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Abstract. Theoretical aspects of the propagation of photons,
electrons, and neutrinos in external electromagnetic fields at
finite temperature and density are considered. The photon po-
larization operator and the radiative mass shifts and anomalous
magnetic moments of the electron and the massive neutrino are
investigated based on the finite-temperature quantum field the-
ory with the use of exact solutions to the relativistic equations of
motion for particles in external fields of various configurations.
The present approach permits using model results as reference
ones for experimental data as well as presenting a wider choice
of interpretations for the results obtained.

1. Introduction

In recent years a new varied line of investigations in the
quantum field theory (QFT) has been formed that is related to
consideration of the influence of external conditions, such as
classical fields, finite temperature and density of medium, as
well as boundary conditions for the system in a finite volume.
When the factors mentioned are taken into account then, on
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the one hand, it makes the results of analysis of quantum-field
systems more informative, at the same time eliminating some
principal difficulties that are inherent in the system of free
fields, and, on the other hand, such an approach enables the
physical effects that are observed in real laboratory experi-
ments and in astrophysical conditions to be predicted and
explained with a high degree of reliability.

Historically this line can be traced back to the works
devoted to construction of the Heisenberg— Euler effective
Lagrangian [1] (see also Refs [2, 3]), the quantum theory of
synchrotron radiation [4— 6] (see also Refs [7, 8]) and that of
quantum processes in strong external fields [9—11], to papers
[12, 13], where phase transitions in a system of interacting
fields have been predicted, as well as to the Casimir’s
calculation of the energy of electromagnetic vacuum between
plates (see, for instance, Refs [3, 14]) that paved the way for
modern investigation of the effects of this kind.

Further development of this trend of investigation has led
to the creation of modern theoretical methods that enabled a
number of rather delicate physical effects to be predicted, as
embodied in an enormous amount of papers published for the
past twenty years. In the present review we consider only a
part of these works, and concentrate primarily on rigorous
mathematical approaches to the description of the influence
of external fields, finite temperatures and substance density
on the radiative and vacuum effects in QFT. However, in the
analysis of the physical essence of these effects and in the
introduction of their theoretical derivation we did not aim at
giving a comprehensive presentation of formal mathematical
justifications for particular methods of calculations.

Due to limitations of the article size, we unfortunately had
to leave outside the scope of our consideration some ques-
tions that being very interesting ones are nevertheless rather
special in our opinion to be presented here. Among them are
the Casimir effect and its modern manifestation, as well as
cosmological aspects of the phase transition phenomenon in
the gauge theories of interactions between elementary parti-
cles. Moreover, such questions as the effects related to the
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nontrivial structure of the vacuum state in the quantum
chromodynamics (QCD), phase transitions in QFT, and
new particles creation in the framework of models extending
the Standard Model of elementary particles interaction are to
be discussed in a separate publication.

The plan of the review is as follows. Section 2 is devoted to
a rather concise presentation of basic approaches to theore-
tical description of quantum fields interaction in the presence
of an external field, at finite temperature and density of
medium.

In Section 3, radiative effects in an electron-positron
plasma and, in particular, the polarization operator and
propagation of a photon across a constant magnetic field
are considered in the framework of the Standard Model.

In the last Section 4, the results of the study concerning the
properties of fermions moving in external fields at finite
temperature and nonzero chemical potential are given. The
mass operator and radiative corrections to the fermion
masses are considered, and a detailed study on the dynamic
nature of the anomalous magnetic moment of fermions as a
function of the magnetic field strength, the fermion energy
and properties of the medium (temperature and density) is
presented as well.

2. QFT formalism in the presence
of an external field, at finite temperature
and density of medium

2.1 Application of an external field

In solving fundamental problems of QFT in the presence of
external electromagnetic fields, particularly when the external
field is fairly strong and expansion of equations in terms of the
coupling constant inherent to the charged particle and the
field is no more valid, or in the case where a bound state of a
particle in the external field may be of interest, the method of
finding the exact solutions to relativistic wave equations has
proved to be of considerable significance. This method has
been widely used in constructing the quantum theory of
synchrotron radiation (SR) [4, 6—8], and later it was
developed in studies of other quantum processes in an
external field (see, for example, Refs [9—11, 14, 15]). The
method of exact solutions should be also used when working
in the Furry’s representation [16], where the Feynman—
Dyson formalism of QED is extended from the case of a free
electron to that of an electron bound state.

The essence of the method is as follows [9, 10, 15]. The
QED Hamiltonian with an external field unlike that without
the external field includes a term describing interaction with
an external classical field A4

H:He+HY—|—H;m+Jj”(x)A;‘“(x) dx, (2.1)
where He, H, stand for free quantized electron-positron and
electromagnetic fields, respectively, and Hj,, describes their
interaction. In constructing the interaction representation in
Furry’s approach, an unperturbed Hamiltonian Hj is taken
as the following one

Ho = Ho + H, + J A (x) dx, (2.2)

which includes an interaction of a spinor field with an external
field, and the perturbation theory is constructed with respect

to the radiation interaction Hj,, only. Then, to generalize the
secondary quantization scheme to the case of nonvanishing
external field one should expand the secondary-quantized
operators of the electron-positron field in terms of the
complete system of the Dirac equation solutions in an
external electromagnetic field, i.e.

U(x) = [agplV(r) exp(—iel™ 1) + by (x) exp(ie 1]

N

(2.3)

where 1//2”, 1//2_) are the solutions of the Dirac equation in an
external field, which belong to positive (s§+)) or negative
(—8§_>) frequency states, respectively. In order to evaluate any
particular physical effect in the Furry’s picture one may use
the Feynman diagram technique. In this case all electron lines
correspond to the Dirac equation solutions. An electron in
the initial and final states is described by the solution of a

homogeneous Dirac equation for a given external field 4 ﬁx‘:

(p—ed™ —m)p(x) =0,
P =iyhd,, (2.4)

and an internal line corresponds to the Feynman propagator
S¢(x,x") of an electron in the external field:

S(x,x") = =1{0| Ty (x)y(x")]0) , (2.5)
which is a solution of the inhomogeneous equation
(p—eA™ —m)S(x,x") = 6(x — x'). (2.6)

It should be emphasized that the above-mentioned
approach can be immediately applied only to a limited class
of external fields, which allow a one-particle interpretation
for the Dirac equation, and one can introduce a unique
system of in- and out- states in the interaction representation
and a unique vacuum state [15]. Moreover, it is essential that a
quantum number exists such that electrons propagating
forward and backward in time may be distinguished by an
invariant way, and hence the same may be done with an
electron and positron. We note that this quantum number can
also exist in the case of fields that vary with time and when the
energy is not conserved. Such a possibility exists for external
fields such that the vacuum stability is not disturbed and
hence electron-positron (and also other) pair production is
impossible. In particular, the vacuum in a constant magnetic
field, in the field of a plane electromagnetic wave, and also in
constant crossed fields (E L H, E = H) is stable with respect
to spontaneous particle pair production. In terms of the Dirac
equation solutions this means that for the case of external
fields which do not disturb the vacuum stability there exists a
complete system of the Dirac equation solutions {nﬁ_ﬂi)}
distinguished at any instant of time by the particle— anti-
particle criterion.

A systematic consideration of all those alterations that are
introduced into the S-matrix QFT formalism by the presence
of an external field capable of pair production has been
carried out in papers of Schwinger [2], Nikishov and Ritus
[9], Fradkin with coworkers [15], Grib and Mostepanenko
with coworkers [14], and Bagrov [17], and some other authors
as well.

Here we shall turn our attention to a certain important
point. As known, in formulating the problem of pair
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production by an external electromagnetic field it is assumed
that the latter is switched off at 1 — Foo. Then a classification
of the Dirac equation solutions by the frequency sign (£) can
be made in the past (future), and in Refs [9, 18] it was shown
that a complete set of solutions with a definite frequency sign
in the past 1,(x) and in the future *,(x) can be chosen so
that conservation of the set of quantum numbers {n}
characterizing the solutions be ensured. In this case at any
instant of time | ,(x) can be represented as a superposition
of wave functions T, (x) and ~,(x) with the same {n}, and
moreover probabilities of pair production and scattering
processes induced by an external field can be found via the
coefficients of this superposition. As a result, the S-matrix in
Ref. [9] was expressed in terms of creation out-operators and
annihilation in-operators, but in contrast to Ref. [15] the use
of the Dirac equation solutions with conserved quantum
numbers did not lead to any difference from the conventional
S-matrix formalism and there was no need for propagators
other than the Feynman ones.

In the non-Abelian gauge theory, an external non-Abelian
field is introduced in completely the same way as it is done via
the Furry’s representation in QED [11]. The total gluon field
A, is represented as the sum of an external (classic) field Z:

and small quantum fluctuations Q around it:

—da
Af=A4,+0,. (2.7)
Furthermore, similar to QED, interaction of quarks (gluons)
with an external field Z;’ is taken into account exactly, and
that with a quantized gluon field Q) is considered in the
perturbation theory.

In the unified theory of electromagnetic and weak
interactions of Weinberg, Salam and Glashow (WSG), the
equations for propagators Dy, (x, x") of the W-boson and the
charged scalar D (x, x') in an external field have the form

1
(D* + my,)g" + 2ieF ™ + (E — I)D”D"} D,;(x,x")

=09 (x—x"), (28)

(D2 + Emy)D (x,x") = (x — x'), (2.9)

where D, =0, +ied, is a covariant derivative (e is the
electron charge), 4, is an external electromagnetic field
potential, F,,, = 0,4, — d,A,, and ¢ is the gauge parameter.

We note that charged scalars in the WSG model are
nonphysical particles and they appear only in virtual states.
They can be excluded by choosing the unitary gauge (¢ = co),
though in particular calculations the Feynman gauge (¢ = 1)
is usually employed. There are few exact solutions known for
the Dirac equation, as well as for the corresponding relativis-
tic wave equations governing the W-boson and the charged
scalar in an external electromagnetic field. Most important of
them are the solutions of the wave equations in the Coulomb
field, in the homogeneous magnetic field, in the electromag-
netic plane wave field, in the homogeneous electric field, and
in some cases of combinations involving the fields mentioned.
Solutions of various wave equations in the above-mentioned
external fields, as well as the methods of obtaining explicit
expressions for the Feynman propagators of particles are
described, for instance, in Refs [9—-11, 15, 19].

One point has to be discussed in more detail, since it
proves to be of particular importance in computations of

quantum processes with charged particles in arbitrary sta-
tionary electromagnetic fields. As it is well known, the latter
are either crossed fields or such that in a certain Lorentz
reference system the electric and magnetic fields are parallel
[20]. The total probability of the process with only one
participating charged particle, calculated per unit time and
volume (along with other physical quantities such as radiative
mass shift), and being an invariant quantity, depends on two
dimensionless field invariants [21, 9]

€ 1 X q1/2
(ﬂ) =§0[(.f2+g2)1/2 /1", (2.10)
where
1 uv 1 2 2 1 op

f:ZFqu :E(H _E)7 g:Z otﬁF =EH,

~ 1 2

F =3 e Fy, and Bo="C—441x10" G
e

is the critical field, and also on the dynamic parameter

1/2

[_(Fuvpv)z} )

1
o —

=— 2.11
mBy ( )

where p, is a constant 4-momentum of the particle in the
external field, which upon switching off the field goes over
into the 4-momentum of a free particle. Thus, the physical
quantity of interest W is the function of three invariant
parameters:

W= Wie,n,x). (2.12)

In the crossed fields ¢ = n = 0. Therefore, as mentioned in
Refs [21, 9], when the conditions

en<l, &n<x (2.13)
are fulfilled, the results of calculations of physical quantities
in an arbitrary stationary field upon expressing them in an
invariant form coincide in the first approximation [the level of
approximation is determined by conditions (2.13)] with the
exact result for the case of the crossed fields E L H, E= H
(¢ =n =0). The physical conditions ¢,7 < 1 imply that the
constant field is weak as compared with the critical field By,
and the condition ¢, <€ » imply that any constant field looks
almost as the crossed one from almost all directions for an
ultrarelativistic particle in its rest frame. The homogeneous
field approximation has recently also found extensive appli-
cation in calculations of various processes proceeded in
crystals. Here, for prompt particles propagating at small
angles with crystalline axis or planes the dimensions of the
regions of process formation are small as compared to the
scales of inhomogeneities in crystalline fields [22], which can
be effectively described with the use of the homogeneous field
model.

2.2 Inclusion of finite temperature and density of medium

The method of Green’s functions whose fundamentals have
been developed in Refs [23—-32] is the most efficient and
universal technique in QFT at finite temperatures. Here
methods of solution of the QFT problems both at vanishing
and finite temperatures demonstrate a remarkable similarity
— all problems are reduced to determination of correspond-
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ing Green’s functions. In particular, evaluation of the energy
spectrum of a macroscopic system at finite temperature 7"and
nonzero chemical potential g amounts to finding out the time-
dependent Green’s functions. For definiteness, let us consider
a Fermi-system in an external stationary and homogeneous
magnetic field, and assume that there is no condensation in all
cases where generalization to Bose-systems is made. The time-
dependent single-particle Green’s function G¢(x,x’) is
defined as follows [23 —25]:

. Sp{exp[—B(H — uN )| T (x)(x")}
Sp{exp[—B(H — uN)]}

G(x,x") =

)

(2.14)

where = T~! is an inverse temperature, H is the system
Hamiltonian that includes interaction with an external field,
N is the particle number operator, u is the chemical potential,
and the trace operation (Sp) is carried out in the Fock space.
Thus, definition of the time Green’s functions at T # 0 and
u # 0 differs from that of the causal Green’s functions in the
ordinary QFT (7=p =0) by the averaging procedure
established for the chronological product of Heisenberg
field operators, which is carried out not over the vacuum
state but rather over the grand canonical Hibbs distribution.
Formula (2.14), upon substituting the secondary-quantized
Y-operators (in an explicit form) of the fermionic field in the
Furry’s representation, provides the following representation
for the time Green’s function of an ideal electron-positron gas
in a constant magnetic field [33]:

GE(H, T, 1) = S.(H, T = ji = 0) + Sy(H, T,p),  (2.15)
where
S(H, T=p=0)= b r% dwexplio(t —1')]
o 2m )
(&) (5 Vol (&) (s !
V607 ) 16
= + eE (1 —19)

is an ordinary Green’s function of an electron in a constant
magnetic field, and the temperature-dependent part of the
time Green’s function equals

i ()P (x)
Sp(H, T, p) = ‘MZ;I exp [B(Ey — ep)] + 1

(2.17)

It should be noted that the time Green’s function is the
sum of the Feynman propagator at zero temperature and the
pure temperature-dependent part, with the representation for
the latter function Sp(H, T, 1) obtained in paper [32] also in
the form of a double integral, one of which being the integral
taken around proper time. In (2.16), (2.17) summation is
carried out over all quantum numbers {s} of the positive
(¢ = +1) and negative (¢ = —1) frequency states, W(f) (x) is
the coordinate part of the Dirac equation solution in a
constant magnetic field, and the electron energy levels in a
stationary magnetic field are determined by the formula [§]

E, = \/2eHn+m? + p?,

where n=0,1,2,... is the principle quantum number, p.
(=00 < p; < 4+00) is the electron momentum projection on
the magnetic field direction H.

