
Abstract. Electrodynamical properties of magnetically ordered
media are analysed theoretically. Two types of magnetic mate-
rials, namely ferromagnets and antiferromagnets, are consid-
ered and the effect of the magnetic subsystem on the properties
of the host metal is discussed. Various types of elementary
excitations, such as magnetic polaritons, magnetostatic waves,
and magnons, are examined within the conventional quasipar-
ticle framework. The dispersion of the quasiparticles as a func-
tion of the relation between the characteristic frequencies of
electrical and magnetic nature is described over a wide range
of frequencies. Particular attention is given to the statistical
thermodynamics and kinetics of magnetic materials. The possi-
bility of Bose ± Einstein condensation in a magnon gas is ana-
lysed and the kinetic theory of electron-assisted magnetostatic
wave damping in a ferromagnetic metal is developed. The dis-
persion of surface polaritons is examined in detail. Examples of
solutions of spatially non-uniform problems are discussed with
allowance made for spatial dispersion, which show this latter to
be of particular importance in antiferromagnets.

1. Introduction

Magnetically ordered media are known to possess specific
electromagnetic properties. The physical basis of these
properties is ferro- and antiferromagnetic resonance which
accounts for the induction of specific elementary excitations
(spin waves or magnons) by an electromagnetic wave.

In the majority of cases resonant frequencies of magnetic
nature lie in the radio-frequency range. If dissipative pro-
cesses and spatial dispersion are neglected, magnetic perme-
ability at a resonant frequency turns into infinity and, due to
this, the length of the electromagnetic wave vanishes. At first
sight, this makes equations of electrodynamics of continuous
media inapplicable. However, taking into account dissipative
processes and spatial dispersion of magnetic permeability,
unessential far from resonance, results in that the wavelength
remains finite and much longer as compared with the
interatomic distance even though it is significantly smaller
than in a vacuum. This means that the electromagnetic
properties of magnets can andmust be described by equations
of macroscopic electrodynamics:

rotH � 4p
c

j� 1

c

qD
qt

; rotE � ÿ 1

c

qB
qt

: �1:1�

Equations of electrodynamics are written here in the form
that makes them applicable to both dielectrics (j � 0) and
metals (D � 0); the conventional notations are used.
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In an infinite medium, the role of material equations
which make the system (1.1) complete is played by the linear
relation{ between the fields and their inductions written for
the Fourier components:

Di � eik�o;k�Ek ; ji � sik�o;k�Ek ; Bi � mik�o;k�Hk :

�1:2�

Instead of two equations (for current density j and
induction D), it is possible to use the generalized inductioneD related to the electric field E by the effective dielectric
permittivity ê eff:

eDi � eeffik �o;k�Ek ; eeffik � eik�o; k� � 4pisik�o; k�
o

: �1:3�

In the case of metals, displacement current responsible for
polarization of the ion lattice [item �1=c��qD=qt�] may be
neglected with a good accuracy; then,

eeffik �
4pisik�o; k�

o
: �1:4�

An objective of the microscopic theory is to compute
tensors of dielectric permittivity eik, electric conductivity sik,
and magnetic permeability mik using more or less realistic
models. Naturally, the existence of ferro- or antiferromag-
netic resonance is apparent due to the specific (resonant)
dependence of tensor mik components on the frequency o.

This review is focused on `electromagnetic consequences'
of the resonant frequency dependence of magnetic perme-
ability rather than on the model-based computation of the
above tensors (as a rule, the simplest and most patent models
will be used for the purpose). The symmetry of electric and
magnetic fields in an infinite medium is practically unbroken,
and the difference between resonant properties for which
dielectric permittivity and magnetic permeability are respon-
sible is normally reduced to different frequency bands.
Resonant frequencies of ê are confined to the optical range
(sometimes, in ion crystals, to the infrared one) whereas those
of m̂ are in the radio-frequency range (occasionally, in
antiferromagnets, in the submillimeter range). This difference
accounts for striking modification of both the experimental
technique and the mode of the description of theoretical and
experimental results, even if it does not substantially affect the
theory of phenomena.

The symmetry between fields is broken in finite media.
Even in the simplest case of an isotropic non-gyrotropic
medium, dielectric permittivity and magnetic permeability
occur in formulas not only as the refractive index n � �����

em
p

but
in a different form too.

In order to demonstrate how the non-uniformity of the
problem reveals itself (halfspace, plate), we shall consider a
few simple examples from electrodynamics of continuous
media, on the assumption that

D � e�o; k�E ; B � m�o; k�H : �1:5�

Taking into account spatial dispersion (dependences of e
and m on the wave vector k) and dissipation (the existence of
e 00 and m 00) is necessary only when their neglect may result in
the loss of physical sense.

Let us begin with the simplest case when e � e�o�,
m � m�o� are frequency functions containing resonance
denominators and having ordinary properties: e�0�; m�0� > 1
and e�1� � m�1� � 1. The principal difference between
functions e � e�o� and m � m�o� consists in that they have
different resonant frequencies: oRE 4oRM, where
oRE�oRM� is the resonant frequency of dielectric permittivity
(magnetic permeability) (Fig. 1).

Elementary excitation (quasiparticle) in the form of a
photon interacting with oscillations of polarization and
magnetization is commonly called polariton. The polariton
dispersion law is actually the solution of the equation

k2 � o2

c2
e�o�m�o� �1:6�

in the form of functions o � o�k�. In the case of a simplest
resonant dependence (one resonance for permittivity and one
for permeability), the dispersion law has tree branches. An
exotic case when the characteristic frequencies coincide is
discussed in Section 6.

Dissipation is known to eliminate the infinite discontinu-
ity of resonance and introduce the imaginary part of
permittivities [e.g. Im e � e 00; function e 00 � e 00�o� is close to
the d-function, see Fig. 2; the dependence m � m�o� has a
similar form].

Spatial dispersion which is essential near resonance
frequencies at small dissipation characterizes the dependence
of these frequencies on the wave vector:

oRE � o0
RE � aEk2 ; oRM � o0

RM � aMk2 : �1:7�

Spatial dispersion results from the ability of mechanical
oscillations (polarization and/or magnetization) to propagate
in a crystal due to internal forces of interaction. Coefficients
aE and aM always contain a2 (squared interatomic distance) as
a multiplier, i.e. aE � ~oEa

2, aM � oexa
2, while j~oEj � o0

RE

{ In this review, we confine ourselves to the linear approximation.

Moreover, the basic assumption is formulated as ak5 1, where a is the

interatomic distance, k is the wave vector, and 2p=k � l is the

wavelength. In other words, we examine here macroscopic oscillations

and waves.

oAMoRM oRE oAE o

m

m
e; m

e

e

1

Figure 1. Schematic dependences of dielectric permittivity and

magnetic permeability on frequency o. The break in the axis of

abscissas emphasizes that oRM; oAM, and oRE; oAE occur in

different frequency bands. Under real conditions each function can

have several resonance sites.
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and oex greatly exceeds o0
RM �oex 4o0

RM� due to the
exchange interaction between atomic moments.{

Thus,

oRE � o0
RE � ~oE�ak�2 ; oRM � o0

RM � oex�ak�2 : �1:8�

The term oex�ak�2 may exceed o0
RM even at ak5 1. Based on

formulas (1.6) ± (1.8), it is easy to modify the dispersion law
for the polariton by transforming the quasistatic limit
�kc!1, o 6! 1� to a quasistatic wave. In fact, there are
two quasistatic limits in the case of (1.6) (due to e and m
respectively). If spatial dispersion is taken into account, they
`turn' into dispersion laws for mechanical excitons (this
terminology is used in optics). The importance of such
modification achieved by taking into consideration spatial
dispersion can be attributed to the fact that, spatial dispersion
being neglected, the group velocity of polariton at o! o0

RE,
o0

RM tends to zero (i.e. it does not transfer energy). Spatial
dispersion is responsible for the energy transfer by polariton
in the quasistatic limit (c � 1). This is natural if one bears in
mind that spatial dispersion is a sequel of the existence of
quasiparticles whereas polariton arises from the relationship
between quasiparticles and electromagnetic oscillations.

Also, it is worth noting that spatial dispersion increases
the power of Eqn (1.6) when the wave vector k is a variable.
This is essential for the solution of non-uniform problems.

There are two equations like (1.6), for two transversal
polarizations. Moreover, two longitudinal excitons can
propagate in a medium with isotropic permittivity and
permeability: the electric one, with the dispersion law defined
by the equation

e�o; k� � 0 ; �1:9�

and the magnetic one, with the dispersion law described by
the equation

m�o; k� � 0 : �1:10�

It will be shown below (see Section 5) that there are real
situations in which a magnetic exciton defined by Eqn (1.10)
should exist.

Let us now turn to the halfspace (neglecting spatial
dispersion). An important characteristic of electrodynamic
(e.g. reflecting) properties of a sample is the surface impe-
dance. In a halfspace with dielectric permittivity e and
magnetic permeability m, the impedance for a wave falling
down perpendicular to the body surface is

z �
���
m
e

r
; Re z > 0 : �1:11�

This is the first formula showing that e and m enter the
dependence in a different way. In the case of the electric
resonance �e!1�, the impedance vanishes while in the
magnetic resonance �m!1� it turns into infinity. Coeffi-
cient of reflectionR, i.e. the ratio of reflected to incident wave
amplitudes, is related to impedance by the following equa-
tion:

R � ÿ 1ÿ z
1� z

: �1:12�

In both cases, jRj � 1, that is the medium resists penetration
of a resonant electromagnetic wave. The penetration is
possible only due to dissipation, and the calculation of
resonance characteristics is impossible without taking it into
consideration.

Surface waves can propagate along the halfspace bound-
ary. Their properties have recently become a matter of
growing interest. They are an important issue of the present
review.

The surface wave is a wave whose amplitude falls
exponentially with the distance from the surface. Since
electromagnetic waves exist in both a medium and a vacuum,
the waves in question undergo exponential decay on either
side of the boundary. The logarithmic decrement of attenua-
tion in a vacuum is

g0 �
����������������
k2 ÿ o2

c2

r
; �1:13�

where k is the two-dimensional wave vector with components
kx and ky; the z-axis is perpendicular to the surface. The
magnet occupies `positive' halfspace z > 0, which accounts
for the wave amplitude being proportional to exp�g0z� in a
vacuum and to exp�ÿgz� in a body, where

g �
����������������������
k2 ÿ o2

c2
em

r
: �1:14�

Here and henceforward, the root values are positive. It is easy
to see that the case being examined involves two different
surface waves, one having non-zero components{ Ex;Ez;Hy

and the other non-zero components Ey;Hx;Hz. The former
wave is an electric one (E-wave) while the latter is of the

e0

e00

e0; e00

o
oARoR

Figure 2. Schematic resonance dependence of dielectric permittivity with

consideration for dissipation (e 0 � Re e, e 00 � Im e).

{ In the order of magnitude, oex � I=�h, where I is the exchange integral.
The exchange interaction being responsible for the spontaneous ordering

of magnetic moments, TC�N� � I, where TC�N� is the Curie (Neel) tempera-

ture. This estimate is very loose since it does not take into account many

real factors (e.g. atomic spin, the number of immediate neighbours, etc.). {The x-axis is parallel to vector k (kx � k; ky � kz � 0).
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magnetic type (H-wave). Their dispersion equations ensue
from the boundary conditions (continuity of the tangential
components of vectors E and H):���������������������������

k2 ÿ emo2=c2

k2 ÿ o2=c2

s
� e � 0 �E-wave� ;���������������������������

k2 ÿ emo2=c2

k2 ÿ o2=c2

s
� m � 0 �H-wave� : �1:15�

In the quasistatic limit (kc!1), dispersion equations are
essentially simplified:

e�o� � 1 � 0 �E-wave� ;

m�o� � 1 � 0 �H-wave� �1:16�

There is no surface H-wave in non-magnetic media. The
region where surface waves can occur is limited by the natural
inequalities:

k2 >
o2

c2
; k2 >

o2

c2
e�o�m�o� : �1:17�

Which of the two is stronger depends on both the value and
the sign of the squared refractive index n2 � e�o�m�o�. At
n2 > 1, the frequency and wave vector region is restricted by
the latter of the two conditions (1.17).

Let us now consider electromagnetic waves in a plate. A
wave travels along the plate and decays exponentially on
either side of it with logarithmic damping decrement (1.13). If
the origin of the coordinates (z-axis) is in the middle of the
plate which occupies the band jzj < 2d, the problem is
symmetric to the change z! ÿz. This allows the solutions
to be categorized into symmetric (s) and asymmetric (a) ones
(see Table 1).

Dispersion equations for all four types of waves can be
obtained from the boundary conditions at z � �d.

For an E-wave

g
g0

tanh�gd� � e � 0 ; �s�

g
g0

coth�gd� � e � 0 : �a�

For an H-wave

g
g0

tanh�gd� � m � 0 ; �s�

g
g0

coth�gd� � m � 0 : �a�

In the case of waves propagating along a plate, the
constraint k2 > emo2=c2 is absent although the condition
k2 > o2=c2 is retained. At

k2 <
o2

c2
e�o�m�o� ;

the fields in the plate are described by trigonometric functions
(see Sections 13 and 14 for details). Much attention in this
review will be given to solutions described by hyperbolic
functions (k2 > emo2=c2). At gd4 1, they are true surface
waves whose amplitudes are large near the plate surface.

Till now, magnets have been regarded as dielectrics in
terms of electric properties. This review is concerned with
some properties ofmetal magnets as well. In the Introduction,
it appears appropriate only to mention how reciprocated
effect of conductivity andmagnetic properties is realized, that
is how the dispersion of magnetic susceptibility affects the
electric properties of conductors.

In the first place, an electromagnetic wave is essentially
inhomogeneous due to the skin effect. Naturally, this
influences properties of magnets in resonance. The influence
of magnetic permeability on the skin-effect is equally inter-
esting. It is easy to see that the skin-layer depth is

d � c���������������������
2psm�o�op ; �1:18�

when the magnetic permeability m and metal conductivity s
are real quantities.

The growth of m�o� is responsible for a decrease in the
thickness of the skin-layer and enhanced inhomogeneity of
the alternating magnetic field which excites the spin sub-
system, while a decrease in m�o� makes the electromagnetic
field in a metal more homogeneous. Figure 1 demonstrates
the existence of antiresonant frequency value o � oAM at
which the depth of the skin-layer turns into infinity. This
phenomenon (ferromagnetic antiresonance, FMAR) is
described in Section 18. Its most prominent manifestation is
selective transmittance of ferromagnetic metal plates at the
antiresonant frequency oAM �m�oAM� � 0�.

The above considerations concern two types of magnets,
i.e. ferromagnets and two-sublattice antiferromagnets of the
`easy axis' (EA) type. In either case, the tensor of magnetic
permeability has the following structure:

m̂ �
m1 im 0 0

ÿ im 0 m2 0

0 0 m3

0BB@
1CCA : �1:19�

For a ferromagnet, when an external magnetic field H is
parallel to the axis of anisotropy,

m1 � m2 � m � 1� o0oM

o2
0 ÿ o2

; m 0 � ooM

o2
0 ÿ o2

; m3 � 1

�1:20�

is true.
Axis 3 is parallel to the axis along which the equilibrium

magnetic moment M is directed,

o0 � gHeff ; oM � 4pgM ; �1:21�

where g is the gyromagnetic ratio andHeff � H� bM, with b
being the anisotropy constant. The index `eff' will be omitted.

Table 1.

E-wave H-wave s, a

Hy�ÿz� � hy�z�
Ez�ÿz� � Hy�z�
Ex�ÿz� � ÿEx�z�

Ey�ÿz� � Ey�z�
Hx�ÿz� � ÿEy�z�
Hz�ÿz� � ÿHz�z�

s

Hy�ÿz� � ÿHy�z�
Ez�ÿz� � ÿHy�z�
Ex�ÿz� � Ex�z�

Ey�ÿz� � ÿEy�z�
Hx�ÿz� � Hx�z�
Hz�ÿz� � ÿHz�z�

a
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The situation with antiferromagnets is more complicated
even in the simplest case of a magnetic field directed along the
anisotropy axis because both the position of magnetic
moments and the values of permeability components depend
on the strength of the magnetic field.

