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Abstract. Bell’s paradoxes, due to the fundamental properties
of light and the nature of the photon, are discussed within a
single framework with a view to checking the hypothesis that a
stationary, non-negative, joint probability distribution function
exists. This hypothesis, related to the local theory of hidden
parameters as a possible interpretation of quantum theory,
enables experimentally verifiable Bell’s inequalities to be for-
mulated. The dependence of these inequalities on the number of
observers V is considered. Quantum theory predicts the break-
down of Bell’s inequalities in optical experiments. It is shown
that as V increases, the requirements on the quantum effective-
ness of the detector, 7, are reduced from n >2/3 at V' =2 to
n >1/2 for ¥— oco. Examples of joint probability distribution
functions are given for illustrative purposes, and a way to re-
solve the Greenberger — Horne — Zeilinger (GHZ) paradox is
suggested.

1. Introduction

The dramatic development of quantum optics and the
experimental successes achieved in recent years prompt the
question of the nature of light and its material carriers,
photons, which so far remain unexplained. It is firmly
established that energy can be carried from one body to
another in discrete portions, or ‘quanta’. Let a detector be
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exposed to a source of light (Fig. 1). If the source is of a low
intensity and the detector is sufficiently sensitive, then one
observes photocurrent pulses at the detector output, which
are thought to be connected with photons arriving at the
detector.
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Figure 1. A light source illuminates a detector. A polarizing analyzer
oriented at the angle « or o is shown by the dashed lines. The propagation
channel, for example a vacuum, the analyzer, and the detector form the
receiving tract.

Let us ask the question: do the properties of light (proper-
ties of photons at the moment of their creation) depend only
on the state of the source or they can be affected by the state of
the receiving tract? To answer this question, one can, for
example, change the receiving tract state keeping the source
state and then analyze the test results before and after such
changes. For example, let us mount an analyzer of the
polarization to register photocounts at two rotation angles o
and o/, and divide the experiment into two series.

Let the observable quantity (for example, the photocount
rate) in the first series be R4 and in the second be R . If the
experimental results are described are probabilistically with a
non-negative joint probability distribution function of
photocounts P4, then changes in the receiving tract affect
only the conditions of registration. If this is not so, then
changes in the receiving tract are changing the properties of
the light itself.
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Unfortunately, no simple experiment to realize this
program has yet been suggestedt. Therefore, following
Einstein — Podolsky —Rosen (EPR) [5], Bohm [6], and Bell
[7], we shall study paradoxes in the behavior of pairs of
quantum particles.

Let us consider an experiment to measure four values
A,A’,B,B’. Let us assume first that these four values exist
simultaneously and can be simultaneously measured. The
results of N > 1 repetitions of such experiment (four values
ai, i, bi, b, i=1,...N for each realization) are given in
Table 1.

Table 1.
Number A A B B
1 a a} by b}
2 a a by by
i a; d, b[ ' b
N a dy b by

We shall try to describe the experimental results by a
deterministic theory, so the result of each realization
A, A’, B, B’ is determined by some set of parameters {4},
variable in general, known or unknown. The existence of a
set of all possible {4;} allows one to assume the existence
of a four dimensional joint probability distribution
Pyypp(a,a’,b,b’), which can be calculated using the results
of the experiments shown in Table 1. Capital letters stand for
observables, random in general, small letters show the values
the observables take. Assuming the result (a, @', b, b") has been
observed in 7 of N realizations, the elementary probability is

o1
Pyapp(a,a’ b,b’) = lim — . (1)

Quantum theory gives no receipt for the calculation of the
parameters {4;} (that is why they are called hidden), therefore
the fact of their existence needs checking. Further, if only one
pair of the four observables A4, A4, B, B’ is described by
noncommuting operators, the question of the existence of
Paapg(a,a’,b,b’) also arises, since sometimes they take
negative values in the direct quantum calculations [8, 9].
Moreover, it is unknown how to measure simultaneously the
observables described by noncommuting operators.

The Bell theorem can answer the question about the
existence of {4;} and P4 pp'(a,a’,b,b"). It suggests concrete
experiments, the results of which, according to quantum
theory predictions, cannot be written in Table 1 and described
by a joint four dimensional probability distribution
Pyypp(a,a’,b,b’). The observables 4 and A’ are described
by noncommuting operators, as well as B and B’, therefore
one has to avoid measuring all four observables simulta-
neously. The experiment is divided into four series: in the first
one the pair 4 and B is measured, in the second 4’ and B, in
the third 4 and B’, and in the fourth 4’ and B’. The
measuring tract needs to be able to switch from one series of
measurements to another. The assumption about the source
state being independent of that of the measuring tract (the

T Certain hopes here are connected with the negativeness of the Wigner
joint probability distribution function (see, for example, Refs [1—3]) and
the possibility of its measurement [4].

position of the switch) is essential. This assumption is the
signature of the local theory.

In each test series, N realizations are registered. As a
result, 4N pairs of numbers are obtained, i.e. N octuplets of
numbers. One may try to write them into Table 1, i.e. reduce
them to N quadruplets by arbitrary pair permutations and
then ascribe to each string of the Table 1 some set of the
hidden variables {4;}. Here a question emerges: in the case of
the hidden variables’ existence, should all the realizations be
written into the Table 1? Obviously no, as the realizations in
different test series could be due to non identical values {4;}.
Thus, some realizations have to be rejected. Which ones? For
example, those that do not alter the moments. But then
instead of writing the experimental results into Table 1, one
needs to set certain relationships between the moments
measured (see also Ref. [10]), which would follow from the
principal possibility of writing the results of experiments into
Table 1 in the case of {4;} identity in each test series. Further
on, just such relationships are analyzed. If they are violated in
an experiment, it cannot be described by P45 (a,a’,b,b’),
and the necessary condition of the hidden variables existence
is assumed to be the fact of the existence of a non-negative
joint elementary probability P4 pp:(a,a’,b,b’) distribution,
since (see Ref. [11])

Pagan(a.a’ b, = | P(3)d2, @)

Ala,a’,b,b")

where A(a,a’,b,b’) is a subset of the entire set of hidden
parameters A, which yields the result (a,a’,b,b"), and P(1) is
the hidden parameters distribution density.

2. The Bell inequalities for two observers.

To consider quantum paradoxes of EPR — Bohm —Bell type,
we start with the scheme [12] shown in Fig. 2a, which is also
similar to the experiments [13, 14].

O
/
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Figure 2. A source emits a pair of photons with correlated polarizations.
They are detected by two observers 4 and B. The measuring tract of each
observer includes a polarization prism as an analyzer and two detectors.
Angles o and f determine the angular orientation of the analyzers with
respect to the x axis, for example. All four detectors in the schemes are
assumed to be identical (a). The possible variants of the photon trajec-
tories for o = 8 (under identical photon passage conditions through the
analyzers) are shown in (b) and (c).
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The source emits a pair of photons, which scatter into
opposite directions — one toward the observer A, another
toward the observer B. Polarizations of the photons are
correlated, for example, both photons are polarized in the
same plane.