(2.18)

exp[—ieE(t — )] .

In the momentum representation with respect to the
variable t = ¢t — ¢/, Eqns (2.15)—(2.17) yield

vp L8 )
Po — SE,,

G(po,r,v’) = Z

s, e==%1

— imb(po — Ep? ()Y (x') tanh pZﬂ - 219)

Along with the time Green’s function (2.14), the retarded
G*®(x,x") and advanced G (x, x") Green’s functions are used
also in QFT:

(GR(x,x’)> _ —i< 0(xo —xé))
GA(x,x") —0(xp — xy)

Sp{exp[—B(H — uN)] [y(x), ¥(x")], }
X — = .
Sp{exp[—B(H — uN)] }

(2.20)

In Ref. [25], the following relation between G (py,r,r’),
GR(po,r,r’) and the time Green’s function G¢(p,r,r’) has
been established in the general case by means of direct
comparison of spectral representations:

(GR(X,X’)

GA(X,X/)> ~Re@lmxxd

+icoth ”02;“ Im G¢(po, x,x") (2.21)

for Fermi-systems, and

RXX,
(G . )> =Re G‘(po,x,x")

GA(x,x)

+itanh ”°2T” ImG<(po, x,x") (2.22)

for Bose-systems.

Relations (2.21), (2.22) follow directly from definitions
(2.14) and (2.20), thus solving the problem of construction G4
(G®)in accordance with the time Green’s function G¢. Hence,
there follows a relation between the mass (polarization)
operator of the retarded Green’s function and the mass
operator of the time Green’s function [23, 25]:

ReZR® =ReX*,

Im =R = coth p"z_T“ Imze (2.23)
for the Fermi-system, and

Re>® =Rex¢,

Im >* = tanh 2 02;“ mx° (2.24)

for the Bose-system.

We considered it necessary to discuss these fundamental
relations since in recent papers (see, for instance, [34—36]) the
correspondence between the real and imaginary parts of the
self-energy diagrams [(2.23) and (2.24)] had not been only
derived anew but also verified in the one-loop approximation
by the direct calculation. In order to compute the time
Green’s function for the system of interacting particles in
the real time representation, both the Keldysh diagram
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technique [37, 38] and the equivalent method of the thermo-
field dynamics [31] can be employed. In so doing, the
equations for the Green’s functions obtained by this way are
equivalent in their sense to the kinetic equations. We remind
[25] that the retarded Green’s function GR(py,r,r’) is
analytic in the upper half-plane of the complex variable py,
and the poles of its continuation to the lower half-plane define
the dispersion law (the energy and decay) of quasi-particles.
Whereas the advanced Green’s function G4(py,r,r’) is
analytic in the lower half of the py-plane, and the poles of its
continuation to the upper half-plane determine the energy
spectrum of ‘holes’. To calculate the spectrum of elementary
excitations, the method of temperature (Matsubara) Green’s
functions is also used, which is known as the imaginary time
representation [26, 39]. From the geometric point of view,
QFT at finite temperature and nonzero chemical potential in
the imaginary time representation corresponds to the quan-
tum field theory on the hypercylinder R3 x S! with the base
radius r = f/2n, and when the fields @(x, t) depending on the
imaginary time t = iz satisfy the periodicity (antiperiodicity)
conditions in the boson (fermion) cases:

d(x,1) = texp(—fu)P(x,7— ). (2.25)

For further presentation it will suffice to mention that the
diagram technique in the framework of the imaginary time
formalism is analogous to the Feynman rules in the ordinary
QFT. The diagram technique in the imaginary time represen-
tation is developed according to the following replacements
[25, 30, 39, 40]:

po — i+, (2.26)
de ) +00
i2n5(p0) — [fé]’(), (2.28)

where w; = 2nT(I+1/2),1=0,+1,+2,... for fermions, and
w; = 21Tl for bosons. To illustrate the procedure, we present
below analytical expressions for the temperature Green’s
function of an ideal electron-positron gas in a constant
magnetic field. The electron Green’s function in a homo-
geneous and stationary magnetic field in the proper-time
representation is given by the formula [11]

d4

G(x",x") = <D(x”,x’)f p4 exp(—ipx)G(p), (2.29)
(2m)
where
G(p) = iJ ds exp {%s(mz —piprpt ta: Zﬂ
0

(P =
CoSz

. TP
exp(izX3) — coszlz> ,

O(x", x") =exp [fieJ

X

A (x) dx"} ,

z =eHs, TP, = 7' px+ Vzp}'- (2.30)

The temperature Green’s function is obtained from
formulas (2.29) and (2.30) by the replacement

J%io exp [—i(poxo — px)| G(po, P)

— iTZ exp [—i(tw; — ipt) + ipx| G(po = iw; + 1, P)
7
(2.31)

witht=1"—-1" € [-1/T,1/T].

The application of the proper time method to the
temperature Green’s function technique can be examined in
more detail in papers [32, 41].

The simple correlation (2.26) — (2.28) between the diagram
technique rules in the imaginary time formalism and in the
ordinary QFT may be considered in a certain sense as a
convenient peculiarity of the temperature Green’s function
method that emerges in calculating the thermodynamic
quantities of the system. However, in order to find the
spectrum of elementary excitations and the kinetic coeffi-
cients of a nonequilibrium system as well, one has to know the
time Green’s functions. Hence, a relation between the
temperature Green’s functions and the time Green’s functions
has to be discussed. Let Gy (po = iw; + p;r,r’) be a compo-
nent of the Fourier-series expansion of the temperature
Green’s function in terms of the variable 1 = ¢ — ¢’ on the
interval [-1/T,1/T]:

Gu(t;r,r') = iTZ exp(—iwr — ut)Gy(po;r,r). (2.32)
7

Then, as it has been shown in Ref. [25], one gets

GR(po =iw; + w;r,v") = Gy (i + w;r,v’), @, >0,
(2.33)
G (po = iw; + w;r,v") = Gy (i) + w;r,v’), @, <0.
(2.34)

Thus, the problem of constructing GR (G4) with the help
of the temperature Green’s function is reduced to the problem
of analytic continuation of the temperature Green’s function
from the discrete set of points in the upper (lower) half-plane
of the complex variable py to the whole upper (lower) half-
plane, where the retarded (advanced) function is analytic.
This analytic continuation is possible, in principle, though
generally speaking it is not a trivial problem. Here, it is
essential that the temperature and time Green’s functions
are defined in terms of the same spectral density [25]. Knowl-
edge of the dispersion law for quasi-particles is sufficient for
the description of thermodynamic properties of the system as
well.

Another even simpler way of describing the thermody-
namic properties of a system consists in computation of the
thermodynamic potential Q = Q(T, V, p):

Q=-Tln Sp{exp [,[;([_}, ,u]{f)} } , (2.35)
where H and N are the system Hamiltonian and the particle
number operators, respectively. A consistent procedure of
computing the thermodynamic potential with consideration
for the interaction between particles in the system, which is
based upon the Green’s function method, was explained in
Refs[42, 43]. As for the particular calculations, the physically
transparent results with the effects of an external field, finite
temperature and nonzero chemical potential being simulta-
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neously taken into account, were obtained until now only in
the framework of a one-loop approximation. In the two-loop
approximation, as far as we know, only the effective
Lagrangian of a constant electromagnetic field in QED at
T = p = 0 [44—46] and the two-loop thermodynamic poten-
tial of QED in a constant magnetic field [47] have been
calculated. Papers [48 — 50] should also be mentioned, where
in the framework of QCD at 7 # 0 a multiloop contribution
of quarks and gluons to the effective potential of the gluon
field in a special form A¢ = 8,0(6" A3 + 6°°4§) = const has
been calculated. The one-loop Euclidean action W in QFT is
determined by the expression [51]

dpy

where ¢, is the energy spectrum of particles in an external field,
k = +1 for fermions, and k = —1 for charged bosons, and the
contact term, c.t., corresponds to a free particle contribution.
Formula (2.36) determines the one-loop polarization con-
tribution to the vacuum energy

e
=

EW = (2.37)

The simplest way of calculating the one-loop thermodynamic
potential in the imaginary time representation consists in
making a substitution in the expression for E() similar to
(2.26), (2.27) [27]:

dps 1§ i 2.38
e Z, P4 — @ — Q. (2.38)

I=—00

Another approach suitable for calculating Q-potential in
the presence of external fields, which is especially convenient
when the Schwinger — Fock proper time method is employed,
implies that firstly we evaluate the corresponding tempera-
ture Green’s function, and then perform integration over the
coupling constant or some other appropriate parameter in
order to find the Q-potential of the system. In Ref. [25], for
example, the Q-potential in QED with the external field
specified by the potential 4, in the one-loop approximation
was represented in the form

B e
Q= TJ de d3x trS(J 7Gx, x) A, (x) de’) +Q g
0 0 o=
(2.39)

where ¢ is the electron charge, G(x,x) is the temperature
Green’s function in an external field, and the trace operation
tre is carried out with respect to the spinor indices. A more
popular method of evaluating the one-loop effective Lagran-
gian of QED in an external field in the one-loop approxima-
tion L() consists in the use of the known relation [14]

oLMm
om

=tr' G(x, x). (2.40)

As it was mentioned above, the Green’s function in the
real time representation is expressed in the form of a sum of
the causal Feynman propagator at T=u=0 and the
temperature-dependent part, which is the solution of the
corresponding homogeneous equation. In the fermionic case

we arrive at

G(x,x"|4) = Se(x,x'|4) + Sp u(x,x"]4),
(p—ed —m)S.(x,x'|4) = d(x — x'),

(p—ed—m)Sp u(x,x'|4) =0. (2.41)

As a consequence, direct generalization of the known formula
for the one-loop effective action [30]

Wg=TrinS"'S, (2.42)
for the case T'# 0 and u # 0 proves to be impossible, and the
second method is usually employed when evaluating the
effective Lagrangian in the real time formalism [52, 53]. It
should be emphasized that in the real time representation the
contribution of the finite temperature and density effects due
to (2.41) is automatically separated from the pure vacuum
part of the corresponding physical quantity and does not
contain any ultraviolet divergences.

Concluding this section we note that particular features of
QED at finite temperatures and with an external field,
disturbing the vacuum stability, were considered in Ref. [32].

3. Radiative effects in electron-positron plasma

3.1 Polarization operator in quantum electrodynamics

Before proceeding to the rigorous statement of the problem of
photon propagation across external electromagnetic fields
with simultaneous consideration for the nonlinear vacuum
and plasma influence, it would be of interest to discuss briefly
the physical meaning of the problem. Recall the classical
problem of electromagnetic wave propagation through
plasma being in a thermodynamic equilibrium. The external
electromagnetic field induces charges and currents in plasma
and they in turn produce additional electromagnetic fields,
thus changing the total field in the system. In the simplest case
of collisionless plasma, this self-consistent interaction of an
external field and plasma particles is described on the basis of
the system of equations incorporating an electromagnetic
field in a plasma and taking into account both induced
currents and charges, and of the Vlasov kinetic equation
with a self-consistent field. It is in this way that an effect,
called Landau’s damping, was predicted in Ref. [54], i.e.
dissipation of waves in isotropic plasma takes place even
when there are no particle collisions at all, as a result of the
Cherenkov wave absorption by the plasma particles. Without
pretending to rigorous consideration one may draw the
analogy between the plasma or insulator behaviour in an
external field and the phenomenon of elementary particles
vacuum polarization in QFT. Vacuum in elementary particle
physics is defined as the state where there are no particles and
which corresponds to the zero eigenvalue of the particle
number operator. There appear no physical particles in it
and physical states are brought about by acting the particle
creation operator on the vacuum vector. The quantized field
operator does not commute at the same time with the particle
number operator. Physically this is demonstrated by the fact
that in a local quantum field theory the vacuum state is not
the state in which there is no field, i.e. the so-called zero
vacuum field with infinite energy density is available in the
vacuum state and, as Grib comments [55]: ‘non-existence
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meaning the absence of field and particles is impossible’.
Using the language of virtual particles one may conclude that
virtual particle —antiparticle pairs are constantly created and
annihilated in the vacuum, the distance between them being
of the order of the particle’s Compton wavelength. In an
external electromagnetic field the ‘vacuum plasma’ of virtual
pairs is polarized analogously to the classical plasma and it is
in itself a source of an additional electromagnetic field. And
certain properties of an external field enable the bound virtual
pairs to become free and production of real pairs from
vacuum by an external field takes place. For a stationary
and homogeneous electric field, the probability of the effect
for electrons becomes essential with the so-called critical field,
which is determined from the condition that the work done by
the field on an electron at the distance of the Compton
wavelength is equal to the rest energy of the particle:

h 2

eE, — =mc”, E., =
mc eh

m?c

(3.1)

Another approach to the vacuum polarization phenom-
enon is based upon the idea that the electron-positron
vacuum is, according to Dirac, thought of as a system of
electrons filling all the negative energy levels. The energy
levels of vacuum electrons are shifted in an external field, and
the relative change of the vacuum energy pertaining to the
state without the field and that with the field is finite and it
leads to the radiative correction to the classical Lagrange
function of the external field, which in its turn breaks the
linearity of Maxwell equations. We note that if the one-loop
contribution [see Eqn (2.36)] to the effective Lagrangian is
really determined by the energy spectrum of particles that do
not interact with each other, then the two-loop contribution
in a constant field takes account of the change of the Coulomb
electron-positron interaction in the virtual pair by the
external field. In the vacuum polarization phenomenon, the
role of an external field may be played by boundary
conditions imposed on the quantized field, which is usually
considered in a free space. Boundaries or a nontrivial
topology, as well as an external field alter the vacuum zero
oscillations spectrum, and the change in the vacuum expecta-
tion value of the energy-momentum tensor operator turns out
to be finite as compared to the ‘empty’ space and it leads to the
physical effect (Casimir effect) examined in experiments [14].
It should be noted that scientific interest to the Casimir effect
in various QFT models, and in the presence of an external
field as well, was not lost in recent years [56].

In papers of Ritus [44—46], a deep analogy between
asymptotic behaviour of the effective QED Lagrangian in
strong fields and behaviour of the polarization function of a
photon at large values of the virtual photon 4-momentum
squared t = —k? has been drawn. As known [57], the photon
polarization function at large values of ¢ > m? determines the
behaviour of QED over the region of small distances.

