т.е. полный поток $\Phi_2 = m\phi_0$) не изменяется и топологические законы не нарушаются. Если ось вихря остается на границе полости ($x_1 = 0$), то связанные с ним токи целиком обтекают полость и дают вклад в имеющееся там поле H_i. Поле на оси вихря при этом совпадает со слабым полем в полости, и никакой особенности в параметре порядка Ψ в точке $x_1 = 0$ нет. При удалении антивихря от границы ($x_2 > 0$) возле его оси образуется область с противоположно направленным полем, причем на самой оси x_2 имеем $\Psi = 0$. (Заметим, что для детального описания картины поля и параметра порядка вблизи границы полости при $x_2 < \xi$ требуются численные расчеты структуры вихря типа обсуждавшихся в [11-13].) По мере удаления антивихря от границы, поле в полости постепенно возрастает, что означает появление дополнительных токов, обтекающих полость. Однако полный поток в системе остается равным $\Phi_2 = m\phi_0$, и лишь когда антивихрь приблизится к внешней границе на расстояние $\sim \lambda$ и начнет отдавать свой поток во внешнее пространство, полный поток постепенно становится равным $\Phi_2 = (m+1)\phi_0$. Квантовое же число *m* системы меняется скачком на m + 1 лишь в момент пересечения осью антивихря внешней границы (в соответствии с топологическими соображениями), при этом система оказывается в состоянии $(m+1)\phi_0$. Таким образом, предложенный механизм позволяет системе перейти на более высокий магнитный квантовый уровень путем рождения пары вихрь-антивихрь и последующего их раздвигания термотоком. В результате мы имеем ясную физическую картину явления, на основе которой, вероятно, можно объяснить наблюдаемый "гигантский" термоэффект.

Переходя к более подробному обсуждению эксперимента [2], заметим, что формула (7) сразу указывает на наличие "гигантского" эффекта (поскольку с каждым рожденным квантом в системе возникает поток, на два порядка превышающий величину ~ $10^{-2}\phi_0$, ожидаемую на основе простых теоретических соображений (см. [1])). Найденная в [2] зависимость полного потока от температуры (вблизи T_c) описывается законом $d\Phi/dt \propto (T_c - T)^{-3/2}$, что согласуется с формулой (8) при $t \rightarrow 1$. При меньших t зависимость (8) от температуры оказывается более слабой из-за присутствия в (8) большой константы и. Эта же константа определяет большую величину барьера для вхождения одиночного вихря в сверхпроводник в теории Бина – Ливингстона [10]. Заметим, однако, что теория Бина-Ливингстона [10] справедлива лишь в случае зеркально-гладкой поверхности сверхпроводника (когда применим метод отражений). В случае же шероховатых поверхностей измеренное [14] пороговое поле оказывается заметно меньше теоретического [1], что означает уменьшение роли последнего члена в (9) и расширение области действия закона $(T_c - T)^{-3/2}$. Кроме того, как можно показать, с увеличением *j*th (т.е. с увеличением температуры горячего спая $T \rightarrow T_{\rm c}$), уменьшается величина барьера для вхождения вихря в образец через внешнюю границу, где наличие остаточных магнитных полей может быть важным. Такие факторы следует иметь в виду при сравнении теории и опыта.

Заметим, что количественно сравнивать формулы (5)-(7) с результатами [2] затруднительно еще и потому, что используемая нами упрощенная однородная модель [3] не вполне отвечает реальным условиям опыта, и потому возможно лишь качественное сравнение. Прежде всего оценим величину параметра а₀, который определяет величину эффекта. Записав коэффициент b в виде α/ρ , где α термоэлектрический коэффициент, ρ — проводимость, и используя табличные значения [15] констант α и ρ, найдем $a_0 \sim 1-50$ для чистых сверхпроводников. В [2] использовались биметаллические образцы из чистых In и Pb, однако место спая (сплав) имело неизвестные характеристики. Это замечание может быть важным, поскольку пара вихрьантивихрь, скорее всего, будет рождаться именно в месте спая (как наиболее слабом месте системы), которое характеризуется большими значениями κ и λ. Величина же термоэлектрического тока j_{th} (а стало быть, и параметр a_0) определяется объемными характеристиками чистых сверхпроводников, для которых значение и обычно невелико. В результате мы имеем некоторую свободу в выборе параметров системы. Взяв $T_c = 5$ K, $1 - T_1/T_c = 10^{-2}$, $a_0 = 10$, $\varkappa = 10, r_1 = 0,1$ см, $\xi_0 = 10^{-5}$ см, получим для температуры t_* , при которой начинаются скачки потока в системе, оценку $t_* \simeq 0,99$. В [2] аномально большой поток начинал появляться при меньших значениях t, однако это может быть связано с разными причинами. Так, в [2] использовались тороидальные образцы с прямоугольным сечением внутренней полости, поэтому геометрические факторы (влияющие на условия образования вихрей) сильно отличались от таковых для цилиндрического случая. Выше уже отмечалось влияние шероховатости поверхности и роль места спая. Как следует из работы [16], на границе между двумя сверхпроводниками с сильно различающимися значениями λ величина барьера для вихря существенно уменьшается. Заметим еще, что пара вихрь-антивихрь может зарождаться не сразу в виде двух протяженных антипараллельных нитей, а в виде замкнутого кольца конечного размера, наподобие вихревых колец в сверхтекучем гелии [17, 18], что требует меньшей затраты энергии. Все эти факторы могут сильно влиять на величину барьера для образования пары.