The analyzers in the form of polarization prisms are
mounted in front the of detectors, directing the photon into
one of the two detectors. All four detectors are assumed to be
identical. Two observers 4 and B register simultaneously one
photon each at detectors ‘ + or ‘-’ (for simplicity, we assume
at first the detectors’ quantum efficiency = 1).

The probability of simultaneous photocounts depend on
the analyzers orientation, which is characterized by rotation
angles o and f. Consider the case o = f§ (then the conditions
for each photon to pass through the analyzer coincide).
Repeating the test, observer A4 registers photocounts at both
his detectors. This is also the case for observer B well. It
appears that four variants of synchronous trajectories of the
pair photons are possible: both fall in the upper ‘ +’ detectors
(Fig. 2b), both fall in the bottom ‘—’ detectors (Fig. 2¢), one

photon falls in the ‘+°, the other in the ‘—’, and vice versa.
However, only the first two variants are observed in the
experiment.

If one trys to explain this result by a local deterministic
model, it is logical to assume that the behavior of the pair of
scattered photons at the analyzers is entirely or partially
determined by the source at the moment of photon creation.
This predeterminacy could be described by a set of hidden
parameters {/;} and a joint probability distribution function
Pyypp(a,a’,b,b’). As mentioned above, quantum theory
suggests no algorithm for the calculation of {4;}, so the
attempt to interpret the quantum formalism from the point
of view of classical statistical physics is usually referred to as
the local theory of hidden parameters or hidden variables.
Its adequacy could be checked by the experiment shown
schematically in Fig. 2a. The locality here means the
assumption that the test results registered by the observer
A are independent of the angular orientation [ of the
observer B’s prism, and vice versa (the results B are
independent of o).

Let us parameterize the test results as follows. If observer
A has registered a photocount at the ‘+’ detector with
analyzer orientation angle «, then the discrete random
variable 4(x) = 4 is a = +1. If this has occurred below the
angle o', the quantity A(o') = A’ takes a value a’ = +1. We
code similarly the photocounts at the ‘-’ detector (their
values are a or a’ = —1), as well as observer B's photocounts
(b or b’ = +1). Thus, the quantities 4, A’, B, B’ are initially
assumed dichotomic: a,a’, b, b’ = +1.

As mentioned above, four test series are performed: in the
first one, quantities 4 and B are measured, in the second, 4’
and B, in the third, 4 and B’, in the fourth, 4’ and B’. Then
the Bell inequality of Clauser—Horne—Shimony—Holt
(CHSH) type [15] holds

-1<(S) <1, 3)

where the Bell observable (the lower index corresponds to the
number of observers V) is

(AB+ A'B+ AB' — A'B’). (4)

N —

SzE

The CHSH inequality (3) can be proved, expanding the
moments as [8, 9]

(AB>: Z abPAA/BB/(a,a',b,b’). (5)
a,d b, b’

Here and below, only the moment for the first test series is
given, since the other three are obtained by a simple
substitution of unprimed symbols for primed ones, for
example
(A'B) = a'bPaypp(a,a’,b,b’). (6)

a,d b, b

Substituting them into inequality (3) and using elementary
probability properties

O<PAA’BB’(a7a,7b7b,)< 17 (7)
Z Paapp(a,a’,bb’) =1, (8)
a,a’,b,b’

it is easy to prove the correctness of inequality (3).
Another proof is based on the fact that in the case of
dichotomic observers a,a’, b, b’ = £1 we have [16— 18]

1
5 Ez(ab—i—a’b—l—ab/ —a'b")
1
Ei[a(b+b')—|—a’(b—b/)}:il 9)
and, since
($2) =Y sPawps(a,a’,bb"), (10)
a,a’,b,b’

we obtain inequality (3).

On the other hand, the quantum description of the
experiments shown schematically in Fig. 2a, violates inequal-
ity (3). Let, for example, correlated photon pairs be created
during parametric light scattering in a piezocrystal with
quadratic nonlinearity [19]. The simplest four-mode descrip-
tion of such a scattering yields the state vector of a biphoton
field in the form (see, for example, Ref. [18] and references
therein)

1
|lp2> :ﬁ (| 1 >ax|0>ay‘ 1>bx‘0>by+ |0>ax| 1 >ay‘0>bx| 1 >/)y) ’ (1 1 )

where indexes x and y denote mutually orthogonal polariza-
tions.

A characteristic feature of state (11) is its nonfactoring
(entangled state)T:

[2) # [)al¥)s- (12)

The calculation of moments in inequality (3) (see Appen-
dix A) yields

(4B),, = n? cos 2(a — f). (13)

For the quantum efficiency of detector # = 1 and angles

=0, o' =" p=" (14)

4 ) 8 Y
we arrived at a contradiction to (3): v2 & 1.

=T
fr=-3

T The reader not well acquainted with quantum formalism can skip these
relationships without loss of understanding.
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In experiments [12] etc., a break of the CHSH inequality
has been registered, which is considered as the denial of the
hidden variables theory. This conclusion has been argued in
Refs [20—27], among others. The point is that to remove the
influence of # in these experiments, only double coincidence
photocounts were taken into account, which are singled out
by the coincidence scheme, and the moments have actually
been calculated as

1 Mup

MAB ; aibi )

<AB>M =

(15)

where M 45 > 1 is the number of double coincidence photo-
counts in the test series. Thus, the number of realizations used
for averaging is taken here to be equal to that of pair
coincidences M 45. According to Eqn (15), we have

(|4Bl)y = 1. (16)
Substituting Eqn (16) into the CHSH inequality (3) yields
[(AB)y; + (A'B)y + (AB"), — (A'B") | < 2(|4Bl),, . (17)

This inequality is valid only for dichotomic observables
(a,a’,b,b’ = £+1). However, in reality the detectors are not
ideal so their efficiency is always less than unity. Therefore,
the observables A4,A4',B,B’ sometimes vanish, i.e.
a,a’,b,b’ = 0,+£1. Inequality (17) then breaks down due to
the violation of a numerical inequality

l|ab+a'b+ab' —a'b'| < 2|ab), (18)
for example, for a =0, a’ #0, and b’ #0. Thus, the
averaging rule (15) for trichotomic observables is wrong.

We illustrate this using a specific model example con-
structed for the trichotomic observables 4, A’, B, B’ with a
non-negative four dimensional joint probability distribution
Pyypp(a,a’,b,b’), which we shall denote further simply by
(aa’bb’) for brevity: for example, Pyqpp/(a =41, a’ =0,
b=-1,b"=—-1)=(+0—--).