Let D = (1/k*)dr(—k?/m?, ) be an exact photon propa-
gator with regard to all the radiative corrections. Then in the
region of large values of ¢ > m?, the renorminvariant quantity
adg (t/m?, o) tends to a certain function @, (¢(x)t/m?), i..
contribution of all the radiative corrections reduces to the
scale factor ¢(«) of the dynamic variable /m?. In Refs [44—
46] it was shown that in the asymptotic region of strong fields,
when eF > m? and a substantial contribution to the Lagran-
gian function is provided by the small distances x ~ (eF)fl/ 2
which is related to the localization of vacuum electrons in the
regions small in size as compared with the electron Compton

wavelength, the invariant charge a/y!, where I = Lg /Ly is
the ratio of the exact Lagrangian Ly to the classical one Ly,
tends to a certain function ®,(¢p(x)eF/m?) with the same
scale factor ¢(«), as in the case of the photon propagator.
This circumstance demonstrates that investigation of the
QFT peculiarities in the region of small distances can be
carried out basing upon the study of the effective Lagrangian
in a strong external field. Moreover, not only the charge
renormalization can be made using the effective electromag-
netic Lagrangian and the knowledge about its real part
behaviour in a weak field, but also renormalization of the
electron mass can be performed without traditionally exploit-
ing the mass operator for this purpose. In the latter case, the
behaviour of the imaginary part of the effective Lagrangian in
a weak field becomes essential [44 —46].

In the present section we consider the photon propagation
across an external field (Section 3.2) and the photon
(plasmon) propagation through a relativistic electron-posi-
tron plasma placed in a constant magnetic field (Section 3.3).
In both cases we effectively deal with the photon propagation
through an anisotropic medium, and these problems will be
considered in a uniform way, basing upon the Green’s
function method. In the Feynman gauge, the Dyson-
Schwinger equations for the exact electron G(x,y) and
photon D,,(x,y) Green’s functions in the presence of an
external field 4*" take the form [15]:

azD#v(xvy) o JHZ(xv Z)DDW(Zvy) d4Z = gﬂ"(s (X - y) ’ (32)
(p— eA™ — e — m)G(x,y) — JZ(% 2)G(z,y)d*z

=-0(x-y),

where 8% = —p, p* = 0f — V2, Z(x,y) and I1,,(x,) are the
mass and polarization operators:

(3.3)

2(x,p) = —iezy“JS(x7 2)T(z,,2") Dyu(2', x) d*zd*z",
(3.4)

" (x,y) = —ie try# JS(x,y) I'(z,z',y)S(z',x)d*zd*z".
(3.5)

We note that in formulas (3.4), (3.5) I'*(x, y, z) is an exact
vertex function, and in the case of an external field that does
not break vacuum stability, the sum of the initial external field
A and the radiative correction to it a”(x) determines an
exact average electromagnetic field in the system. Propaga-
tion of a photon across an external electromagnetic field is
described by the polarization operator in modified Maxwell
equations that are obtained from (3.2) by discarding its right-
hand side:

0,0 - [ (04, 0) 'y =0, (3.6)

In a constant external field, the polarization operator is
diagonal in the momentum space, and its general structure
according to the requirements of relativistic, gauge and
charge invariances has been studied in Refs [9, 58 —63]:

I, (k,k'|4) :Jd4xd4x’ exp[—i(kx — k'x")|[ I, (x,x", A)

= 2n)* (k= k') P (k). (3.7)
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The polarization operator P, (k) in this case possesses four
mutually orthogonal eigenvectors b/):

Publy =%,

j:172a37 (38)

with the eigenvalues x; (9 = 0 due to gauge invariance) and is
defined by the formula

+
bV

3
;w § )

while the solution of Eqn (3.6) in the momentum space has the
form

(3.9)

ib 0§ (3.10)

J=1

3 (k2 + ) gy (k).

Thus, the eigenvectors bf/) of the polarization operator play a
part of the polarization 4-vectors of photons propagating
across a constant external field, and its own dispersion law is
evidenced for each polarization, being determined from the
equation
— ki =%, j=12,3. (3.11)
Similar to classical electrodynamics one may introduce an
index of refraction for each of the eigenmodes, which may
traverse the given external field:

k] ko, k)] '
il R | I . 3.12
n] kO + ké ( )
Another essential result obtained in Refs [60, 63] deals
with the explicit form of the polarization 4-vectors of the
eigenmodes. In an arbitrary stationary field the vector bf})
shows a purely kinematic origin:

b =(F

¢ ’k), k> =k (kF?k) . (3.13)

In the particular case of a crossed field ( f (
as at g = 0 but with f'# 0, the vectors b
follows

=0),aswell
d b<3) are as

b = Fuk', b = Fuk". (3.14)
In the one-loop approximation, the photon polarization
operator in QED is written in the form

My (x,y) = =ie* tr 1S (x, )1F) 'S (v, x[F)] ;- (3.15)
where ¢ (x, x'|F) is the electron causal Green’s function in
the given field, which is separated from the set of all the
solutions of Eqn (2.6) according to the Feynman prescription
m? — m?* — ie. To renormalize the polarization operator one
should subtract from (3.15) its value in the zero external field
and add the value of the renormalized polarization operator
calculated in the case of a vanishing external field. The photon
polarization operator, as it will be seen later, possesses much
physical information even on the mass shell (k> = 0). Let us
consider now the elastic scattering amplitude of a real

(k* = 0) photon:

1
= o\* v )"x)
T, = o cfl ) pr (k|F)c$ , (3.16)

where o = ko = |k| is the photon energy, e ﬂ ) is the polariza-
tion 4-vector (¢ =1,2). Amplitude (3.16) determines the
radiative shift of the photon mass squared [64, 46]:

2 _

Am”2 =2wReT, (3.17)
and the rate of the photon decay into the e*e™-pair in the
given external field [6] equals

a)]’z =2Im T172. (318)

The photon (plasmon) propagation problem applied to an
electron-positron plasma in external fields is solved in the
manner completely similar to the solution of the photon
propagation problem in the case of vacuum in the presence
of an external field. To solve the problem, the following has to
be done [63]:

(1) calculate the advanced or the retarded polarization
operator of an electron-positron gas in the corresponding
order of the Furry’s picture;

(2) diagonalize the polarization operator obtained and
find its eigenfunctions and eigenvalues. The eigenfunctions
describe independent polarization properties of the three
plasmon eigenmodes, and the eigenvalues define a dispersion
law for each eigenmode.

We remind that the photon polarization operator in an
external homogeneous and stationary magnetic field is
defined in the one-loop approximation as

[7.G(P)1Glp+K)], (3.19)

d*p
M, (ko k :fiezj
M ( 0 ) (211:)4
where G(p) is the electron propagator determined by
Eqn (2.29).

3.2 Photon propagation across an electromagnetic field

3.2.1 Photon dispersion in a constant magnetic field. Here we
shall follow paper [63], where a comprehensive bibliography
on the problem discussed can also be found. Polarizations of
the three types of electromagnetic waves that may propagate
across a constant magnetic field are determined by Eqns
(3.13), (3.14). The directions of the vectors of the electric
and magnetic field strengths for each of the eigenmodes are
depicted in Fig. 1. In the general case only the mode 3 is
completely transversal. In the modes 1 and 2, the vectors E,
B, k lie in the same plane, H is always perpendicular to them,

H; E,

E,

k
H
E3 12

Figure 1. The senses of electric E and magnetic H vectors relating to
eigenmodes in the magnetic field B. Vectors B, k, k,, H3, and E; lie in
the plane of the drawing, while E3 and H; , vectors are orthogonal to the
latter, and, finally, Hs L k.
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and E; L Binthe mode 1. In the mode 3, the vectors H, B, k
lie in the same plane and E is perpendicular to this plane. In
the case of a parallel propagation (k 717 B), the mode 2
represents a longitudinal electric wave (H, =0, Ey 11 k)
and, due to the isotropy of the polarization operator (PO) in
the plane perpendicular to the direction of the external field
B, the equality »; = x3 holds. On the contrary, if we have
k | B, then the mode 1 becomes a longitudinal electric wave
(H; =0, E; 17 k). From the general properties of the photon
polarization operator in a constant external field it follows
that its eigenvalue »%; = k?. Therefore, one might expect that
the mode 1 at k%> = 0 describes the real electromagnetic wave.
However, the polarization 4-vector (V) o k, at k> = 0, i.e. it
becomes purely longitudinal and such a wave is lacking.
Massless solutions corresponding to real photons can have
dispersion equations for the modes 2 and 3. Analytic proper-
ties of PO and its eigenvalues with respect to complex
variables z; = k3 — k3 and z, = k% have been studied in
detail. They are analytic in z; everywhere except the infinite
number of branching points

Z = [(2eBn + m*)"2 4 (2eBn’ + 1112)1/2]2 , (3.20)
where n and n' take on integral nonnegative values, m is the
electron mass, and in addition they are entire functions of z; .
We remark that the spectral representations for 5; within the
one-loop approximation in the form of sums over n and n’
and their singular behaviour of the (z; — z,,,,r)l/ 2 type have
been for the first time mentioned in Ref. [65], while the
branching point z; = z,,, physically corresponds to the
photoproduction threshold for an electron-positron pair
with the principle quantum numbers n and n’ in a constant
magnetic field. The above-mentioned singularities x;
(j=1,2,3) have been referred to as cyclotron resonances in
the scientific literature. At this point, consider two physical
effects whose origin lies in the substantial deviation of the
dispersion law from the vacuum one k> = 0. They have been
predicted by Shabad in his analysis of the dispersion equa-
tions solutions near the resonance thresholds. For our
purposes it is enough to study, for example, the dispersion
equation for the mode 2 in the vicinity of the first resonance
(n=n"=0):

5.5 (3.21)

z] — zp = 20eBmexp (— Z—2> (4m* — 21)71/2 .
It can be brought to the cubic equation with respect to
X =z;/m? and is solved explicitly. Let X; = X(z;) be a
solution of (3.21) which describes propagation of an electro-
magnetic wave without absorption. Using the explicit form of
X; = Xi(z2), where z; is real, one can check that the
component of the wave group velocity transversal to the
vector B satisfies the inequality

dko)
— <1
(dkl ky=const

near the threshold and vanishes at z = 4m? — i0. The long-
itudinal component of the group velocity is equal in this case
to

(3.22)

dk k
(o b .
dk ki=const  (4m? + kﬁ)

Thus, for k| # 0 the wave group velocity near the cyclotron
resonance is directed along the external magnetic field. This is
the so-called effect of a photon channelling along the
magnetic field.

Another phenomenon, which is characteristic of crystal
optics with regard to the spatial dispersion, implies that the
dispersion equations have infinite number of solutions near
the production threshold [see, for instance, Eqn (3.21)], for
which z; = k% — k% is real, while the transversal momentum
squared z; is determined by a complex expression. Such
solutions have been identified as new waves [66].

Conditions for possible manifesting the effect of the
photon deflection from its trajectory towards the magnetic
field in the pulsar magnetosphere, as well as in a semiconduc-
tor placed in a magnetic field, were studied in Refs [67, 68].
We note that since the forbidden band width in a semicon-
ductor (of the order of 1 eV) is much less than the energy gap
between positive- and negative-frequency solutions to the
Dirac equation in a constant magnetic field (2mc> ~ 1 MeV),
the channelling effect in a semiconductor can be observed
already in fields of much lower strength as compared with the
vacuum case.

Finally we shall discuss two results relating to the
dispersion equation solutions in a superstrong magnetic
field, when the following conditions are fulfilled [10, 63, 69]:

B> By, 21%<1. (324)

(1) For the mode 3, the dispersion equation has the
solution k> = 0 which corresponds to a transverse electro-
magnetic wave propagating with the speed of light through
the vacuum in any direction.

(2) For the mode 2 far from the threshold, when z; < 4m?
and z; < 2eB, there exists a solution, which describes the
wave propagation with the index of refraction, close to the
vacuum one, namely

B .
ngl+ie—sm9,

3.25
6m m? ( )

where 0 is the angle between k and B.

3.2.2 Photon in the field of a plane electromagnetic wave. The
polarization operator in an arbitrary plane-wave field, as well
as in the particular case of the plane electromagnetic wave,
which fairly well models an electromagnetic field of real laser
beams, was studied in Refs [70, 71, 10]. Omitting calculation
details, we shall qualitatively describe the following two
effects: rotation of the polarization plane (the Faraday effect),
and circular birefringence (the Kerr effect). To this end, we
shall consider the problem of a linearly polarized photon of
the 4-momentum ¢ propagating across the field of a circularly
polarized wave. From modified Maxwell equations (3.6) in
the physically interesting case

o(¢" —¢)
“om <D

cE
A= == <1, (3.26)
maw

where E and w are the strength amplitude and the frequency
of an external wave field, m is the electron mass, & is the
classical parameter of the wave intensity, it follows that near
the vacuum dispersion law (¢> = 0) only two eigenmodes
have physical meaning. They describe states of transversely
polarized photons with right (+) and left (=) circular
polarization, and the refraction indices corresponding to
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these modes are equal to

22 o 164
2 2,2
”i*1+45n( >£l(li—77)

In this case the polarization plane of a linearly polarized
photon propagating across the field of a circularly polarized
wave in the path of length L, will rotate through the angle
equal to

1 176 o 230 me*\
(p—icuL(}u n_)= 6301[5 c(hw) L. (3.28)

(3.27)

We note that the phenomenon considered provides an
integral effect, i.e. the angle of rotation of the polarization
plane increases proportionally to L and may prove to be
substantial even if ¢ < 1, which is the condition for the
perturbation theory in terms of the wave intensity to be valid.