The coverage of several sections is broader than macro-
scopic electrodynamics. They are devoted to the problems of
statistical thermodynamics and kinetics. The titles of these
Sections are asterisked.

The concept of quasiparticles in magnetically ordered
media has not undergone any substantial modification during
the last decades. Basic ideas about the nature of elementary
excitations of the spin system (spin waves, magnons) remain
essentially unaltered. Spin waves are oscillations of magnetic
moments of magnetic sublattices which can be well described
by the Landau ±Lifshitz equations. Our ideology resembles
that of Akhiezer et al. [1]. In the Foreword to their recent
book, Gurevich and Melkov [2] state: ``This book considers
electromagnetic oscillations and waves in magnetically
ordered substances: ferro-, antiferro-, and ferrimagnets.''
We might just as well open this review with the same phrase
barring the word `ferrimagnets'. Nevertheless, the book [2]
and the present review do not seem to have much in common.

Other publications worthy of note are the book ``Magne-
tostatic Waves in Superhigh Frequency Electrodynamics'' by
Vashkovski|̄, Stel'makh and Sharaevski|̄ [3] and the mono-
graph by Blank and Kaganov on metal electrodynamics
under ferromagnetic resonance conditions [4]. Both publica-
tions include comprehensive lists of references. We presume
the readers will also have to address selected volumes of the
Course of Theoretical Physics by Landau and Lifshitz [5 ± 8].
The present review largely covers recently published papers.
References to early ones are made only when appropriate for
better understanding. We apologize to those authors whose
works are not cited here: some slips are inevitable in a review
like this.

2. Magnetic dielectric: magnetic polaritons,
magnetostatic waves, spin waves (magnons)

In this section, we confine ourselves to the assumption that
the tensor mik has the structure (1.19) at m1 � m2 � m and
dielectric permittivity is isotropic (in a cubic crystal,
eik � edik).

We shall look for the solution of the system of Maxwell's
equations (1.1) in the form of a planemonochromatic wave. It
is not difficult to obtain the dispersion equation relating the
frequency o to the wave vector k:�

o2

c2
e
�2

�m 0 2 ÿ m2� � o2

c2
e
h
k2?
ÿ
m�m� 1� ÿ m 0 2

�� 2k2zm
i

ÿ k2�mk2? � k2z� � 0 ;

k2 � k2? � k2z ; k2? � k2x � k2y : �2:1�

It has been emphasized in the Introduction that we are
interested only in longwave oscillations, assuming that

ak5 1 : �2:2�
This inequality is a condition of the macroscopic approach.
Let o5oE, where oE is the characteristic dispersion
frequency of dielectric permittivity (e.g. oE � oRE). As a
rule, the frequency oE belongs to the optical range. This

allows the dispersion of dielectric permittivity to be ignored
when considering magnetic oscillations, on the assumption
that e is a constant equal to its value at o � 0.

Within the framework of the macroscopic approach, it is
possible to take into account spatial dispersion of tensor mik,
that is, consider m and m 0 to be the functions of both the
frequency o and the wave vector k. Naturally, such an
assumption makes Eqn (2.1) much more complicated even
though its form is preserved.

In different limiting cases, elementary excitations
described by Eqn (2.1) have different names. When spatial
dispersion is neglected, the solutions of Eqn (2.1) (at
e � const) are called magnetic polaritons. The quasistatic
limit of Eqn (2.1) describes magnetostatic waves (MSW) if
spatial dispersion is disregarded. By introducing spatial
dispersion, a MSW is `converted' into a spin wave (magnon).
All these terms will be used in further discussion.

Unless dispersion of the components of the magnetic
permeability tensor is known, Eqn (2.1) is purely formal.
Nevertheless, some conclusions are appropriate. First (`for-
getting' that m and m 0 are functions of o and k respectively),
let us take advantage of the fact that, at constant e, m, and m 0

and a given value of k, Eqn (2.1) is a quadratic equation with
respect to meff � k2c2=o2e:

�meff�2 ÿ sin2 y�m2 ÿ m 0 2 � m� � 2m cos2 y

m sin2 y� cos2 y
meff

� m2 ÿ m 0 2

m sin2 y� cos2 y
� 0 ; �2:3�

where y is the angle between the wave vector k and the z-axis.
Hence,

k2� �
o2

c2
emeff� ;

meff� �
�
m2�1� cos2 y� � �m2 ÿ m 0 2� sin2 y

�
�����������������������������������������������������������
�m2 ÿ m 0 2 ÿ m�2 sin4 y� 4m 0 4

q �
� �2�m sin2 y� cos2 y��ÿ1 : �2:4�

Since our objective is to elucidate dispersion laws for
quasiparticles (magnetic polaritons, magnons), we are inter-
ested in real solutions of Eqns (2.4).

As the frequency grows, m! 1, m 0 ! 0, and m eff
� ! 1.

Therefore, for waves of both types,

k2 � o2

c2
e ; oE 4o4oM ; �2:5�

where oM is the characteristic frequency of the magnetic
subsystem (e.g.oM � oRM). Corrections to formula (2.5) can
be derived from general considerations. The diagonal element
of the matrix mik is the even function of frequency, and its
gyrotropic element is the odd function. Hence, the introduc-
tion of two parameters with dimension of frequency results in

m�o� ' 1ÿ o2
1

o2
; m 0 ' ~o1

o
; �2:6�

o ' kc��
e
p
�
1� j~o1 cos yj ��ep

2kc

�
� kc��

e
p � 1

2
j~o1 cos yj : �2:7�
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For y � p=2, a separate expansion of the `+'-branch is
needed. At y 6� p=2, the deviation from formula (2.5) is
determined by gyrotropy.

At an arbitrary angle y, Eqns (2.4) are very complicated
although the analysis is still possible. They are significantly
simplified in two limiting cases:

at y � 0 ; k2 � o2

c2
em� ; m� � m� jm 0j ; �2:8�

at y � p
2
; k2� �

o2

c2
e
m2 ÿ m 0 2

m
; k2ÿ �

o2

c2
e : �2:9�

Notations for the branches at y � p=2 are arbitrary. The signs
in (2.4) and (2.9) coincide only if �m2 ÿ m 0 2�=mÿ 1 > 0. At
�m2 ÿ m 0 2�=mÿ 1 < 0, the `�'-wave in (2.9) is the `ÿ'-wave in
(2.4).

The inequality �m2 ÿ m 0 2�=mÿ 1 < 0 does not imply that
wave propagation is impossible. At 0 < �m2 ÿ m 0 2�=m < 1, the
`�'-wave is a true wave in the range of parameters where the
first equation in (2.9) has a real solution for the frequencyo at
a real wave vector k [similar to (2.4), (2.9) is an equation, not a
solution].

It is clear from the case where y � p=2 how important is
the role of wave polarization: one of the waves is totally
independent of magnetic characteristics.

Turning back to formula (2.7) and using the asymptotic
values of (2.6), along with the first formula of (2.9), one has

o ' kc��
e
p � �o

2
1 � ~o2

1�
��
e
p

2kc
; y � p

2
: �2:7 0�

One of the values of m eff
� in (2.4) vanishes at m2 � m 0 2.

According to (2.4), this naturally results in vanishing of the
wave vector k of one of the waves. The number of zeros in the
equation

m2�o; k � 0� � m 0 2�o; k � 0� �2:10�

is determined by the concrete dispersion dependence of the
components of magnetic permeability. The roots of Eqn
(2.10) are called antiresonant frequencies (we denote them
with oAM). It should be emphasized that a specific feature of
frequencies oAM is their independence of the direction in
which the waves propagate. The dispersion is quadratic near
the frequency oAM:

oÿ on
AM ' bnAMk2 ; n � 1; 2; . . . ; �2:11�

and coefficients bnAM are the sums of two items of the order
c2=oAMe and oexa

2 respectively. As a rule, c2=oAMe4oexa
2

and the wave dispersion at o ' oAM is determined by
retardation (electrodynamics).

It follows from (2.4) that, spatial dispersion being
neglected, the wave vector k of at least one of the waves
turns to infinity at

m�o� sin2 y� cos2 y � 0 ; m�o� � m�o; k � 0� �2:12�

Equation (2.12) defines frequencies of magnetic resonance
oRM or the MSW spectrum.

Equation (2.12) can be derived in a different way, without
neglecting spatial dispersion. It is possible to obtain this
equation by means of the limiting transition kc!1, i.e.

transition to quasistatics. Then, the equation

m�o; k� sin2 y� cos2 y � 0 �2:13�

defines the spectrum of magnons.
Equation (2.13) can be derived directly from equations of

magnetostatics:{

roth � 0 ; divb � 0 ; bi � mik�o;k�hk : �2:14�

At y � p=2, Eqn (2.13) has the form

m�o;k� � 0 �2:15�

and defines the dispersion law for the longitudinal (h k k)
magnetic (mechanical) exciton. At m 0 � 0, (2.15) is the exact
equation. Gyrotropy of the magnetic system may be lacking
only in antiferromagnets (see Section 5).

In magnetostatics, (2.13) is the exact equation; however it
leads to a non-analytical dependence of frequencies o on the
components of vector kwhich is easy to see if cos2 y and sin2 y
are expressed through k2z=k

2 and k2?=k
2 �k2? � k2x � k2y�

respectively. Physically, this can be accounted for by long-
rangemagnetic interactions apparent as the effect ofmagnetic
field oscillations caused by irregular magnetization. The
dependence of frequency o on the angle y (even at k! 0)
may be regarded as ambiguity: there is a frequency band at
k! 0, instead of one definite frequency. In the case of finite
magnets, the ambiguity is eliminated by taking into con-
sideration the boundary conditions. This will be demon-
strated below. Also, the ambiguity is obviated if finiteness of
light velocity (retardation) is taken into account [see formulas
(2.16)].

If both the wave vector k and the frequencyo tend to zero
and the `origin' of the curves (2.4) needs to be determined, it is
natural to assume that m is equal to m0 (static limit of magnetic
permeability m0 > 1) and m 0 � 0.{

Based on (2.4), it is easy to obtain

o� �
kc��
e
p
�
cos2 y
m0
� sin2 y

�1=2

;

kc�������
em0
p :

8>>><>>>: �2:16�

As the wave vector grows, it is necessary to take into
account spatial dispersion of the components of the magnetic
permeability tensor. Moreover, beyond the assumption
adopted here (at k � 1=a), the geometrical structure of a
crystal should be expected to manifest itself in the periodic k
dependence of the elementary excitation law. This discussion
is limited to a small region of the k-space surrounding the
origin of the coordinates, i.e. the centre of the first Brillouin
zone.

Using equations of macroscopic electrodynamics, it is
impossible to find all branches of low-frequency elementary
excitations. For example, we do not consider phonon
branches because equations of the elasticity theory are needed
to find them (extended to longwave optical oscillations, for
the case of complex polyatomic crystals). Even if the

{ Small Latin letters denote variable parts of the magnetic field h and

magnetic induction b.
{A corollary of the condition that the tensor mik is Hermitian is the

relation m 0�ÿo� � ÿm 0�o� . Hence m 0�0� � 0
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consideration is limited to small oscillations of magnetic
moments in sublattices, one cannot be sure that Eqns (2.4)
describe all branches of magnetic oscillations because such
oscillations are not always accompanied by a change in the
magnetic moment of the unit body volume. In other words,
there are oscillations of magnetic moments which do not
excite electromagnetic oscillations; such oscillations cannot
be described by macroscopic electromagnetic equations.

It should be emphasized, when discussing the above
formulas describing dispersion laws for elementary excita-
tions, that these laws are specific for magnetic systems in the
frequency range ofo � oRM;oAM. In other frequency bands,
polariton is hardly distinguishable from photon in a non-
magnetic medium. However, the frequency of an elementary
excitation (even the one resembling photon) depends on the
magnetic field due to the presence of magnetic permeability in
(2.4). Therefore, a quasiparticle corresponding to such an
excitation must have the moment.

According to the general laws of quantum mechanics, the
magnetic moment of a system is equal to the derivative with
the inverse sign of the system's energy with respect to the
magnetic field. Hence, the magnetic moment of a quasiparti-
cle is

b � ÿ�h
qw
qH

: �2:17�

This formula is applicable to both polaritons andmagnons. It
is hoped that the use of the letter b to designate the magnetic
moment of a quasiparticle and anisotropy constant will not
lead to confusion.

3. Ferrodielectric: magnetic polaritons,
magnetostatic waves, spin waves (magnons)

This section is complementary to the previous one illustrating
its formulas and conclusions by the simplest example of an
one-sublattice ferromagnet magnetized parallel to the aniso-
tropy axis. Such a magnet is described by formulas (1.20) and
(1.21).

Let us begin with the calculation of the antiresonant
frequency oAM (the only one in this case). According to
(1.20), (1.21) and (2.10),

oAM � o0 � oM ; �3:1�
or

oAM � gBeff ; Beff � Heff � 4pM ; �3:2�

while Heff differs from H in the term bM (see the Introduc-
tion).

There is no sense in rewriting Eqns (2.4) by substituting
(1.20) because they remain cumbersome anyway. At the same
time, formulas (2.8) and (2.9) become rather compact:

k2� �
o2

c2
e
oAM � o
oRM � o

; oRM � o0 ; y � 0 ; �3:3�

k2ÿ �
o2

c2
e
o2

AM ÿ o2

o2
RM ÿ o2

; k2� �
o2

c2
e ; �3:4�

oRM �
����������������������������
o0�o0 � oM�

p
; y � p

2
:

MSWs and spinwaves (magnons) differing fromMSWs in
that they take into account spatial dispersion [i.e. in substitu-

tion of o0 � oex�ak�2 for o0] are described by the following
formula [see (3.13) and (2.20)]:

o �
����������������������������������������
o0�o0 � oM sin2 y�

q
: �3:5�

Finally, the lowest-frequency part of the spectrum can be
described by formulas (2.16) provided the static magnetic
permeability m0 is substituted by its value in this model:

m0 � 1� oM

o0
: �3:6�

Formula (3.3) is convenient to demonstrate magnetization
effect on the non-magnetized (photonic) part of the spectrum.
Its dispersion law is the solution of Eqn (3.3) with respect to
frequency. Here, spatial dispersion is neglected. The measure
of magnetization effect may be non-linearity in the depen-
dence o � o�k� which is apparent as the difference of the
group to phase velocity ratio vgr=vph � �do=dk�=�o=k� from
unity. According to (3.3)

vgr
vph
� �o0 � o��o0 � oM � o�
�o0 � o�2 � oM�o0 � o=2� :

It has the maximum at o � ���
5
p

o0:�
vgr
vph

�
max

�
ÿ ���

5
p � 1�2 � � ���5p � 1�oM=o0

� ���5p � 1�2 � � ���5p � 1=2�oM=o0

which further increases with growingoM=o0. AtoM=o0 4 1,�
vgr
vph

�
max

'
���
5
p � 1���
5
p � 1=2

' 1:25 :

The deviation from unity is insignificant yet well-apparent.
Spin waves are normally considered to be specific

elementary excitations of ferromagnets. In most cases, a
formula in which the term oM sin2 y is absent (i.e. magneto-
dipole interaction is neglected) is used instead of (3.5):

o�k� � o0 � oex�ak�2 : �3:7�

At oex�ak2�4o0, the dispersion law is especially simple and
resembles that for a non-relativistic free particle:

o � oex�ak�2 ; E � p2

2m�
;

1

m�
� 2oexa

2

�h
; �3:7 0�

where m� is the effective magnon mass.
An important role in thermodynamics and kinetics of

magnon gases at low temperature is played by the spectrum
structure near the bottom of the energy zone (p � 0; y � 0
and y � p). According to (3.5), the lowest magnon energy is
E0 � �ho0 (if retardation is neglected) while at E5E0 and
Eÿ E0 5 �hoM,

E � E0 � p2

2m�
� 1

2
�hoMy2 : �3:8�

Here, y is counted starting from zero and/or from p.
The presence of the term �hoMy2=2 (a result of magneto-

dipole interaction) along with the quadratic form (the term
containing p2 � p2x � p2y � p2z) is of great interest and can be
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described as a rise in the effective dimension of the magnon
momentum space Deff if this dimension is defined by the
formula which relates the volume O�E� of the quasiparticle's
isoenergy surface to its energy E. Normally, if the volume
element in a D-dimensional space is dDpi �i � 1; 2; . . . ;D�,

Eÿ E0 �
XD
i�1

p2i
2m�i

(p-space anisotropy is apparent as the difference between
main values of the effective mass tensor), then

O�E� � �Eÿ E0�D=2 : �3:9�

In our case, when formula (3.10) is applicable, the volume
element contains factor sin y dy ' y dy; therefore, E! E0,

O�E� � �Eÿ E0�5=2 ; Deff � 5 : �3:10�

Enlarged effective dimension is naturally reflected in the
properties of magnon gas (see Section 4). The influence of
the growing effective dimension due to dipole ± dipole inter-
action on phase transition from the paramagnetic to ferro-
magnetic state has been studied by Larkin and Khmel'nitski|̄.
Naturally, it can be noticed in the properties of the magnon
gas.