As noted above, the possibility of an experiment descrip-
tion with a non-negative four dimensional joint probability
distribution assumes the simultaneous existence of observa-
bles described by noncommuting operators (for example, A4
and A'), i.e. their a priori existence is assumed before the
measurement, which agrees with the theory of the hidden
variables.

Let us take the elementary probabilities

(++40)=(——-0)=(H0++)=(-0—-—)

=0++-)=0~-—+)=(+-0+)

=(=+0-)=¢,
(Ft+H)=(-—H)=(++)=(--—-)

=(+++-)=(——H)=(+—-+1)

=4y =Y (19)

and the others (aa’bb’) = 0. The value of the parameter w
here can fall within the range from 0 to 1.
According to Eqns (5), (19)

1

(20)

and inequality (3) is not violated. However the moment

w
J4Bl) =1~ @1
at w # 0 differs from Eqn (16). Therefore, rule (15) contra-
dicts Eqn (5) and its usage can lead to the violation of
inequality (3). Indeed, if only pair relationships are taken
into account, then

By = 150 (22)
and, using Eqns (19), we have

(AB) _ (A'B) _ (AB’) _ (A'B") _ 1 (23)

(l4B)) (|A'Bl) (|4B'])  (4'B')) 2—-w

The variation of the parameter w from 0 to 1 corresponds to
changing relationships (23) from 1/2 to 1. In particular, at
w =2 —+/2 they are equal to v/2/2 and coincide with the
ratio of moment (13) to moment (26) (see below) at angles
(14). Therefore, inequality (3) breaks as well, as quantum
theory predicts.

Thus the registration of coincidence photocounts only
does not allow one to find a difference between the predic-
tions of quantum theory and the local theory of hidden
variables. On the other hand, according to relationships (19)
and (31) (see below)

(l4l) = (4) = (IB)) = (1B =1 -3,

; (24)

i.e. when w > 0 the inequality (|4|) > (|4B]) holds, for
example, at w = 2 — v/2 we have

(148 _ 20 w)
I

1)~ 083, (25)

which gives us a hope to establish experimental differences
model (19) and quantum theory predictions, since in between
the state (11) (see Appendix A)

([4Bl),, =1,
{140}y, =n-

(26)
(27)

To find such differences, we introduce into the Bell
inequalities the mean numbers of single events (single photo-
counts in the present case) [23]:

2[(So)| < (JA]) + (|A4']) + (|B]) + (|B]) — {|4B]) — (|4'B]),
(28)

or, in a more compact form,
[{(S2)| < 1 [(NAB> + <NA/B’>L

2

where N, 5 =|A|+ |B| — |AB|. The quantity N =1, if a
and b differ from zero simultaneously (¢ =b =0 would
correspond to the absence of an event). Thus >, N3 is the
number of realizations in a test series, which includes both
double and single photocounts.

Another variant of the inequality is:

4(S2)] < 2(N1) + (N2), (30)

where Ni = |A| + |4'| + |B| +|B'|, and N, = |4B| + |4'B|+
|AB'| + |A'B'|.

(29)
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These inequalities are derived assuming the existence of a
non-negative four dimensional joint probability distribution.
It is easy to check the correctness of relations (28), (30) by
substituting into them the moments written as

<A> = Z aPAA/BB’(a>a,7b7b/)7
a,a’,b,b’

(AB) = Z abP 4 4pp(a,a’,b,b"),

a,a’,b,b’

(31)

and for other moments analogously.
One can also prove inequality (28) using the numerical
inequality

—(lal + la'| + |b] + |b'| = |ab] — |a"b]) < 25,

< lal+ o' + 6]+ [b] — lab| — |a'8]. (32)
To prove it, consider first the case |a| = |a'| = || = |b'| = 1.
Here, according to Eqn (9), s, = 1 and inequality (32) is
met. Then, setting a=0 we obtain the inequality
la’"(b—b") < |b|+1b'| + |a’|(1 — |b']), which is satisfied by
la’(b—b")| < |b| +|b’|. Similarly for a’, b, or b’ =0.
Inequality (28) then follows from expressions (7), (10), (32).

Let us formulate inequality (29) in terms of count rates.
Let us assume count rates at the detectors to be the same in
different test series, which usually takes place in experiments
with identical detectors:

Ri = Riap = Ry = Rig| = Rypy.
R‘A‘ ERA(+)+RA(—), (33)

where R4 (+) and R4(—) are the count rates at detectors 4+
and A—, respectively;

RZER|AB\ :R\A’B\ :R\AB’| :R‘A/Bll7 (34)
Ry4p=Rap(++)+Ryp(——)+Ryp(+—)+Rup(—+), (35)

where R4p(a, b) is the rate of double counts.

Since
(1)) o< Ry, (36)
(AB) o Rap = Rap(++) + Rap(——)

— Rup(+—) — Rup(—+), (37)
(4B]) o Rs, (38)

we obtain an inequality convenient to test experimentally:
|Rap + R+ Rap — Rap/| <2(2R1 — Ry). (39)
It can be reduced to the CHSH inequality (3) by dividing the

both sides by 2R; — R,. Here the moments are to be
determined as

<AB>N - 2R1 _ RZ

(40)
Thus, the difference of inequality (29) from (3) can be
reduced to the difference in the averaging procedures. If,

instead of rule (15), the averaging is made over the total
number of realizations in a test series

N=> Nap=> Nap =) Nag=Y» Nap >1, (41)
i i i i

_ Ryp(++) + Rap(——) — Ryp(+—) — Rap(—+) .

which includes both double and single photocounts, then

Mg

1
AB)y == ab;
< >N ]vi:1 albla

and the CHSH inequality (3) reduces to inequality (29).
Condition (41) formally means that the same number of
realizations (N) is performed in each test series, however in
terms of count rates it is sufficient that inequalities (33), (34)
are met, instead of equalities (41).
According to Eqns (13), (26), (27), the four-modes
quantum model predicts

(4B),,  ncos2(o— p)
<NA13>¢,2 B 2—n '

(42)

(4B)y = (43)

Provided that Eqn (14) holds, substituting Eqn (43) into
inequality (3) yields an inequality that contains # and is
violated at

n>2(vV2—1)~083 (44)

in the absence of false photocounts. A similar result is
obtained in Refs [20—27].

In real experiments, it is impossible to obtain the value of
the ratio (23) exactly equal to v/2/2 due to the accidental
coincidence of photocounts from different photon pairs (see,
for example, Ref. [18]). Reducing w in Eqn (23) may account
for this factor, which leads to more stringent requirements on
the detectors efficiency, which is necessary to discover
violations of inequalities (28) —(30).

