
Abstract. A set of thought experiments with guided waves (as
the simplest example of spatially localized fields) shows that
photons occupying a waveguide mode possess all the character-
istics of nonzero inertial and gravitational rest mass. The cor-
responding quantity originates from the standing-wave
component of the field and is merely an equivalent of the real
energy from the `raking up' of zero-point vacuum fluctuations
from all unbounded space. It is impossible to distinguish this
quantity from the standard concept of mass. This conclusion is
valid for photons of any real spatially bounded fields. Two
different classes of resonances with boson- and fermion-like
features arise in waveguide ring structures depending on their
field topology. The heuristic prospects for these observations
are assessed.

``... and God divided the light from the darkness...''

(Genesis, 1, 4)

1. Introduction

The electromagnetic wave (light) exists only in motion.
Nevertheless, people have known how to stop light for a
long time without contradicting this basic fact. Here is a
description of the formation of a standing light waveÐone of

the versions of localizing the fragment of electromagnetic field
in space: ``If you put a lamp by night between two smooth
mirrors, separated by a distance of one cubit, you will see in
each countless light reflections, each smaller than the next,
and so to infinity, as if an infinite number of mirrors is inside
each mirror''. This description is attributed to Leonardo da
Vinci and is contained in the notebook eventually named
``The Atlantic Codex''.

Incidentally, the epigraph points to a more ancient
mention of the same problem. One of the principal actions
of the first day of creation was the spatial localization of the
electromagnetic field: the primordial light filling the world
with an infinite number of unbounded waves was singled out
from space deprived of field.

In spite of so venerable age, the question of features of the
electromagnetic field localized in space in the form of the
standing wave is still relevant today. An attentive observation
of such stopped light, i.e. a field containing standing compo-
nents, reveals features of photons that are customarily
attributed to particles with nonzero inertial and gravitational
rest mass. These features appear in a set of thought experi-
ments, the results of which necessarily imply, for physically
realizable fields, the concept of nonzero proper photon mass.
Moreover, it proves impossible to suggest some experimental
way to distinguish the quantity defined in this way from the
standard concept of rest mass of usual massive bodies.

Another result is the formulation of the dependence of
electromagnetic resonance properties in ring structures on the
topology of space filled with a standing wave field, with a
topology uniquely determining the resonance belonging to
one of two classes, boson- or fermion-like.

An experiment Ð even a thought one Ð does not allow
the use of an ideal unbounded plane wave: experimentally
realizable waves are always spatially bounded. Correspond-
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ingly, photons represented by such waves are investigated
here. This is the fundamental assumption of all further
analysis. The field of modes in a hollow metallic waveguide
and the photons filling them are considered as the simplest
model for spatially bounded fields.

A metallic waveguide, an instrument now customarily
used in experimental physics and applied radioengineering,
was not at all such a trivial device a hundred years ago. In
1893, even such a penetrating physicist as Heaviside still
denied the possibility of light propagation through tubes [1].
But only four years later Rayleigh published a study entitled
``On the Passage of Electric Waves through Tubes or the
Vibrations of Dielectric Cylinders'' [2]. So we can celebrate
the centenary of coming-to-be the notion of a waveguide as a
real physical object.

In fact, despite its simplicity, this physical image of a two-
dimensional potential well of infinite depth for photons turns
out to be heuristically very productive. Since, as mentioned
above, it serves only as a model, in what follows the term
`waveguide' should be thought of as such a potential well,
putting aside the question as to how realizable are the
corresponding ideally-metallic boundary conditions over
different frequency ranges. In addition, to avoid confusion,
it is worthwhile emphasizing that the model does not include
the concept of a dielectric waveguide, i.e. of a bounded-depth
potential well (this confusion may result from radically
different phenomena in waveguides of both types sometimes
being denoted by the same terms [3]).

A nontriviality of the ideal metallic waveguide model
manifests itself in the well-known analogy between the
Hamiltonian function for a free massive particle and the
dispersion equation for the wave mode. Another instructive
analogy appears when comparing the aforementioned prop-
erties of real bosons and fermions with those of electromag-
netic resonances in ring waveguides of different topologies.

Whenever apparently chance analogies and coincidences
occur in physical phenomena, it is worth thinking about what
could be behind them. It is sufficient to recall what resulted,
for example, from thinking about the `noncausal' coincidence
of the inertial and gravitational masses of a body.Nature with
all its diversity is organized sufficiently economically for
genuinely random coincidences capable of damaging our
conviction of its deep uniformity to arise.

Today, it may be reasonably said that ``the photon as an
elementary particle of the optical field has no reasonable strict
definition... Nevertheless it helps ... to qualitatively predict
the results of new experimental situations. In general, the
avoidance of the axiomatic approach sometimes helps in
going forward'' [4]. Putting aside the discussion of the
physical meaning of the photon concept, it seems necessary
to use this approach in this study.

2. The analogy between a photon in a waveguide
and a free particle with nonzero mass

The analogy between the relativistic expression for the
Hamiltonian function of a free particle

E 2 � �mc2�2 � �cp�2 �2:1�
and the dispersion equation of a wave in a hollow metallic
waveguide

o2 � o2
nm � �cz�2 �2:2�

has been noted by different authors for a long time. The
following pairs of quantities are to be compared: the particle
total energy E and the wave frequency o, the particle proper
mass m and the critical (cutoff) frequency onm of the
waveguide mode with integer indices n and m, particle
momentum p and wave propagation constant z (c is the
speed of light). The association becomes especially visualized
if equation (2.2) is multiplied by the square of the Plank
constant �h.

Referring in passing to this analogy, de Broglie notes: ``All
occurs as if the photon has its own mass determined by the
form of the waveguide and the eigenvalue considered ...; in a
given waveguide, a photon may possess a whole series of
proper masses'' [5]. Then, unfortunately, he continues: ``Let
us put aside these considerations bringing us away from the
subject ...'' Feynman, making the same comparison, restricts
himself to remarking: ``It's interesting, isn't it?'' [6]. This
analogy is already mentioned in textbooks, where one some-
times notes (see, for example, Ref. [7]) its informal character
and gives a real physical meaning to the concept of mass of a
photon in a waveguide.

Is it possible, however, to find really substantial differ-
ences in the behaviour of the quantity

M � �honm

c2
; �2:3�

which is proportional to the critical frequency of the
waveguide mode onm, and the particle proper mass m 6� 0 in
the traditional sense of this concept? The answer to this
question is contained in the following set of thought experi-
ments, where the role of the quantity M (2.3) is analyzed in
different physical situations. Not to anticipate it, it is useful to
note that in the light of definition (2.3) the critical wavelength
of a waveguide mode

lnm � 2pc
onm
� 2p�h

Mc

takes the simple meaning of the Compton wavelength of a
photon in a waveguide [8].

The standard theory of electromagnetic wave propaga-
tion through awaveguide is based essentially on the kinematic
approach. To analyze the concept of the massM of a photon
in a waveguide in definition (2.3), one needs to solve
dynamical problems in the thought experiments suggested,
including dynamics in a gravitational field. But firstly one
should verify that the physical reality in the form of the
equivalent energy accumulated in some visual process and
capable of being transformed into other types of energy
corresponds to the quantity M (2.3).