3.2.3 Polarization operator and photon propagation across the
stationary crossed field. The polarization operator and the
Green’s function of a photon were considered within the
framework of QED theory in Refs [64, 9, 60, 61]. Here we
shall restrict ourselves to consideration of the dispersion
equations for the modes 3 and 2, which take the form

K+ Pia(2, %) + P3(4,%) =0, (3.29)
where P;(4,%) (i = 1,2, 3) are the functions of the 4-momen-
tum squared k, of a photon

k2

= (3.30)

and of the dynamic variable

1

®=—
3

—(Fk*)? . (3.31)

We remark that in a special reference system, where a
photon moves in the direction opposite to the Poynting vector
E x H, the modes 3 and 2 are transversely polarized with
respect to E and —H, correspondingly. In the one-loop

approximation, the functions P;(1, ) are determined by the

integrals
2om? [* 2v+1F3 <V) 23
P,=— dv ———=—= (= "(2),
' 3n ,[4 vy/v(v—4) \v /)

et a9
-0

where f/(z) is the derivative of the Airy—Hardy function
(64, 9]:

(3.32)

f(z2) = 2) +ivn@(z) = 1J:c dt exp {fi (thrl;)] )
(3.33)

and the following function was introduced:

i) = [ a0 -5 . (3.34)

Near the vacuum dispersion law, from Eqns (3.29),
(3.32)—(3.34) it follows that

-1 = k(1 =13 5) =

2 oo N\ 2/3
_ 2um J do 2VHLFS (,) 1),
3TE 4

W) o

where M%_z is the complex square of the photon mass for modes
3 and 2, and an index of refraction of the medium n3, is
introduced. Thus, since the process of electron-positron pair
photoproduction is possible in an external field, the latter
plays the role of an anisotropic medium with dispersion and
absorption for the photon propagating through it. The
probability of absorbing the i-th eigenmode is determined in
the general case by the dispersion equation

(3.35)

I =Imky = Im

1
3.36
2Rek0 ( )

where the complex frequency of a normal wave constitutes the
solution of the dispersion equation at fixed real value of k. It
should be emphasized that only near the vacuum dispersion
law (k> =0) Eqn (3.36) takes the form of the above-
mentioned optical theorem, where the eigenvectors b ) and
b, (2) of the polarization operator have to be borrowed for the
polarlzatlon 4-vectors, and the following relation

=Im7;, i=3)2

= 2 (3.37)

holds, where w; is the rate of photon decay into e e -pair, and
T; is the corresponding amplitude of photon elastic scattering.
In the limiting cases of large and small values of the dynamic
parameter x, it follows from Eqn (3.35) [64, 9] that

%3, 1\/§3$l,€ex 8 <l
_ 3 S8 L.
907 2716 P\73.) ’

S

15 2= o’

(3.38)

We note that the real part of u? is negative at small x,
and with growing » it changes the sign at » ~ 15 and
increases proportional to % for » > 1. In the framework of
the Weinberg—Salam—Glashow (WSG) unified theory of
electroweak interactions, the W-boson contribution to the
photon PO should also be taken into account. In a constant
magnetic field, this has been done for the first time in Refs
[72, 73], and the behaviour of the W-boson contribution to
the photon PO in the superstrong magnetic field
H— HYY =M} /e~ 10"* G (My is the mass of the W-
boson) was studied in Ref. [74]. In the case of comparatively
weak fields and large transverse momenta of a photon, viz.

H<H), k> My, (3.39)
the one-loop W-boson contribution to the asymptotics of the
shift of the real part of the photon mass squared is determined
by the expression [73]

42+1 ,
Reué,z—fﬁMé{T“v <l (3.40)
2%, x>1,
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while the rate of photon decay into the WHW~-pair has the
asymptotics

35+2 (3\'? 8
M| 2==(2 _°%)
w{T3 <2) “Xp( 3;4)’ <l 341

ki
0 2\/§%, x> 1,

w32 =

where the invariant parameter

k., H

—(Fuk)? ==
(Fuk) = 3

(3.42)

=33
M3,

has been introduced.

Comparison of the results (3.40), (3.41) with the analo-
gous findings for the spinor (3.38) and scalar [9] particles
contribution to the photon elastic scattering amplitude shows
that:

(1) the contribution increases with growing particle spin;

(2) the forms of the T-amplitude dependence on the
parameter % at x < 1 coincide in all cases (T ~ %?);

(3) the situation is essentially altered for » > 1: in the case
of scalars and electrons 7 ~ %%/, and for W-bosons 7 ~ x.

Thus, at » > 1 the W-boson contribution 7w to the
amplitude of photon elastic scattering considerably exceeds
that of electrons T., and a superhigh-energy photon in a
magnetic field will decay most probably into the WTW ~-pair.
We note that in a quasi-classical region for % > 1, where x is
the parameter determined by Eqn (2.11), the synchrotron
radiation power of a vector particle also increases faster with
growing x, i.e. proportional to »*? [75], than does the
radiation power of scalar particles and electrons, which is
proportional to %%/

3.2.4 Polarization operator and the photon propagation across
the electromagnetic field of the Redmond configuration. A
superposition of a constant magnetic field and a field of a
plane electromagnetic wave propagating along the magnetic
field direction is called the Redmond configuration (RC). A
potential of this field for the case of a circular polarized wave
propagating along the Z-axis can be chosen in the form

AM(x) = AL(H) + 4%(9), @ =kx= (i -2),

Al =(0,0,xH,0), A :% £(0, — sin ¢, g cos @, 0) ,
(3.43)

where & = eE/mw is the above-introduced parameter of the
wave intensity, g = +1 (g = —1) for the right (left) circular
polarization of the wave. The explicit form of PO in the RC
field and solutions of the corresponding modified Maxwell
equations were obtained in Ref. [70] (see also Ref. [10]). We
note that in the variable RC electromagnetic field the
polarization operator I1,,(p, g|F) contains, as in the case of
the plane electromagnetic wave field, terms that are off-
diagonal with respect to the photon momenta outside the
mass shell. This provides a drastic distinction of this case from
that with a constant external field.

Let us analyze in more detail the one-loop elastic
scattering amplitude for a circularly polarized photon moving
in the direction opposite to that of the wave propagation (in
the case of a photon moving in the direction of wave
propagation its interaction with an external field is impos-
sible). Here we shall limit ourselves by mostly quantitative

justification of some nontrivial physical effects taking place
just in this field (3.43).

We remind that the Dirac equation solutions in the field
(3.43) satisfy the conditions of the time and spatial in z
periodicity [21, 76, 77, 9]:

V(i +T) = exp(—igoT)V(1) ,

V(z +4) = exp(—ig:A)¥(2), (3.44)

where T = 21t/ is the oscillation period, 4 is the wavelength.
Therefore, the quasi-energy ¢o and the third component of the
quasi-momentum ¢. can be introduced for the particle in the
RC field, as in the case of an electron motion in the spatially
periodical field of a crystal lattice:

qo=po+Emw A", ¢ =p.+Emw(20)7",

A q0 —4: Po—D: eH
=oaw — gwy, b=——=—, g = )
m m m

where po and p. are the electron energy and the z-component
of the electron momentum in a constant magnetic field. The
quasi-energy ¢ is defined to an accuracy of the modulus of w
[see (3.44)] and can play in the RC field the same role as an
ordinary energy plays in a stationary problem. The laws of
conserving the quasi-energy and quasi-momentum hold for a
partial process of pair creation by an external photon with the
4-momentum x* = (00,0, —x°):
X tlo—qy —qf =0, —x"+lo—q —qF =0.(3.46)
Due to conservation of the total moment projection onto
the magnetic field direction, the following relation holds as
well:

n—n'—gl+o=0, (3.47)

where ¢ = 1 for the cases of right and left circular
polarization of an external photon, and n and n’ are the
principle quantum numbers of an electron and a positron in a
constant magnetic field. Hence, there follows an intimate
connection between n, n’, g and o, which, by the way, does not
take place for the wave of linear polarization or for other
direction of an external photon propagation. We note, for
instance, that as it follows from (3.47) creation of a pair with
n=n'=0at gg = —1 is available only under the condition
that a quantum of radiation is emitted from the wave
(I=—1). At the same time, for g = +1 the process can
proceed if / = 41, i.e. as a result of absorption of a quantum
from the external wave. The above-mentioned sensitivity of
the pair creation process in the field (3.43) to the polarization
directions of the wave and of the external photon certainly
reveals itself also in the study on the problem of threshold
heights in the pair production on fixed Landau levels nand n’,
i.e. of singularities in the photon elastic scattering amplitude,
which also depends on the parameters

H kx 20" eE

- = - 3.48
'LtH()’neHeH’émw (3.48)

From conservation laws (3.46), (3.47) it truly follows that
the pair production process with fixed n and n’ can occur only



240 A V Borisov, A S Vshivtsev, V Ch Zhukovskii, P A Eminov

Physics— Uspekhi 40 (3)

for those values of parameters (3.48) that satisfy the equality

62’72/34—/3—
(1 —gB.m)(1+gB_n)

= (14 2n)p_+ (1 +2n'w)p.,

—2gunp p_(n—n'+0o), (3.49)

where . are correlated to the variable ff € [—1,1] by the
condition

e 1
ﬁi_oc++oc__2

(1£p). (3.50)

We deduce from Eqn (3.49) and rigorous computations of the
process probability, in particular, that:

(1) In the weak magnetic field (H < Hy) at n > 1 the
condition for the process to proceed is as follows

Jgn—n'406) = 4(1+ &),

4ax0

A=2un = (3.51)

)
We note that the opening condition for the partial channel of
the pair photoproduction in the plane electromagnetic wave
[21, 9] takes the form analogous to (3.51), i.e.

=401+, (3.52)

where /is the number of quanta absorbed from the wave. As
for the probability of the process, with 6g = +1 (6g = —1) it
increases (decreases) as compared to the case when an
external photon is linearly polarized.

(2) In the limiting case 5 < 1, the condition for pair
creation is determined by the inequality

2 {0 e

+(1+ 2,11}1')1/2]2] " ‘W} . (3.53)

It is seen that pair production can occur even with very weak
restriction on the external photon energy, which in this case
may be considerably lower than the threshold energy for the
corresponding reaction in a pure magnetic field. The lowest
possible value of the parameter A is reached atn = n’ = 0:

2]
—oe[\& &’

Eqn (3.54) also states that there exists the photon energy
region wherein an external photon is absorbed as a result of
pair production (6g = 1), while for other photons (¢g = —1)
the medium in question is transparent.

(3) In the case of a strong magnetic field (H > H,), which
is interesting from the physical point of view, when the
conditions

(3.54)

2.2
5_17<1’
u

n<l, (3.55)

are fulfilled, an electron and a positron may be produced only
in the ground state (n = n’ = 0) with the probability
4’ ( isz)
exp| ——=—). (3.56
(S £2)EL£1-4) ) 3

A threshold singularity should be noticed in Eqn (3.56), which
is characteristic of the processes in a magnetic field and
appears under the condition that longitudinal momenta of
particles produced are equal to zero.

Finally we dwell on one more property characteristic for
the processes in variable fields, which deals with the real part
of the photon mass squared. We limit ourselves by the case of
a weak (&% < 1) plane electromagnetic wave, when upon
averaging over photon polarizations the following asympto-
tics can be obtained [78, 10]:

2
Re s = _52%(11121—21111—7:2 +6),

2k
> > 1.
m

(3.57)

/l:

If we have a power-like (~ %?/3) growth of both the real
and imaginary parts of 4 in a stationary external field at large
values of the dynamic parameter x, then in a variable field the
real part of the photon mass squared is, on the one hand,
dominating and, on the other hand, it increases proportional
to the logarithm squared of 2 at high energies, which is also
characteristic of radiative corrections in vacuum [79].

3.2.5 Photon propagation through the electron-positron med-
ium at finite temperature, found in an external electromagnetic
field. As it was already mentioned, the study of problems
related to propagation and absorption of electromagnetic
waves in an electron-positron plasma is carried out basing
upon examination of the polarization operator at finite
temperature and nonzero chemical potential. For a wealth
of basic researches in the field of interest (see, e.g., Refs [80,
81]), the characteristic feature is that the influence of the
external field on the photon propagation through a plasma is
allowed for in the framework of perturbation theory. At the
same time, as Ginzburg emphasized in Ref. [81], considera-
tion of a relativistic electron-positron plasma in a strong
electromagnetic field, when the perturbation theory in terms
of the external field intensity is no more valid, should be of
much interest from the point of view of particular physical
applications. Evaluation of particular physical effects even in
the case of a collisionless plasma in equilibrium in the
presence of a strong external magnetic field turns out to be a
nontrivial problem and it has been initiated recently by
Shabad and others, whose papers [63, 82, 83] we shall follow
below. In Ref. [63], a relativistically covariant structure of the
photon PO at finite temperature and nonzero chemical
potential in a constant magnetic field B has been demon-
strated. It should be emphasized that this has been done
without any reference to the one-loop approximation, i.e. for
an exact PO in an arbitrary reference frame, wherein plasma
as a whole is at rest or moves along the magnetic field
direction. It follows from the analysis of the properties of
the plasmon eigenmodes conducted in Ref. [63] that in a
general case of the three eigenmodes propagating at an
arbitrary angle to the external field direction, they are
elliptically polarized, with one of the semiaxes of the polariza-
tion ellipse lying in the plane (H,B), and the other being
perpendicular to this plane. As to the analytic properties of
the eigenvalues »; (j = 1,2,3) of the PO in the plane of the
complex variable z; = k3 — k3 at fixed real values of k3 and
7, = k%, they are (at fixed values of the pair of the principle
quantum numbers 7 and n’) analytic functions on the whole
complex plane of z; with the exception of the real axis, where
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»; are analytic over the region

<z <z, (3.58)

as well as for —oo < z; < fkg, when k( takes on imaginary
values. The points z{ and z} are determined with the help of
the expressions

z{ = [(2eBn erz)l/2 + (2eBn’ + mz)l/z]z,

z{ = [(2eBn +m®)'? — (2eBn’ —|—1112)l/2]2 (3.59)

and have the following physical meaning.

The point z{ was already mentioned as the branching
point coinciding with the photoproduction threshold for an
electron-positron pair with the principle quantum numbers 7
and n’ in a stationary magnetic field. In order to interpret the
second branching point z{’, we note that as a result of the
absorption of an external photon an electron (or a positron)
of the plasma can make a transition to another quantum
state. In this case the following conservation laws for the
energy and the momentum projection onto the magnetic field
direction

k0+En = En’ 5 k: +P: :P;7 (360)

hold, where the primed quantities refer to the final state. The
values of the electron momentum p., at which a photon with
the energy ko can initiate transitions n — n’, may be found
from (3.60), while the value of z; whereat the imaginary part
of p, comes to nought for the first time is just the branching
point z{.

Thus, there appear two different mechanisms of photon
absorption in a collisionless plasma: via the photoproduction
process for eTe -pair on fixed levels n and n’, which
corresponds to the right cut —k% <z; <z{,z>z],and via
photon absorption by an electron (positron) of the plasma
relevant to the left cut —k3 < z; < z{. In the latter case at
n # n' we shall deal with the inverse magnetobremsstrahlung,
and at n =n’ (when z{' = 0) absorption of a photon takes
place via a process inverse to the quantum Cherenkov
radiation. We shall not present here a detailed discussion of
the solutions to dispersion equations near the magnetobrems-
strahlung absorption thresholds or near the pair production
threshold, rather we shall refer the reader to Ref. [63]. Only
one result is to be demonstrated, which emphasizes the
essentially dynamic character of the photon propagation
process in an electron-positron plasma in the presence of an
external magnetic field. It corresponds to the solution near
the first threshold of magnetobremsstrahlung (n =0, n’ =1
orn = 1,n" = 0) to the dispersion equation for the mode 2 at
k* =0, when it turns out to be a longitudinally polarized
wave.

We confine ourselves to the case of zero temperature and
the range of the external field strength satisfying

2eB > i —m*. (3.61)
In so doing the electrons fill only the ground Landau level.