Таким образом, развитая выше теория, в принципе, может объяснить наблюденный в [2] большой эффект, хотя требуется дополнительное исследование с учетом реальных условий опыта. Мы намерены вернуться к этому вопросу в дальнейшем.

Заметим в заключение, что рассмотренный выше механизм рождения квантов потока может иметь отношение к проблеме возникновения очень больших магнитных полей у вращающихся нейтронных звезд, вещество которых при больших плотностях может находиться в сверхпроводящем или сверхтекучем состояниях [19].

Данная работа поддержана Российским фондом фундаментальных исследований (грант № 94-02-05306). Более подробно она будет опубликована в другом месте.

Список литературы

- 1. Гинзбург В Л, Жарков Г Ф *УФН* **125** 19 (1978)
- 2. Van Harlingen D J, Heidel D F, Garland J C *Phys. Rev. B* **21** 1842 (1980)
- 3. Арутюнян Р М, Жарков Г Ф *ЖЭТФ* **83** 1115 (1982)
- 4. Arutunian R M, Zharkov G F Phys. Lett. A 96 480 (1983)
- 5. Ginzburg V L, Zharkov G F J. Low. Temp. Phys. 92 25 (1993)
- 6. Ginzburg V L, Zharkov G F *Physica C* **235–240** 3129 (1994)
- Демлер Е А, Жарков Г Ф Краткие сообщ. по физике ФИАН (3 – 4) 44 (1995)
- 8. Демлер Е А, Жарков Г Ф *СФХТ* **8** 276 (1995)
- Раджараман Р Солитоны и инстантоны в квантовой теории поля (М.: Мир, 1985)
- 10. Bean C P, Livingston J D. Phys. Rev. Lett. 12 14 (1964)
- Де Жен П Сверхпроводимость металлов и сплавов (М.: Мир, 1971)
- 12. Тинкхам М Введение в сверхпроводимость (М.: Атомиздат, 1980)
- 13. Абрикосов А А Основы теории металлов (М.: Наука, 1987)
- 14. Буккель В Сверхпроводимость (М.: Мир, 1975)
- Таблицы физических величин. Справочник (под ред. И К Киконна) (М.: Атомиздат, 1976)
- 16. Мкртчан Г С и др. *ЖЭТФ* **63** 667 (1972)
- 17. Bauerle C et al. *Nature* (London) **382** 332 (1995)
- 18. Ruutu V M H et al. *Nature* (London) **382** 334 (1995)
- 19. Sedrakian A D, Sedrakian D M Astrophys. J. 447 305 (1995)

PACS numbers: 95.30.-b, 95.30.Qd

Астрофизическая плазма в экстремальных условиях

В.В. Железняков

В докладе обсуждаются признаки экстремальности в космических условиях, а также те новые качества, которые приобретает при этом плазма. Основное внимание уделено явлениям взаимодействия плазмы с излучением в сильных магнитных полях вырожденных звезд — белых карликов и нейтронных звезд. Подчеркнута определяющая роль циклотронного рассеяния, давления излучения на циклотронных частотах и намагничивания вакуума в формировании плазменных оболочек и наблюдаемых спектров этих звезд.

Астрофизическая плазма отличается значительно более широким разнообразием условий, чем лабораторная. Та область, где она приобретает качественно новые свойства, не характерные для лабораторной плазмы и той части плазмы космической, которая по своим свойствам в общем не отличается от лабораторной, может быть названа областью экстремальных условий. Изучение реальных явлений, связанных с новыми свойствами плазмы или обусловленных ими, представляет существенный интерес не только для астрономии и физики космической плазмы: ставя новые задачи и открывая новые возможности для исследований, оно стимулирует прогресс физики плазмы в целом.

Экстремальные свойства астрофизической плазмы проявляются в сильных магнитных полях белых карликов и нейтронных звезд, в сильных гравитационных полях черных дыр и в условиях высокой плотности вещества, характерных для недр нейтронных звезд и ранних стадий развития