Now we consider the Bell inequality of Clauser—Hor-
ne (CH) type [28]

Pyp(a,b) + Pypla’,b) + Pap(a,b’) — Pypi(a’,b')

< Py(a) + Pp(b), (45)
the derivation of which is also connected with the allowance
of the existence of a non-negative four dimensional joint
probability distribution (see Appendix B). Analogous
inequalities have been analyzed in Refs [20—27], among
others.

The experimental testing of inequality (45) can be done as
follows. In the scheme from Fig. 2a, let us consider triggering
of the ‘+’ detectors only . Then

Rup(++) + Rup(++) + Ryp (++) — Ry (++)

< Ry(+) + Rp(+) . (46)

The trichotomicity of observables in the CH type inequal-
ities is not required — their dichotomicity a,a’,b,b’ = 0, +1
is sufficient.

Quantum theory predicts (see Appendix A)

2
P4(+) = Pp(+) :g , Pap(++) = %cosz(oc —B).

Substituting the values of angles (14) into Eqns (47) and
then into inequality (45) we arrived at an inequality that,
similar to (28)—(30), is violated at n > 0.83. However, while
the maximal violation in (28)—(30) is about 41%, in the
present case it turns out to be two times smaller, about 20%.
The condition # > 0.83, obtained from the analysis of
inequalities (28)—(30) and (45), is consistent with the model
bound (25), i.e. the probabilistic model (19) yields the limit-
ingly possible value of the ratio (|4AB|)/{|4]) in the case of

(47)
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quantum state (11). In this sense the distribution (19) is
optimal.

The absence of false triggerings and the condition
n > 0.83 are stringent enough constraints on the detectors.
A decrease in the efficiency # required can be achieved by
increasing the number of observers or by using suggestions
from papers [22, 29] to form, instead of state (11), a more
general state

|l/~/2> = .u|1>ax|0>a_v‘ 1>bx‘0>by + V|0>ax|1>ay|o>bx| 1>by7

where coefficients u and v, which meet the normalization
condition |u|* + [v|* = 1, can be set real for simplicity.

The physical meaning of the difference between state (48)
and (11) is as follows. In state (11), the x- and y-polarizations
of photons are equally probable from one realization to
another (from one photon pair to another). In state (48),
there is a preferential photon polarization plane. For exam-
ple, this is y-polarization for |u| < |v].

It is possible to form state (48) and to carry out an
experiment using the scheme shown in Fig. 3. The inequality
|u| < |v| is met due to an unequal pumping distribution
between the piezocrystals. The quantum calculation of this
scheme yields (see Appendix A):

(48)

Py = n(1® cos® o+ v? sin® o), (49)
Py = (i’ cos” f+ 7 sin” ), (50)
Pas = n*(ucosocos f + vsinasin f)°. (51)

Let us substitute them into inequality (45) after having
written it in the form

Py +py
1 b
P P P - P

(52)

where P() = Pwheny = 1.

B

Figure 3. The experimental scheme to test the Bell CH-inequality. A
pumping (to the left) is devided by the beam-splitter into two beams of
different intensity and illuminates two piezocrystals. In the crystals, a
noncollinear parametric scattering of the pumping occurs with correlated
photon pair creation. One photon of the pair travels toward observer 4, the
other toward B. The photons from the different crystals are plane-
polarized in mutually perpendicular directions (x and y). They are mixed
at the analyzer and detected. o and f§ are the analyzers rotation angles. The
conditions of photon passage through the analyzers are identical.

We wish to find a minimal non- negauve value of the right-
hand side of inequality (52). Let P( )= P( +A,A>0.Bya
correspondence condition snmlar to Ec}n (107) (Isee Appendix
B), we have P(Az); < P(B), PA,B < PB , Py < PA , hence

Py + Py 2Py +A 2
0 o0 o) _ 50 = apl A>3 (53)
P+ P+ Py — P 3Py +A 3
Indeed, at u/v=0.001, a=8=0, o =—p =1.8°,

according to Eqns (49)—(52), we have n < 0.667. Thus, the
violation of inequality (45) can happen at n > 2/3. A similar
result is obtained in Refs [22, 27, 29]. However, the photo-
count rate in such a configuration proves to be significantly
lower than at u/v = 1, which can lead to additional complica-
tions connected with false photocounts (dark current) sup-
pression (see Refs [21, 22, 29] for more detail).

We recall that the count rates Ry « P4, Rp x Pg,
Ryp x P4p. For example, for the parameter values given
above, according to Eqns (49)—(51), we have Ry = Rp x 1,
Rup =~ Ryp~ Ryp x>, Ry = 0. Aty =2/3 such aresult
is produced by the following elementary probabilities:

1
(++40) = (+0++) = (0 + +0) = (+00+) = 1 (54)
and the other (aa’bb’) = 0.
It is easy to check that
PAB(++) :PAB(++) :PA/B(++) :PABf(-i--I-) :g
Pa(+) Pp(+) Pp(+) Pu(+) 37

i.e. the rate of single photocounts in the first three test series
exceeds that of the pair photocounts by 1/37. Aty > 2/3 one
cannot suggest such a four dimensional elementary prob-
ability distribution that would describe the quantum calcula-
tion result.

What is the physical meaning of the probabilistic model
(54)? In the first series of the experiment shown in Fig. 3
(when A and B are measured at oo = f§ = 0), the emission of
the upper crystal only is measured. Therefore, when registe-
ring a photocount by one of the observers, the other photon of
the pair is not detected by the other observer with a
probability of 1/3, as if disappearing in the vacuum or
detectorsi. This effect, if real, may be an explanation for the
zero vacuum fluctuation. However, the lack of restrictions of
some kind on the maximal efficiency of detectors in quantum
theory seems to be suspicious. These considerations justify the
interest in looking for an adequate interpretation of the
quantum formalism and its relation with classical statistical
physics.

Further on, in the successive three series of the experi-
ment, the losses of the upper crystal emission are negligible. It
might appear that the double coincidence count rate cannot
decrease, however, in the fourth series of the experiment
(when A’ ad B’ are measured at o/ = —f' = 1.8°), the double
coincidence counts turn out to be suppressed by the emission
of the bottom crystal (P45 (++) o< Ry = 0). Such a light-
by-light handling is typical for the interference.

f However, PAfB(++>/PA/(+) = PAB/(++)/PBf(+) =1.
i With an increase of the number of observers ¥ this probability can
increase up to 1/2 according to Eqn (91) (see below).
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3. The Bell inequality for three observers

Consider Fig. 4[16, 18]. Two parametric sources emit photon
triplets. One may apparently use a nonlinear light transfor-
mation in a transparent medium with cubic nonlinearity [30].
Let us assume that the first source emits photons with
polarization x, and the second with polarization y. The tri-
photon field state then is an entangled state:
1
|lﬁ3> = ﬁ (| 1>ax‘0>ay| 1>hx|0>by|1>Cx|0>(:y

+ |0>ux| 1>ay|0>bx|1>b}"0>('x|1>('y) ’

W3} # W)l l). -

Figure 4. The intensity interferometer scheme for three observers. Corre-
lated triplets of photons are created simultaneously in one of the nonlinear
elements (rectangles) by the pumping, which is split into two beams in
advance. Two radiation modes, one of which is phase-delayed (circles),
reach each of the observers 4, B, and C. These modes are mixed at 50%
beam-splitters and are detected. At ¢ = a + ff+7 = 0 all three photons
travel synchronously either upward (toward the ‘+’ detectors), or one
upward and two downward (toward the ‘—’ detectors). At ¢ = 1 one or
three photons travel downward.