Then the plasmon frequencies at k3 = 0 are found from the
equation [63]

,  SoeBm® 1
ws =
P T

4m? — w? eB\17? =
X {arctan |:T (1 +W>:| —E s (362)

where the magnetic field B is explicitly present, and
w% = 4nan/2m is an ordinary Langmuir frequency (n is the
electron concentration).

Notice that only under the condition

eBm
n < > (3.63)
equation (3.62) goes over to the known relation w? = w?.

In paper [82], the method of approximate calculation of
PO eigenvalues in the case of a comparatively weak magnetic
field B < By has been developed. The polarization operator
was represented in the form of the sum of two matrices

Pou(k) = M (k) + T, (K), (3.64)
where IT,,, (k) is the diagonal matrix, whose elements coincide
with the diagonal elements of P, (k), while the matrix I1,, (k)
is constructed from the off-diagonal matrix elements of
P,y (k). The matrix elements of II,,(k) offer the higher-order
infinitesimal in terms of the parameter B/By as compared to
I1,,(k) and are proportional to the components of the photon
momentum k,. Subject to the condition that B < By and/or
|k,| — 0, the eigenvalues »; of the matrix P,,(k) can be
represented in the form of a convergent series

%= %1(0> + s%j(.l) + .92%;2) +...,

(3.65)
where »\”) are the eigenvalues of I1,,(k), i.e. the diagonal
matrix elements of P, (k), %j(") are the corrections determined
by the structure of I1,,(k), and the parameter ¢is a power-like
function depending on B/ B, and |k,|/m. Thus, the behaviour
of PO in the limiting cases of high and low temperatures has
been studied in Ref. [82]. In the limiting case of a superstrong
magnetic field, when

eB> T? m?, k?, (3.66)
the temperature correction to a photon PO and its asympto-
tics in the limits of high and low temperatures were
investigated in Ref. [83]. We emphasize that the important
plasma characteristics such as the Debye screening radius rp:

) .
= — lim I1 k
D i o0(@, k),

(3.67)

in the limit of high temperatures demonstrates essentially
different behaviour depending on the field strength [83]:

1‘52
200
— (eB
~(¢B),

e 3 (mY
3 2r2 \T

eB > T2>mZ7

LT (BY (m\'
8 w3 \ By T P
eB<m?, T>m.

(3.68)

The above result (3.67) can be obtained from the Ward
identities. Considering the higher orders of the perturbation
theory leads to a corrected expression for 52 [83]:

2 -1
ry2 = — lim {Hoo(kg,kz) {1 +% Hoo(ké,kz)] }-(3-69)
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4. Radiative effects and propagation
of fermions in the Standard Model

4.1 Mass operator and propagation of fermions

in the Standard Model

As known from QED, consideration of higher orders of the
perturbation theory in terms of the interaction with the
radiation quantized field will result, for instance, in the
electron mass renormalization and in appearance of an
additional magnetic moment of an electron, which is referred
to as an anomalous magnetic moment (AMM). The correc-
tion of order o to the proper electron magnetic moment
followed from the Dirac equation and called the Bohr
magneton, was computed by Schwinger as far back as in
1948. It proved to be in perfect agreement with Breit’s
assumption (made to explain the experiments of Nafe, Nelson
and Rabi) that the true value of the electron magnetic
moment deviates from the Bohr magneton up [84]:

_ 1+i _e()h
He = —Hp ) M T

(4.1

Presence of an external electromagnetic field alters the
interaction between an electron and the radiation field, thus
leading to the radiation shift of the mass and changing AMM
of an electron. In papers [85—87, 64], an interesting physical
effect has been predicted and studied. It implies that the
electron AMM exhibits a complex dynamic nature in a
constant magnetic field, i.e. this quantity depends on the
field strength and the electron energy and at sufficiently
strong fields and high energies it can essentially differ from
Schwinger’s value. There appeared an abundance of publica-
tions that deal with the study on the dynamic nature of the
mass shifts both of charged and neutral particles in various
configurations of intensive external fields, and their torrent is
still growing [88 —92]. Motion of an electron (charged lepton)
in an external electromagnetic field is governed by the Dirac—
Schwinger equation taking radiative corrections into account
[2,3,9]

(5~ ed = mpp(x) = [ 20rx phix) d' (42)

where X(x, x') is the electron mass operator. In papers [93, 9],
a complete set of operators was found which commute with
the electron mass operator (exact in an external and radiative
fields) for the case of an arbitrary stationary electromagnetic
field. And an effective method based upon diagonalization of
the mass operator and the use of its eigenfunctions (the QED
eigenfunctions method in constant fields) was proposed for
calculating the radiative effects. We note that if there exists a
time-dependent part in the external field configuration, e.g.,
the plane electromagnetic wave field, then the processes
outside the mass shell (accompanied by absorption and
radiation of arbitrary number of photons of the wave) are
possible, and the mass operator in this field is off-diagonal in
the momentum space.

The electron mass operator in a constant electromagnetic
field [9] shows an essential singularity and branching at the
zero point in the dynamic variable » proportional to the field
strength and the charge, and the branching leads to appear-
ance of two analyticity domains, where the mass operator
turns out to be retarded or advanced.

To second order in the radiation field strength, the
electron mass operator in QED is defined by the expression [9]

20 (x,x") = —iey"SL) (x, x )" DY (x, )

1y

(4.3)
where S.° (x,x") is the causal electron Green’s function in an
external field, and D‘(Lz) is the photon propagation function,
for which, to the lowest order in o, the photon propagator in
the absence of an external field should be taken.

In the WSG standard model of electroweak interactions
besides contributions of the virtual processe — e+ y — e to
the one-loop electron (charged lepton) mass operator, other
contributions such as those of the charged W-boson, and the
neutral Z-boson and the Higgs boson H, i.e. processes of the
e—->W+v—ee—e+Z—ee— e+ H— etype,should
be considered. As a result, the electron mass operator in the
electroweak model and in the unitary gauge (to second order
in the coupling constants) is represented in the form [92, 94—
96]:

S, x) =20 (x,x") + 2@ (x,x")

+2W(x,x") 4+ 2@ (x,x"), (4.4)

where the electrodynamic (photon) contribution X ) (x, x') is
determined by Eqn (4.3), and those of the neutral weak
current (Z-boson), of the charged weak currents (W-boson)
and of the Higgs boson (not yet discovered) are respectively
equal to

@ (x,x") = —iG2y*(1 + B°) S (x, x")

<" (1+ By )D P (x,x"), (4.5)
EW(x,x") = =Gy (1+7°) S (x, x)
WY 3\ ) (W) /
x (1 +797)D " (x,x7), (4.6)
S®(x,x") = -GS (x, x ) DWW (x, x") . 4.7)
Here the following notations have been adopted:
ﬁ: g2+g/2 B g2_3g/2
g —3g'%’ 4(g2 +g/2)\ "
g g me
Gy =—= Gu==2 . 4.8
w=its an=5i (438)

In Eqns (4.5)—(4.8), S(x,x’) and D,E‘\,)v)(x,x’) are the
electron and W-boson propagators in an external field; va),
D,Eg) and D™ (x,x') are the neutrino, Z-boson and Higgs
boson propagators, respectively, and, finally, g and g’ are the
gauge coupling constants of the WSG theory.

The most direct method of calculating the electron mass
radiation shift calls for the computation of the electron elastic

scattering amplitude 7(p, ¢, A) in an external field:
T(0,4.4) = [ (0203 (')

= 2n)*VTs(p — ¢)T(q, A) (4.9)

where ,(x) is the Dirac equation solution for an electron in
an external field in the state with quantum numbers g.

The amplitude 7(g, 4) should be renormalized according
to the general prescription [9]:

TR(qvA) = T(qvA) - T(qa O) + TR(qv 0) ) (410)
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where Tr(g, A) is the renormalized amplitude, T(q, 0) is the
value of T(q, A) in the absence of the field, and Tr (g, 0) is its
renormalized value.

The real part of the elastic scattering amplitude (4.10) is
related to the electron mass shift Am by the formula

m

Re Tr(g,4) = — Re Am, (4.11)

Po

and its imaginary part according to the optical theorem is
proportional to the total probability of the electron radiative
transition from the state with quantum numbers ¢ in the given
external field:

W
—Im Tr(q,4) = Tq .

(4.12)

Another method of calculating the value of Am is based
upon using the dispersion relations; it can be acquainted by
Refs [64, 97]. We only note that in the presence of the strong
external field the validity condition for this method reduces to
analyticity of Tr (¢, A) in the upper half-plane of the complex
variable x and its vanishing at » = 0 at least linearly.

The Dirac—Schwinger equation describing radiative cor-
rections for the motion of a massive neutrino in an external
field has the form similar to (4.2):

(5 =m0 = [ 4" 2 ¥ D). (4.13)

In the one-loop approximation, the mass operator
2(x,x") determines the radiative correction to the neutrino
energy in the form

AE = lJ d*xd*x"5(x)Z (x, x")v(x'),

- (4.14)

where T is the ‘interaction time’ (7 — o0), and the neutrino
bispinor v(x) is taken in the zero approximation. The explicit
expression for X (x, x') in an external field in the framework of
the one-loop approximation follows from the Lagrangian of
the neutrino interaction with the charged particles [98, 11]:

2, x") = Zw(x,x") + Zy(x,x"), (4.15)
where
2] oS 145
Swxx') = =5 ST s O w0y = D x')

(4.16)

is the W-boson contribution, while the mass operator
2,(x,x") contribution of the charged scalar is negligibly
small (o< (me/mw)”) as compared to the W-contribution,
and we omit it here (see Refs [98, 11] for more details).

In contrast to AE, the mass radiative correction

0
Am =" AE

- (4.17)
is the Lorentz invariant, and similar to what has been done
above it is necessary to renormalize routinely the neutrino
mass by subtracting its value in the vanishing field from the
nonrenormalized quantity Am,.

We remark that since the Majorana neutrino (MN) is
identical to its antiparticle, the main contribution to its mass
operator, in contrast to the case of the Dirac neutrino (DN), is

provided not only by the virtual process v — e"W* — v, but
also by the process v — e*W~ — v being charge-conjugate to
the previous one.

AMM of a lepton and its anomalous electric moment
(AEM) induced by an external field are determined by those
terms in the radiative mass shift that are proportional to
(s.F*'py) and to (s, F'*'py), respectively [97]:

WE
Re Amyy = MO Ewp") (4.18)
m
nE , v
Re Anmy; :W , (4.19)

where s# is the particle polarization 4-vector.

It should be emphasized that AEM is induced by an
external field if the pseudoscalar of this field EH # 0, and
that its existence does not contradict the T-invariance of the
WSG theory, while the third spin term in Am, proportional to
sFF,,F*pp, is governed by the spatial parity nonconserva-
tion when weak-interacted. That the charged lepton [97] and
the massive DN [98, 11] both exhibit AEM in an electro-
magnetic field constitutes a qualitatively new physical effect.
As long ago as in papers of Landau and Zel’dovich [99, 100],
the existence of a nonvanishing electric dipole moment of
particles in the CPT-symmetric theory, which is determined
by the well-known electromagnetic form factor F3(0) [101]

_ F5(0)

d= 2m

: (4.20)

was proved to be possible only under the condition that the
combined CP- (or T-) invariance is broken. An electron (DN)
in vacuum has neither normal nor anomalous electric
moments as a result of the T-invariance of the interaction in
the Standard Model. However, modification of the electron
radiative interaction in an external field leads to the appear-
ance of an electron (massive DN) AEM.

The review of various models of the CP-invariance break-
ing from the standpoint of predicting the existence of the
electron electric dipole moment is presented in Ref. [101]. As
to the experimental situation, the achieved accuracy of
indirect measurements of a possible nonvanishing electron
electric dipole moment was estimated as [101]

0(de) =107 e x cm, (4.21)

which is much higher than the accuracy of the electron AMM
measurement reported in papers [102—104]:

b F (g— 2)} ~1x107'". (4.22)

2

Much interest has also been paid recently to the study of
finite-temperature fermion Green’s functions in various
realistic QFT models.

In the framework of QED, the one-loop electron mass
operator and vertex function at finite temperature and
nonzero chemical potential were calculated by a number of
research groups. In papers [105—108], a charge-symmetric
case (u = 0) was considered, when equal numbers of electrons
and positrons are excited from vacuum at finite temperature.
The electron self-energy at zero temperature with considera-
tion for the contribution of the finite density effects was
studied in Refs [109, 110]. In the charge-asymmetric case
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(¢ # 0), when electrons are in excess over positrons, the vertex
function and the electron AMM at finite temperature were
calculated in Ref. [111]. Along with QED, similar investiga-
tions are under way in the Standard Model of electroweak
interactions. Today one may speak about new important
trends in the theoretical physics such as, for instance, physics
of neutrino at finite temperature and density of medium.
Most complete account of the modern state of investigations
in the physics of neutrino propagating through dispersive
media (plasma in metals and stars, ferromagnetics, lepton
plasma of the early Universe, etc.) can be found in Ref. [112],
where references are exhibited to the original papers with the
discussion of the dispersion law and electromagnetic proper-
ties of neutrino in an electron-positron plasma in a free case,
i.e. in zero external field (see also Refs [113—121]).

In the one-loop approximation, the spectrum of quark-
like excitations together with the gluon excitation spectrum in
a hot quark-gluon plasma were calculated in papers (that are
now considered as classical) written by Kalashnikov and
Klimov [122, 123] and somewhat later in Ref. [124].

Along with the above-mentioned problems much atten-
tion is paid to the study of the radiative energy shift and
AMM of fermions at finite temperature and nonzero chemi-
cal potential in the presence of strong external fields [125—
130, 33].

4.2 Mass shifts and anomalous magnetic moments
of an electron and neutrino in an external electromagnetic
field due to the Standard Model
The most comprehensive study of electrodynamic contribu-
tion to the electron mass shift and its AMM in an arbitrary
stationary electromagnetic field, as well as in the RC field,
was given in Refs [64, 9, 10, 75]. We shall confine ourselves to
the analysis and comparison of a number of characteristic
physical effects in some particular cases of intensive external
field configurations.

For ultrarelativistic electron energies and comparatively
weak magnetic fields, when the following conditions

m2

H<Hy=—~441x10"G, p, =+V2eHn> m,
e

(4.23)

are fulfilled, the electron AMM is determined by the formula
[64]

o (< du u\ >3 u\ >3
Au = —_ " (= Y=
o=l ZTEL (u+1)>° (4) K’ﬁ> ] ’

where up = e¢/2m is the Bohr magneton, Y is the upsilon
function (3.33), and the dynamic parameter of synchrotron
radiation x is equal to

1 » Hp:
%=\ —(eFmp,)? = L
n =5\ —(eFpy) Hy m

We note that Eqn (4.24) is defined as an exact expression
for the electron AMM in a constant crossed field [9], where
the field dynamic parameter equals

F(p°=p)
=
F() m ’

(4.24)

(4.25)

(4.26)

and p° — p3 is the difference between the kinetic energy of the
particle and its kinetic momentum component along the axis
E x H.