3. Mode field evolution during a change
of the waveguide cross-section [9]

As is well known [5], the existence of a finite critical modewith
frequency onm > 0 is a basic feature distinguishing the
propagation of a wave with o > onm through a waveguide
from the wave picture in free space. To find the essence of
these differences, one needs to trace the evolution of the
waveguidemode field as the waveguide cross-section changes.

From the first moment a wave with frequency o0 > onm0

propagates through the waveguide with a critical frequency
onm0. If the cross-section changes slowly enough so that the
field structure of the observable mode is conserved, the
principal field behaviour is determined by the invariance of
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the propagation constant z � const or, equivalently, by the
phase interval invariance. The latter implies that the phase
difference of the wave of a given mode over a fixed finite
segment of a regular infinite-length waveguide remains
unchanged with any variation of its cross-section geometry.
Thus according to (2.2) it follows that

o2 ÿ o2
nm � o2

0 ÿ o2
nm0 � const : �3:1�

A special case of this relationship is an initial waveguide of
infinite cross-section with infinitely remote walls, i.e. a free
space with onm0 � 0:

o2 � o2
0 � o2

nm : �3:2�

This situation can be considered as the starting point for the
process of constructing a waveguide of finite cross-section by
bringing closer its initially infinitely remote walls. Then the
initial field with frequency o0 generates a wave inside the
waveguide with frequency o according to (3.2).

Special consideration should be given to the case when the
initial field frequency is vanishingly small �o0 ! 0�, i.e. the
initial field is purely static, and (3.2) by z � 0 goes over into
the equality

o � onm : �3:3�
In this limiting case the initial static field in free space plays
the role of a field generating a wave field with the critical
frequency in the waveguide. If one considers free space as the
limiting case of an infinite-cross-section waveguide, then the
initial frequency o0 � 0 naturally takes the meaning of the
critical value, as this is the static field in free space that
possesses themain signature of the critical frequency field: it is
unable to propagate.

It stands to reason, in the opposite course of events from a
critical waveguide of finite cross-section to the free space the
degradation of the wave field into a purely static state is
clearly seen.

Further, in addition to the phase interval invariance, one
should admit that the photon occupation number in mode is
constant �n � const�with a slowly changing waveguide cross-
section, which seems to be quite justified in the absence of
dissipation and nonlinearities. At the same time, the field
energy W 0 � �ho�n� 1=2� of the observed mode does not
remain unchanged due to the o-frequency variations (3.1).
The 1/2 term reflects the contribution of the zero-point
vacuum fluctuations. The total field energy in the waveguide
with transverse structure and critical frequency peculiar to the
given mode, equals

W � �ho�n� 1� ; �3:4�
where 1 � 1=2� 1=2 corresponds to the total energy of the
zero-point fluctuations, which are unavoidably present in
both modes of the same name with alternative propagation
directions, even when the second possesses no real photons.

Therefore the waveguide evolution is accompanied not
only by the wave frequency change according to equation
(3.1), but also by the field energy W change in complete
agreement with the adiabatic invariant of the oscillator
energy-frequency ratio:

W

o
�W0

o0
� �h�n� 1� ; �3:5�

whereW0 is the starting energy at o � o0.

Obviously, the field energy W increase is due to the work
expended on moving the waveguide walls. In the present
context, neither the character of external forces causing the
motion, nor the nature of the energy source are significant;
essential is the fact of energy storage in the waveguide mode.

In the special case of waveguide formation from free space
with onm0 � 0 containing the initial static field with o0 � 0, a
wave field of critical frequency emerges, whose energy of the
quantum, according to (3.5), is

�honm � W

n� 1
� w ; �3:6�

where w is the energy required to fill the mode by a single
critical-frequency photon.

4. The mechanism of field evolution
in a waveguide with moving walls [9]

The essence of field evolution in a waveguide with time-
variated cross-section lies in theDoppler effect and relativistic
change of the reflection angle y by a moving mirror. These
phenomena most clearly are revealed by amodel of a simplest
planar waveguide composed of two parallel metallic planes
separated by a vacuumgap of width a and possessing a critical
frequency on0 � pcn=a for the modes of two polarizations
TEn0 �n � 1; 2; . . . ;m � 0� and TMn0 �n � 0; 1; 2; . . . ;m � 0�.
The field in such a waveguide is represented by the super-
position of two partial plane waves incident on the walls at the
angle y, with cos y � on0=o.

An accurate account of the frequency changes mentioned
above

o 0 � o�1� 2b cos y� b2��1ÿ b2�ÿ1 �4:1�

and of the angle

cos y 0 � cos y
�
1� 2b

cos y
� b2

�
�1� 2b cos y� b2�ÿ1 �4:2�

at each reflection of the partial wave from the wall slowly
moving in a direction normal to the waveguide plane with
velocity cb5 c, leads to the following relationships:

a0 tan y � a tan y0 ; o sin y � o0 sin y0 : �4:3�

Zero indices denote the initial values.
The exclusion of the angle y from system (4.3) brings us

back to the invariant (3.1). This means that the phase interval
invariance is provided essentially by relativistic mechanisms
Ð the Doppler effect and the variation of the angle of
reflection from a moving mirror, despite b5 1.

The increase of the field energyW is due to the work done
against the radiation pressure on the moving walls:

dW

da
� ÿW

a
cos2 y � ÿ W=a

1� �a=a0�2�o2
0=o

2
n00 ÿ 1� : �4:4�

The integration of (4.4) accounting for (4.3) leads to the
adiabatic invariant (3.5). This solution is obtained directly
from dynamical considerations of a waveguide with moving
walls, not only without admitting the mode photon occupa-
tion number to be constant, but also without using the light
quanta concept in general, i.e. entirely within the classical
framework.
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The same result relating to the origin of the field energy
accumulated in the mode is also obtained for the general case
of a waveguide with arbitrary cross-section changing in time
[10]. The radiation pressure on the walls of the generalized
cylinder is determined by the corresponding component of the
Maxwellian tension tensor, and the cross-section deforma-
tion is produced while its contour shape remains homothetic.
This leads to the equation

dW

do2
nm

� W=2

o2
nm ÿ o2

nm0 ÿ o2
0

; �4:5�

which is equivalent to (4.4), and after its integration Ð to the
adiabatic invariant (3.5). This general conclusion is clearly
supported by detailed calculations for waveguides with
circular and rectangular cross-sections [10].

5. Mass of photon in a waveguide Ð
an equivalent to the energy of the critical
frequency quantum. The seeding role
of zero-point vacuum fluctuations [9]

Thus, the quantity w (3.6) coinciding with the energy �honm of
quantum of the critical frequency, is equal to the energy
accumulated in the waveguide due to the work done against
the radiation pressure force of a single photon in a givenmode
during the formation of its wave field from the static field of
the initial free space. No real photons are required to be
present in this process of forming the critical frequency onm

field: even if n � 0, the energy of the ubiquitous zero-point
vacuum fluctuations �ho0 � �ho0=2� �ho0=2, which possess a
vanishingly small frequency o0 ! 0, i.e. the static field
fluctuations, is sufficient for seeding. Such a creation `from
nothing' of a critical frequency quantum reduces to the
compression (`raking up') of the initial static fluctuation
field from all unbounded space into the waveguide, increasing
its frequency from zero to onm > 0.

The main feature of this compression process is the
accumulation of energy in a selected waveguide mode. The
presence of other internal or external forces and fields in
addition to the mode field radiation pressure does not relate
to this main result. The action of these fields can simply be
included into the external force pushing the waveguide walls
during the compression.