Adjusted phase delays o, 5, and y are introduced into the
channels. Then three 50% beam splitters (or polarization
prisms turned 45° with respect to the x and y axes) and six
photon counters are mounted.

Let us bound the results of the experiment by an inequal-
ity of the trichotomic observables a, a’, b, b’, ¢, ¢ =0, +1:

4/(S3)| < (N2) — (N3), (56)
where the Bell observable Sj is derived from the relationship
[16—-18]

S; = % [S2(C+ C") + 85(C— C")]

_! (A'BC+ AB'C + ABC' — A'B'C"),

: (57)

in which SZ' differs from S, in changing all the primed symbols
for unprimed ones, and vice versa: S,=(4'B’ + AB'+
A'B—AB)/2; Ny=|AB|+|A'B|+|AB'H|A'B'|+|AC|+|4'C|+
|AC'|4|4'C'|+|BC|+|B'C|+|BC'|+|B’C’| is the sum of all
possible combinations of double photocounts, N3 =
|ABC |+ |A'BC|+ |AB'C|+ |ABC'| + |A'B'C| + |A'BC’|+
|AB'C’| + |A’'B’C’| is the same of triple photocounts.

The proof of inequality (56) is given in Appendix C. Its
experimental testing includes the following program. Four

test series are performed: in the first one, 4’, B, and C are
measured, in the second A4, B’, and C, in the third 4, B, and
C’, and finally in the fourth 4’, B’, and C'.

Let us assume the rates of double photocounts to be the
same:

Ry = Ryyp = Rigg = ... = Rgic- (58)
Let the rates of triple photocounts are also the same:
Ry = Ryypc) = Rupe--- = Rupros (59)
where
Riipc) = Rapc(+++) + ...+ Rupc(— — —)
= Y Ruscla.b,c). (60)
ab,e=+

Then inequality (56) can be recast into the form

|Ra8c + Raprc + Rapcr — Rargrer] < 2(3Ry — 2R3), (61)

where

Rypc = Rupe(+++) — ... — Rupe(— — —)

= Z ClleRArgc({l/, b, C). (62)

a'\b,c
Quantum theory predicts that
<ABC>¢/3 =nlcosp, p=a+p+7, (63)
(14BCl),, = (|4'BC]),,
= (|4B'Cl)y, =...= ([ 4'B'C'|),, =n’, (64)

([4Bl)y, = {|4'Bl)y, = ... = (IB'C'l)y, =n". (65)

These relationships can be obtained by the corresponding
summation of joint probabilities [18]

¢
Papc(a,b,c) = 113(;1,1711,nc)l/,3 = %cosz (5’0) , abc=+1,
(66)
Poafo
PABC(a7 ba C) = ’73 (nanbnt’>l//3 = ZSlnz <§> ) abe = —1
(67)

Here the same notations as in Appendix A are used. A shorter
derivation of Eqn (63) is given in Ref. [18]. Here the
observables A4, B, and C are described by expressions similar
to Eqn (104) (see Appendix A):

A =n(na —ny-) = nlawal exp(—ia) + Hel, (68)
B =n(ny, —np) = n[beb} exp(—if) + He], (69)
C =n(ney —ne—) = nlece; exp(—iy) + He.J, (70)

where H.c. stands for a Hermitian-conjugated operator.
The action of these operators on the vector of state (55) is
described by an expression like
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Alps) :\i@ [af b ¢t exp(—ia) + af b ¢} exp(ie)][0), (71)

where |0) denotes the vacuum state of all six modes. Similarly
for Band C. It is also easy to calculate

3
ABC3) = % [exP(i)[1) 10 1y | 1) 510}, 1 0),,

+exp(—i9)[0) | Dy |00 [1)1,10) 1) ], (72)

hence Eqn (63).
Now let us set the following phase delays:
__T = -_I
o= 2 ) o TE’ ﬁ 2 )
ﬁ,:TC, y:7g7 "/:ch (73)

at which cos(o/ + B+ 7)=cos(a + ' +y)=cos(a + f +7y') =
—cos(¢/ + B +7') = 1, and the Bell observable S; takes the
maximum possible value. In addition, the total correlation of
results must be observed, since according to Eqns (63), (64)

(4'BC),  (4B'C),,

(|4'BCl)y,  (|4B'Cl),,

(4BC'),, (A'B'C"),,

(14BC),, — (A'B'C])y,
(74)

This result can be explained by a model admitting the
existence of a non-negative six dimensional probability
distribution for trichotomic observables, which is described
in Appendix D. A contradiction by this model of quantum
theory predictions can be discovered in the violation of
inequality (56) or (61). The necessary condition for such a
violation, according to Eqns (63 —65) and (73), is

23
n i
This requirement on the efficiency of detectors, which follows
from inequality (56) or (61), is consistent with the model
constraint (119) (see Appendix D below).

(75)

4. The Bell inequality for four
or more observers

Let us return to the scheme in Fig. 4. If the sources are
parametric converters on piezocrystals with quadratic non-
linearity, they emit not only pairs but quadruplets of photons
as well, i.e. in addition to state (11), there is a mixture of state
[31]

1
|l//4> = % (l 1>ax‘0>ay| l>bx|0>by|1>(,‘x|0>c’y| l>dx|0>dy
+ |0>clx|1>uy‘0>b,x‘ 1>by|0>cx| 1>cy|0>dx| 1>d\)7 (76)
which is also an entangled state:
[a) # )W) [)a - (77)

Let us add into the scheme a measuring channel of the
fourth observer D. The phase delay of the latter is 6 (or §'). Let
us bound the results of the experiments by an inequality

16](S4)] < 2(N3) — 3(Na). (78)

Here the Bell observable Sy is determined from the relation-
ship [17, 18]

Ss==[S3(D+ D)+ Sy(D— D]

Bl— -

[—~ABCD + 4(A'BCD) + 6(A'B'CD)

—4(4'B'C'D)— A'B'C'D'], (79)
where K(A'BCD) = A'BCD + AB'CD + ABC'D + ABCD’
in the symbolic form means the sum of K unidentified
permutations of primes over the quantities contained in
parentheses, and N3 = |4ABC|+ |3(4'BC)| + |3(4'B'C)|+
|A'B'C'| + ...+ |BCD| +|3(B'CD)|+|3(B'C'D")|+|B'C'D'|
is the sum of all possible combinations of triple photo-
counts, and Ny = |ABCD|+ |4(4'BCD)| + |6(4'B'CD)|+
|4(A'B'C'D)| + |A’'B'C’'D'| is the same of quadruple photo-
counts.