Eqn (4.24) allows the following asymptotic expansions to
be derived [64]:

Ap

U
212 ln%’1+C+lln3fﬂ +..., x<l,

o 2 12

) ar(1/3) ,2/1[ 6I'(2/3) x 2 }
L (B) 1+ —LL (3 +.., x>,
o3 %) /3 )

(4.27)

where C = 0.577 ... is the Euler constant.

Thus, the ratio Au/ug is positive in the quasi-classical
approximation and with growing x it decreases in a mono-
tonous way from Schwinger’s value down to zero, while in the
ultraquantum case (x > 1) the magnitude of the electron
AMM decreases with growing energy and the field strength
by the power-like law (o< %~%/3).

Upon averaging over the electron spin states, the asymp-
totics for the radiative electron mass shift subject to the
condition (4.23) have the form [64] (see also Refs [9, 10, 75]):

Re Am
Im Am

4oam _ 1 33
¥/ﬂ l:ln/ﬂ +C+§ln3—ﬁ:|, <1
= 1 <<
_ Som 178\/§y+zﬂ2 v (4.28)
—4\/§ % Ts %15 x|,
7r(2/3)(1 —iV3)om . 5
Am = 3)77, x> 1. 4.29
27V3 (3%) (4.29)

We emphasize that Re Am > 0 and it steadily increases with
growing %. For ax*? ~ 1, when Re Am ~ m, the comparison
of (4.29) with the two-loop correction to the electron mass
shift shows [59, 9] that in the ultraquantum limit » > 1 the
quantity ox!/3 In % plays the role of the expansion parameter
for the perturbation theory in terms of the radiative field
intensity, while result (4.29) is valid for ax!'/? Ins < 1.

In superstrong magnetic fields H= H,, the above con-
sideration based upon the quasi-classical approximation
(4.23) turns out to be invalid and a qualitatively different
dependence of the mass shift and the electron AMM was
observed [87, 131, 10]: the electron AMM decreases with
growing field intensity H, goes through the zero value and
changes its sign as compared to Schwinger’s value, then in the
region H = Hj it becomes negative.

In the region H > H)j, the mass shift of the ground state
electron (n = 0, { = —1) and the AMM in the weakly excited
states (n ~ 1) are described by the asymptotic formulas
[87,131]

2H
Am(n=0) = % mn? <F0> ,

oe H() 2H
1)=-— — Inl—).
dnm H Hy
Following [44], we emphasize that the asymptotics (4.30)

coincide with that of the vertex operator in QED [79]

O.;wkv

2m

Ap(n = (4.30)

r*=y"[fiy-1] - glr) (4.31)
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with respect to the square of the momentum transferred in the
limit t = —k? > 4m?:

Amn=0) _y_ fp),

m
2m

uln #0), n#0. (4.32)

8=~

Such agreement is not a sheer accident and it reflects the
fundamental relation between QED in an intensive field and
QED at small distances (with large momenta transferred),
which was for the first time found out in Ref. [44], then
extended to the scalar QED and deeply analyzed with the help
of the renormgroup technique in Ref. [45]. The quantities
mentioned in (4.32) describe the common physical phenom-
ena, i.e. the elastic electron scattering by an external field of
high intensity or by separate quanta of the external field with
large momenta squared of virtual photons. A deep analogy
between phenomena under discussion in a strong external
field and at large momenta transferred was demonstrated in
Refs [44, 45] (see also Ref. [46]) and explained by the identity
of the corresponding asymptotics in the main logarithmic
approximation to the one-loop £ and two-loop £
corrections (the latter following behind the Heisenberg—
Euler correction £") to the Lagrangian £* of a constant
electromagnetic field, on the one hand, with the photon
polarization functions of the second n® and the forth n*
orders in e, on the other hand:

£(1) 1o
W SE eH
L 1o m
£ 4 TC)
and
1o
n 3n 1 K 4.34
AT T\ ) (4.34)
4\r

Thus, the vacuum polarization by photons with large virtual
momenta squared |k?| > m? behaves in the same way as the
vacuum polarization, which is due to the strong external field
H> m?/e.

The measurement of the anomalous part of the electron
magnetic moment by the spin-resonance method of Rabi is
known (see, e.g., Ref. [11]) to be based upon using the
combination of a constant magnetic field fixing the particle
spin magnetic moment projection on its direction and an
alternating magnetic field inducing the spin-flip transitions,
i.e. transitions with the change of the spin orientation.
Therefore we shall dwell on one of the results of Ref. [78]
(see also Ref. [10]), where the electron elastic scattering
amplitude in the RC field was calculated.

In the limiting case

eE.
mw

¢

<1, (4.35)

when conditions (4.23) are also fulfilled, correction (4.24) to
the electron AMM, which is caused by the presence of the
plane electromagnetic wave, is determined by the expression
[78, 10]

Photons and leptons in external fields at finite temperature and density 245
A 1+322 22% 4622
Me) _ 2|y L3 w60y (ase)
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where the parameter 1 = 2w(p° — p?)/m? = 2(kp)/m? was
introduced. Hence one can see that in the nonstationary
electromagnetic field the electron AMM depends nonlinearly
on the amplitude and frequency of the field, and radiative
correction (4.36) tends to lower the AMM as compared to
Schwinger’s value.

In the field of a plane electromagnetic wave similar to the
case of the photon propagation, the growth of the real part of
the electron mass shift is observed in the high-energy region
(4 > 1), which is proportional to the logarithm squared of 4
[78, 10]:

a E?

ReAm =——"=1n’2,

Fy— InA>1.

(4.37)

We also note that in the case of the circular polarization of
the wave, the electron AMM in the RC field depends on the
direction of the circular polarization of the wave as well.

The ever increasing accuracy of the experimental techni-
que [103] applied to determining the electron AMM demon-
strates the urgency about observing its dynamic nature, i.e.
the dependence holds:

_Mu_ o

= 2 JUEH).

(4.38)

de

In a constant magnetic field under usual experimental
conditions, numerical corrections to unity in the formula

SE,H) =1 — Af are fairly small. Even when the electron

energy is equal to 1 GeV and the magnetic field strength is
4 x 10* G, wehave Af ~ 5 x 107'%. However, for the electron
energy 10 GeV and the field 4 x 10* Gwehave Af ~ 4 x 1078,
which apparently proves the observation to be feasible.

For ¢ =0.1 and ® ~ 10" s~!, which corresponds to
modern laser parameters, it follows from Eqn (4.36) that
lay®| ~ 1076 —1077 for the case of relativistic electrons with
the energy po ~ 103m.

Thus for the above-mentioned values of parameters the
pure field contributions to the electron AMM lie in the ranges

O\ o\ * o\ ° o\
(2) slals(2) . (2) slemi=(3) - @)
b b i i
For comparison we note that at present the theoretical
computation of the vacuum value of o is carried out in the o*-

order of the perturbation theory [104] and the results are in
satisfactory agreement with the experimental data [102, 103]:

aher = 1159652133(29) x 1072,

a*P = 1159652188.4(4.3) x 10712, (4.40)

The feasibility of experimentation on the dynamic nature
of AMM was pointed out in Ref. [132], where the electron
spin precession was proposed to be measured by using
electrons canalized in a bent single crystal. As this takes
place, internal fields in the crystal can reach very high values
of F<107*H), and the electron energy can be chosen of the
order of several tens of GeV.

The electron mass operator and the amplitude of elastic
electron scattering in an arbitrary stationary electromagnetic
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field were studied in papers [133, 9, 97]. Here we shall confine
ourselves to discussion of some most interesting results
obtained by Ritus with coworkers in the case of a ground
state electron placed in a constant electric field, when p? =0
(the hyperbolic motion case).

In a weak electric field of the strength E < Ey = m? /e, the
electron mass shift has the asymptotics [97]:

O Y P A
ReAm—mh{ prn+p (31n2ﬁ+9)+...],

ImAm:m% {ﬁ(zln Zf—ﬂm— 1) —ﬁz%"+..} , (4.41)

where 8 = eE/m?, u is the photon mass introduced to avoid
infrared divergence, which is related to the infiniteness of
motion, y = e€ = 1.781 ...

The first terms in expansion (4.41) are classical and do not
depend on the Planck constant. The term linear in the
modulus of the field in Re Am is in this case 2w times greater
than that in a magnetic field, where it plays the role of the
energy of interaction between the electron AMM and the
magnetic field and is an essentially quantum variable. While
the classical term of radiation probability entering the
imaginary part in (4.41) coincides with the integral of the
classical radiation spectral distribution for a charge executing
a hyperbolic motion in an electric field [9].

In the ultraquantum limit > 1, the electron mass shift
becomes a nonlinear function of the field [97]:

ReAm:mi —Elnﬁ+K+... ,
2n| 2y

o

m* 3
ImAm——m%{ﬂln -—

e } ,  K=-2.636. (4.42)

We note that in an electric field Re Am decreases with
growing field strength first linearly and then logarithmically
for f > 1, while in a magnetic field the mass shift of a ground
state electron changes sign with growing field strength and
increases as a logarithm of the field strength [see Eqn (4.30)]
for H> Hy. Another qualitative feature of the electron
motion in an electric field is that there is no stable state, i.e.
the ground state electron in an electric field (p> = 0) radiates
due to the ability of the electric field to deliver work on the
charge, while the electron ground state in a magnetic field
(n = 0) is stable. One of the classical methods of computing
the quantity Am* is presented in Ref. [97] and consists in the
following.

The correction AL to the Lagrangian function of a
charged particle in an external field

L=-mV1—v+e(VA™) —edf™, (4.43)
allowing for the modification of the charge interaction with
the proper field due to an external field (and with the same
positions and velocities of the charge at the instant under
consideration), is described by the formula

F

, (4.44)

AL = U &x (A) + J & H}
0

2

where A, E, H are the potential and strengths of the proper
field of the charge, and it determines the classical part of the

charge mass shift:

1

1 —?

Am® = —

AL = —yAL. (4.45)

Consideration for the explicit form of the retarded field of
the uniformly accelerated charge that moves along the z-axis
according to the law z = (¢2 + wy2)"/?, where wy = eE/m is
the charge acceleration, enables the mass shift of the
relativistic charge to be represented in the form [97]

0
f=

1
Anc = ) awo f(v), a[

xcoth x],

x = 2wt = 2artanhv. (4.46)

Thus, the classical mass shift of a charge is proportional to
the acceleration in the rest frame and is positive while an
electron is decelerated by the field, it equals zero in the turning
point (v = 0), and tends to the value

1 eE
=

A Cl:
" 2 m?

(4.47)
for v — 1, when the electron is moving away from the turning
point. The quantum calculation of electron elastic scattering
amplitude predicts that the final state mass is shifted, i.e. for
v — 1, and it is in this limit that (4.47) coincides with the first
term of expansion (4.41). It should be particularly empha-
sized that the classical part of the mass shift of the uniformly
accelerated charge, as it follows from the above calculation
scheme, is nonlocal by nature and it shows up only in
quantum processes. Modifying the action by the integral of
a divergence, the quantity Am* does not enter the classical
equations of motion.

As an example, we shall consider a two-loop correction to
the classical Maxwell Lagrangian in the scalar (s = 0) and
spinor (s = 1/2) electrodynamics [97]. For a weak electric
field, when n = eE/m2 < 1, the radiative correction to the
one-loop contribution is completely reduced to the classical
mass shift of a charge accelerated by this field:

20m (L0 + £@) =~ (25 + 1) (eE)” exp (— ”’"5> (4.48)
(2m)’ ¢k )’

with the expression for 2Im £ wherein the substitution
m — m, = m+ Am® is made, standing in the right-hand side.
Since Am® < 0 and it does not depend on the spin of a
charged particle, allowance for the two-loop contribution
leads to an increase in the decay rate both in the scalar and in
spinor QED.

We shall conclude our consideration of the electron
radiative mass shift in a constant electric field by two
following important remarks [97].

Firstly, the effective mass of a charged particle (both a
fermion and a scalar particle) in a strong electric field
decreases similarly to its effective mass m — om in vacuum at
short distances. The dependence of the fermion mass shift on
the cut-off momentum squared A2 in the main logarithmic
approximation is given by the formula [79]

2
om=m—21n 4

4.4
2n 2 m?’ (4.49)

which coincides up to a sign with dependence (4.42) for
Re Am.
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We have already drawn on a similar analogy in the above
discussion of the relation between QED in an intense field and
QED behaviour at short distances.

Secondly, the electron AMM behaviour for p;, < misalso
different in a radical way from that in a constant magnetic
field or in a crossed field: at first AMM decreases with
growing electric field strength, then it reaches minimum at
E~m?/e and finally increases, approaching twice the
Schwinger value at E » m?/e. This qualitative difference in
the mass shift behaviour is explained in Ref. [97] by the fact
that the effective mass accounts for the dynamic properties of
a charged particle interacting with its proper field, hence the
dependence of the mass shift on the field strength is quite
different for the cases of the electric and magnetic fields.

Electroweak corrections to the electron mass shift and
AMM in an external electromagnetic field were studied in
Refs [92, 94-96]. Let us consider the case of a constant
magnetic field, when conditions (4.23) are fulfilled. In a
comparatively weak magnetic field (x < 1), one-loop con-
tributions to the real part of the lepton mass shift are
quadratic in the parameter x and strongly suppressed as
compared with the electrodynamic contribution, while the
vacuum electroweak contribution to the charged lepton
AMM is described by the formula [92]

Ad g
K_8 ¢ i=H,W,Z, (4.50)
pg  8m?

where coefficients C; are equal to

2 2
me MH 7
= n(=—2) -~
=) (o) 5]
10 [ me 2 (m\’
Cw=— Cz=<= 4.51
v=3 () =3 (451)

in the leading order in the small parameter 1; = (me/Mi)2.

In the ultraquantum limit all the contributions are
proportional to % 2/? and the following asymptotics take
place [94—-96]:

A% 111 GeM, I'(1/3)
my 32m 96 (3
AW 1 GeM3, I'(1
U —11 = GeMy, (/232’ %>ﬁ/3,
Ug 2t 96 (3x)Y

A1 TGem? T(1/3)

pp 2m 18v6 (3x)

where Gp = v/2¢%/8M3, ~ 107° /m? is the Fermi constant,
and the Weinberg angle is approximately taken to be 30°.