Turning to the seeding role of zero-point fluctuations
during the storage of energy w (3.6) and noting their obvious
analogy with the Casimir effect [11], one can easily discover
substantial differences. The Casimir force is known [11, 12] to
be due to the integral action on the metallic boundary on the
part of fluctuation field of allmodes in the entire unbounded
frequency range. The resulting force has a different magni-
tude and even sign depending on the geometry of the metallic
boundaries. For example, two plane-parallel metallic walls
(as in a planar waveguide) are attracted to each other.

In contrast to this, to calculate the energy w (3.6), only
that component of force which is due to vacuum fluctuations
in a single selected waveguide mode is required and this
component is directed from within to its moving walls.

Incidentally, in the geometry where the Casimir force is
directed to the approaching walls, it can even be considered as
one of the (or perhaps, the only) components of the external
force pushing the walls. Then the energy w (3.6) accumulated
in a selectedmode comes from the redistribution of the energy
of the whole unbounded frequency spectrumof the zero-point
vacuum fluctuations and modes.

In the light of these results the quantityM (2.3) acquires a
deep physical meaning: it is the mass equivalent to the energy
w accumulated in amode during the spatial localization of the
field of zero-point vacuum fluctuations and is connected with
the scale of the localization region. The equivalence of the
quantity M to the real energy, which can be got back by the
reverse motion of the waveguide walls, gives it a clear
signature of mass.

A separate remark should be made about the mode TM00

with n � 0 of a planar waveguide; this mode possesses a zero
critical frequency at any width a. The reason for this is a
simple fact that serves to confirm the above concepts: the
wave polarization of this mode is such that the electric vector
is always perpendicular to the wall plane, and hence, the
radiation pressure on it is lacking. As a result, both the energy
w and the critical frequency vanish.

The conclusions made for a waveguide are also valid for a
cavity as a limiting case of a waveguide: the photon mass in
the resonator mode is simply proportional to the resonance
frequency.

6. Longitudinal and transverse photon masses [3]

With the definition of themassM in the form (2.3), the energy
of photon in a waveguide can be obtained from the dispersion
equation (2.2):

�ho �Mc2
�
1ÿ

�
u

c

�2�ÿ1=2
; �6:1�

which is expressed through the standard formula for the
energy transport velocity

u � c

�
1ÿ

�
onm

o

�2�1=2
: �6:2�

The ratio of the latter to the speed of light �u=c� clearly has in
(6.1) the same meaning as the usual relativistic ratio b for
nonzero mass particles.

The constant of propagation z along the waveguide axis is
also expressed through the transport velocity u (6.2) andmass
M (2.3):

�hz �Mu

�
1ÿ

�
u

c

�2�ÿ1=2
: �6:3�

Equations (6.1) and (6.3) are trivially coincident with the
standard relativistic expressions for the energy and momen-
tum of a massive particle.

Also coincident is the longitudinal mass of photon

Mk �M

�
1ÿ

�
u

c

�2�ÿ3=2
; �6:4�

which is the coefficient of the longitudinal acceleration in the
derivative �hz (6.3) with respect to time t:

�h
dz
dt
�M

�
1ÿ

�
u

c

�2�ÿ3=2
du

dt
�Mk

du

dt
: �6:5�

Apparently, the only force to cause such a longitudinal
photon acceleration in a waveguide with constant cross-
section is the gravitational force, directed along the wave-
guide axis (see Section 8 below).
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The concept of transverse waveguide photon mass is not
so simple. To introduce it, one needs to study accelerated field
motion in the direction perpendicular to the waveguide axis.
In this context, it has a meaning only if one considers the joint
displacement of the field together with the waveguide con-
taining it as a whole. The transverse photon mass is then
defined as

M? � DF
A

; �6:6�

i.e. this is the ratio between the force differenceDF relevant to
the radiation pressure of a one-photon mode field exerted
upon the opposite waveguide walls, and the waveguide
acceleration A (neglecting, of course, the mass of the walls).
The scheme of this thought experiment is somewhat reminis-
cent of the well-known consideration of light frequency shift
in an accelerated elevator (see, for example, Ref. [13]).

The wave frequency changes with accelerated motion
according to law (3.1), where the current critical frequency
onm is a function of the instant velocity cb of the waveguide
motion in the transverse direction due to relativistic contrac-
tion of the waveguide cross-section. The mechanism for this
frequency change is theDoppler effect during reflections from
the moving walls. For example, for the planar waveguide
model onm � onm0�1ÿ b2�ÿ1=2 and the frequency varies as

o � o0

������������������������������������������
1�

�
onm0

o0

�2 b2

1ÿ b2

s
: �6:7�

To calculate the radiation-pressure force difference DF it
is convenient to assume that the waveguide is moving with a
constant acceleration

A � c
db
dt

;

normal to the wall plane, with b � 0 at t � 0. At the next
moment t > 0, when b � At=c, the photon with frequency o
belonging to the mode field falls on the wall at the angle y and
transfers to it the momentum

p1 � 2�ho
c

cos y� b

1ÿ b2
: �6:8�

The next reflection of the same photon from the opposite wall
occurs at t� Dt, when the velocity increases by Db � ADt=c,
transferring to the waveguide the momentum

p2 � 2�ho
c

�
cos y� b� Db

1� 2b cos y� b2

1ÿ b2

�

� 1

1ÿ �b� Db�2 �6:9�

in the direction opposite to p1. Here all frequencies and angles
are given in the laboratory frame of reference fixed at t � 0
and b � 0; the upper signs relate to the case when the first of
two sequential reflections occurs from the wall moving
toward the incident photon, the lower ones Ð to the opposite
case of the reflection from the co-moving wall.

As a result, in each cycle of two successive reflections the
waveguide receives the differential momentum directed

toward the acceleration vector:

Dp � ��p1 ÿ p2� � 2�ho
c

1� �cos y� b�Db=�1ÿ b2�
1ÿ b2�1� Db=b�2 Db

' 2�ho
c

Db ; �6:10�

where the small terms quadratic in b andDb depending on the
sequence of the reflections are omitted in the second equality.
The velocity increase Db in a time between the two reflections
is

Db ' aA

c2 cos y
:

Hence the momentum given to the waveguide in one reflec-
tion is

Dp0 � Dp
2
� �ho

c

aA

c2 cos y
: �6:11�

Thus, the external force driving the waveguide, together
with the field inside it, into accelerated motion is balanced by
the force

IDp0 � �honm

c2
�n� 1�A

�
1ÿ

�
u

c

�2�ÿ1=2
; �6:12�

where I � �cW=a�ho� cos y is the total flux of photons falling
on the waveguide walls with a total energy W of the mode
field. The comparison of the force IDp0 (6.12) related to a
single photon in the mode, IDp0=�n� 1� � DF, with the
definition (6.6) leads to the transverse photon mass in a
waveguide

M? �M

�
1ÿ

�
u

c

�2�ÿ1=2
; �6:13�

coinciding with the relativistic formula for nonzero mass
particles.

Equations (6.4) and (6.13) explain the difference between
longitudinal and transverse masses: while both being propor-
tional to the proper photon mass M (2.3), Mk and M? are
manifestations of the photon inertia in different types of
accelerated waveguide motion. The longitudinal accelerated
photon motion constitutes simply wave propagation with
changing frequency through the waveguide. The transverse
photon motion consists in the acceleration of the wave
together with the waveguide confining it, as a whole.