The proof of inequality (78) is analogous to that of
inequality (56). The experiment to test it may include as
much as 16 series (in accordance with the number of terms
in S4). The moments measured then can be reduced to count
rates, similar to the case considered in Section 3.

Quantum theory predicts that

(ABCD), =n'cosp, ¢=o+f+7+35, (80)

(|4BCDI), =(|4'BCD|), =...=(|4'B'C'D'|), =n",
(81)

([4BCl), = (|4'BCl),, = .. = (IB'C'D'|),, =n’. (82)

These relationships are derived in a way similar to Eqns (63) —
(65).
Let the phase delays meet the conditions

a—a/:ﬂ_ﬂ/:y—y/=5—5/=g’ (83)
3
atBryro="r, (54

at which all 16 terms S, are equal to 1*/2/2. In this case (|Sy|)
takes the maximum possible value. Here the necessary
condition to violate inequality (78) reads
n>4(3—2v2) ~0.69. (85)
Some softening of this requirement and a comparative
simplification of the experimental procedure (a twofold

decrease of the number of test series) can be realized by
updating inequality (78) as follows:

16](Sa)| < (N3) — (Na). (86)
The modified Bell observable §4 is determined here as

~ 1 ,

S4 = E [S3D, + S3D}

1
;Z[—ABCD+6(A/B/CD) —A'B'C'D). (87)

Let us set the following phase delays

a=f=y=5=0, o/:ﬁ’:y’:é/:g, (88)
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at which the full correlation of results should be observed,
since, according to Eqns (80), (81)

(ABCD),, (4'B'CD),,

_ o (A’B’C’D')%
(|l4ABCD)

(|4'B'CD|)

<\A/B/C/D/\>w4*

by 2

(89)

This result can be explained by a model allowing the
existence of a non-negative eight dimensional probability
distribution for trichotomic observables, which is outlined in
Appendix E. A contradiction of this model by quantum
theory predictions can be discovered in the violation of
inequality (86). The necessary condition for such a violation,
according to Eqns (80)—(82), (89), is

2

n > 3~ 0.67. (90)

This requirement on the efficiency of the detectors, which
follows from inequality (86), is consistent with the model
requirement (122) (see below).

A further increase of the number of observers leads to the
following results. To disprove the theory of hidden variables
at V' =35, detectors with quantum efficiency 5 > 0.625 are
required (see Appendix F). In the case of arbitrary V' > 3, the
non-negative joint probability distribution leading to the Bell
inequality violation of the type considered [see Appendix G,
Eqns (135), (136)], yields

(|41 4, ... Ay|) 14

(Ady . Ap]) 20/ =1)° (o1

therefore, at ' — oo the ratio (91) tends to 1/2.

Although it seems implausible to realize such a gedanken
experiment in practice, this result is interesting in the heuristic
sense, as it provides the lower limit for the detector efficiency
(50%), at which it is possible to refute the probabilistic model
described in Appendix G, and in a broader sense, the hidden
parameters theory in general, unless, of course, novel criteria
of'its testing are suggested. Perhaps it would be productive to
construct CH-type inequalities for an arbitrary number of
observers.

5. The Greenberger — Horne — Zeilinger (GHZ)
paradox for three and four observers

For schemes with the number of observers ' > 3, in addition
to the Bell inequalities, one can also formulate the GHZ
paradox [32, 33], leading to the contradiction —1 = +1. The
condition of its existence is the dichotomicity of variables,
which does not allow ‘zeros’. Here, according to Eqn (74),
under the full correlation condition we have

a'bc=1, ab'c=1, abc’' =1, a'b'd =-1. (92)

Each equality here is tested in one of four series of the
experiment. Let us multiply these equalities by one another:

z3 =(a'be)(ab’c)(abd')(a'b'¢') = (aa'bb'cc ) = —1. (93)

So, the square of a real number, which should be equal to
+1,is equal to (—1). This is the essence of the paradox. It can
be resolved within the framework of the theory of hidden
variables using the model depicted in Appendix D. This
model is based on refusing the dichotomicity of observables
A,A'",B,B’,C,C’ in favor of their trichotomicity, including
zeros. Then, according to Eqn (117), z3 is always zero, and

instead of the contradiction —1 = +1 in Eqn (93), we have
z3 = 0.

The denial of this trichotomic model is possible only by
accounting for double coincidences together with triple ones.
According to Eqns (64), (65)

(|4'BC)),,
(B, " >4
whereas the substitution of Eqns (63)—(65) into inequality
(56) keeping Eqns (73) yields n < 0.75. Therefore, the
hypothesis of the existence of a non-negative six dimensional
joint probability distribution for trichotomic observables
does not allow the detectors to have an efficiency higher
than 75%.

By analogy, one can formulate the GHZ paradox for four
observers [18, 32]. According to Eqn (89), in the case of
dichotomic observers we have

z4=(abed)(a'b'cd)(a'be d)(ab' ' d) = (aa'bb' ¢ d?)* = —1.
(95)

However, the trichotomic model described in Appendix E
yields z4 = 0, thereby resolving the paradox.

The result —1 = +1 is very impressive. However, it would
be hard to obtain the ideal unitary correlation. So the
question arises of how to treat an experimental result with a
correlation of], say, 0.97. Does it prove the inadequacy of the
theory of hidden variables? How justifiable is it to reject
uncorrelated photocounts? Considering in addition the need
for a posteriori statistical data processing to check the
condition n > V/2(V —1) following from Eqn (91), the
preference for experimental testing of CH-type inequalities
(45) becomes obvious.

6. Appendices

A. Quantum calculation of schemes with two observers
Consider the derivation of Eqns (13), (26), (27), (47), (49)—
(51) in the framework of the simplest four-mode quantum
model. Let us go back to Fig. 2a. Two modes registered by
observer 4 will be described by the photon annihilation
operators a, and a,. The first operator corresponds to the
mode with plane polarization in the x direction, the second —
in the y direction. Similarly, the two modes registered by
observer B will be described by operators b, and b,..

The action of the analyzer on the field amplitude is
equivalent to that of a beam splitter with transmission
t, = cosa and is described by a unitary transformation (see,
for example, Ref. [18])

ay = tuayx +rqay,,

a_ = —rqay + t,a,,

(96)

where a, is the operator describing the field at the ‘+°
detector input, a_ at the ‘-’ detector, r,=sinq,
ti""}% =T,+R,=1.