Turning back to formula (3.5) and neglecting the bound-
aries, it may be said that the formula describes the dispersion
law for MSW:

o � o�k� ; o�k� �
������������������������������������������������
o0

�
o0 � oM

k2?
k2? � k2k

�s
; �3:11�

where k2? � k2 ÿ k2k, and kk is the projection of the wave
vector k on the direction of the magnetic field H (magnetiza-
tion M k H). It should be emphasized that the dependence
o � o�k� is very unusual in this case: it describes the
anomalous dispersion along the magnetic field (magnetiza-
tion) and the normal one at the plane perpendicular to the
field (magnetization).

Given the explicit dependence of quasiparticle energy (i.e.
that of frequency o0 on the magnetic field H), it is possible to
calculate magnetic moments of magnons, MSW, and mag-
netic polaritons based on the expression (2.17). Since we have
considered only the magnetic field normal to the anisotropy
axis (easy magnetization axis), only the z-th projection of the
magnon magnetic moment bz can be calculated (subscript z is
henceforth omitted).

In the microscopic approach which takes into account
only exchange and Zeeman energies, the `elementary dis-
order' is a wave of the minimal (permitted by spatial
quantization) deviation of the atomic spin from equilibrium.
Themagneticmoment of such awave naturally coincides with
g�h �b � g�h�. The situation is more complicated if both the
retardation and the dipole ± dipole interaction are taken into
account: the wave describes not only themotion of a deflected
spin but also the associated magnetic or electromagnetic
waves. We find it impossible to explain in simple terms how
large the magnon magnetic moment `must' be at any value of
the wave vector k. When formula (3.7) is valid, the computa-
tion using formula (2.17) yields the `conventional' value

b � ÿg�h : �3:12�

When formulas (2.16) supplemented with (3.6) are valid,

b� � ÿ
1

2

o��k�oM

�o0 � oM�2
cos2 y��cos2 y�=m0 � sin2 y

�2 g�h ;

bÿ � ÿ
1

2

oÿ�k�oM

�o0 � oM�o0
g�h : �3:13�

Finally, when formula (3.5) holds,

b � ÿ 1� �oM=2o0� sin2 y
1� �oM=o0� sin2 y

g�h : �3:14�

Transition to formula (3.11) occurs at y � 0 and also at
o0 4oM, if the angle y is arbitrary. When oM 4o0,

b � ÿ 1

2
g�h �3:15�

in a wide range of angles sin y4�2o0=oM�1=2.

4. Statistical thermodynamics
of ferromagnetic dielectrics�

The main feature of statistical thermodynamics of magnetic
dielectrics [9] is the presence of low-frequency quasiparticles
(magnons) responsible for the magnetic disorder in crystals.
At temperatures much lower than the Curie (Neel) tempera-
ture TC, magnons are an almost ideal boson gas; therefore,
free energy of amagnet has an additional (magnetic) term FM:

FM � T
V

�2p�3
X
n

�
ln

�
1ÿ exp

�
ÿ �hon�k�

T

��
d3k : �4:1�

Here, n is the magnetic oscillation branch number [solutions
of Eqns (2.1) or Eqn (2.4)], V is the magnetic volume;
temperature in formulas and estimates is always in energy
units and kelvins respectively; the conditionT5TC allows us
to extend integration to the entire k-space and regard the
formulas obtained in the previous sections �ak5 1� as valid.
This is justified in view of the exponentially small contribu-
tion of magnons with ak5 1 at T5TC. In agreement with
formula (2.17), the magnetic moment of a magnon gas
responsible for the temperature dependence of the magnetic
moment of the body's unit volume is

DM�T� � 1

�2p�3
X
n

�
bn�k�

�
exp

�
�hon�k�

T

�
ÿ 1

�ÿ1
d3k �4:2�

(naturally, this is true for the z-th projection of the magnetic
moment M). This formula appears to be of paramount
importance in the theory of low-temperature magnetism. In
the majority of cases, the consideration is restricted to the
case{ of T4 �ho0 which allows for the formula (3.7 0) to be
used. Then, DM / T 3=2 is valid with high accuracy.

We shall return to the formula (4.2) after examining the
total number of quasiparticles (magnons) in the unit volume
nn �

P
n nn:

nn � 1

�2p�3
��

exp

�
�hon�k�

T

�
ÿ 1

�ÿ1
d3k : �4:3�

{Recall that �ho0 � 1 K atHeff � 104 Oe.
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At T5TC, magnon interactions with one another are in
many cases more probable thanwith other quasiparticles (e.g.
phonons). Moreover, the interaction processes during which
the number of magnons remains unaltered (due to exchange
interaction) are more likely to occur than those in which
magnon numbers vary (relativistic interactions) (see Ref. [4]).
If processes in which the number of particles is not conserved
are neglected, the magnon gas resembles a gas of ordinary
particles. However, there is a very important difference. In
equilibrium, the chemical potential of magnon gas is zM � 0
while that of true particles is zp 6� 0, being unambiguously
determined by particle density and temperature. In the case of
a degenerated Bose-gas of particles, zp vanishes �z�T0� � 0� at
T0; below this temperature, zp � 0. This phenomenon is
called the Bose ±Einstein condensation. It is believed that
the systemmust experience phase transition of the third order
at T � T0, but it has never been observed because conven-
tional gases undergo condensation at T > T0.

The possibility of Bose ±Einstein condensation in mag-
non gases was discussed by many authors, but the definitive
conclusion remains to be found. We would like to draw
attention to two issues:

(1) Only an artificial non-equilibrium situation is worth
considering. At very low temperature, a system may contain
non-equilibrated magnon gas of density n in which the
equilibrium sets in due to internal exchange interactions;
this equilibrium is described by the Bose function with the
chemical potential zM 6� 0.

(2) The similarity between the Bose ±Einstein condensa-
tion in magnon gases and gases of conventional particles is
feasible only if formula (3.7 0) holds, but its applicability is
known to be restricted.

Suppose that quasiparticles in an artificial magnon gas at
temperatures much below E0 � �ho0 have energies approx-
imating the threshold energy{ E0, that is

E5E0 ; Eÿ E0 5 �hoM : �4:4�

This means that, the processes with the varying number of
quasiparticles being neglected, the interaction between mag-
nons results in a quasi-equilibrium gas with density n � N=V
and temperature T different from body temperature. In this
case, the magnon dispersion law is described by formula (3.8).
The question is whether Bose ±Einstein condensation occurs
in such a system and what form it may have.

In the first place, it is worthwhile to note that both
macroscopic parameters describing magnon gases (n and T)
depend on the experimental conditions; the phrase `tempera-
ture changes' implies changes in the condition for spin wave
(magnon) excitation.

The possibility of Bose ± Einstein condensation is deter-
mined by the solution of the equation for the condensation
temperature T0:

n � 1

�2p�h�3
��

exp

�
E�p�
T0

�
ÿ 1

�ÿ1
d3p ;

i.e

z � z�T0� ÿ E0 � 0 : �4:5�

The chemical potential ofmagnon gas z cannot be higher than
E0; otherwise, the normalizing integral diverges.

Using expression (3.8), we readily obtain

T0 � T
3=5
tr

�
�hoM

g

�2=5

; �4:6�

Ttr � �2p�h�2n2=3
2m�

; �4:7�

g �
�1
0

���
u
p

exp�ÿu���ln�1ÿ exp�ÿu���� du � ���
p
p
4
;

where the parameter Ttr is of the same order of magnitude as
the usual (trivial) temperature of Bose ±Einstein condensa-
tion.

The transition is described by the above formulas if its
temperature T0 satisfies the assumption that T0 5 �hoM.
Hence, it is easy to obtain the condition for magnon gas
density [see (3.7)]:

na5

���
p
p
27=2

�
oM

oex

�3=2

: �4:8�

It remains to find which law is involved in the vanishing of
z � z�T� at T! T0. To this effect, the following equation is
suitable:

nÿ n0�T� � 4p

�2p�h�3
�1
0

p2 dp

�
�p
0

y dy

(�
exp

�
E�p; y� � jzj

T

�
ÿ 1

�ÿ1
ÿ
�
exp

�
E�p; y�

T

�
ÿ 1

�ÿ1)
; �4:9�

where

n0 � n

�
T

T0

�5=2

�4:10�

is the density of `travelling' magnons.
Since the chemical potential z! 0 at T! T0, the expan-

sion of the right-hand side in jzjmay be used to obtain

nÿ n0�T� ' 2p
�2m�T0� 3=2
�2p�h�3 G

�
3

2

�
z
�
3

2

�
z

�hoM
; �4:11�

whence

z ' ÿ 5

4pG�3=2�z�3=2�
�hoM

T0

�
Ttr

T0

�3=2

�Tÿ T0� ; T5T0 :

�4:12�

In appears that in this case, the Bose ±Einstein condensation
is the second rather than third-order phase transition [the
chemical potential z is the first derivative of the thermo-
dynamic potential F over the particle number whereas the
first derivative of zwith respect toT has a jump, in accordance
with (4.11); this means that the second (mixed) derivative of
the thermodynamic potential also has a jump (!)]. Normally, a
third-order phase transition indicates the presence of a jump

{Here, we neglect retardation �c!1�. In this approximation, E0 � �ho0

is the threshold energy.
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in a derivative of thermal capacity. Here, the thermal capacity
itself has a jump, in conformity with the general theory of
second-order phase transitions. It should be recalled that we
deal with themagnon (`artificial') temperature which does not
coincide with the lattice (phonon) temperature of the speci-
men.

Amost spectacular feature of amagnon gas is its magnetic
moment. In the present case, formula (4.2) needs to be
replaced by a different one containing the chemical potential
z:

D eM � V

�2p�h�3
��

exp

�
E� jzj

T

�
ÿ 1

�ÿ1
b�p� d3p ; �4:13�

with

b�p� � ÿg�h
1� ��hoM=2E0� sin2 y
1� ��hoM=E0� sin2 y

' ÿg�h

�
1ÿ �hoM

2E0
y2
�

�4:14�
according to (3.13). Hence{, taking into account the existence
of two values of the angle �y � 0, y � p� at which E � E0, we
obtain

q
qT

�
D eM�T�

V

�
� b

�2p�h�3
�hoM

E0

� q
qT

�1
0

�p
0

�
exp

��
p2

2m�
� �hoMy2 � jzj

�
1

T

�
ÿ 1

�ÿ1

� y3p2 dp dy ; b � g�h : �4:15�

A jump of the derivative q�D eM=V�=qT results from the
vanishing of the chemical potential z, in accordance with the
linear law [see (4.12)]:

q eM
qT

1eM � ÿ512 z�5=2�
z�3=2�

G�5=2�
z�3=2�

1

E0
' ÿ 0:3

E0
: �4:16�

The jump is positive because eM < 0 due to the magnetic
moment b�p�.

We have interpreted formula (3.8) as a rise in the effective
dimension of p-space. Let us now check if the transition
patterns correspond to Deff � 5. In an isotropic D-dimen-
sional space at

E �
XD
i�1

p2i
2m�

; i � 1; . . . ;D ;

the transition temperature is

TD � n
2=D
D �2p�h�2

A�D�G�3=2�z�3=2� � 2�Dÿ1�=2m� ; �4:17�

where

A�D� � �2p�D=2
G�D=2ÿ 2�

is the area of an unit sphere in D-dimensional space while
particle density nD has the dimension cmÿD. It can be seen
that the formula for TD at D � 5 is very similar to (4.6).
Substituting Ttr into (4.6), we find

T0 �
�
n2=5

�h2

m�

��
oMm�

�h

�2=5

:

up to a numerical multiplier. The factor �oMm�=�h�2=5 ensures
the adequate dimension. Let us now clarify the character of
the transition. In analogy with the previously described
approach [see (4.9)], the following equation can be found:

nD ÿ nD0�T� � A�D�
�2p�h�D

�
pDÿ1 dp

(�
exp

�
E�p� � jzj

T

�
ÿ 1

�ÿ1
ÿ
�
exp

�
E�p�
T

�
ÿ 1

�ÿ1)
: �4:18�

This expression indicates that, starting from D � 5 (D5 5�,
the chemical potential z exhibits linear dependence onTÿ TD

at T! TD. Hence, the Bose ± Einstein condensation is a
second-order transition.

The comparison between the Bose ±Einstein condensa-
tion in a five-dimensional space and magnon condensation
shows that the introduction of the effective dimension
Deff � 5 for magnons with the dispersion law (3.8) is quite
opportune.

Let us now turn back to formula (4.2) supplemented with
the magnon magnetic moment bn�k� [see formulas (3.11) ±
(3.14)] and calculate the temperature dependence of magne-
tization at T5E0, omitting the conventional temperature
region (E0 5T5TC). It has been shown in Section 3 that the
temperature interval between zero and E0 is split up into two.
Formulas (3.5) are valid in one of the resulting intervals while
formulas (2.16), (3.4), and (3.12) in the other (in the
immediate proximity to absolute zero). The limits of the
intervals Tlim will be defined below [see (4.25)].

At Tlim 5T5E0, it is possible to use the approximate
dependence of magnon energy on its momentum (3.8) and the
approximate value of the magnetic moment �b � ÿg�h�. Here,
as at a higher temperature, the temperature portion of
magnetization is proportional to the magnon density

D eM � ÿg�hn�T� ; �4:19�

n�T� � 2

�2p�h�3
��

exp

�
E�p�
T

�
ÿ 1

�ÿ1
d3p ;

E�p� � E0 � p2

2m�
� 1

2
�hoMy2 ;

with the factor 2 being introduced to take into account that
energy has the minimal angular value at y � 0 and y � p.

Hence,

D eM�T� � ÿ g�h

8p2�h3
T

�hoM
�2m�T�3=2 exp

�
ÿE0

T

�
g ;

g �
�1
0

���
z
p

exp�ÿz� dz �
���
p
p
2
: �4:20�

The `extra' power of the temperature in this expression
reflects five-dimensional behaviour of magnons in this limit.