Comparison of (4.52) and the asymptotics (4.27) shows
that in the ultraquantum case, when x > (m. /M,~)3, the
electroweak contribution to the electron AMM exceeds the
electrodynamic one:

A(QED) :

(4.52)

Au(W) : Au(H®) =1 1071, (4.53)

In the same ultraquantum limit, the electroweak correc-
tions to the real part of the electron mass shift increase
proportionally to %% as for QED and can also exceed the
electrodynamic contribution (4.29), with again dominating
W-boson contribution.

We note that the one-loop Higgs contribution to the
lepton AMM is suppressed as compared to the one descended

from the processese — v+ W — eande — ¢ + Z — e by the
factor of order (m, /MH)z. This circumstance is inherent in
the very structure of the WSG model: the electron and the
scalar Higgs H-boson coupling constant is determined by the
electron mass and is equal to me(ﬁ GF)I/Z, while the
coupling constant for the electron and W- or Z-boson has
the order of g ~ mw+/Gf. The greater the mass of other
particles, the stronger is the Higgs boson interaction with
them. It is due to this fact that among various Higgs boson
production mechanisms those with the associative produc-
tion of Higgs boson with gauge bosons in e*e~- and hadron
collisions are considered to be most promising [134, 135], and
moreover the interaction in the sectors of H-, W-, and Z-
particles is still described by the perturbation theory under the
condition My < Mw [136].

In Ref. [137], the two-loop contribution (e —
e+ Z + H — e) to the electron AMM in a constant magnetic
field is calculated and the results obtained are compared with
the contribution of the processes e —e+Z —e and
e — e+ H — e to the AMM.

For % < (My + Mz)*/m?, the relation holds [137]:

Apule me+Z+H —e)
Aple —e+Z —e)

My )4
My + My ’
(4.54)

~ O.ZO(Q(Mz, MH)<

where Q(Mz,My) ~ 1 at My ~ Mz, and « is the fine-
structure constant. In the other limiting case, when
x> [(MH + MZ)/me] , the contribution of the process
e —e+Z+H — e to the lepton AMM decreases propor-
tionally to %~% In » with growing dynamic variable », while
the one-loop contribution of diagrams with the gauge boson
exchange falls proportionally to »~2/3,

The one-loop contribution of the diagram with the Higgs
boson exchange to the lepton AMM is in this case strongly
suppressed as compared to the mechanism discussed.

In the nearest future the accuracy of measuring the muon
AMM is planned to be made 20 times higher [92]. Then
comparison of theoretical and experimental values of the
muon AMM should be drawn with allowance for the weak
interaction contribution. This might open up another oppor-
tunity to test the Standard WSG model. If measurements of
the muon AMM are further conducted with an accuracy
increased by 2 or 3 orders, then comparison of theoretical and
experimental results has to be made with consideration for the
contribution of the process e —e+Z+ H — e carrying
information on the Higgs boson mass. If nothing else, this
opens up a new opportunity to obtain some constraints on the
Higgs boson mass.

Radiative mass shifts of both the Dirac neutrino (DN)
and the Majorana neutrino (MN) in an arbitrary stationary
external electromagnetic field were considered in Refs [98,
138 —141]. According to general principles of the theory (CP-
and CPT-invariance of the WSG model of electroweak
interactions), the MN, which is identical to its antiparticle,
has neither AMM nor AEM. Therefore we shall discuss in
more detail the dynamic nature of the DN mass shift. In the
case when the neutrino moves along the direction E 17 Hina
special reference frame, the AMM of the massive DN behaves
in weak fields (¢, < 1) according to the formula [98, 11]

In/

= (4.55)

4
.uv:.ug 1+§(’72 )
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where 1) = 3eGr/8n>v/2 =~ 3 x 107'% myp,y/1 €V is the static
AMM of the neutrino with the mass m,, and the parameter
2= (My/m.)*.

In a pure magnetic field (¢ =0), the neutrino AMM
increases quadratically with growing magnetic field strength,
though with a small numerical factor. With H approaching
the ‘critical field” H)Y = Mg, /e ~ 10** G, the neutrino AMM
diverges logarithmically [98, 11]:

H,

. 4.56
“HY - H (4.56)

2,
L

This divergence is due to instability of the W-boson
vacuum in the fields H > H(}V within the framework of the
perturbation theory, which is developed as a consequence of
the tachionic mode appearing in the W-boson energy spec-
trum [142].

In the range of large transverse neutrino momenta
(p3 =0, p. > Mw) and comparatively weak fields (¢, < 1),
the neutrino AMM essentially depends on the dynamic
parameter

|, 2
= — ny
% mH, (F*py)™

where p, is the neutrino 4-momentum, and it has the
following asymptotics [98, 11]:

4 ,Ini A
1 +=» —, ® <A,
By _ 300 (4.57)
I 35r4(1/3) 2 x> 32 .
_ >
207 w237 '

Unlike the monotone decrease of the electron AMM in
QED [see (4.27)], the neutrino AMM first increases according
to (4.57), and then falls off in the same fashion (~ »~%/3) asin
the electron case. We note that the electroweak contributions
to the electron AMM stemming from virtual W- and Z-
bosons, depend on the dynamic parameter » qualitatively in
the same way as p, = u, (%) does.

In the same quasi-classical approximation (p, > My,
¢,n < 1) the following asymptotics are valid for the neutrino
AEM [11]:

2 en %\ 2
bl I ¥
«_)570G) )
I 2 i( x > 32
— ¢ In——-C), x>
9" V3

The character of the neutrino AEM variation with
growing x (4.58) and the same of an electron [97] coincide
up to a sign for » > 1 and differ essentially at x < 1, when the
electron AEM is proportional to In »~!.

In Refs [98, 138, 139], the imaginary part of a neutrino
elastic scattering amplitude in a constant external field was
also studied in detail. It should be noted that the decay of a
free neutrino (¢ = n = 0) v. — ¢~ + W is evidently forbid-
den by the 4-momentum conservation law. In a pure magnetic
field (¢ =0, 5 #0), the process shows a threshold: the
neutrino energy E, > m. + Mw, and moreover, in the parti-
cular case when p 11 H the decay rate is equal to zero, w = 0.
There occurs no threshold in an electric field and Im Am, # 0
at any ¢ = m,. For instance, in the case of the decay of a
neutrino with the zero transverse momentum, p; =0, in a

%<,
(4.58)

%2

weak electric field (¢ < 1, n =0) the asymptotics for the
decay rate takes the form [98]

2 2
g my € T
w= — S exp| —— ),
(4n)* Ey 12 p< b)

and in this situation the exponential dependence of the decay
rate on the field strength is the same as in the expression for
the e*e™-pair production by a weak electric field in vacuum
[see (4.48)].

In conclusion of the present section we shall discuss some
physical effects that are due to the AMM of massive DN.
With consideration for the radiative effects, the neutrino
energy in a constant magnetic field is described in the
framework of a linear in u)H approximation by the formula
[140,11]:

(4.59)

E
_ 0 L
where
E§:m3+p2, Ei:mi—i—pi, (4.61)

and the spin number { = +1 describes the particle spin
orientation along or contrary to the magnetic field H.

First we consider the electromagnetic radiation of a
neutrino moving in a magnetic field. According to the
energy-momentum conservation laws applied to the emission
of a photon with the 4-momentum k* = (w, k) and due to
(4.60), (4.61), the radiation frequency in the linear in udH
approximation is defined by the expression [140]

(1-)"

=210H
@ = SHy 1 —wvcosy

O, —10¢11 5 (4.62)

where v, is the longitudinal component of the neutrino
velocity, and = (k, p) stands for the radiation angle.

Hence emission is possible only if the neutrino spin-flip
takes place: { = —1(p, Tl H) = ' = +1(n, 17 H). We note
that the spin-flip occurs also in the neutron radiation [143],
and the formulas for the total probability and the power of
electromagnetic radiation by the AMM of a neutrino moving
in a magnetic field coincide with the corresponding formulas
of Ref. [143] to the lowest order in uH, when the replacement
i — 10 is made in them.

For astrophysical applications the question of the chir-
ality flip in the neutrino motion in a magnetic field is of special
interest [144].

The chirality operator

(Zp)

is not an integral of motion, as it does not commute with the
Hamiltonian for the stationary neutrino states that follows
from Dirac—Schwinger equation (4.13) and in the case of a
weak magnetic field takes the form
I‘AI:I:]D+I>, I:IDZUP+'}’OmVa
V=il i5(1+7%), (4.64)

where ji; = y°(EZ3 + y3p.)/my is the transverse polarization
operator [8, 145].
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The mean value of operator (4.63) varies with time
according to the law [140]:

sin? 0

(hy=—1- (1 —coswnt)|, (4.65)

1 —v2cos? 0

on = 2u2H(1 — v cos? 0)'/?

where 0 is the angle between the neutrino momentum and the
magnetic field H, and at z = 0 the neutrino is supposed to be
the left-chirality one, i.e. (h(r =0)) = —1.

It follows from (4.65) that when the left-chirality neutrino
moves in the direction perpendicular to the field (6 = nt/2) it
transforms to the right-chirality one in a time © = n/2u0H.

This effect of the neutrino chirality flip can be of major
importance for the process of the neutron star formation,
when the latter exhibits the strong magnetic field H ~ 10'3 G:
one-half the number of left-chirality neutrinos produced in
the gravitation collapse process can be transformed into left-
chirality ones that are the sterile states practically not
interacting with the matter, which in its turn will lead to a
decrease in the neutrino momentum observed [144]. This
same effect was supposed to underlie the possible explanation
for the solar neutrino puzzle, though the magnitude of the
neutrino AMM turned out to be too small. When a neutrino
moves along the field H (0 = 0) its chirality is conserved, and
it coincides with the spin polarization along the field, given by
the operator fi3.

4.3 Anomalous magnetic moments of fermions

moving in a medium at finite temperature and nonzero
chemical potential in an external magnetic field

A dynamic character of the electron energy shift and AMM in
QED at finite temperature in an external magnetic field was
studied in Refs [33, 125, 127—129]. In Ref. [33], interaction of
fermions with hot vacuum is described in the one-loop
approximation basing upon the mass operator constructed
from the time Green’s functions, and the electron mass
operator at finite temperature was considered in Ref. [128]
using the temperature Green’s functions technique in the
framework of the two-dimensional QED approximation. In
the real time representation, the electron energy shift in the
electron-positron plasma being found in the thermodynamic
equilibrium state at temperature 7" in an external magnetic
field H 17 Oz, is written in the form [33]

AE,(H,T,u) = AE,(H, T = u=0) +AE®(H,T)

+AE] (H, T,u) + AE;P(H, T, ), (4.66)

where AE,(H, T = p = 0) is the electron radiative energy shift
in an external magnetic field at 7= pu = 0, considered above;
AEPB(H, T) is the electron energy shift through its interaction
with the equilibrium radiation; AEY (H, T, i) is the tempera-
ture electron energy shift owing to its exchange interaction
with electrons and positrons of plasma; the interference term
AEY~B(H,T,u) is a pure imaginary quantity and thus
contributes only to the imaginary part of (4.66).

For the fullness of material presentation it should be
mentioned that particular calculations of the finite tempera-
ture and density contributions to the electron energy shift are
carried out in the rest frame for a medium, as in the case of the
photon propagation through an electron-positron plasma
[63], while the electron AMM, as in the vacuum case (see,

e.g., Refs[9, 11]), is determined by that part of the energy shift
Re AE,, which is explicitly dependent on the electron spin
orientation, i.e.

ReAE,({) = —(HAp. (4.67)

Consider first the real part of the temperature electron
energy shift in the charge-symmetric case and in the limiting
case of comparatively low temperatures (7 < m), when the
term AEB(H, T) dominates in (4.66).

The ground state electron mass shift is defined by the
formula [33]

2
Re[AEP] = mam (%) {% + %n % b+ ? b*F(b)
_ % 7 B [13F(b) ~ 48F(2) + 3bF’(b)]} » (4.68)

where F(b) is expressed in terms of the Euler ¥-function:

a

F(b) . [Inb—Re¥(ib)], b =35

5 (4.69)

and the parameter ¢ = eH/mT is introduced that determines
the relative influence of the magnetic field and temperature on
the electron mass shift and which is equal to the ratio of the
cyclotron frequency eH/m to the temperature 7.

It follows from (4.68) that in a strong magnetic field, when
eH > mT, the temperature correction to the electron mass is
three times smaller than the corresponding value in the field-
free case [33]:

Re[AEY]

T\’[1 2nT,k 8 ,

1 T\*
— om | —
9 m)’

For the electron excited states in a constant magnetic field,
when nT < E, (n is the principle quantum number), the
temperature correction to the electron AMM has the asymp-
totics:

Aﬂ’l (H7 T)

2n2 TN 1[5
Toam( =) - [2 %+ % (35In;
15 OC’”(E) H[6”+2( n

b 1.
(4.70)

= +13In2 4 35C - 2) + 2nn El W, w<l; (471)
n
4> am ( T\’
225 Hx (E) ’
where the parameter x = eH/nE, T was introduced.

We emphasize that the temperature contribution to the
electron AMM, like the case of T'= u = 0, changes sign with
growing magnetic field strength, while the field contribution
to the electron mass shift at nonvanishing temperature is a
sign-variable function of the parameters @ and 7//m under the
condition eH <€ mT.

It was shown in Ref. [128] that in a superstrong magnetic
field under the conditions

x>1,

eH>Tm, T>»m (4.72)
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the temperature correction to the electron mass likewise has a
negative sign and is determined by the asymptotics

om 5[ H
47 In <H()> ’

which up to a general sign coincides with asymptotics (4.30).

In the limiting case, when eH < mT, the above results
agree with those of Refs [105—-107], and the temperature
contribution to the gyromagnetic ratio is described by the
formula

R 2o [T\
== \m)

Hence at T = 300 K there follows a$ ~ 1.3 x 107!, while
at T = 6000 K we have a$ ~ 5 x 10713

It should be particularly emphasized that the concept of a
strong field in studying the physical effects at finite tempera-
ture and nonzero chemical potential is essentially different
from that in vacuum. In the latter case the role of quantum
effects in propagation of, say, an electron or a photon
becomes of particular importance when the strength of the
external field in the electron rest frame or in the reference
system where the photon has the energy of order mc?> turns
out to be comparable to Hy = m?c? /el ~ 4.41 x 10" G. As
it yet follows from the above formulas (4.68)—(4.71), even at
H ~mT/e = HyT/m < Hy all the known free-case [105—
111] calculations of the electron mass shift and AMM
become invalid and to obtain a correct physical result one
has to account exactly for the external field influence. By
way of example we mention, for instance, that at room
temperature 7 =300 K the dynamic character of the
electron mass shift and AMM becomes apparent in magnetic
fields with intensities H=10° G, which is even lower than the
strength of pulsed magnetic fields H ~ 107 G reached in the
laboratory.