Photon number operators have the form

+ + +
Ngy =d dy = Tyngx + Ranay + taru(ax ay + axa, )7

©7)

ot (o +
Na— = a a_ = Rahge + Tahay — tarq(al a, + aa, ),

where a* is the corresponding photon creation operator.
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Operators of the observables at the analyzer output are
written here in the Heisenberg representation, i.e. are
expressed through the input field operators. They must be
averaged over the initial field state vector before the analy-
zers, i.e. over vector (11). In a more general form it can be
expressed by vector (48), so

Py(+) = nlnas )y, = n(g cos® o + v sin® o), (98)

Pa(=) = nlna-)y, = n(v* costa+ 1 sin’a). (99)
Analogous relationships determine Pg(+), which are
obtained by changing a into » and « into f.

Further on,

Pyp(++) = (na+nb+)l]]2 = n*(ucosacos f + vsinasin f)?,
(100)

Pap(—=) = (ng-np-);, = n*(usinosin f + vcosocos )%,

(101)

Pag(+=) = (napmp-)y, = n*(ucososin f — vsinacos f)%,

(102)

Pap(—+) = (na-npi )y, = n*(usinocos ff — veosasin f)°.
(103)

Considering the photocounts on the ‘+’ detectors only,
we obtain the description of the scheme in Fig. 3: from Eqn
(98) and the corresponding expression for Pg(+) we find
Eqns (49), (50), and from Eqn (100) — the result (51).

Let us turn back to the scheme in Fig. 2a. At
u=v=1/y2 from Eqns (98), (100) we derive (47), from
(98), (99) we obtain (27), since (|4|) = P4(+) + P4(—). Using
Eqns (100)—(103) we arrived at (13) and (26), since (4B) =
Pap(++) + Pyp(——) — P4p(+—) — P4p(—+) and (|4B|) =
Pup(++) + Pap(——) + Pap(+—) + Pap(—+).

Relationship (13) can be obtained as follows. The
observable 4 at u = v = 1/4/2 corresponds to the operator

A =n(ngy —ng-) = n(0,; €08 20 + g4y sin 20t). (104)
Here

Oux = dyay +axay , 04 = —i(afa, —a.ay),

Ou: = Ay ay — d} ay (105)
have the properties of Pauli spin operators.

Similar relationships determine the operator B:

B =n(ny. —n,_) = n(op-cos2p + apy sin 2). (106)

In state (11) (0ux0p)y, =(0:2x0px)y, =0, (TuxOpy)y, =
(04:0pz),, = 1, hence Eqn (13). The first- and third-order
moments vanish: (4), = (B), = (4BA’), =...=0. The

squares of the observables are (/12)4,2 = <B2)‘l//2 =

B. The derivation of the CH-type inequality

Let the values of a,a’, b, b’ belong to the set S. For example,
in the case of trichotomic observables, the elements of the set
are 0,+£1. We shall mark additional subsets by a tilde, for

example ¢ Ua = S. Then according to the correspondence
condition

Pugp(a,b,b")=Pyupp(a,a’,b,b")+Pyypp (a,a’,b,b’),
(107)
we have
Papp(a:b.b) < Py (a',b") + Pnla',)
=Pyp(a’,b")+Py(b)—Pyp(a’,b). (108)
On the other hand,
0< Pagp(a,b,b') = Pagla,b) — Pagp(a,b,b’)

= PA(a)—PAB(a, b)—PAB/(a,b') + PABB/(a, b,b/), (109)

from which

—PABB/(CI, b, b/) gPA(a)_PAB((L b) — PABr(a7 b/) (1 10)
After having summed inequalities (108) and (110), we obtain
expression (45).

This derivation with small changes is borrowed from
paper [35], which in turn was based on earlier works [36, 37].

C. The Bell inequality derivation for three observers
Consider the numerical inequality

4‘S3|<n2—}’13, (111)
in which
1
53 :E(a’bc—l—ab'c—i—abc’—a’b’c’)7 (112)
ny = |ab| + |a’b| + |ab’| + |a'b’| + |ac| + |a’c|
+ lac'| +la'd| + be| + [b'e| + b + [b'c|, (113)
ny = |abe| + |a'be| + |ab'c| + |abc'| + |a'b' |
+|a'b |+ |ab'd |+ |a'b'd|. (114)
To begin with, we set |a|=|a'|=|b|=|b'|=|c|=

|¢'| =1, then s3 = £1 and inequality (111) is met.
Let now a =0, then instead of (111) we obtain the
inequality

2|d (be = b"¢)| < [a'|(1] + [B] + Il + |¢'])

+ (Ibel + [b'el + b + [p' (1 = |a’]),  (115)

which is obviously valid. By analogy, one can check the cases
when b, b’ or ¢’ are equal to zero.
Since

(S3) = Z

a,a’b,b’ ¢,

s3Payppcola,a’,b,b’ e, ), (116)

and PAA’BB’CC’(ay Cl/, b7 b ,, c, C’) = 0, we have inequality (56)

D. A six dimensional joint probability distribution in the
case of the experiment for three observers

Let us write down the elementary six dimensional joint
probabilities

Pyappco(a,a’b,b'ic,c) = (aa'bb’cc’)
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in such a way that the following relationships are satisfied:
a'bc=0or1,ab’'c=0o0r1,abc’ =0o0r1,a’b’'c =0or —1,
and the number of zeros is minimal, i.e.

(====40)=(+++++0) = (= + -+ -0)
=H+-=+40)=(——++-0)
=(H++—-—--0)=(—++—-40)

(+—+—--0)=(+++-0+)
=(-+--0H)=(++-+0-)
=(-4++4+0-)=(+---0-)
=(-—+-0-)=(———+4+0+)
=+-++0H)=...=
:(0++7++)—%. (117)

The other elementary probabilities P4 pg/cc(a,d',b, b ¢, )
are set to zero, so

(A'BC) _(AB'C) _(ABC) __(AB'C) | o
(BTl (AB'Cl) (ABCT))~ (ABC]
(|4'BC]) B (AB'C) B _i

(4B ~ (4B T4 (119)

Thus, the minimal detector efficiency for experimental
refutation of this model must be n > 3/4.

E. An eight dimensional joint probability distribution
in the case of the experiment for four observers
Let us write down the eight dimensional elementary joint
probabilities

PAA’BB/CC/DD’(a7 a', b, bl, c, C/, d, d’) = (Ll(l 'bb /LL,dd/)
in such a way that the following relationships are satisfied:
abed=0or1,a’b'cd=00r—1,a’bd’d=0o0r—1,a’bcd’ =0
or—1,ab'dd=0or —1,ab’cd’ =0or —1,abc’d’ =0or —1,
a'b’dd’ = 0 or 1, and the number of zeros is minimal, i.e.