Returning to expression (6.2) for the transport velocity,
one can note that in full agreement with the relativistic
requirements for massive bodies, it is less than the speed of
light: u < c, which has a clear interpretation (see, for example,
Ref. [7]). The wave propagation through the waveguide
consists in multiple reflections from walls of partial waves
making the mode field. So the broken trajectory of the energy
transfer does not coincide with the waveguide axis and the
transport of energy along it slows down. Therefore, the
reason for both the appearance of nonzero photon mass and
the deceleration of the energy transport velocity is the same: it
is impossible to represent the field by a single unbounded
plane wave. It seems likely that the velocity intrinsic in energy
transport (and hencematter transport) is always constant and
equal to c (as well as the speed of light in different inertial
systems), and only the motion along nonrectilinear trajec-
tories caused by transverse spatial boundaries yields an
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apparent velocity decrease, leading simultaneously to the
emergence of nonzero mass.

7. A photon in a centrifuge [14]

Continuing to look for phenomena in which the quantity M
(2.3) displays features ofmass, it is worth using a simple recipe
of Feynman [15]: ``A qualitative measure of inertia is mass. It
can be measured as follows: one simply ties a body with a
cord, then rotates it with a certain velocity and measures the
force that is necessary to keep it. The mass of any body can be
measured in this way.'' In other words, one should find the
coefficientM � in the expression for the centripetal force

Fc �M�u2

R

�
1ÿ

�
u

c

�2�ÿ1=2
; �7:1�

acting on the body that rotates with a linear velocity u around
a circle of radius R. In the present context this means finding
the force of reaction from the walls of a waveguide bent
around a circular arc, on the wave propagating inside it, and
comparing this force with Fc (7.1).

For simplicity, it is more convenient to consider a
waveguide bent along an arc intercepted between the sides
of the central angle 2p, i.e. a circular toroidal resonator which
has a rectangular cross-section with sides a and b and circular
cylindrical walls with radii R and R0 � Rÿ a, inside which
the frequency of a wave running around the circle takes
discrete admissible values onml. The sought reaction force is
numerically equal to the difference of the total modulus of the
radiation pressure forces acting upon the external and
internal cylindrical walls: DF � F�R� ÿ F�R0�. The radial
vector component of the radiation pressure on the cylindrical
surface is equal to that of the Maxwellian tension tensor with
opposite sign, while the time-average difference between the
modulus of the total radiation pressure force is proportional
to the field mode energy W:

DF �W

R

�
cK
o

�2

F ; �7:2�

where for modes of two polarizations

FTM � R

R0
ÿ
�
R

R0
ÿ 1

�(
1ÿ

�
Jm�KR�
Jm�KR0�

�2)ÿ1
;

FTE � R

R0
ÿ
�
R

R0
ÿ 1

�(
1ÿ

�
J 0m�KR�
J 0m�KR0�

�2
1ÿ �m=KR0�2
1ÿ �m=KR�2

)ÿ1
;

�7:3�

and the eigenvalues K are determined by the roots of the
equations

Nm�KR�Jm�KR0� � Jm�KR�Nm�KR0� �for TM� ;
N 0m�KR�J 0m�KR0� � J 0m�KR�N 0m�KR0� �for TE� �7:4�

and Jm, Nm are integer m-order Bessel and Neumann
functions, J 0m, N 0m their derivatives with respect to the
arguments. The admissible frequencies of waves of both
polarizations follow from the relationship

o2
nml � �cKnm�2 �

�
pcl
b

�2

� o2
n0l � c2�K2nm ÿ K2n0� ; �7:5�

where the indices n, m, l are integers, and on0l makes sense of
the critical frequency of a wave running around the circle,
since at m � 0 its propagation in the azimuthal direction
stops.

To compare DF (7.2) with the centripetal force Fc (7.1),
one should take into account that in Feynman's mechanical
model described by (7.1) all the mass M � is concentrated
around a circle of radius R, whereas the field energy in the
toroidal waveguide is distributed over a ring of thickness a
[just this fact is accounted for by the factor F (7.3)]. There-
fore, the comparison proposed is valid only for suchmodes of
the torus in which the field closely adjoins the outer cylinder
of radius R. This requirement is fulfilled by modes with
multiple field periodicity around the circle �m4 1� and a
small number of field nodes along the radius �n � 1�, when all
the field components rapidly decrease with reducing radius,
and without appreciably affecting the result, one can accept
R0 5R and for the first roots of (7.4) we obtain approxi-
mately KR ' m [16].

Then the difference of the moduli of the total radiation
pressure forces (7.2), which is proportional to the square of
the transport velocity u � c2m=oR, is

DF �W

R

�
cm

oR

�2

�W

R

�
u

c

�2

; �7:6�

and the wave frequency, according to (7.5), is

o � on0l

�
1ÿ

�
c

o

�2

�K21m ÿ K210�
�ÿ1=2

' on0l

�
1ÿ

�
u

c

�2�ÿ1=2
:

�7:7�
Finally, taking into account (3.4), we arrive at

DF � �hon0l

c2
u2�n� 1�

R

�
1ÿ

�
u

c

�2�ÿ1=2
; �7:8�

where on0l is the critical frequency of the toroidal waveguide,
and the comparison DF � Fc leads to

M � � �hon0l

c2
�n� 1� �M�n� 1� : �7:9�

Thus, the experimental determination of the inertial mass
of a body by Feynman's method suggests that the quantityM
(2.3) is the mass of photon in a waveguide mode.

8. A heavy photon in a waveguide.
Gravitational resonator [8, 17]

The answer to the question as to whether the quantityM (2.3)
manifests features of both inertial and gravitational mass, is
given by studying wave propagation through a waveguide
fixed vertically in a gravitational field.

By definition (2.3), the photon mass is proportional to the
critical frequency, which in turn depends upon the linear size a
of the cross-section:

M � �honm

c2
� �hK

c
� �hmK

ca
; �8:1�

where the root of the characteristic equation mK is a
mathematical invariant.

The cross-section a, as any linear dimensions of the body,
depends on the gravitational potential FG as a � a1�1� F�,
where the modulus of the normalized gravitational potential
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jFj � jFGj=c2 5 1, and the sign1 here and below marks the
values at infinity from the gravitational field sources, where
the potentialF � 0, soF4 0. The speed of light also changes:
c � c1�1� 2F� [13].

Accounting for these dependences, expression (8.1) yields
the waveguide mass of photon in a gravitational field

M � �hmK
c1a1

1

�1� F��1� 2F� �M1�1ÿ 3F� ; �8:2�

where M1 � �hmK=c1a1. This dependence, obtained from
definition (2.3) as a result of the gravitational field effect on
the factors constitutingM, coincides with the relativistic mass
change of a usual heavy body in a gravitational field [13], also
evident from the dimensional analysis.

In the gravitational field the propagation constant z also
changes due to both the critical frequency onm �
onm1�1� F� and the wave frequencyo � o1�1ÿ F� depen-
dences on the gravitational potential F [13]:

z2 �
�
o
c

�2

ÿ
�
onm

c

�2

' z21

(
1ÿ 2F

�
1� 2

�
1ÿ o2

nm1
o21

�ÿ1�)
: �8:3�

Here the second term can be not small even for jFj5 1, if
o1 ! onm1, i.e. near the critical conditions, however z does
not vanish because jz1j > 0 at F < 0.