{ It is worthwhile to note that in this case, the magnetic moment of

magnon gas is independent of temperature if its dependence on the angle y
is not taken into consideration: it is determined by the number of magnons

which is assumed to be unaltered.
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In accordance with what has been said before, in the
immediate proximity to absolute zero,

D eM � ÿ g�h

2

1

�2p�3
(�

o��k�oM

�o0 � oM�2
cos2 y��cos2 y�=m0 � sin2 y

�2
�
�
exp

�
�ho��k�

T

�
ÿ 1

�ÿ1
d3k

�
�

oÿ�k�oM

�o0 � oM�o0

�
exp

�
�hoÿ�k�

T

�
ÿ 1

�ÿ1
d3k

)
: �4:21�

It is appropriate to recall that the dispersion laws o � o��k�
are given by formulas (2.16) and steady state magnetic
susceptibility by (3.6). It is convenient to write the result of
integration in the form

D eM�T�
M0

' ÿ T

�ho0

�
T

TM

�3

I�m0� ; M0 � g�h

a3
;

TM � 2p�h~c

a
; ~c � c��

e
p : �4:22�

Here, a is the parameter of the order of the cell size so thatM0

is the magnetic moment of saturation, and

I � �2p�
5

480

�m0 ÿ 1�2
m20

�
�p
0

�
cos2 y

�
cos2 y
m0
� sin2 y

�ÿ7=2
� 1�����

m0
p

�
sin2 y dy : �4:23�

The temperature dependence (D eM / T 4) is standard and is
determined by the density of states and the fact that, at
kc!1, the polariton magnetic moment tends to zero in
proportion to k. We are interested in the dependence on the
magnetic field. To find this dependence, we should first
determine I � I�m0�:

I�m0� '
8p5

45
�m0 ÿ 1�2 ; m0 5 1 ;

2p5

75
m5=20 ; m0 4 1 ;

8>><>>:
or [see (3.6)]

I�H0� �
2p5

75

�
4pM
H0

�5=2

; H0 5 4pM ;

8p5

45

�
4pM
H0

�2

; H0 4 4pM :

8>>><>>>:
Formulas (4.22) and (4.20) allow the threshold temperature
Tlim to be estimated. However, this requires that (4.20) be
rewritten by introducing the temperature TC 4E0 in accor-
dance with the formula TC � �hoex and using the definition of
the effective mass (3.7 0):

D eM
M0
� ÿ 1

8p3=2
T

�hoM

�
T

TC

�3=2

exp

�
ÿE0

T

�
: �4:24�

Hence and from (4.23) (at m0 � 1, i.e. at o0 � oM):

Tlim ' E0

���� ln T 3
M

��hoex�3=2E3=2
0

����ÿ1 5E0 ; �4:25�

since estimated TM � 4� 107 K, �hoex � 102ÿ103 K,
E0 � 1 K.

The last formulas are important for two reasons. First, the
progress in the practical use of the low-temperature region is
very rapid, and it may be hoped that the temperature
dependence of magnetization will be thoroughly measured,
which needs these formulas to be taken into consideration.
Second, they illustrate the general statement according to
which the resonance interaction between magnons and
quasiparticles leads to the `elimination' of the gap in the
magnon spectrum and to the power dependence of thermo-
dynamic characteristics on temperature at T! 0 (even such
specific magnetic characteristics as the magnetic moment),
the Goldstone energy being dependent on the magnetic field
due to the interaction with magnon (the Goldstone acquires
magnetic moment).

5. Uniaxial antiferromagnet

The objective of the present section is to demonstrate how the
magnetic nature and structure of the ground state of a body
are manifested in the properties of low-frequency oscillations
(see [10, 11] for more details).

The magnetic permeability tensor mik of a uniaxial (two-
sublattice) antiferromagmet has the structure (1.19) if the
external magnetic field H is directed parallel to a selected
axis. For the two-sublattice antiferromagnet of the `easy
axis' (EA) type being examined, the selected axis is the
direction along which the magnetic moments of sublattices
align themselves antiparallelly at H < FSF. At H � HSF, the
reorientational first-order (spin-flop) transition occurs, and
magnetic moments become symmetric at an angle of c to the
axis, with cosc � H=HE. At H � HE (as a rule, HE 4HSF),
the second-order (spin-flip) transition takes place. This
description of the reorientational phase transition is some-
what simplified. The magnetic fields HSF and HE together
with absolute magnetization values for the sublattices at
T � 0 may serve as a complete set of quantities characteriz-
ing the antiferromagnet. The fields HSF and HE can be
expressed through the exchange constant d and anisotropy
constants b; b 0. Equilibrium configurations of the magnetic
moments of an EA-antiferromagnet are depicted in Fig. 3.
Table 2 shows components of the tensor mik and effective

H, n H, n H, n

M1
M1 M2

M1 M2

M2

c c

H < HSF H5HEHSF 4H < HE

Figure 3. Equilibrium states of EA type antiferromagnets.
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magnetic permeabilities. In this table,

HSF �M
����������������������
2d�bÿ b 0�

p
; HE � 2dM ; OSF � gHSF ;

O � gH ; OM � 8pgM ;

O2
c � �gM�2

�
4d2 cos2 cÿ 2d�bÿ b 0� sin2 c� ;

cosc � H

HE
; m0 � 1� 4p

d
d4 b ;

b 0 � 1 ; bÿ b 0 > 0 :

In the first place, it follows from Table 2 that the number of
resonant frequencies of magnetic permeability changes upon
transition to the zero magnetic field: there are two resonant
frequencies at H 6� 0 and one at H � 0. At H � HE, the
components of the tensor mik are continuous. Assuming that
HSF 5HE, anisotropy of the tensor mik in the basic plane at
HSF 4H < HE is apparent only in the immediate proximity
to the spin-flop transition. Since

Oc � g

���������������������������������������������
H 2

�
1�H 2

SF

H 2
E

�
ÿH 2

SF

s

(see Table 2),

m1 � 1� OM

OE

O2
SF

O 4
SF=O

2
E ÿ o2

;

m2 � 1� OM

OE

O2
SF

O2
E

O2
SF

O 4
SF=O

2
E ÿ o2

; �5:1�

at H � HSF. This means that polarizations along different
directions at the plane normal to the EA are significantly
different:

m1 ÿ 1

m2 ÿ 1
�
�
HE

HSF

�2

; �5:2�

but atHE > H4HSF, the frequencyOc ' O, and anisotropy
at the basic plane is low

m1 ' m2 ' 1� OM

OE

O2

O2 ÿ o2
: �5:3�

It follows from the previous sections that the value of the
magnetic permeability tensor allows the dispersion law for a
dimensional magnetic polariton to be calculated.

Let us start fromH � 0 (the first line in Table 2). This case
is interesting in that a non-magnetized antiferromagnet has
no gyrotropy in the presence of low resonant frequency of
magnetic origin. Another important fact is that both char-
acteristic frequencies: resonant frequency in which m � 1
and antiresonant frequency m � 0, have similar values due to
the smallness of the ratio OM=OE � 4p=d.

The dispersion law of one of the electromagnetic waves
propagating perpendicular to the selected axis �y � p=2�
contains magnetic permeability

k2 � o2

c2
e
O2

SF�1� OM=OE� ÿ o2

O2
SF ÿ o2

: �5:4�

This is the dispersion law of magnetic polariton. The
dependence of frequency o on the wave vector k is schema-
tically represented in Fig. 4. The similarity between resonant
and antiresonant frequencies is also reflected in that the
velocity of light ~c at o5OSF is close to that at o4OSF:

~c � c��
e
p
�
1� OM

OE

�
' c��

e
p : �5:5�

The quasistatic limit �k!1, o! const� corresponds to
m � 1, i.e.

o � OSF : �5:6�

However, in this case �m 0 � 0�, the quasistatic limit obtained
fromMaxwell's equations does not coincide with the solution

Table 2.

H � 0

0 < H < HSF

HSF 4H < HE

H5HE

m1 � m2 � m � 1� 4p
d

O2
SF

O2
SF ÿ o2

;

m 0 � 0

m1 � m2 � m � 1� 2p
d

O2
SF

�
1

O2
SF ÿ �Oÿ o�2 �

1

O2
SF ÿ �O� o�2

�
;

m 0 � 2p
d

O2
SF

�
1

O2
SF ÿ �Oÿ o�2 ÿ

1

O2
SF ÿ �O� o�2

�

m1 � 1� d
4p

O2
M cos2 c

O2
c ÿ o2

;

m2 � 1� 4p
d

O2
c

O2
c ÿ o2

;

m 0 � OMo cosc

O2
c ÿ o2

m1 � m2 � m � 1� OMO

O2 ÿ o2
;

m 0 � OMo

O2 ÿ o2

meff � 1� 4p
d

O2
SF

O2
SF ÿ o2

meff �
��1� 4p=d�O2

SF ÿ O2 ÿ o2
�2 ÿ 4O2o2

�O2
SF ÿ O2 ÿ o2��OSF�1� 4p=d� ÿ O2 ÿ o2

�ÿ 4o2O2

meff �
O2

c�1� 4p=d� � O2
M cos2 c�1� 4p=d� ÿ o2

O2
c � �4p=d�O2

M cos2 cÿ o2

meff �
�O� OM�2 ÿ o2

O2 � OOM ÿ o2
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of the magnetostatic problem (see the Introduction). There-
fore, there is a longitudinal oscillation at y � p=2 whose
frequency is the root of the equation m�o� � 0, i.e.

o � OSF

�
1� OM

OE

�
: �5:7�

The longitudinal oscillation branch has been shown [10] to
exist only when the wave propagates normal to EA (here,
m3 � 1, i.e. the crystal is anisotropic!). Indeed, when a
wave travels at an angle y to EA, there are two magnetic
polaritons of different polarization with the dispersion
laws

k2 � o2

c2
em and k2 � o2

c2
e

m

m sin2 y� cos2 y
; �5:8�

It follows from the magnetostatic equations that

m sin2 y� cos2 y � 0 : �5:9�

At y 6� p=2, the dispersion law for anMSWcoincides with the
limiting (kc!1, o 6! 1) dispersion law for one of the
magnetic polaritons, but there is only one magnetic polariton
[the first equation in (5.8)] at y � p=2, while an MSW
[Eqn (5.9)] `splits' from photon and Eqn (5.9) turns into the
exact one

m � 0 : �5:10�

We have written [see (5.6) and (5.7)] only resonant and
antiresonant frequencies. `Conversion' of these expressions
into dispersion laws for spin waves (magnons) naturally
requires that spatial dispersion of magnetic permeability,
e.g. non-uniform exchange interaction, be taken into con-
sideration.

Table 2 contains expressions for meff obtained from the
following representation of the dispersion law for magnetic
polariton

k2 � o2

c2
emeff�o� : �5:11�

Taken together with m1, m2, and m 0, these expressions give the
possibility to define the frequency dependence, hence the
dispersion law for magnetic polaritons. Note that the
magnetic polariton dispersion law in an antiferromagnet is
qualitatively different (in terms of branch numbers) from the
dispersion law in a ferromagnet only at 0 6� H < HSF. At
H � HE, an antiferromagnet actually undergoes `conversion'
to a ferromagnet with the magnetization of 2M; therefore, its
high-frequency properties are indistinguishable from those of
ferromagnet. At HSF < H < HE, the above formulas do not
describe rotations of themagneticmoments roundEA; hence,
they do not describe one oscillation branch. This issue is
discussed below using the simplest example.

Spatial dispersion of magnetic permeability which will be
analysed at H < HSF is characterized by two tensors of non-
uniform exchange interactions, aik and a 0ik (cf. Section 3). The
former describes interactions inside each sublattice while the
latter does the same between sublattices. In a cubic crystal,
both tensors are degenerated to scalars �aik ! adik;
a 0ik ! a 0dik�. Using the Landau ±Lifshitz equation, it is
possible to demonstrate that taking into account spatial
dispersion leads to renormalization of anisotropy constants

bÿ b 0 ! beff � bÿ b 0 � �aik ÿ a 0ik�ki kk �5:12�

and the exchange constant

d! d� a 0ikki kk : �5:13�

Matrix aik ÿ a 0ik must be positively definite to ensure stability
of the antiferromagnetic state [3].

The order of magnitude of the exchange constant can be
estimated from the phase transition temperature (Neel
temperature). If d � YN=mM (m � g�h is Bohr's magneton),
then a; a 0 � a2YN=mM. It follows that for ak5 1 one does
not need to take into account renormalization of the exchange
constant whereas renormalization of the anisotropy constant
must be taken into consideration because it is likely to lead to
a qualitative spectral change. For example, in the absence of a
magnetic field (H � 0) at �ak�2 4 �bÿ b 0�mM=YN, the quasi-
static limit (5.6) is `converted' into a spin wave with the linear
dispersion law. This limiting case has been thoroughly
examined in the literature. It is assumed in the forthcoming
discussion that onlyHSF contains the dependence on the wave
vector k:

HSF �
�������������������������������������
�H 0

SF�2 � eH 2
E�ak�2

q
; �5:14�

where H 0
SF is the transition field without regard for spatial

dispersion.

k
kc*

OSF

��
e
p
c

o � kc��
e
p

ao

���
m
p

0
OSF

OSF

k
kc*

OSF

c

��
e
p

o � kc��
e
p

bo

OSF

o2

o3

o1

o4

Figure 4.Dispersion law of magnetic polariton in an EA-antiferromagnet

at H � 0 (a) and 0 < H < HSF (b). Characteristic frequencies o1;2 �
OSF�1� 2p=d� � O, o3;4 � OSF�1� p=d� � O, O � gH, OSF � gHSF.

February, 1997 Magnons, magnetic polaritons, magnetostatic waves 193



When solving magnetostatic equations (2.14), it is not
difficult to find the dispersion law for spin waves:

o2 � O2
SF

�
1� 2p sin2 y

d

�
� O2

�
���������������������������������������������������������������������������������������������
4O2O2

SF �
8p sin2 y

d
O2O2

SF � O 4
SF

�
2p sin2 y

d

�2
s

:

�5:15�

AtH � 0, it is possible to obtain two solutions from (5.15):

o2
ÿ � O2

SF ; o2
� � O2

SF

�
1� 4p sin2 y

d

�
: �5:16�

The first solution �oÿ� is absent if the expression for m from
the first line of Table 2 is used. It should not be discarded, for
continuity reason. The second solution �o�� contains depen-
dence on the direction of the wave vector. The corresponding
spin wave energy �E � �ho�� may be written in the following
form [see (5.16) and (5.12)]:

E 2 � �mHSF�2 � �mHA�2 sin2 y� I 2
ex�ak�2 ; �5:17�

HA � 4pM
�
2�bÿ b 0��1=2 is the anisotropy field and Iex is the

quantity of the order of the exchange integral between atoms
�Iex � YN�. This formula indicates that a dipole ± dipole
interaction results in anisotropy of the gap in the magnon
spectrum. True, it is small, becauseH 2

A=H
2
SF � 1=d5 1. Non-

analytical dependence on the direction of vector k [depen-
dence E�y� at k � 0] is responsible for the enhanced dimen-
sion of the magnon k-space described in Section 4.

Let us now examine manifestations of the dipole ± dipole
interaction when the magnetic field is HSF (the upper
boundary of the collinear regime). In the approximation
used here, one of the oscillation branches (near oÿ) has no
gap at H � HSF, and the width of the hysteresis loop during
the spin-flop transition vanishes while H � HSF coincides
with the lability field (cf. [12]). Interestingly, taking into
account the dipole ± dipole interaction does not alter the
situation, that is the gap remains zero at all angles
y
ÿ
oÿ�k � 0� � 0

�
, and the magnon energy is

Eÿ � Iexak

2mHSF

�������������������������������������������������
I 2
ex�ak�2 � �mHA�2 sin2 y

q
; �5:18�

where mHSF � g�hOSF � m
��������������
HEHA

p
.

The present review is not concerned with statistical
thermodynamic and kinetic properties of antiferromagnets.
However, it is worthwhile to emphasize specific temperature
dependence of the magnon component of antiferromagnet's
thermal capacity directly related to the presence of the
dipole ± dipole energy in the magnon spectrum (5.18).

At low temperatures �T! 0�, it is appropriate to deal
with that branch of spin waves which has no gap in our
approximation. Therefore, we shall consider only the `ÿ'-
branch.