This circumstance should be always kept in mind in
analyzing the finite temperature and density effects in
astrophysics [147, 147], in phenomena that arise in high-
energy particle passage through the crystals whose internal
electric-field intensities <10~*H, and by far exceed the
ordinary laboratory values [22], in processes that accom-
pany the heavy-ion collisions [148, 149], as well as in other
branches of physics. For instance, in contemporary models
of neutron stars [150] the star crust (of order 0.1 of its radius
in thickness) is represented as an ion crystal lattice
‘immersed’ in a highly degenerate gas of relativistic elec-
trons: the electron number density n.<10%® cm™3, the
temperature T ~ 10°—10° K, and the magnetic field inten-
sity H ~ 102 —-10'* G.

In the limiting case of a completely degenerate electron
gas, the electron mass shift is determined by the second term
in (4.66). We shall also assume condition (3.61) to be fulfilled,
which is equivalent to the following restriction on the electron
concentration:

Cu()”
Ne < — N .

= H()

Re[AmP] ~ (4.73)

(4.74)

(4.75)

Hence for H ~ (107°—10%)H, there follows that at
ne < 10" —10°! cm™3 only the ground level can be occupied
with electrons.

Under these conditions the mass shift of the ground state
electron (n = 0, p3 = 0) is determined by the formula [127]

w/m—1
Am=2 mJ a UEVXPO) o (476)
T Jo t(t+1)
where the parameter b = Hy/H, Ei(—x) is the integral
exponent function. The similar correction to the electron
mass in the field-free case takes the form [110, 127]

2
Am(H=0,T=0,1#0) = — m (ﬁ) —1<ﬂ—2>

2n m
—31In (# +
m

2
s
() -1))
where the chemical potential u is related to the number
density of the completely degenerate electron gas by the

relation
3n2n,\ 23 1z
NN
m

Comparing (4.76) and (4.77) we see that in a ‘superstrong’
magnetic field (2eH > u?> — m?) the contribution of finite
density effects to the electron mass shift highly exceeds that
of (4.77):

A I H, 1
R Amam __mKﬁ_ 1) _0} L5

Amgqy 2 m H]\/u/m—1

(4.77)

U

m

(4.78)

(4.79)

In the field-free case the one-loop correction to the
electron AMM in a completely degenerate electron gas
changes sign with the growing chemical potential [108, 111]:

1 2 1/3
ﬂ(3nne) , ﬁ_1<1;
3 me m

1o ( ,u>2
3=\ u>m.
3w \m

The negative sign of the finite density contribution to the
electron AMM takes place in a strong field as well, when
condition (4.75) holds [127].

Having in mind that the question of the finite temperature
effects influencing the rates of various physical processes [108,
151, 152], as well as the correspondence between imaginary
parts (2.23) and (2.24) of the self-energy diagrams [34—36,
153], were recently discussed at length, we shall consider the
general structure of the imaginary part of (4.66).

It was shown in Ref. [129] that the quantity Im AE,, [see
(4.66)] can be represented as the sum of three terms having the
following physical meaning. The first term corresponds to the
rate of synchrotron radiation by an electron with the energy
E, (6 — e’ +v) in a magnetic field with the statistical
weight (1 + ng)(1 — ng) minus the rate of the inverse process
e’ + v — e with the weight ngng. The second term corre-
sponds to the difference between the initial electron excitation
rate on account of a photon absorption (e~ + v — e~’) with
the statistical weight ng(1 — np) and the rate of the inverse
process e’ — e~ + v with the weight ng(1 + ng). The third
term corresponds to the difference between the rate of the
one-photon initial electron annihilation process with the

dal = (4.80)
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plasma positron (e~ + e’ — 7) of the weight ng(1 + ng) and
the inverse process of electron-positron pair production by a
photon with the weight ng(1 — ng).

As a result, the imaginary part of the quantity AE, in the
real time representation, or more precisely that of the
diagonal matrix element of the mass operator in terms of the
time Green’s functions, is determined by the formula

ImAEn:f%(FdfF,-)7 (4.81)
where I is the sum of the rates (together with their statistical
weights) characterizing the processes of the electron transi-
tion from the state with the energy E, to other states, and I'; is
the sum of the rates of all the inverse processes.

Application of the temperature Green’s function method
with the subsequent analytical continuation to the retarded
mass operator results in

ImAER = - % (Fa+T5). (4.82)

We emphasize that it is just the imaginary part of the
retarded mass operator which has a clear physical meaning:
the quantity (I'y — ZF,—)_I, where 2 = —1 in the fermionic
case, and X = +1 in the bosonic case, determines the
relaxation time of the system in the case of small deviations
from the equilibrium state [129, 153].

For the electron ground state (n =0, p3 = 0) and low
temperatures (7 < m) in the charge-symmetric case, Eqn
(4.82) gives rise to the expression correct to the terms
exponentially suppressed in the parameter exp(—m/T) [129]:

2 2 -1
ImAE, = —g (xm(%) <%) {exp(%) - l} . (4.83)

This result corresponds to the induced dipole transition
n=0—n’=1 in a magnetic field due to absorption of a
photon with a frequency equal to the cyclotron frequency
® = eH/m. It is seen from formula (4.83) that the rate of an
electron excitation from the ground state through the one-
photon absorption at H = 0 s, as it should be expected, equal
to zero. This contradicts the corresponding result of
Ref. [154].

We shall discuss now the dynamic nature of the energy
shift and AMM of the massive Dirac neutrino in an electron-
positron plasma placed in a constant magnetic field [130].

As it was mentioned above, the vacuum AMM of the
Dirac neutrino with the mass m, in the Standard Model of
electroweak interactions is determined by the expression

3eGem,, 19 m

0 Vv 19 \
=—~3x10

W= %mys T 5%

Iy 5 (4.84)

and in magnetic fields with the intensity H < M3, /e ~ 10**
G the field contribution to the neutrino AMM is small as
compared with its static value (4.84). In some extended
models of electroweak interactions the neutrino magnetic
moment is proportional not to neutrino mass but rather to
the charged lepton mass and it can reach the values of
u, ~ 107 By [144, 155, 156]. Considerable interest to the
‘question of consistency’ [155] of a small mass and a large
neutrino magnetic moment is related, in particular, to the
above-mentioned solar neutrino problem, one of whose
possible explanations is accepted by the hypothesis of a
resonance enhancement of the neutrino oscillations in the

solar matter together with the effect of the neutrino chirality
flip. To explain the solar neutrino problem in the frame-
work of the latter hypothesis, the neutrino magnetic
moment has to be estimated as p, 2 (1071 —1071)yp.
Since the Majorana neutrino possesses no intrinsic magnetic
moment, then in a situation with the comparatively large
magnetic moment of a Dirac neutrino a distinction between
DN and MN can be made with the study of their
electromagnetic properties.

Though at present the most appropriate explanation for
the solar neutrino problem [157] is probably related to the
Mikheev —Smirnov—Wolfenstein effect of resonance neu-
trino oscillations in a nonuniform medium [158—160],
investigation of the neutrino electromagnetic interaction,
and especially in extremal astrophysical conditions, is of
definite interest.

The Dirac neutrino electromagnetic vertex in a collision-
less isotropic electron gas (plasma with stationary ions), as
well as in an e"et-plasma was considered in a number of
papers (see Refs [113—116, 119]). The same problem was
considered in Ref. [112] for the case of a classical nonrelati-
vistic magnetoactive plasma.

In Ref. [112], it was mentioned that in contrast to the
vacuum situation, the MN moving in a dispersive medium
emits electromagnetic waves similar to the DN case, i.e.
electromagnetic characteristics of MN and DN in a medium
coincide, while an induced magnetic moment does not lead to
any alteration of the neutrino chirality.

Description of various effects of neutrino interactions in
dispersive media (see, e.g., Ref. [112]) that is based upon the
electromagnetic vertex calculated in the above-mentioned
papers, becomes invalid in intense external fields, and a
dynamic nature of corresponding physical quantities should
be taken into account.

The study along this line was initiated in a recent work
[130], where a contribution was considered of a weak charged
current to the energy shift and the AMM of a DN moving in
an electron-positron plasma at finite temperature (7' < M)
in a constant magnetic field.

We shall discuss here the case when a relativistic neutrino
moves in a completely degenerate electron gas in a direction
perpendicular to the magnetic field.

With the proviso that

2 2

H< @:102“& My < E, < A/ZW,

(4.85)

where p is the chemical potential of an electron gas, the
contribution of the finite density effects to the neutrino AMM
has the asymptotics [112, 130]:

16 (3n2n,)'?
16 (3m°ne) 0

v, 2eH < p> —m?;
3 my
ap={°) ) (4:6)
32n Ne E, 0 2eH > 12 —
—_— , 2eH > pus—m-.
3 va&/ MW v K

Therefore, in a dense electronic medium the induced
neutrino magnetic moment can considerably exceed its static
value (4.84) both in the cases of relatively strong and weak
fields, and being negative in the case of weak fields it increases
and becomes positive with growing magnetic field strength.

For instance, in the case of relatively strong fields when

Nl L(H 3/2 X B
ne~2n m’, H=H,

— and E, ~ 10°M
Ho an v w
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we obtain from (4.86)

A, = 1040,

while in the case of weak fields at n, = (10%*—10%) em =3 it
follows from (4.86) that

A, = (50—5 x 1010

Thus the question about ‘compatibility’ of a small
neutrino mass and its large magnetic moment is answered in
the affirmative in this problem and for this purpose one does
not need to go beyond the framework of the Standard Model.
This is due to the fact that the neutrino AMM is directly
proportional to the medium density, and not to the neutrino
mass as it holds for the vacuum part of the induced magnetic
moment. We note that similar behaviour is also characteristic
of the finite density contribution to the electron AMM [see
(4.80)]. The generalization of the known Wolfenstein formula
[158, 160] to the case of a strong external field, carried out in
Ref. [130], may also prove to be important in studying the
oscillation characteristics of the neutrino beam in matter.

5. Conclusions

In the current review we considered various physical effects
related to the photon and lepton propagation across external
electromagnetic fields at finite temperature and nonvanishing
density of medium.

In the first place we presented basic methods that are used
in the study of the fermion and boson dynamics in the
framework of the finite-temperature quantum field theory in
the presence of external fields. In particular, general relations
between the retarded, advanced and time Green’s functions in
QFT were determined, which enabled us to put an end to the
recent discussion the scientific in literature about the relation
between the real and imaginary parts of the self-energy
diagrams.

We presented various ways of describing thermodynamic
properties of systems in the framework of QFT both by
computing Green’s functions, and by evaluating the thermo-
dynamic potential with the use of the real and imaginary time
methods.

The methods described were used further to describe
various radiative effects in an electron-positron plasma. The
photon polarization operator and photon dispersion in an
external field were studied. The calculations of the radiative
shift of the photon mass in a magnetic field, crossed fields and
in the field of an electromagnetic wave were also presented.
This enabled us to obtain the index of refraction for various
modes of electromagnetic waves propagating across an
external field, and to describe the polarization vectors of the
eigenmodes.

The effect of rotation involving the plane of the wave
linear polarization in the field of circularly polarized wave
was also analyzed.

Possibility of a photon decay into electron-positron pairs
in an external field was demonstrated, and the thresholds
pertaining to electron-positron pair production by a photon
in a magnetic field were found.

Finally, the finite contribution to the photon polarization
operator in a magnetic field was allowed for, and the Debye
screening radius as a function of temperature and the
magnetic field strength was studied.

In the second part of the review various effects that arise in
the fermion propagation across external fields at finite
temperature were examined. In particular, contributions of
the W- and Z-bosons (the weak interaction mediators) as well
as of the Higgs particles together with the photon contribu-
tion to the electron mass operator were investigated, and the
imaginary part of the mass operator is considered from the
point of view of possible electron radiative transitions in an
external field.

It was pointed out that an electron in an external field
together with the anomalous magnetic moment can also have
an anomalous electric moment. Its value is analyzed from the
viewpoint of a possible CP-invariance violation and corre-
sponding experimental conditions, as well as of possible
models of such violation.

Contributions of finite temperature and density were also
considered for.

The radiation mass shift and the anomalous magnetic
moment of an electron are investigated as functions of an
external magnetic field strength, electromagnetic wave field
intensity, and also in the case of their simultaneous applica-
tion, which is important in connection with the analysis of the
results of measuring the electron anomalous magnetic
moment by using the spin-resonance Rabi method. The
results of calculating the magnetic field and the electromag-
netic wave field contributions to the anomalous magnetic
moment are compared with the third and forth order
radiative corrections in terms of the fine-structure constant,
which demonstrates that the modern experimental situation is
quite favourable for measurements of the field contributions.

A particular attention was paid to the analysis of the
electric field contributions to the electron mass shift both in
the quantum and classical regions. A combined action of a
strong magnetic field and a hot dense medium on the radiative
energy shift and the electron anomalous magnetic moment
was investigated.

The fundamental problem of the relation between the real
and imaginary parts of the retarded electron mass operator at
finite temperature was also considered here, the imaginary
part being demonstrated to have a particular physical mean-
ing related to the possible electron transitions.

In a special section we deal with the study of the neutrino
electromagnetic properties. In particular, the neutrino anom-
alous magnetic moment was analyzed as a function of the
electric and magnetic fields intensities, as well as of the
neutrino energy. The neutrino anomalous electric moment
was demonstrated to arise in the combination of electric and
magnetic fields. The results of calculating the neutrino decay
and the photon emission in electric and magnetic fields were
presented. Special attention was paid to the neutrino chirality
flip and possible astrophysical applications of this effects in
regard both to the solar neutrino, and the supernova
neutrino.

Nontrivial results were obtained when the role of the
medium in the formation of the neutrino anomalous moment
and the radiation shift of its mass was allowed for. Thus, the
medium essentially enhances the action of the magnetic field,
and in a strong field the neutrino mass radiative correction
found in medium substantially exceeds that obtained in the
case of a vanishing field.

Furthermore, the very important result is presented that
in a dense electronic medium the neutrino anomalous
magnetic moment essentially exceeds its static value in a
vanishing field and without matter. Thus, it was shown that
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a small neutrino mass and a comparatively large value of its
magnetic moment can be compatible without going beyond
the framework of the Standard Model. A generalization of
the Wolfenstein formula for the neutrino in medium to the
case of a strong magnetic field was also made.

The effects involved were studied with the help of the
universal QFT methods in external fields at finite temperature
and density of matter. Their further applications can be found
in investigating phase transitions in the hadronic medium and
in the quark-gluon plasma, as well as the phase transitions
and the influence on them of external fields in the unified
theory of weak and electromagnetic interactions, and in the
study of new particles production in the framework of
extended models of elementary particles interaction under
extremal conditions of strong fields at finite temperature and
in dense medium, etc. A part of this wide range of problems
will be considered in our future publications.

The authors express their gratitude to A E Grigoruk and
K G Levchenko for their assistance in preparing the manu-
script of the present review.
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