If one rejects the limitation jz1j > 0 and traces the
propagation constant z changing along the waveguide from
the point with potentialF to the point with potentialF� DF,
then

z2 � z20

�
1ÿ 2DF

�
1� 2

1ÿ o2
nm=o2

��
; �8:4�

where z0, onm and o are the values at the point with potential
F. The propagation constant decreases as the wave travels
towards the point with higher gravitational potential
�DF > 0�.

Most interesting is the case close to the critical conditions,
when 1ÿ �onm=o�2 5 1 and the initial value z0 is small (in
terms of the mechanical analogy: when the kinetic energy of
the body is small in comparison to the proper potential
energy, i.e. within the nonrelativistic approximation). Then,
despite the condition jDFj5 1, for

DF ' 1

4

�
1ÿ

�
onm

o

�2�
�8:5�

a situation emerges which reproduces, in a certain sense, a
tabletop laboratory `black hole': the r.h.s. of (8.4) vanishes,
z � 0, and the wave propagation upwards (i.e. against the
gravity force) through the waveguide stops. Then, together
with the sign of the square root �

�����
z 2

p
, the direction of

propagation reverses. Such a gravitational reflection of a
wave in a homogeneous regular waveguide is similar to the
pause at the uppermost point of a trajectory and subsequent
fall of a heavy body that has been thrown upward and has
exhausted its initial momentum.

Condition (8.5) defines the gravitational height of the
waveguide, i.e. the vertical distance H to the wave's turning
point. In particular, if DFG � c2DF � gz, where g is the

acceleration of free fall and z the vertical coordinate, then
the waveguide gravitational height is

H � c2

4g

�
1ÿ

�
onm

o

�2�
� u2

4g
; �8:6�

where values in the r.h.s. are taken at z � 0.
Thus, the cross-section of the waveguide with vertical

coordinate z � H serves as an opaque gravitational mirror for
the wave. [It should be noted that an attempt to observe the
gravitational mirror effect under terrestrial gravity would
require very stable experimental conditions (frequency,
geometry, etc., � 10ÿ15) and ideal conductivity (supercon-
ductivity) of the metallic waveguide walls.]

The gravitational height H (8.6) obtained is two times
smaller than the height of elevation of a heavy body with
initial velocity u in a gravitational field with constant
acceleration of free fall g, calculated in the framework of
Newtonian mechanics. The reason for this discrepancy is the
same as when comparing the results of the calculation of
gravitational light trajectory bending in general relativistic
theory, confirmed experimentally, with those obtained by
Newtonian mechanics using the equivalence principle (see,
for example, Ref. [13]). The gravitational reflection of a wave
in a vertical waveguide is in essence one version of gravita-
tional light bending. This is seen, for example, in a simple
model of a planar vertical waveguide (Fig. 1). Using the well-
known technique of scanning a light beam, reflected many
times from flat mirrors, one can imagine the zig-zag broken
line with constant step that the light beam follows in the
waveguide at g � 0 as a line inclined by the angle y to the
normal to the waveguide walls. A gravitational field with
g > 0 makes this initially straight line bend as shown in Fig. 1
by the thick line, with the maximum corresponding to the
gravitational heightH (8.6). This curve represents a smoothed
scanning of the light beam path in the waveguide shown by
the thick broken line with decreasing step, which illustrates
the phenomenon of gravitational wave stopping and reflec-
tion. In the same figure, the dashed curve shows the scanning
of beam deflected with half the angle variation rate, calcu-
lated in the Newtonian approximation. The maximum of this
curve, which is essentially a parabolic nonrelativistic trajec-
tory of a heavy body, equals 2H.

From the same figure one can note, incidentally, the
distributed character of the gravitational mirror: the wave
vector of a partial wave gradually reverses over all the
waveguide height. Therefore, perhaps, it is more relevant to
speak not about the reflection, but about the refractive

g>0

g=
0

2H

H

g

W
av
eg
u
id
e y y

Figure 1.
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inversion of a wave in a waveguide exposed to a gravitational
field.

If there is a mirror Ð a gravitational one in the present
case, then it is easy to construct a resonator in the form of a
waveguide with vertical dimension exceeding the gravita-
tional heightH, the bottom end closed by a common metallic
mirror. The resonance condition�H

0

z�z� dz � pN; N � 1; 2; . . .

in the particular case (8.6), when z � z0�1ÿ z=H�1=2, yields
the resonance frequency measured at the bottom mirror:

oN �
����������������������������������
o2

nm �
�
3pcN
2H

�2
s

� onm

��������������������������������
1�

�
6pgN
conm

�2=3
s

: �8:7�

9. Weighing the photon [17]

To weigh a photon directly, one should put a resonator with
one photon in the mode on a balance platform and determine
the difference of forces of radiation pressure on the lower and
upper reflecting surfaces, which will yield the photon weight.
This procedure is especially visual in a gravitational resona-
tor, in which the radiation pressure on the lower and upper
surfaces is transmitted to different bodies: the pressure on the
lower metallic surface is transferred to the balance platform,
and the upper gravitational mirror transmits the reaction
force, bypassing the balance, directly to the body of highmass
(source of gravity), for example, the Earth. Thus, the
radiation pressure on the metallic bottom of a resonator,
not being balanced by the opposite force, is defined as the
photon weight in the gravitational resonator.

At each reflection from the bottom, the single photon of
the mode transfers a momentum to the balance platform

Dp � 2�hoN

c

��������������������������
1ÿ

�
onm

oN

�2
s

;

and the whole period of the photon circulation in the
waveguide resonator (up and down) is equal to twice the
time of the electromagnetic energy transfer to a heightHwith
the velocity u:

DtH � 2

�H
0

o
c2z

dz ;

where the integrand is given by (8.4). For the case DFG � gz
this yields

DtH � 2

u

�H
0

�
1ÿ z

H

�ÿ1=2
dz � 4H

u
� u

g
:

Hence the photon weight as the Dp to DtH ratio equals

Fg � Dp
DtH
� 2

�hoN

c2
g � 2Mg ; �9:1�

where M � �hoN=c
2 is the mass (2.3) of a photon with

frequencyoN (8.7). It should be noted that the photon weight
is two times higher than the standard classical value, and the
period of circulation DtH is two times smaller than that for a

heavy ball that reflects elastically from an immobile base. The
reason for this is the relativistic character of the photon
motion.

Putting aside the photon for a while, how can one weigh a
heavy particle of massmmoving with a relativistic velocity u,
not lying on the balance platform? Let the particle trajectory
in the gravitational field be a continuous sequence of arc-like
segments based on the horizontal balance platform, and the
reflections at the points of fall be absolutely elastic. Then the
particle weight can be determined as the ratio of the twofold
normal component of the particle momentum 2pz near the
platform surface to the time interval Dt between two
successive reflections, i.e. Fg � 2pz=Dt. The equation of
motion of the particle in a field with gravitational potential
FG determining the particle trajectory is (see, for example,
Ref. [13])

dp

dt
� m

(
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�
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�
u

c

�2�
HHFG � u

c

�
u

c
� HHFG

�)
: �9:2�

If HHFG � g, then in Cartesian coordinate system this equa-
tion splits into two ones:

dpz
dt
� ÿmg

�
1�

�
ux
c

�2�
;

dpx
dt
� mg

uxuz
c2

; �9:3�

where indices x and z denote the corresponding horizontal
and vertical vector components.