Omitting the second item of the root in (5.18) yields the
magnon dispersion law reminiscent of the dispersion law for a
relativistic particle with the effective mass

m� � �h2

a2
mHSF

I 2ex
� �h2

a2

�������
HA

HE

r
1

Iex
�5:19�

and hence, with thermal capacity proportional to T 3=2. The
effective magnon mass in an antiferromagnet is small, in
conformity with the smallness of theHA=HE ratio.

A simplest model of antiferromagnet may be used to
demonstrate the role of the `lost' branch of magnetic moment
oscillations. Let us consider, following [11], an isotropic
antiferromagnet devoid of anisotropy (which means that
only exchange terms and the Zeeman energy are retained in
the expression for its energy density). Unlike the previous
consideration, the present one takes into account the non-
uniform exchange interaction.

Thus,

W � dM1 �M2 � a
2

�
qM1

qxi
� qM1

qxi
� qM2

qxi
� qM2

qxi

�
� a 0

qM1

qxi
� qM2

qxi
ÿ �M1 �M2� �H : �5:20�

The exchange constant d4 1 and jaj; ja 0j � da2. It follows
from (5.20) that magnetic moments M1 and M2 at
H < 2dM � HE are symmetric relative to the magnetic field
H (at an angle c, see Fig. 3):

cosc � H

HE
; H4HE � 2Md : �5:21�

Considering small oscillations of magnetic moments in an
alternating magnetic field h � h0 exp

�ÿi�otÿ kr��, it is easy
to calculate the magnetic susceptibility tensor ŵ. If z k H and
the magnetic moments M1 and M2 are at the xz-plane, the
components of the tensor are

wxx �
2g2M�H�Ma�k2 cosc� cosc

o2
?�k� ÿ o2

;

wyy � wxx �
1

d

o2
k�k�

o2
?�k� ÿ o2

;

wzz �
1

d

o2
k

o2
k�k� ÿ o2

; w 0 � 2ogM cosc
o2
? ÿ o2

; �5:22�

o2
?�k� � g2�H�Ma�k2 cosc�2 � 2�gM sinc�2daÿk2 ;

o2
k�k� � 2�gM sinc�2daÿk2 : �5:23�

Finally,

a� � a� a 0 : �5:24�
The stability condition for this model requires that d and
aÿ a 0 be positive.

The model does not describe spin-flop transitions but can
describe a spin-flip transition (second-order phase transi-
tion), i.e. the collapse of magnetic moments M1 and M2 at
H � HE. When H � HE, the frequency of longitudinal
oscillations is equal to zero, while the frequency of transverse
components and magnitudes of transverse components of the
tensor wik have the form typical of a ferromagnet (with the
magnetic moment density being equal to 2M):

o?�k� � g�H�Ma�k2� ;

wxx � wyy �
2gMo?�k�
o2
?�k� ÿ o2

;

w 0 � 2ogM
o2
?�k� ÿ o2

; H5HE : �5:25�
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Now, let us consider the case of H < HE, assuming that the
value of H is not very close to HE. It will be clear from the
forthcoming discussion that closeness to HE depends on the
parameter d, i.e.

1ÿ H

HE
4

1

2d
: �5:26�

In this case a reasonable approximation is the expression in
which only antiferromagnetic mechanism is responsible for
dispersion. Then, the formulas are simplified:

o2
? ' �gH�2 � v2a�H�k2 ; o2

k � v2a�H�k2 ;

v2a � 2�gM�2
�
1ÿH 2

H 2
E

�
daÿ : �5:27�

In the same approximation

wxx �
1

d
�gH�2

o2
?�k� ÿ o2

; wyy �
1

d
o2
?�k�

o2
?�k� ÿ o2

;

wzz �
1

d

o2
k�k�

o2
k�k� ÿ o2

; w 0 � 1

d
gHo

o2
?�k� ÿ o2

; H4HE :

�5:28�

The most important parameter for further discussion, which
enters (5.7), is the velocity

va�H � 0� � gM
�����������
2aÿd

p
� v0 : �5:29�

At normal values of HE and m (HE � 106 Oe,
m � 10ÿ20 erg Gÿ1), the velocity is v0 � 105 cm sÿ1, i.e.
significantly lower than the velocity of light.

Taking into account dispersion `turned' the zero oscilla-
tion frequency into Goldstone with the linear dispersion law
and `included' the Goldstone in magnetic electrodynamics by
virtue of difference of wzz from zero.

Let us analyse magnetic polariton dispersion laws to
understand how the Goldstone manifests itself in the high-
frequency properties of a magnet.

We shall first consider the case of H � 0. Magnetic
permeability has no gyrotropic terms:

mxx � 1 ; myy � mzz � ~m � 1� 4p
d

�v0k�2
�v0k�2 ÿ o2

: �5:30�

Let the wave vector k be directed at an angle c to the x-
axis. The magnet contains polaritons with different polariza-
tions.

At hz 6� 0 and hx � hy � 0,

k2 � o2

c2
e~m�o; k� : �5:31�

At hz � 0 and hx; hy 6� 0,

k2 � o2

c2
e

~m�o; k�
~m�o; k� sin2 y� cos2 y

: �5:32�

It should be emphasized that polariton (5.31) `turns' into
photon at y � p=2, its dispersion law being independent of the
magnetic properties of the medium. This polariton is not
considered here. y � 0 is associated with degeneracy: the
dispersion laws coincide. One polarization results in two

polaritons, each having the linear dispersion law:

o � v1;2k ; �5:33�

and v1 and v2 are the roots of the biquadratic equation

v2c
v2
� v20�1� 4p=d� ÿ v2
v20
�
1� �4p=d� sin2 y�ÿ v2 ; vc � c��

e
p : �5:34�

Equation (5.34) always has two real solutions (Fig. 5). Since
vc 4 v0 and d4 1,

v21;2 '
v2c

�
1� 4p

d
cos2 y

v20
v2c

�
;

v20

�
1� 4p

d
sin2 y

��
1� 4p

d
cos2 y

v20
v2c

�
:

8>>><>>>: �5:35�

It is worthy of note that two Goldstones (photon and
magnon) remain the same when interacting, although the
velocity of the slow one (magnon) decreases while that of the
fast one (photon) increases. Reference [11] reports the
difficulty encountered in the theory which is due to the fact
that the velocity of the fast Goldstone seemingly tends to
exceed the velocity of light: the theory in question is lacking in
a relevant relativistic limitation.

Let us now turn to the case of H 6� 0. At hx � hy � 0,
hz 6� 0 the dispersion law for polariton with the wave vector
along the x-axis (here, we confine ourselves to this specific
case) coincides with the dispersion law for polariton of the
same polarization at H � 0, provided v0 is substituted by
v0�H� [see (5.29)].

The dispersion law for polariton of a different polariza-
tion �hx; hy 6� 0, hz � 0� is the solution of the equation

k2 � o2

c2
emeff ; meff � myy ÿ

m 0 2

mxx
: �5:36�

v22

v20

�
1� 4p

d
sin2 c

�
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�
1� 4p

d

�v21 v2

1

v21; v
2
2

Figure 5. The graphic solution of Eqn (5.34) at c 6� p=2.
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Using (5.28), it is possible to represent this equation as�
o2 ÿ �vck�2

��
o2 ÿ o2

?�k�
� � 4p

d
o2
?�k�o2 : �5:37�

It follows from the latter equation that polariton is a result of
spin wave merging with photon. We do not analyse the
solution of Eqn (5.36) because it has been described in
Ref. [11].

6. Resonance polaritons

Although we have already noted that characteristic frequen-
cies of dielectric permittivity and magnetic permeability
normally lie far from each other, it is easy to see exceptions
to this rule. The existence of large magnetic fields governing
resonant frequencies of magnetic subsystems of a solid body
sometimes makes it expedient to consider coincidence of
electric and magnetic frequencies.

In this Section, we shall demonstrate, based on the results
of Ref. [13], how the dispersion law of polariton is modified in
the case of coincidence (resonance) between the characteristic
frequencies of e�o� and m�o�. We proceed from the dispersion
law written in the form [cf. (2.4)]

k2 � o2

c2
e�o�meff�o� : �6:1�

When speaking of the coincidence between characteristic
frequencies, we certainly mean the equality of two frequen-
cies, one characteristic of the electric subsystem and the other
of the magnetic one. If damping is neglected, those frequen-
cies should be regarded as characteristic at which e and m turn
into zero and infinity. In order to demonstrate the depen-
dence of the polariton dispersion law on the relationship
between characteristic frequencies of different nature in a
broad frequency range, we shall take advantage of the
simplest dispersion formulas for e � e�o� and meff � meff�o�
and totally disregard attenuation. Let

e�o� � o2
AE ÿ o2

o2
RE ÿ o2

; meff�o� �
o2

AM ÿ o2

o2
RM ÿ o2

: �6:2�

Let us consider the following cases:
(1) oRM < oAM < oRE < oAE (normal case).
(2) oAM � oRE, oRM < oAE.
(3) oRM � oRE � oR, oAM < oAE.
(4) oAM � oAE � oA, oRM < oAE.
(5) oRM � oAE, oRE < oAE < oAM.
Resonance polaritons are virtually those included in cases

3 and 4. Their dispersion laws are shown in Fig. 6. It should be
emphasized that in both cases, there are three polariton
branches one of which is sure to possess anomalous disper-
sion.

Let us write down the dispersion law for the resonance
polariton in the vicinity of specific (overlapping) frequencies
(zones inside the dashed circumferences in Fig. 6a, b). Near
the resonant frequency o � oR common for the dielectric
permittivity and magnetic permeability,

oÿ oR ' �
��������������������������������������������������
�o2

AE ÿ o2
R��o2

AM ÿ o2
R�

q
2kc

; k!1 ;

vgr � do
dk
' � 2c�oÿ oR�2��������������������������������������������������

�o2
AE ÿ o2

R��o2
AM ÿ o2

R�
q ; o ' oR :

�6:3�

Near the antiresonant frequency o � oA,

oÿ oA ' �vAk ; vA � c

2o2
A

��������������������������������������������������
�o2

A ÿ o2
RM��o2

A ÿ o2
RE�

q
:

�6:4�

The latter formula satisfies the natural condition vA < c.
These dispersion laws are unusual in that they show linear
dependence of the deviation Do � oÿ oR (or oÿ oA) on
1=k (or k). For ordinary non-resonance polaritons,
Do � 1=k2 or Do � k2. Besides, oR and oA are usually
boundaries of the opacity window (oR;oA). This is not true
in the present case.

7. Interaction with phonons (kinematics)�

Magnons are not the sole quasiparticles in ferromagnetic
dielectrics which are known to invariably contain phonons.
Non-interacting ideal magnon and phonon gases fairly well
describe equilibrium (thermodynamic) properties at low
temperatures. Their kinetic properties cannot be described
without regard for interactions between quasiparticles.

k

o

oAE

oAM

oR

a

k

o

oA

oRE

oRM

b

Figure 6.Dispersion laws for resonance polaritons: (a)oRM � oRE � oR,

oAM < oRE, (b) oAM � oAE � oA, oRM < oRE.
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Kinetic properties of ferromagnetic dielectrics attributa-
ble to the interaction between quasiparticles are well-known
(see Refs [1, 8]). This Section is focused on kinematics{ of
magnon ± phonon interactions while remaining in the frame-
work of one-phonon processes. There are two such pro-
cesses:

Ð creation (absorption) of phonon by magnon and
Ð decay of a phonon into two magnons (fusion of two

magnons giving rise to one emitted phonon).
The number of magnons in the former process is con-

served unlike that in the latter. This means that this process
may result from the exchange interactionwhereas the otherÐ
only from relativistic interactions. However, this difference is
immaterial in the context of the present Section because here
we are interested only in kinematics of the two processes, that
is the possibility to satisfy the laws of conservation of energy
and quasimomentum. Assuming the quasiwave vector (qua-
simomentum) of both magnons and phonons to be small
�ak; af5 1�, we ignore probable umklapp processes even
though there are kinetic processes (e.g. heat conductivity of
defect-free samples) which cannot be described unless umk-
lapp processes are taken into account.

We shall start from the phonon creation by magnon. In
order to demonstrate the role of the dispersion law, suffice it
to consider the creation of a longwave phonon whose
momentum is small compared with magnon momentum.
Then, the right-hand side of the equality

e�p� � �ho�f� � e�p� �hf� ; �7:1�

describing the laws of conservation of energy andmomentum
can be expanded in powers of �hf . This yields

vf � o�f� ; v � de�p�
dp

: �7:2�

Hence, the phonon emission (absorption) condition immedi-
ately follows:

v�p� > s ; �7:3�
where s is acoustic velocity (o=f � s). This condition coin-
cides with the condition of the Cherenkov emission (certainly
of sound, not light!) in terms of both the form and the essence.
Magnon velocity varies considerably in different regions of
quasimomentum magnitude. The condition (7.3) is most
readily fulfilled when the dispersion law for magnon is similar
to that for photon [this is polariton, v � c, see (2.16), (2.8),
(2.9), (3.3), and (3.4)]. However, it is necessary to verify if the
condition �hk5 p is satisfied at p! 0. To this effect, the
photon frequency oph must be small: oph 5o0s=~c, where ~c is
the magnetic polariton velocity at p! 0 [see (2.16)]. When
~c � 1010 cm sÿ1, one must have oph 5 10ÿ5o0, i.e. oph 5 105

at o0 � 1010 sÿ1. If the value of quasimomentum �hk is not
neglected, the phonon absorption (emission) conditions have

the form

~c

s
>

�ho~c

2ps2
> 1ÿ ~c

s
: �7:4�

Evidently, there is an additional constraint: the double
polariton momentum p must exceed the phonon momentum
(p > �hf=2). In order to remain within the limits of applic-
ability of formulas (2.16), it is still necessary that phonon
frequency be sufficiently low (oph 5o0s=~c).

In the limiting low-frequency region, both branches of
electromagnetic oscillations are in a way equitable. It needs to
be clarified whether a process similar to the Cherenkov one,
that is emission (absorption) of a longwave phonon, may
occur, with a concomitant change in the magnon type. To be
certain, let us examine phonon emission by a more active
phonon [note thato��k� > oÿ�k�, in agreement with (2.16)].
In the classical limit, it follows from the conservation laws

e��p� ÿ �ho�f� � eÿ�pÿ �hf� �7:5�

that

o��k� ÿ oÿ�k� � o�f� ÿ vÿ�p�f ; �7:6�
whence the emission condition in the following form ensues (if
we take into account that s5 c=

��
e
p

):

k

f

��cos2 y� m0 sin
2 y�1=2 ÿ 1

�
< 1 ; k � p

�h
: �7:7�

Involved in the emission are magnons of the `�' and `ÿ'
branches with small momenta. The limitation upon the
quantity k is lifted at y! 0.

If the magnon resembles a conventional relativistic
particle [see (3.7 0)], the condition for the Cherenkov acoustic
emission is usually

p

m�
> s or E�p� > m�s2

2
: �7:8�

The peculiarity of the magnon dispersion law is especially
pronounced at those quasimomentum values which dictate
the necessity to apply the formula (3.7), on the assumption
thato0 � o0�k� includes the energy of non-uniform exchange
interaction [see (3.10)]. The expression for magnon velocity
may be written as

v � o0�k�
o�k� v ex � oM

2o�k�
�
v ex sin2 y� o0�k� qqk

k2?
k2k � k2?