(—+++40-0)=(———++0+0)
=(———+-0-0)
=(-+---0-0)=
=0-0+—+—)=1 (120)

The other Pyyppccpp(a,d,b,b',c,c,d,d") are set to zero,
)

(4BCD) __ (A'B'CD) _ _ (A'B'C'D)) .,
(ascol = (amepy~ascn) 12
(4BCD|) (A'BCD) 2

([4BCl) — (4'BCl) ~ T3 1

The minimal detector efficiency for experimental refuta-
tion of this model must be y > 2/3.

F. The Bell theorem for five observers
Let us write down the numerical inequality

16S§ < ng — 21’[5 (123)

for trichotomic variables a, a’, b, b', ¢, ', d, d’, e, ¢ = 0, £1,
where

1
ss =5 [sale+¢) +s4(e = €)], (124)

2

ny = |abed| + |4(a'bed)| + ...+ |b'dd'¢],
|abede| + |5(a’bede)| + ...+ |a'b'd'd'e|.

ns

Inequality (123) can be tested in analogy with (111).
When a non-negative joint probability distribution exists

! ! ! ! /
PAA’BB’CC’DD’EE’(a7a ,b,b' e, d d 76,6)

= (aa'bb'cd dd’ ee")

we obtain
16[(Ss)| < (Na) — 2(Ns) . (127)
Quantum theory yields
(ABCDE), = n’cos ¢, (128)

p=atf+y+ote
from which it follows (see Refs [17, 18]) that

1
(Ss)y, = 1115 [cos 2 — 10cos(2¢ + 1) + 5cos2(p + )],
(129)

and at ¢ =0 (Ss), = 4i°. In this case inequality (127) is
violated at

5
n>==0625.

g (130)

In the corresponding statistical model, we retain the
following elementary probabilities as non-zero:
(-0-0-0—-—-4+—-)=(-0-0-0—++-)=
1

:(—0—0—0—5————):...:%. (131)
Then
(4BCDE) _ (A'B'CDE) _ (AB'C'D'E) _|
(IABCDE|)~  (|A’B'CDE]) (|AB'C'DE)
(132)
(|ABCDE]) _ (|A’B'CDE)) _ :é (133)
(|l4BCDJ) (|4’B'CD|) 8’

which is consistent with inequality (130).

G. The joint probability distribution in the case of the
experiment for an arbitrary number of observers V
We shall describe the test results for V observers by random
variables A4y, A}, 4>, ..., Ay, A}, with a total number of
variables 2.

In the case of odd V' > 3, the maximal violation of the Bell
inequality (Refs [17, 18]) corresponds to a full correlation as
(74), (118), (132), or, more generally, as

(A} Ayds.. Ay

(> Ay) _
(|414545...4v])

(|41 45... Av|)
(A ALA AL A5 Ay) !
(|4 A5 A4 As. . Ay|)

For V' =4, if conditions (121) and (134) are met, the Bell
inequality (86) is violated at a lower # (90) than is required to
violate inequality (78) according to (85). In addition, the
accomplishment of Eqn (134) allows one to study the GHZ
paradox for an arbitrary number of observers.

Condition (134) is met when, firstly, elementary probabil-
ities

(134)
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!/ !/ i /! !/
Py aay ayn,(@r,dy, @, ... ay,dy) = (adaz ... aydy,)

include, as a minimum, V" — 2 zeros; it is better when only one
of the two values of the same-name observables (¢; and aj’-)
vanishes (since elementary probabilities with ¢; = @, =0 do
not contribute to the moment (|41 45 ... Ap|)). Secondly, it is
necessary to select half of the total number of such elementary
probabilities yielding non-zero products of the same sign as
(92), (117), (120), (131). With a given position of zeros, the
total number of selected elementary probabilities is 27. Let
them all equal p, and the others vanish.

Now we calculate (|4;4; ... Ay|). Among the V primed
values @}, d), ..., d}, one can allocate V — 2 zeros using C}, 2
combinations, where C},~2 = V1/2!(V — 2)! is the binomial
coefficient, so

(|41 4;...4Ay]) = Z(ala'laz apdy) =2"pCh 2 (135)

When constructing the Bell inequality as (56), (86), (127),
the ratio of the moment (|4;4>...A4y|) to the moment
(|41 A2 ... Ay_1|) is important. Let us calculate the latter.
The elementary probabilities with 2" C}~2 are added by the
elementary probabilities for which ay = 0. There are 2"'C}—3
of the such elementary probabilities, so

(| 414y. . Ay]) = (|41 Ay .. Ay]) + Y (ardjay ... 0d})
=2p(C ),
hence we find Eqn (91).

(136)

7. Conclusion

An experiment using sufficiently efficient detectors can
answer the question about the hidden variable theory as a
possible interpretation of the quantum theory. Although such
experiments are unknown to the author, let us analyze the
consequences of a refutation of the hidden variable theory.

That it is impossible to describe an experiment within the
framework of the probabilistic models considered means the
receiving tract (i.e. the position of the switch for measuring
primed or unprimed observables) influences the formation of
the light field. For example, in the schemes with two observers
one has to use, instead of a unique four dimensional joint
probability distribution function P44 ppg/(a,a’,b,b’), four
two dimensional distributions

PAB(ayb)7 PA’B(a/yb)u PAB’(avb/)7 PA’B’(alvb/)7

which cannot be reduced to P44 pp/(a,a’,b,b’). Therefore,
the joint probability distributions in different test series turn
out to be inconsistent with each other, despite the absence of
any changes in the source when switching the working
regimes of the observers. This implies that the quantum field
cannot be separated into a priori (photon emission) and «
posteriori (photon detection) parts, which confirms the
conclusion of paper [34]: “A photon is photon only if it is a
registered photon”. In visual terms of photons — wave
packets — this can apparently be interpreted as follows: a
wave packet with quantized energy emerges between a
concrete source and a concrete absorber, and is not emitted
directionlessly into space in general. How can this possibly be
the case and is it not absurd to make such a supposition? If we
take as real the existence of vacuum waves (vacuum fluctua-
tions) as the background on which light and other phenomena
take place (see, for example, [38 —40]), then we will have to

admit the concurrent presence of head-on traveling waves of
non-zero amplitude until the source emits a photon. Conse-
quently, in the finite spectral region the head-on vacuum
waves traveling between detector and source might be able to
effect a preliminary synchronization, as it were, of source and
detector atoms, and this might have a bearing on the birth of
the photon. This closed, self-consistent approach might
ultimately serve to resolve the Bell paradoxes and provide
an insight into the nature of the photon.

The study was supported by the Russian Foundation for
Basic Research (grant 96-02-1633a).
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