Two limiting cases are possible. For a strictly vertical
motion ux � 0 and the particle weight Fg � mg coincides with
the Newtonian definition. For a very slanting, nearly hor-
izontal trajectory, one can assume uz 5 c, ux ' u and then

Fg � mg

�
1�

�
u

c

�2�
4 2mg :

The general case of a moderately slanting trajectory corre-
sponds to a weight value between the two limiting ones:

mg4Fg 4mg

�
1�

�
u

c

�2�
4 2mg : �9:4�

In a similar way, the photon weight in a vertical
waveguide, depending on how close the critical regime is,
lies within the range fromMg ato4onm to 2Mg ato! onm.
The last case corresponds to the phenomenon of gravitational
light deflection in general relativistic theory.

10. The proper photon mass
and the momentum defect [3, 8]

The above-considered thought experiments with an electro-
magnetic wave in a waveguide lead to the conclusion that de
Broglie's analogy has not at all a formal but a clear physical
meaning. The energy of a quantum of the critical frequency,
which corresponds in this analogy to the proper photon mass
in the waveguide, is real. It is accumulated in themode by field
compression during the evolution from an unbounded plane
wave of free space to the transverse-localized mode field of a
finite cross-section waveguide. This evolution is accompanied
by doing the work against the radiation pressure forces of the
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zero-point vacuum fluctuations, originally of zero frequency.
The proper photon mass in the waveguide, defined as the
equivalent of the energy mentioned above, serves in different
situations precisely as the inertial and gravitational mass in
the standard meaning of these concepts. Therefore, the
quantity M (2.3) must necessarily be identified with the
nonzero proper photonmass in awaveguide, since no thought
experiment has so far been suggested to disprove this
statement.

Going back to the basic relativistic relationship (2.1), it is
necessary to stress once again in the spirit of a very instructive
analysis of the mass concept [18, 19] that the proper photon
mass is, according to (2.1), identically zero only in so far as the
photonmomentummodulus jpj � �ho=c is equal to the energy
�ho with a factor of cÿ1. However, the equivalence of these
quantities corresponds only to a photon represented by an
ideal, infinite and unique plane wave, which cannot be
physically realized.

In fields with complex structures, which differ from the
ideal image above, separate components of the vector
quantity p can be mutually balanced to yield zero in the
sum, so that jpj < �ho=c.

Such a mutual balancing occurs in a waveguide mode
comprising n photons with total energy n�ho. The partial
waves with the transverse momentum components

p? � � �honm

c

n
2

form a standing wave in the direction normal to the
waveguide axis with total momentum

n
2

�
�honm

c
�
�
ÿ �honm

c

��
� 0 :

Comparing this to the case of an unbounded plane wave, in
the energy-momentum balance (2.1) they produce a momen-
tum defect

ndp � n
2

�
�honm

c
ÿ
�
ÿ �honm

c

��
� n

�honm

c
:

As a result, the photon mass in a waveguide with n � 1 equals
the momentum defect divided by the speed of light:

M � dp
c
; �10:1�

and the electromagnetic field in the waveguide consists of a
propagating travelling wave and an oscillator resting in space
Ð a standing wave.

Clearly, the standing field components are inherent not
only in the waveguide or resonator modes stemming from
metallic boundary conditions. They are considered as exam-
ples only because of their simple boundary structure. One can
give many examples of standing-wave components in fields,
which are bounded in space only partially and not reduced to
the ideal image of a unique plane wave and, hence, they
possess the momentum defect and nonzero proper mass [8].
Among these examples are: a plane wave reflected obliquely
from a flat mirror; the diffraction field behind a screen hole; a
single-mode laser beam, etc.

Although, of course, any standing wave can be decom-
posed into the superposition of two oppositely travelling

waves, it is, in essence, not a wave in a strict sense, which
assumes a process accompanied by energy transportation,
because the space occupied by the standing wave is split into a
sequence of isolated domains with no energy exchange
between them. An image of a standing wave is a series of
oscillators resting in space.

Each domain of a standing wave contains an immobile
energetic fragment Ð the rest energy. From here one makes
one step to obtain its equivalent Ð the nonzero proper mass
generated by such a stopped energy.

Thus, the necessary and interconnected attributes of
nonzero photon proper massM (2.3) are: the spatial localiza-
tion of the wave field excluding the possibility of its
representation by a single unbounded plane wave; the
presence of the standing field component (`stopped' light)
and the momentum defect; the decrease of the energy
transport velocity to a sublight level and the appearance of
dispersion.

All mentioned above is, of course, one of the manifesta-
tions of the coordinate-momentum uncertainty relation as the
real reason for the appearance of nonzero proper mass. In the
light of the concept considered, the energy of discrete bound
states, which appear during the spatial localization of matter,
is due to the work done in raking up (compressing) it from the
initial unbounded space [3, 8, 9, 20].

The vital role in this process is played not so much by the
spatial restriction as by the standing wave emergence accom-
panying it: the energy of the lowest state in a potential well of
width a is equal to the energy of the nth state in a well of width
na although the degree of localization in the first case is n
times higher than in the second one, but the standing-wave
domain size is the same in both cases. In other words, the
energy of the bound states is determined not by the size of the
localization region, but the scale of the standing-wave
domain.

It is worth noting that the same considerations about the
physical nonreality of the ideal image of a plane wave lead to
the inversion of the continuum of canonical field variables
into a denumerable set of radiation oscillators (the free space
modes) [21].

11. From the wave equation
to the SchroÈ dinger equation [3]

Thus, the nonzero photon proper mass emerges as a result of
the wave's spatial bounding, which leads to the appearance
of a standing field component. One can expect that the
transformation of the massless wave equation should simul-
taneously evolve into a SchroÈ dinger-type equation contain-
ing mass explicitly without introducing it as a priori
definition.

To follow this conversion, the wave dispersion equation in
a waveguide (2.2) should be written, in view of the non-
relativistic character of the SchroÈ dinger equation, in the
approximation of proximity to the critical regime:

o � onm � �cz�
2

2onm
; �11:1�

which corresponds in the mechanical analogy to the kinetic
energy being small with respect to the proper energy.
Simultaneously, the application of differential operators to a
monochromatic wave running along the z-axis allows one to
write them down in the form q=qt � io and q2=qz2 � ÿz2.
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Therefore, the dispersion equation (11.1) can be interpreted
as operator equations

q2

qz2
� 2

onm

c2
�oÿ onm� � 0 ; �11:2�
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i

q
qt
� ÿ c2

2onm

q2

qz2
� onm : �11:3�

Applying these equations to any of the six field compo-
nents wi accounting for �ho � E and onm �Mc2=�h, we arrive
at

q2wi
qz2
� 2

M

�h2
�E ÿ �honm�wi � 0 ; �11:4�
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2M
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qz2
� �honmwi : �11:5�

As stated above, the energy �honm is basically the potential
energy U accumulated in the waveguide, which can be
returned by its reverse evolution to a free space. Apart
from this potential energy of field compression in the
waveguide, one can find only one possible additional wave
potential energy, namely, the gravitational potential energy.
As shown above, the energy of quantum of the critical
frequency in the gravitational field with potential difference
DFG is

�honm � const� �honm0
DFG

c2
;

i.e., assuming the normalization const � 0, the quantity �honm

in (11.4) and (11.5) can be interpreted as the potential energy
�honm � U. Then these equations take the familiar form

q2wi
qz2
� 2

M

�h2
�E ÿU�wi � 0 ; �11:6�
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qwi
qz2
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The absence of the transverse Laplacian in these equations
coinciding with the one-dimensional SchroÈ dinger equation, is
not surprising: the integration over transverse coordinates
under the waveguide boundary conditions has already been
done, and the photon proper mass (2.3) simply results from
this integration.