�
:�7:9�

Here, the frequencyo�k� is defined by the formula (3.5), with
o0 substituted by o0�k� � o0 � oex�ak�2

v ex � qo0

qk
� 2oexa

2k � p

m�

[cf. (3.7 0)]. It follows from (7.9) at p � �hk! 0 that

v? � o0 � 0:5oM sin2 y����������������������������������������
o0�o0 � oM sin2 y�

q v ex? �
o0oM cos2 y����������������������������������������

o0�o0 � oM sin2 y�
q k?

k2
;

vk � o0 � 0:5oM sin2 y����������������������������������������
o0�o0 � oM sin2 y�

q v exk ÿ
o0oM sin2 y����������������������������������������

o0�o0 � oM sin2 y�
q kk

k2
:

�7:10�

{ In 1969, Kopylov published a small book entitled ``Just Kinematics''

(reviewed by myself in Soviet Physics Uspekhi [14]). I was interested as

early as that in collecting together odd data on kinematic properties of

quasiparticles essentially different from those of particles. In a way, this

interest of mine was satisfied in part by my investigating electronic

properties of metals with complex Fermi surfaces. The present section is

another, up-dated, review of Kopylov's book. The magnon spectrum

essentially variable in different wave vector regions provides an ample

opportunity to study kinematic processes of interaction between quasi-

particles. (Note by MIK).
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Subscripts? and k are defined with respect to the direction of
magnetization M (label k denotes the component parallel to
M and label ? denotes the one normal to M).

It is clear that magnon velocity at p2=m�5 �hoM depends
on dipole forces. Neglecting the exchange item (� v exk ), we
have

v �
������������������������������

o0

o0 � oM sin2 y

r
oM

k
sin y j cos yj ; �7:11�

i.e. the magneto-dipole part of the velocity vanishes at y � 0
and y � p=2. When the value of angle y is arbitrary, formula
(7.11) has the applicability region bounded from below: the
retardation must be taken into account (finiteness of the
velocity of light). One should pass from formula (3.7) to
(2.16), (3.3) and (3.4) (see the beginning of this section).
Figure 7 is a plot of magnon velocity vs. momentum
v � jqE=qpj at y 6� 0; p=2. The condition for the creation
(absorption) of a longwave phonon by a magnon has the
following form (if formula (7.11) is applicable):������������������������������

o0

o0 � oM sin2 y

r
�hoM

s
sin y j cos yj > p ; p � �hk : �7:12�

It follows from the comparison of (7.8) and (7.12) that at the
minimum magnon velocity

vmin � 2a
�����������������
2oMoex

p
> s ;

there is no restriction on themomentumof amagnon emitting
(absorbing) a longwave phonon. According to (7.11) and
(7.12), the limitation is `transferred' onto the angles: magnons
spreading along `good' directions (y � 0 and y � p=2) must
have momentum

p > m�s � 1

2

�h

a

s

oexa

to be able to emit (absorb) a phonon [see (2.7 0)]. Note that
oexa � 106 cm sÿ1 if the Curie temperature is � 103 K.

Let us now consider the other one-phonon process, i.e.
decay of a phonon into two magnons or fusion of two

magnons giving rise to one phonon. The simplest, even if
bulky, situation is that where formula (3.7) can be used for the
dispersion law of magnons. The laws of conservation of
energy and momentum (flip-over processes being neglected,
as before) lead to the following expression for angle yf (the
angle between the direction of phonon propagation and the
momentum of one of the magnons):

cos yf � F�f; k� ; F�f; k� � oexa
2f 2 ÿ sf� 2o�k�
2oexa2kf

;

o�k� � o0 � oexa
2k2 : �7:13�

In this section we are interested only in the threshold of the
process, that is the value of the phonon quasiwave vector
crucial for its decomposition into two magnons. If the
threshold is denoted as fth, the threshold frequency is
oth � sfth. Now, what is the value of fth?

The function F� f; k� at f! 0 and f!1 tends to infinity.
Naturally, only those phonons for which F� f; k�4 1 can give
rise to twomagnons. The condition of F� f; k� conversion into
unity leads to the following phonon momentum:

f�k� � k� ks �
�������������������������������������
k2s ÿ

o0

oexa2
� 2kks

r
; ks � s

oexa2
: �7:14�

If k2s ÿ o0=oexa
2 > 0, the breakdown process is feasible at

any magnon momentum (k) and the threshold is defined by
the minimum value of f�k�, i.e. its value at k � 0:

fth � ks �
���������������������������
ks

�
ks ÿ o0

s

�s
;

ks >
o0

s
or

�������������
o0oex
p

<
s

a
: �7:15�

When k2s ÿ o0=oexa
2 < 0, only those magnons are involved

in the breakdown process whose momenta satisfy the condi-
tion

2kks 5
o0

oexa2
ÿ k2s ;

and the threshold depends on the k value which turns the
expression under the root in (7.14) into zero

fth � 1

2

�
ks � o0

s

�
;

ks <
o0

s
or

�������������
o0oex
p

>
s

a
: �7:16�

The frequencyo0 being a function of themagnetic fieldH, the
above expression can be verified experimentally. Interest-
ingly, fth as a function ofo0 (hence, ofH), is a non-monotonic
function having a root singularity at o0 � kssÿ 0 (Fig. 8).

Evidently, the threshold is determined by the dispersion
laws of quasiparticles involved in the process. As a rule, the
singularity of a corresponding kinetic characteristic (e.g.
phonon lifetime) also depends on dispersion laws (see
Section 8).

When a quasiparticle has anisotropic dispersion laws, the
calculation of the threshold value of phonon momentum
becomes a difficult problem which can hardly have the exact
solution if no numerical method is used. True, it is possible to

�hoM

~c

�h

a

oM

oex

� �1=2

v

~c

p

Figure 7. Schematic representation of the dependence of magnon velocity

v � jqE=qpj on the momentum at y 6� p=2; 0; ~c � c=
��
e
p

.
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formulate the algorithm for a search of threshold momentum
f in the general case. The conservation laws lead to the
following equality:

S�k; f� � o�k� � o�f ÿ k� ÿ s�n�f � 0 �7:17�

(the velocity of sound is anisotropic: n � f=f ). On the one
hand, the existence of the threshold means that the function
S � S�k; f� starting from f � fth (either at f > fth or f < fth)
has definite sign at all k; on the other hand, there are such
values of k at which S�k; f� � 0. We are interested in the
threshold value of f at a given direction of sound propagation.
In order to find fth � fth�n� in the general case, it is necessary
to solve the following geometrical problem: to find a point in
the k-space (denoted here as kc) at which

S
ÿ
kc; fth�n�

� � 0 and

�
qS
qk

�
k�kc

� 0 �7:18�

at the selected value of f � fth�n�.
If the problem (7.18) has the solution, the function S�k; f�

near k � kc and f � fth can be expanded in powers of
deviations from kc and fth; then, the equality (6.17) is
rewritten as�

q2S
qk i qkk

�
kc; fth

�k i
c ÿ k i��kkc ÿ kk� �

�
qS
qf

�
kc; fth

� fÿ fth� � 0 :

�7:19�
Thus, the existence of the threshold implies that the quadratic
form entering (7.19) has definite sign, that is main values of
the diagonal tensor

�
q2S=qk i qkk

�
kc; fth

must be of the same
sign. This is an additional condition for the selection of
solutions for Eqn (7.18). The problem can have several
solutions even if this limitation is imposed. Specifically,
there are two thresholds if the breakdown is possible in the
finite interval of values of momentum f.

8. Lifetimes�

This section is focused on calculations for the case when
specific features of magnon spectra near the bottom of the
magnon zone are essential,{ i.e. when the dependence of the

spin wave frequency (magnon energy) on the direction of
propagation (from angle y, see Sections 3 and 7) is important.

The existence of a finite width DE of the magnon energy
zone at zero magnon momentum (p � 0, Fig. 9) is crucial in a
study of the linewidth of ferromagnetic resonance in samples
of different shape. Excitation of spin waves (magnons) with
different frequencies from the interval DE=�h is governed by
the shape of the sample. The excited wave (uniform oscilla-
tion) turns into a magnon with a finite momentum as a result
of elastic scattering from impurities or rough surfaces (see
Fig. 9); the lifetime of such magnons depends on their
interaction with one another and with phonons. The sub-
sequent relaxation phase is of no special importance because
the magnon lifetime at p 6� 0 is significantly shorter than that
at p � 0, due to elastic scattering.

The natural lifetime of amagnonwith p � 0 is longer than
that of a magnon with p 6� 0 but differs from infinity. Specific
features of intrinsic kinetic processes in magnons with p � 0
appear to have been first reported in Ref. [15].

The laws of conservation of energy andmomentum forbid
that a spin wave with the minimal energy participates in
elastic scattering and triple processes normally playing an
important role in lifetime calculations. Therefore, an analysis
of other (more complicated) dissipative processes is indis-
pensable. An analysis of Hamiltonian of magnon ±magnon
interactions has revealed two key mechanisms responsible for
the finite lifetime of magnons:

(1) relativistic scattering in the first order of the theory of
perturbations (fusion of a magnon with p � 0 and y � 0 and
another magnon giving rise to two magnons{),

(2) many-particle process in which a magnon with p � 0
fuses with a magnon having non-zero momentum to trigger

ks o0=s

ks

2ks

fth

Figure 8. Graphic representation of the dependence of fth on o0;

ks � s=�oexa
2�.

{We neglect here the effect of retardation (c!1).

p 0 6� 0 p0

E

y � p
2

y � 0

E � const

Figure 9.Magnonwithmomentum p � 0 and y 6� 0may turn intomagnon

with p � p 0 6� 0 as a result of elastic scattering. The bandwith 04y4 p=2
is shaded.

{ It should be remembered that the terms quartic in operators of creation

and annihilation which describe scattering of a magnon at another

magnon arise from both its exchangeable (non-relativistic) and anisotro-

pic (relativistic) parts. The amplitude (with the product of Bose-operators)

in the term which is due to the exchange interaction is normally (when all

p 6� 0) much higher than the amplitude in the term arising from relativistic

scattering. However, if the particle being scattered has zero momentum,

the exchange scattering amplitude also vanishes.
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another process with p 6� 0. This process is essentially
relativistic and is forbidden by the conservation laws, as
stated in a previous paragraph. This limitation is removed
by the uncertainty of both the momentum and the energy of
the magnon with p 6� 0 due to its interaction with other
magnons. Therefore, this process is referred to as many-
particle one. The relative smallness of energy uncertainty
DSp of amagnon involved in the collision (DSp 5 �ho0) at low
temperatures enables one to be confined to the second
approximation of the theory of perturbations which facil-
itates lifetime computation.

That energy uncertainties of interacting quasiparticles
need to be taken into consideration to lift the kinematic
limitation was first proposed by Simons [16] who undertook
the calculation of longwave phonon lifetimes which is a more
complicated case than that of magnons because phonon
energy tends to zero together with its momentum (the small
parameter used in Ref. [15] to calculate the lifetime of
magnons with p � 0 is absent). It is worthwhile to note that
the above mechanisms are responsible for the exponential
temperature dependence of the inverse lifetime

1

tMM
/ exp

�
ÿ �ho0

T

�
; T5 �ho0 : �8:1�

Index MM indicates that the lifetime depends on the
magnon-magnon interaction. Formula (8.1) reflects the
exponentially small number of phonons at T5 �ho0 and
implies that the processes being examined occur only when
the magnon collides with another magnon from the thermal
pool.

Exponential smallness of the probability of magnon ±
magnon interaction makes it necessary to look for dissipative
processes the probabilities of which have no such smallness.
Naturally, magnon ± phonon interaction especially sponta-
neous emission of phonons (the process of Cherenkov's type)
are the most interesting ones. Kinematics of such processes
(see Section 7) implies [9] that a MSW (magnon with the
minimal energy of �ho0, i.e. with k � 0) is unable to emit a
phonon. On the contrary, a magnon with an arbitrarily small
k? emits a phonon, and its inverse lifetime does not vanish
even at T � 0:

1

t0MPh

' g2�ho3
M

210p3rs3
k4?
k2

; k?5

��������
2s

oM

r
k3=2 ; �8:2�

where r is the mass density, s is the acoustic velocity, and g is
the dimensionless magnetostatic constant.

It is worthy of note that for small k? such that

k2?
k2
' 2�oÿ o0�

oM
;

formula (7.2) can be rewritten in the form

1

t0MPh

' g2�hoM

28p3rs3
k2�oÿ o0�2 : �8:2 0�

Evidently, the MSW lifetime depends not only on its
frequency but also on the wave vector, longwave oscillations
having longer lifetimes than shortwave ones.

The effect of temperature on the lifetime of a phonon-
emitting magnon depends on the relationship between T and
�h�oÿ o0�. At T5 �h�oÿ o0�, the mechanism of MSW

relaxation is actually the Cherenkov emission of acoustic
waves (the characteristic value of the wave vector of emitted
phonons tends to zero at T! 0), and it occurs only when the
MSW velocity exceeds that of sound. Using formula (7.11) at
�oÿ o0�=o0 5 1, it is easy to write the last condition in the
following form:

v ' 2�oÿ o0�
k

5 s : �8:3�

Then,

1

tMPh
� 1

t�0�MPh

� 1

temMPh

;
1

temMPh

5
1

t0MPh

; T5
�hoM

2

k2?
k2

;

1

temMPh

� p2g2oM

26 � 15
bM
misv

�
T

YD

�3

; v �
����qo�k�qk

����5 s ; �8:4�

where mi is the atomic mass in the lattice cell of a magnet
�mi � ra3�.

Moreover, both phonon absorption and collision of two
MSWs resulting in phonon emission [tÿ11 �o0� and tÿ12 �o0�
respectively] contribute to the inverse lifetime of a magnon at
T 6� 0:

1

t1�o0� �
pg2oM

27 � 15
T 4

mi sY3
D

;

1

t2�o0� �
g2oM

25p3
��ho0�3T
mi s2Y2

D

exp

�
ÿ �ho0

T

�
: �8:5�

These formulas are useful to account for the nature of the
ferromagnetic resonance linewidth when excited oscillations
have the lowest possible frequencies (o � o0).

Let us now estimate the phonon lifetime. A longwave
phonon (sf < 2�ho0) cannot produce two magnons. The
predominant dissipative process involving magnons
(MSWs) is absorption (creation) of a phonon by a MSW.
The inverse lifetime of a phonon with the frequency o
conditioned by such a process shows exponential temperature
dependence since this process needs a thermal magnon

1

otf
� g2�hoM

4pmi s2
exp

�
ÿ �ho0

T

�

�

1

25p7=2

� �������������
T�hoM

p
YD

�3

sin3 Cf ; tanCf 4

����������
T

�hoM

r
;

3

16p3

�
T

YD

�3

cos3 Cf ; tanCf 5

������
T

�ho

r
8>>>>><>>>>>:

�8:6�

to occur. Here, Cf is the angle between vector f and
magnetization M, with T5 �hoM, f < 2o0�h=s.

Formula (8.6) gives the right order ofmagnitude almost in
the entire angle range. However, the exact compact expres-
sion for the arbitrary angle Cf remains to be found. At the
same time, the upper line in the expression (8.6) holds at allCf

values, since T=�hoM 5 1.
Besides the above applicability conditions for the for-

mulas obtained, it should be borne in mind that they were
derived without regard for the non-uniform exchange in the
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magnon dispersion law. This required additional conditions

T5 �ho0; �h
� ����������������������������

o0�o0 � oM�
p

ÿ o0

�
; I5

Y2
D

2�ho0
;
Y2

D

2�hoM

�8:7�

to be fulfilled. It is worth noting that I � �hoex is the non-
uniform exchange interaction constant.

Ordinary sound and even ultrasound satisfy the condition
sf < 2�ho0. Therefore, tÿ1f is the contribution to the sound
damping coefficient for which phonon ±magnon interaction
is responsible. It is very small but can be identified (by virtue
of its exponential dependence on the magnetic field
[exp�ÿ�ho0=T�, o0 � H] and specific anisotropy [see (8.6)]
against the practically isotropic damping coefficient which is
due to the interaction between an acoustic wave and thermal
(Debay) phonons.

As the frequency grows, the limitation on the phonon
breakdown into two magnons is lifted. This becomes possible
as soon as phonon momentum exceeds the threshold value

fth � 2o0

sÿ �����������������
2oexoM

p
a
; �8:8�

The lifetime of a decaying phonon is impossible to
calculate if the term associated with the non-uniform
exchange interaction is omitted from the magnon dispersion
law. Therefore, it is taken into account in the calculation of fth
[the last condition (8.7) ensures that the denominator in (8.8)
is positive].

On the assumption of elastic isotropy of a magnet, the
probability that a phonon moving along magnetization
(f kM) breaks down is zero. Therefore, we confine ourselves
to the formula for the inverse lifetime 1=tf determined by the
breakdown process [only for a phonon travelling perpendi-
cular to magnetization (f ?M)]. The phonon momentum
exceeds threshold but insignificantly. Then,

1

tthf
�

0 ; f < fth ;

g2�h
29p

oMo2
0

mi s2oex

���������������
2oMo0

o2
D

s �������������
fÿ fth
fth

s
;

fÿ fth
fth

5 1 ;

8><>:
f ?M ; oD � s

a
: �8:9�

This formula demonstrates a major feature of the threshold
process, i.e. the existence of root dependence on the difference
fÿ fth (or frequency differenceoÿ oth) when the threshold is
overcome. A threshold for the phonon decomposition into
two magnons is neither casual nor rare phenomenon: kine-
matics of interaction between quasiparticles often restricts the
values of momenta and energies involved in the process of
interest. The presence of the threshold in the inverse lifetime
dependence onmomentum (energy) is apparent in the general
case as a characteristic non-analiticity �1=t / �fÿ fth�1=2�.
The root, non-analytical dependence of quasiparticles' life-
time means singularity of the imaginary part of their energy,
ImE � �h=t. This part is coupled to the real one ReE by
dispersion relations of the Kramers ±Kroning type. The
singularity of ImE inevitably leads to the singularity of
ReE, i.e. to a singularity in the dispersion law of quasiparti-
cle. This singularity can be conveniently examined using the
dispersion relation rather than the expression for ReE
because this expression is an integral difficult to calculate in
terms of the main value [17].

9. Surface magnetic polaritons
in magnetic dielectrics

The boundary between a vacuum and a halfspace occupied by
a magnet creates several types of problems. We shall consider
some of them.

It is natural to examine the incidence of an electromag-
netic wave from vacuum onto the halfspace and investigate its
reflection from the interface (the general case) and refraction
in the transparent region. Problems of this type remain in the
framework of electrodynamics of continuous media unless
spatial dispersion of permittivities is taken into consideration.
Conversely, taking into account spatial dispersion of mag-
netic permeability (i.e. the existence of spin waves or
magnons), even in the solution of the wave reflection
problem, means going out beyond the limits of standard
electrodynamics of continuous media; specifically, additional
boundary conditions need to be formulated.

Specific surface waves (surface polaritons) are known to
be able to propagate along the flat vacuum±halfspace inter-
face, with their amplitudes exponentially decreasing on either
side. A distinctive property of surface polaritons in gyrotropic
media �m 0 6� 0� is the lack of reciprocity, i.e. o�ÿkt� 6� o�kt�,
where kt is the two-dimensional wave vector at the boundary
plane and o is the polariton frequency. All non-reciprocity
cases considered in this review are of the same nature: the
presence of gyrotropy means that the problem contains a
pseudovector (magnetic fieldH, magnetizationM) the sign of
which changes following the substitution ofÿt for t, while the
boundary is characterized by the normal vector n. Therefore,
if the vector responsible for gyrotropy (e.g. vector M) has a
constituent in the boundary plane, then the problem contains
the flat vectorn�Mt which eliminates the inversion centre in
the boundary plane.

However, the lack of the inversion centre is insufficient for
non-reciprocity to arise. Reciprocity (the inversion centre in
k-space) is a result of invariance of wave equations (regardless
of dissipation) with respect to time{ (upon substitution of ÿt
for t). However, in our case, the vector changes the sign if t is
substituted by ÿt. Taken together with the presence of the
vector n�Mt, this accounts for the lack of reciprocity in the
surface polariton.

It has been shown earlier that the dispersion law for bulk
polaritons is changed dramatically if spatial dispersion of
magnetic permeability is taken into account. Surface polar-
itons are even more susceptible to spatial dispersion. A most
striking example is the transformation of a surface wave to a
leakage wave subject to non-dissipative annihilation; the
surface wave excites dimensional spin waves which take
away a part of its energy (see Section 10).

Skin-effect in metallic magnets is of paramount impor-
tance as regards their wave properties for which magnetic
permeability is responsible. This has already been noted in the
Introduction andwill be illustrated below by several examples
(see Sections 11 and 12).

Let us first consider a ferromagnet and analyse the
dispersion law for a surface magnetic polariton in the
simplest, but probably the most interesting, case when the
magnetic field H and magnetization M are parallel to the
sample surface while the wave propagates normally to H and

{When invariance is with respect to time inversion in the absence of the

inversion centre, reciprocity is largely maintained by branch pairs of the

spectrum for which o��ÿk� � oÿ�k�.
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M. Using the natural boundary conditions (continuity of
tangential constituents of electric and magnetic fields), in
addition to Maxwell's equations in a medium and vacuum, it
is not difficult to derive the dispersion equation [18]��������������������������

k2 ÿ o2

c2
emeff

r
ÿ m 0

m
k� meff

����������������
k2 ÿ o2

c2

r
� 0 ; �9:1�

meff �
m2 ÿ m 0 2

m
:

See formula (1.20) for m and m 0.
The presence of the term containing the first degree of the

wave vector k in Eqn (9.1) suggests non-reciprocity of the
wave. The dependence o�ÿk� 6� o�k� is graphically repre-
sented in Fig. 10. The surface wave exists in finite frequency
intervals at both k < 0 and k > 0. When k > 0, the curve
o � o�k� is in the interval ��o0�o0 � oM��1=2;oDE�, where
oDE � o0 � oM=2 is the Damon ±Eshbach (DE) wave fre-
quency [19].

Near the boundary frequencies,

o '
����������������������������
o0�o0 � oM�

p
� o2

M

�������������������
o0 � oM

p
2eo0

������
o0
p �kÿ kgr�2

k2gr
;

0 < kÿ kgr 5 kgr ;

o ' oDE ÿ oMo2
DE�1� e�
8c2k2

; k4
oDE

c
;

ckgr � �o0 � oM�
��������
o0

oM

r
: �9:2�

At k � kgr, the frequency o �
�
o0�o0 � oM�

�1=2
, and the

depth of the surface wave penetration into the ferromagnetic
vanishes. At first sight, this shouldmean that themacroscopic
approach is inapplicable. However, it is possible to use if
spatial dispersion is taken into account as in the case of
magnetostatic oscillations (see Section 10).

At k < 0 and boundary frequencies o1 and o2, logarith-
mic damping decrements g0 and g vanish at points �k1;o1�
and �k2;o2� respectively:

o2
1 � o0�o0 � oM� � o0oM

eÿ 1
;

k1 � ÿo1

c
; k2 � ÿo2

c

���������
emeff
p

: �9:3�

The explicit expression for o2 can be obtained in limiting
cases:

o2 '
oM

2
�

�������������������������������������
�o0 � oM�2 � o2

M

4

r
; e4 1 ;��������������������������������

oM�o0 � 2oM�
eÿ 1

r
; eÿ 15 1 :

8>>><>>>: �9:4�

The surface MSW (DE wave) obtainable from Eqn (9.1) by
means of natural limiting transition kc!1, o 6! 1 exists
only at k > 0. Taking into account retardation results in the
presence of vgr 6� 0 in the MSW

vgr � do
dk
� 25=2

�oDE ÿ o�3=2c��������
oM
p

oDE

�����������
1� e
p 5 c ; o4oDE : �9:5�

At k < 0, the group velocity is close to the velocity of light
within the entire frequency range in which magnetic polar-
itons exist.

Taking into account retardation leads not only to the
dependence of DEwave frequency on the wave vector (hence,
to non-zero group velocity) but also to an additional (non-
magnetic) suppression mechanism of such waves. If dielectric
permittivity is complex (e � e 0 � ie 00), the dispersion equation
yields

Imo � ÿoMo2
DE

8�kc�2 e 00 ; Reo ' oDE : �9:6�

A characteristic feature of electrical losses is the dependence
of Imo on the wave vector k (Imo! 0 at kc!1). The
magnetic losses proper are insensitive to the wavelength:

Imo � ÿ 1

2tM

oDE�4o0 � oM�
oM�o0 � oM� ; �9:7�

where tM is the magnetic relaxation constant (with dimension
of time) which arises from taking into account the relaxation
terms in the Landau ±Lifshitz equation and appears in the
expressions for m and m 0. The relaxation rate 1=tM is the sum
of inverted transverse (ttr) and longitudinal (tl) relaxation
times, i.e.

1

tM
� 1

ttr
� 1

tl
:

The analysis has shown that there is no surface wave when
the wave vector k is parallel to H�M�, and the corresponding
dispersion equation has no solution.

Equation (9.1) remains formally valid for an antiferro-
magnet if the proper values of the components of the
magnetic permeability tensor are employed. Figure 11 shows
the dependence of the frequency of a surface magnetic
polariton on the wave vector in magnetic fields of different

k2 k1 kgr k

o

o22

1
o1

oDE

o0+oM

omin

Figure 10. Schematic dependence of the dispersion law for surface

polariton, omin �
�
o0�o0 � oM�

�1=2
.
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strength. It is important that at H � 0, gyrotropy is absent
and the wave exhibits reciprocity. Reciprocity exists at
H < HSF too, even if it is not so prominent as at H > HE,
when antiferromagnets are hardly different from ferromag-
nets in terms of high-frequency properties.

It has been shown in Ref. [18] that the presence of non-
reciprocal waves centered near the magnetic surface suggests
equilibrium (!) between quasiparticle fluxes j spreading round
the magnet and their energy q, each corresponding to non-
reciprocal waves because for them,

j �
�

v

exp��ho=T� ÿ 1

d2k

�2p�2 6� 0 ;

q �
�

v�ho�k�
exp��ho=T� ÿ 1

d2k

�2p�2 6� 0 ; �9:8�

where v � qo=qk.
This implies the existence of oppositely directed macro-

scopic quasiparticle and energy fluxes on either side of a thick
plate (see Sections 13 and 14); also, these fluxes must spread
round a cylinder magnetized parallel to the axis. It is not clear
how these fluxes could be identified, nor their dependence on
dissipative processes is known. Seemingly, the role of dissipa-
tion cannot be very important at Reo4 Imo.

10. Surface magnetostatic waves

Let us first consider a MSW travelling at an angle of y to the
magnetic field and the magnetization vector along the
boundary of a halfspace occupied by a ferromagnet. Proceed-
ing from magnetostatic equations, it is not difficult to obtain
the expression for the surface wave frequency o and its
logarithmic damping decrement (deep into the sample) g by
taking into account the explicit form of frequency depen-

dences of m and m 0:

o�y� � o0 � �o0 � oM� sin2 y
2 sin y

;

g � jkj oM sin2 y� o0 cos
2 y

oM sin2 yÿ o0 cos2 y
: �10:1�

A change in the frequency sign (i.e. the absence of the wave)
following the substitution of y by ÿy reflects the lack of
reciprocity in the wave.

The well-known value for the frequency of the DE wave
[19]

o
�
p
2

�
� oDE � o0 � oM

2

follows at y � p=2, when the wave vector is normal to H. The
DE wave travels only in the positive direction of the x-axis
and when g � k > 0. The lack of dispersion indicates that the
wave carries no energy and its group velocity is zero. The
critical angle derived from (10.1) is

yc � arcsin

�������������������
o0

o0 � oM

r
: �10:2�

The penetration depth gÿ1 vanishes at y � yc and is negative
(i.e. no surface wave) at y < yc. The frequency o at y � yc is
minimal �o � �o0�o0 � oM��1=2�.

Conversion of g � g�y� into infinity at y � yc, when
penetration depth gÿ1 vanishes, makes it necessary to con-
sider processes removing the divergence of g � g�y�, of which
spatial dispersion is the most important one [18].

We have noted before that spatial dispersion is taken into
consideration by means of the formal substitution o0 !
o0 � oex�ak�2. This makes the equation for g bicubic.
Selecting solutions with Re g > 0, we have the following

ÿk1 k1 k0

o
o � ÿkc

o2

o1

o � kc
a

o

o � ÿkc

o1

o3

o4

o2

o � kc

b

ÿk2 k1 k0

Figure 11. Schematic dependence of the dispersion law for surface polariton in an antiferromagnet: (a) H � 0, (b) 04H < HSF.
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structure of magnetic potential at y < 0:

j / exp�ik � q��A exp�g1y� � B exp�g2y� � C exp�g3y�
�
;

Re gi > 0 ; i � 1; 2; 3; . . . ; �10:3�

where q and k are two-dimensional vectors: q � �x; z�,
k � �kx; ky�.

An increase in the number of solutions requires additional
boundary conditions (for defining coefficients A, B, and C).
To derive them, it is necessary to consider the motion of the
magnetic moment at the sample's boundary, with due regard
for both the difference between surface and dimensional
anisotropy energies and the absence of magnetic atoms at
y < 0. However, the Landau ±Lifshitz equation describing
the motion of the magnetic moment in the longwave limit is a
second-order equation which enables us to be confined to the
phenomenological boundary condition, introducing one con-
stant d with the dimension of length

my�0 � d

�
dm

dy

�
y�0
� 0 : �10:4�

Two limiting cases d � 0 and d � 1 have clear physical sense
in this consideration: at d!1, surface anisotropy is
unessential (free magnetic moment at the boundary) and at
d! 0, surface anisotropy fixes the direction of the magnetic
moment at the boundary. Surface anisotropy may result in a
more complicated boundary condition (10.4), that is in the
substitution of the scalar d by the second-rank tensor db; b 0 ,
where b; b 0 � x; z. It is appropriate to note that neither the
sign of d nor the sign of the components db; b 0 are defined. The
sign may be both positive and negative; moreover, the main
directions of the tensor db;b 0 do not necessarily coincide with
the main crystallographic directions of the sample.

Let us consider the simplest case of y � p=2 which allows
logarithmic damping decrement to be accurately calculated:

g1 � k ; g22;3 � k2 � oDE � �o2
M=4� o2�1=2
oMa

: �10:5�

and

a � I

bM
a2 : �10:6�

The neglect of spatial dispersion means that a! 0. It follows
from (10.5) that g2;3 !1 at a! 0. The marked difference
between jg2j, jg3j and jg1j facilitates the analysis of the
dispersion equation and the derivation of a compact expres-
sion for the DE wave dispersion law which takes into account
spatial dispersion.

Using the continuity of the proper components of vectors
h and b in conjunction with the additional boundary
condition (10.4), we obtain the equation which defines the
wave dispersion law in the form of zero determinant:

0�

2
oDE ÿ o

oM�kdÿ 1� k
ÿ o
o�
� 1
�

k
ÿ o
oÿ
� 1
�

1
ÿko
o�
ÿ g2

��dg2 ÿ 1� ÿko
oÿ
ÿ g3

��dg3 ÿ 1�

1
ÿg2o
o�
ÿ k
��dg2 ÿ 1� ÿg3o

oÿ
ÿ k
��dg3 ÿ 1�

������������

������������
:

�10:7�

Here, o� � oM=2� �o2
M=4� o2�1=2. It readily follows from

(10.7) that

o � oDE � o2
Mk�1ÿ dk�

4�dg2 ÿ 1��dg3 ÿ 1�

� �1ÿ dg2��kÿ g2� ÿ �1ÿ dg3��kÿ g3�
ko�g2 ÿ g3� � �o2 � o2

M=4�1=2�g2g3 ÿ k2�
: �10:8�

It is clear from (10.5) and (10.6) that the inequality

ak5

��������
bM
I

r
5 1 �10:9�

must be satisfied in order that the surface magnetic wave
retained the sense of macroscopic longwave surface excita-
tion. If g2; g3 4 k are real values and the condition (10.9) is
fulfilled, the exchange interaction modifies the field structure
only in the immediate vicinity of the surface. When
Im g2; Im g3 6� 0, the field displays oscillatory dependence on
the coordinate with the wavelength along y significantly
smaller that the length and penetration depth gÿ11 of the
surface wave.