Despite the discovered genetic connection of the
SchroÈ dinger equation to the classical wave equation, their
solutions are traditionally thought to have qualitatively
different meanings. The difference is that the first equation
has a complex-function solution, for example, like
wi � exp

�
i�otÿ zz��, whereas in the solution of the second

equation only purely real Re wi or imaginary Im wi parts
are considered as having physical meaning.

This difference disappears and the complex solutions of
the classical wave equations become meaningful when con-
sidering the unique entity of the electromagnetic field
represented by interconnected vectors E and H and the
electromagnetic field tensor construction containing both
real and imaginary components. This suggests the introduc-
tion of a complex radiation field vector

R � e0e
2

E� i
m0m
2

H ; �11:8�

where the electric component is described by the real and the
magnetic by the imaginary parts of the six-dimensional vector

(e and m are the relative dielectric permittivity and magnetic
permeability, respectively). The normalization in (11.8) is
chosen so that the field energy density is

w0 � R �R � ; �11:9�

i.e. equal to the scalar product of the vector R by its complex
conjugate R�, and the Poynting vector is equal to their vector
product

S � ic�����
em
p R�R � : �11:10�

It is worth noting that in expression (11.9) for the field energy
density, vectors R and R� play the same role as functions c
and c� in the quantum-mechanical definition of the prob-
ability density. An instructive illustration of the similarity
between behaviour of the photon with nonzero proper mass
and a massive quantum-mechanical particle is the detailed
analogy between electromagnetic wave reflection from a
boundary separating two dielectrics in a waveguide and
particle reflection from a potential barrier. This analogy
explains the sense of periodic and aperiodic solutions emerged
[3].

12. A waveguide with energy dissipation

The threshold character of the critical phenomena in a
waveguide expressed by the dependence of the propagation
constant z on the frequency o (2.2) is discovered only in a
model with infinite-conductivity walls s. In a real waveguide
with sÿ1 > 0 and, correspondingly, with wave energy dissipa-
tion, the lower s, the more the dependence z�o� loses its
threshold shape and the critical frequency concept loses its
strict determinacy.

Thus, the concept of proper mass M (2.3) acquires a
precise meaning together with onm only asymptotically at
s!1, essentially as a result of ignoring the dissipation
processes. Neglecting the dissipative processes by no means
affects the reliability of the waveguide electrodynamics
conclusions: evenNewton's first law is the result of neglecting
friction during the motion of material objects.

The dissipative processes pose the question about the
infinite electromagnetic length definition for a geometrically
limited waveguide [22]. To formulate such a definition with-
out invoking the tautology `infinite Ð having infinite length',
one needs to rely upon the basic functional waveguide
property Ð the ability of electromagnetic energy transfer: a
waveguide of unknown length is assumed to be infinite by
definition if there is no response to a finite probing input
signal. More precisely, if the reflected signal expected turns
out to be indistinguishable against the noisy background,
which is present at the input in the absence of the probing
signal, too.

The thermodynamically equilibrium noise radiation of a
waveguide differs from black body radiation by having a
lower frequency limit. The criterion of the response being
indistinguishable determines the geometrical extension of the
waveguide defined as thermodynamically infinite in the form
of the following length:

zT � 2

AG
ln

(
N0

�
2pu
c
FBE�1� FBE�

�ÿ1=2)
; �12:1�

300 L A Rivlin Physics ±Uspekhi 40 (3)



where A�o;T� is the absorption ability of the metallic walls
used in Kirchhoff's law, N0 is the photon number in the
probing signal, FBE�o;T� is the Bose ±Einstein distribution
for the absolute temperature T, and G is a geometrical factor
depending upon the wave polarization [22]. The concept of an
infinite geometrically limited waveguide does not lose its
meaning by the thermodynamic fluctuation level's tending
to zero: for very low temperatures and/or very high frequen-
cies, quantum fluctuations prevail.

The fluctuation-noise essence is apparently characteristic
for the notion of infinity in more general sense, and some-
times extinguishes its content accessible to testing in thought
experiments. What looks more infinite than the `foolish
infinity' of positive integers? One can try to define it using
some thought experiment. Let positive integers be realized as
records in a sequence of cells. Then one determines experi-
mentally the probability of discovering in an arbitrary cell a
number exceeding any given one, i.e. arbitrarily large. If this
probability is not zero, then the series of numbers under study
should be considered as infinite, i.e. containing arbitrarily
large numbers or consisting of an arbitrarily large number of
cells enumerated with these numbers. However, for a
number-limited series with cell records affected by noise,
there is also a nonzero probability of discovering by this
procedure of arbitrary sampling any number, including an
arbitrarily large one. If one finds a thermodynamically
infinite length of such a series using some procedure similar
to that for the waveguide above, then obviously, the weaker
the signal corresponding to the record and the higher the
background noise level, the smaller the number of physical
terms that this length contains. Similar considerations are
valid for other objects and phenomena pretending to be
infinite [22].

13. Boson- and fermion-like resonances
in waveguide ring-structures [23]

Properties of wave fields spatially bounded in transverse
coordinates are radically dependent upon the topology of
the surrounding space. The waveguide ring-structures clearly
illustrate this.

A waveguide looped in a ring such that its input and
output cross-sections coincide, forms a resonator (the ring of
this type is shown in Fig. 2a together with its linear evolvent
and cross-sections at different points along its axis). It is
assumed that the ring is formed smoothly enough for the
general field structure to be infinitesimally disturbed. The
resonance condition here is in equating the optical ring length
to an integral number of wavelengths:

znmL � 2pN ; N � 1; 2; . . . �13:1�

(L is the geometrical ring-perimeter length).
It turns out, however, that this resonance condition is

valid only for a space with trivial topology and the integer-
wavelength rule is only one possibility. To transform the
waveguide ring topology, it is sufficient, before joining its
initial and end cross-sections, to twist the waveguide along its
axis by the angle Dy � �p (see Fig. 2b in which the ring
evolvent and its cross-section sequence are also presented).
This operation is fully equivalent to the formation of a
unilateral nonoriented surface with zero Euler characteristics
like a MoÈ bius band. The consequences of the twisting
procedure for the resonance conditions are as follows.

If the sum of indices n�m characterizing the transverse
field structure of the initial waveguide is an even number,
then all the field components in the joining point in no way
differ from those for the case Dy � 0, and, therefore, the
resonance condition (13.1) is not broken. In contrast, if the
index sum n�m is an odd number, then twisting by an angle
Dy � �p (on retention of the transverse structure of the
fields) results in all the components at the output waveguide
cross-section changing their signs, i.e. in their being multi-
plied by ÿ1 � exp��ip�. In other words, by twisting the
waveguide through the angle Dy � �p, an additional phase
shift �p appears, which should be summed with the
travelling wave phase factor. This additional shift corre-
sponds essentially to the Berry geometrical phase (see, for
example, Ref. [24]). Hence a new resonance condition
emerges in such a MoÈ bius ring waveguide, amounting to
the ring's optical length being equal to a half-integer number
of wavelengths:

znmL � 2p
�
N� 1

2

�
; N � 1; 2; . . . �13:2�

The dependence of this result upon the evenness or oddness of
the transverse index sum n�m gives evidence for field mode
symmetry in the transverse cross-section affecting it [23].

The twisting operation can be made according to both the
right- and left-screw rule �Dy � �p� resulting in the MoÈ bius
ring waveguide as a whole acquiring a positive or negative
polarity shown in Fig. 3 by the vector l with absolute value

a

b

Figure 2.

m

Right

Dy � �p

Left

Dy � ÿp
m

Figure 3.
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jlj � N� 1=2. At the same time, the ring-structures with
Dy � 0 have no signatures of polarity.

As a result, the set of resonances in the waveguide ring-
structures fall into two topologically different classes: class b
with integer-type resonances (13.1), and class f with half-
integer resonances (13.2).

Topological differences between the waveguide rings of
classesb andf also become apparent when one tries to `glue'
them along the waveguide generatrices with the aim of
constructing more complicated structures with a unified
field composed without demolition of the identical individual
mode fields. It is assumed that if by this procedure one
removes the metallic walls along the `glueing' surface, the
spatial structure of the fields remains unchanged, and the
result of their sewing together can be considered as some new
supermode, common for all the individual rings being `glued',
with the resonance frequency coinciding with that of the
individual mode.

This general statement becomes more clear if one traces
the `glueing' procedure described above for the example of a
rectangular cross-section ring of both classes. The rings of
classb allow the construction of a superstructure with p-fold
width of the walls from an unlimited number p of identical
individual rings. This is illustrated in Fig. 4a for the example
of the mode TE11 in a waveguide of rectangular cross-section
with sides a and b. The superstructure resulting from the
`glueing' (its linear evolvent is shown) also has a rectangular
cross-section with sides a and pb, and the sewing together of
individual fields, after the intermediate walls have been
removed, forms a supermode TE1p (electric force lines are
shown by the arrows) with the resonance frequency coincid-
ing with the initial frequency of the individual mode.

In the alternative case of rings of classf, it is possible to
`glue' only one pair of rings with the opposite polarities along
the waveguide generatrices and with the fields being sewed
together into a single supermode. This is seen in the example
of individual modes TE12 in Fig. 4b representing a linear
evolvent of the `glued pair' and its cross-sections at different

points along the ring, where the supermode can be denoted by
TE22, TE12 � TE21, TE41, TE21 � TE12, TE22 with the same
resonance frequency value.

The resonances considered can be called boson-like �b� or
fermion-like �f� according to the collection of alternative
features of the resonating structures of classesb andf such
as:

(a) the longitudinal index being integer or half-integer;
(b) the transverse field structure being even or odd;
(c) a fixed polarity being absent or present;
(d) the ability of the field to coalesce (`glue') with the

formation of a single supermode from an unlimited number
of individual rings or from only a pair of rings with opposite
polarity.

In addition to the resonances b and f, there exist also
two classes of hybrid resonances, which cannot be identified
as yet. One of them �hB� conserves the boson-like features at
y � 0 despite the oddness of the index sum n�m. In another
class �hF� integer resonances emerge for an even sum n�m,
despite the fact that y � �p=2.

It is worth emphasizing the role of the transverse field
bounding which, of course, is always met in the waveguide, in
constructing the ring-structures, and, in particular, in obser-
ving the Berry geometrical phase motion in them: ring
formation is only possible if there is no superposition of the
opposite-side ring fields. This condition corresponds to the
topological requirement for the surface, from which the
MoÈ bius band is formed, to have an edge.

Not identifying, of course, the waveguide model consid-
ered with some elementary particle classes, it is worth, in
conclusion, citing the followingwords ofDirac [25]. Recalling
how ``the idea of existence ... of bosons and fermions had
firmly been established'', he says: ``It turned out that all
known particles belong to one of these two types. I don't
know whether some obvious reason for this exists, but this is
the case''. In the waveguide ring-structures, differences in
field topology and symmetry which, as is well known (see, for
example, Refs [12, 26]), are used to construct the theory of
elementary particles, are such a visual reason for this.

14. Conclusions [27]

The following facts result from the series of thought experi-
ments suggested:

(1) The nonzero photon proper mass M (2.3) in a
waveguide is equivalent to the energy of the critical frequency
quantum, accumulated in the mode during the work done
against the pressure force of the zero-point vacuum fluctua-
tions with zero initial frequency in the course of evolution
from an unbounded free space to a waveguide with finite
cross-section. It is this simple electromagnetic energy (a
Cheshire-cat smile) that serves as the original source of mass
considered as a measurable physical reality.

(2) In different problems of dynamics with some types of
accelerated motion, the quantity M (2.3) is equivalent to the
inertial mass in the corresponding standard relativistic
equations.

(3) In a gravitational field, a photon in a waveguide
behaves as a heavy particle with gravitational mass M (2.3):
having been directed upwards along a vertical waveguide, it
falls back after achieving a limiting height; it can be weighed
using a balance, etc.

(4) The adequacy of the accepted photon mass concept is
illustrated by the evolution of the classical mass-free wave

TE12TE21

TE41

TE22

TE21
TE12

b

pb4

p

3

2

1

TE11

TE1p

b

a

Figure 4.
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equation into a one-dimensional SchroÈ dinger-type equation
containing the mass explicitly, without its a priori introduc-
tion.

(5) The appearance of the nonzero photonmass is due to a
standing field component (`stopped' or `resting' light), gen-
erating the momentum defect in the Hamiltonian function,
which determines the term corresponding to mass in this
function.

(6) We have failed to suggest some experimental means of
distinguishing the quantity M (2.3) from the standard mass
concept. Therefore, the attempt to give meaning to de
Broglie's analogy (Section 2) goes so far away, that it makes
us think of the quantityM as a physical reality corresponding
to the traditional mass concept.

(7) Depending on the topology and symmetry of the field
in the waveguide ring-structures, two classes of resonances
emerge, which have boson- and fermion-like features.

Do all these results need to be tested under laboratory
conditions? The methodological essence of the thought
experiment involving well-known and irrefutable laws (of
course, under their correct use) predetermines the negative
answer. The approach suggested by the present analysis
pretends rather to a heuristical significance.

Finally, it is difficult to resist the temptation of issuing a
provoking hypothesis [3, 9, 20]: the proper masses of any
particles (not only the photon) are equivalent to the energy of
the material they are made of when compressed from
unbounded space into a channel with waveguide properties.
This natural channel (a two-dimensional potential well) is
generated by the balance between the internal pressure of
matter and the counter acting proper gravitational field. The
eigenvalues of the corresponding self-consistent problem
yield a discrete mass spectrum. This concept differs from a
spherical model of similar nature (see, for example, Refs [12,
28, 29]) by having a two-dimensional potential well construc-
tion with the continuum along the third coordinate, which
apparently corresponds to a greater extent to features of a free
particle.

However, Einstein's sceptical statement: ``All these fifty
years of hard considerations have not brought me closer to
the answer of what light quanta are. Of course, today
everybody thinks he knows the answer, but he deceives
himself'' prevents us from falling into excessive optimism.

The author sincerely acknowledges B M Bolotovski|̄ for
his constant attention.
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