It is necessary to distinguish between the boundaries of a
ferromagnet with

d4

��������
I

bM

s
a and d5

��������
I

bM

s
a :

The relation between the wavelength 1=k and the width of
plate d influences both suppression and dispersion of the
wave.

To begin with, let us consider the case of

d4

��������
I

bM

s
a ;

which admits transition to the `free' boundary at which

qm
qy

����
y�0
� 0 :

It follows from (10.8) that

Re �oÿ oDE� �
I

bM
a

d
oMak ; kd5 1 ;

2
I

bM
oM�ak�2 ; kd4 1 ;

8>><>>:

ÿImo �

�
I

bM

�3=2�
a

d

�2

oMS1ak ; kd5 1 ;�
I

bM

�3=2

oMS2�ak�3 ; kd4 1 :

8>>><>>>: �10:10�

Here, S1 and S2 are rather cumbersome functions of o0, oM,
and, in limiting cases,

S1 ' S2 ' 2

��������
2o0

oM

r
; oM 5o0 ;

S1 ' 1:9 ; S2 ' 0:5 ; oM 4o0 : �10:11�
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If the magnetic moment is strongly fixed at the boundary
(d5 �I=bM�1=2a), and the condition (10.9) is satisfied, then
automatically kd5 1 and

Re �oÿ oDE� �
��������
I

bM

s
oMSÿak ;

ÿ Imo �
��������
I

bM

s
oMS�ak ; �10:12�

where

S� � 1

4

�oDE=oM�2 � 1=4� �oDE=oM�
�oDE=oM�2 � 1=4

" #1=2
: �10:13�

By generalizing boundary conditions (transition from the
scalar d to the tensor db; b 0 ), it is possible to consider the mixed
boundary conditions

qmy

qy

����
y�0
� 0 ; mz

���
y�0
� 0 ; �10:14�

or

qmz

qy

����
y�0
� 0 ; my

���
y�0
� 0 : �10:14 0�

The analysis has shown that at least one component of the
magnetic moment must be fixed at the boundary for
Re �oÿ oDE� and Imo to be quantities of the same
order and to show the linear dependence on the wave
vector.

The formulas for y 6� p=2 are very complicated, yet their
qualitative analysis is possible. At

yÿ yc 4
I

bM
�ak�2 ;

two of the three g values are still large as compared with one
(as at y � p=2). This suggests that the character of the wave
remains unaltered while the relation between
Re
ÿ
oÿ oDE�y�

�
and ÿImo is determined by the parameter

d.When d!1, dispersion prevails over annihilation, similar
to the case of y � p=2, whereas at d! 0, they are of the same
order. The situation changes dramatically closer to the critical
angle y � yc. It has been shown before that at y! yc,
logarithmic damping decrement of MSW �g� calculated
regardless of spatial dispersion tends to infinity. Hence, the
most important property of the surface MSW, i.e. its greater
damping length as compared with spinwave characteristics, is
lost. With allowance made for the non-uniform exchange
interaction, none of the three gi values tends to infinity at
y! yc. One of these values is imaginary, that is the wave is in
the strict sense not a surface one but undergoes weak
attenuation.

At d � 1,

Re
h
oÿ

����������������������������
o0�o0 � oM�

p i
� ÿ I

bM
oM�ak�2 ;

ÿ Imo �
�

I

bM

�5=4

oM�ak�5=2 : �10:15�

At d � 0,

Re
h
oÿ

����������������������������
o0�o0 � oM�

p i
� ÿ

��������
I

bM

s
oMak ;

ÿ Imo �
 ��������

I

bM

s
ak

!3=2

oM : �10:16�

In both cases, jImoj5 ��Re �oÿ ����������������������������
o0�o0 � oM�

p ���, and
the wave shows anomalous dispersion. The comparison
between the dispersion laws for an MSW at y 6� yc and
y � yc indicates that the spectrum is subject to pronounced
restructuring in the narrow angle range

jyÿ ycj4 I

bM
�ak�2 5 1

[see (10.9)]. This does not only result in a change of the k-
dependence of Reo and Imo on k but also causes the
dispersion to switch from normal (far from yc) to abnormal
patterns.

In case of an antiferromagnet (see Ref. [10]), in terms of
Section 5 the equation defining the frequency of a surface
MSW propagating perpendicular to the EA has the form

1� sgn �k� m 0�o� �
������������������������
m1�o�m2�o�

p
� 0 ; �10:17�

and the logarithmic damping decrement is

g � jkj
������������
m1�o�
m2�o�

s
> 0 : �10:18�

A surface wave may exist in the frequency range where
m1�o�=m2�o� > 0. There is no such limitation in the case of
isotropy in the basis plane (m1 � m2 � m, see Table 2) because
g � jkj, and Eqn (10.17) is simplified:

1� sgn �k� m 0�o� � m�o� � 0 : �10:19�

At m 0 6� 0 (gyrotropy), the wave is lacking in reciprocity.
Non-reciprocity appears at H 6� 0 (as is the case with
polariton). There is no gyrotropy at H � 0 (m 0 � 0), and the
wave frequency (os) is

os �
�������������
1� m0

2

r
OSF ; m0 � 1� 4p

d
�10:20�

regardless of the direction (sign of k). Non-reciprocity also
arises at 04H4HSF:

os �
�������������
1� m0

2

r
OSF � O sgn �k� : �10:21�

The problem is further complicated by anisotropy of mag-
netic susceptibility: at HSF < H4HE, Eqn (10.17) is cubic
with respect to o. We shall not analyse this equation,
although it is worthwhile to note that anisotropy may be
neglected atHSF 4H < HE, and

m1 ' m2 '
O2m0 ÿ o2

O2 ÿ o2
; m 0 � �m0 ÿ 1� Oo

o2 ÿ O2
: �10:22�

Hence, in accordance with (10.19), os ' O and appears to
exist at both k > 0 and k < 0. Amore accurate analysis shows
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that the exact Eqn (10.17) has no solution at k < 0.Moreover,
it is possible to demonstrate that the frequency os is
continuous at the pointH � HE.

Finally, the surface MSW at H5HE also exists only if
k > 0 and

os � 1

2
OM � O : �10:23�

This is an ordinary DE wave in a ferromagnet with the
magnetic moment of the unit volume 2M. Figure 12 is the
graphic representation of the dependence of the surface wave
frequency os on the magnetic fieldH.

11. Ferromagnetic metal. Electronic mechanism
of Damon ±Eshbach wave attenuation

The presence of conduction electrons in magnetic conductors
gives rise to many problems which hamper the progress in the
understanding of magnetic properties of metals. In the first
place, it is necessary to elucidate the role of conduction
electrons in magnetization. Conduction electrons constitute
a major source of dissipation for magnons: the interaction of
magnons and conduction electrons in conjunction with their
interaction with phonons and lattice irregularities determines
the lifetime of magnons. Electron scattering at magnons is
responsible for the contribution to the mean probability of
conduction electron scattering, which in turn accounts for the
finite length of their free paths, i.e. constitutes amechanism of
resistance in electron conductors.

Any model approach to the problem solution in macro-
scopic electrodynamics requires, in some way or other, that
material equations be formulated to relate the magnetic
induction B (with the magnetic field H and the conduction

electron current density j) to the electric field strengthE; these
equations must include results of microscopic model studies
[see Eqns (1.1) ± (1.4)]. An old review [4] examines various
plasma effects. These effects are stipulated by the presence of
normal and/or abnormal skin-effect responsible for struc-
tural changes of the electromagnetic field. At ferromagnetic
resonance, the structure of the field should be taken into
account in the calculation of sample parameters, e.g. surface
impedance.

This section is focused on the electronic mechanism of DE
wave annihilation in metals [20]. We proceed from the
assumption that the material equations are available and
there is no need to calculate the quantities involved in the
Landau ±Lifshitz equation. The same refers to the character-
istics of conduction electrons.

If conduction electrons are supposed `to be unable to feel'
the presence of magnetization, the penetration depth to be
large compared with the path length, and the frequency to
satisfy oDE 5 1=te, where te is electron relaxation time, it is
possible to use formula (9.6) bearing inmind that the effective
dielectric permittivity of a metal in such cases equals 4pis=o
and is a purely imaginary quantity:

Imo � ÿp
2

oMoDE

�ck�2 s ; Reo ' oDE ÿ oMo2
DE

8�ck�2 : �11:1�

Aweakly damped surface wave (Reo4 Imo) exists if rather
a relatively severe condition

kd4
1

2

�
oM

oDE

�1=2

�11:2�

is satisfied, where d � c�2psoDE�ÿ1=2 is the skin-layer depth
at the DE wave frequency.

At low temperatures, electron relaxation rate tÿ1e in
highly-purified metals may turn out to be below oDE. When
ote 4 1,

e 0 ' ÿo2
L

o2
; e 00 ' o2

L

o3te
; �11:3�

where o2
L is the squared plasma frequency of conduction

electrons

o2
L �

4pnee2

m�

(the notations are conventional: ne is the density of conduc-
tion electrons, m� is their effective mass). It follows from the
results of Section 9 that

Reo � oDE

�
1� oMo2

L

8c2k2oDE

�
;

Imo 00 � ÿoMo2
L

8c2k2
1

oDEte
;

��Imo 00
��5Re �oÿ oDE� :

�11:4�

It can be deduced from the first formula that

vgr � ÿ coMo2
L

4�ck�3 � ÿ4
���
2
p

c
�oÿ oDE�3=2

o1=2
M oL

; o > oDE :

�11:5�
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Figure 12. Dependence of the surface MSW frequency on the magnetic

field.
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Formulas (11.3) ± (11.5) are interesting in that they
describe magnetic quasistatic waves in a medium with
negative dielectric permittivity: a DE wave shows anomalous
dispersion and transfers energy against the direction of the
wave vector (it should be remembered that such a wave is
lacking in reciprocity). Formulas (11.3) ± (11.5) have been
obtained without regard for the Lorentz force acting on
conduction electrons. The reason for this is that a DE wave
in the geometry being considered excites only the electric field
constituent parallel to the magnetic field H (and magnetiza-
tion M). Therefore, s must be regarded as sk, i.e. the
longitudinal constituent of the conduction tensor known to
be weakly dependent on the magnetic field [21] (in contrast,
the constituents of the tensor ŝ transverse relative to H
undergo marked variation in the magnetic field).

Anomalous skin-effect readily arises in metals at low
temperatures when the macroscopic material equation relat-
ing the current density je to the electric field strength E
becomes invalid because spatial dispersion of conductivity
has to be taken into consideration [see (1.2)].

Whenever the macroscopic material equation is deemed
unnecessary, a kinetic theory needs to be constructed, which
is the main objective of the present Section.

Proceeding to the development of the kinetic theory for
electron damping of MSW in a ferromagnetic metal, we shall
in the first place neglect the effect of magnetic field on
electrons (with due regard for what has previously been said
about sk). Then, the complete system of equations for the
problem of interest is

d2ez
dy2
ÿ k2ez � 4pio

c2
m 0 2 ÿ m2

m
jz ; y < 0 ; �11:6�

d2evz
dy2
ÿ
�
k2 ÿ o2

c2

�
evz � 0 ; y > 0 : �11:7�

vy
df1
dy
�
�
ikvx � 1

te

�
f1 � ÿe qfF

qe
vzez�y� ; y < 0 : �11:8�

Here, ez �evz� is the electric field strength in a metal (vacuum),
f1 is the linear (with respect to the electric field) addition to the
Fermi distribution function fF,

jz � 2e

�2p�h�3
�
vz f1 d

3p ; �11:9�

v � p=m� is the electron velocity; integration is over the entire
p-space, and the electron gas is degenerate, so that

ÿ qfF
qe
� d�eÿ eF� :

We have written the kinetic equation in the t approxima-
tion because the relaxation time is absent in the solution in the
most interesting case of kl4 1 (l is the length of the electron
free path) while the DE wave damping coefficient at kl5 1 is
written in macroscopic terms [see (11.1)].

In the kinetic equation (11.8), the term

qf1
qt
� ÿio f1 ;

is omitted since we believe that ote 5 1 [the case of ote 4 1
has been described earlier, see (11.3) ± (11.5)]. Finally, it is
accepted that all the functions of interest are proportional to
exp�ikx�, where k is the wave vector of a DE wave.
Conventional electrodynamic boundary conditions should

be supplemented with the boundary condition for the electron
distribution function f1.We shall confine ourselves to the case
of mirror reflection of conduction electrons from the surface:

f1

���
y�0; vy<0

� f1

���
y�0; vy>0

; f1

���
y!ÿ1; vy>0

� 0 : �11:10�

The second equality ensures electron equilibration in the
depth of the metal. According to (11.9) as well as (11.8) and
(11.10),

jx�y� �
�0
ÿ1

K�y; y 0�ez�y 0� dy 0 ;

K�y; y 0� � 2e2

�2p�h�3
�
vy>0

�
ÿ qfF

qe

�
v2z
vy

�
(
exp

�
ÿ jyÿ y 0j

vy

�
1

te
� ikvx

��
�

� exp

�
ÿ jy� y 0j

vy

�
1

te
� ikvx

��)
d3p : �11:11�

Let us formally extend ex�y� to the region y > 0 in order to be
able to use the Fourier transform along the y-axis (this leads
to the difference kernel):

jz�y� �
�1
ÿ1

K�yÿ y 0�ez�y 0� dy 0 ;

K�yÿ y 0� � 2e2

�2p�h�3
�
vy>0

�
ÿ qfF

qe

�
v2z
vy

� exp

�
ÿ�yÿ y 0�

vy

�
1

te
� ikvx

��
d3p : �11:12�

This allows Eqn (11.6) to be considered formally true at y > 0.
Let us now apply the Fourier transform to this equation
bearing in mind that the function ez�y� has an inflection:�

4pio
c2

m 0 2 ÿ m2

m
Kk�q� � k2 � q2

�
e�q� � ÿ2

�
dez
dy

�
y�0

:

�11:13�
Here,

Kk�q� � 2e2te
�2p�h�3

�
v 2
z

v
ds

1� iktevx
�1� iktevx�2 � t 2e v 2x q2

�11:14�

is the kernel of the conduction operator in the �k; q�
representation;

K0�0� � s � Ne2te
m

is the static metal conductivity.
It follows from Maxwell's equations and boundary

conditions that

dez
dy

����
y�0
� ÿkx m

0

m
ez�0� ÿ io

c

m 0 2 ÿ m2

m
hx�0� ;

hx�0� � i
c

o

����������������
k2 ÿ o2

c2

r
ez�0� : �11:15�

On the other hand, it is possible to determine e�q� from Eqn
(11.13) and ez�y� by means of the inverse Fourier transform
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which allows �dez=dy�y�0 to be excluded from the system
(11.15) and leads to the system of two linear equations with
respect to unknown hx�0� and ez�0�. By equating the
determinant of this system to zero, we have the equation
relating the frequency o to the wave vector k, i.e. the
dispersion law for the DE wave:

m �
"
m 0k� �m 0 2 ÿ m2�

����������������
k2 ÿ o2

c2

r #

� 1

p

�1
ÿ1

dq

�
q2 � k2 � 4pio

c2
m 0 2 ÿ m2

m
Kk�q�

�ÿ1
; �11:16�

where the functions m�o� and m 0�o� are given by the
expressions (1.20).

The integral over q in the right-hand side of Eqn (11.16)
indicates that spatial dispersion of conductivity has been
taken into account. Spatial dispersion of magnetic perme-
ability is disregarded, which imposes limitation on the value
of the wave vector k:

k5
1

a

��������
bM
I

r
; o � oDE; o0; oM �11:17�

(in all estimates,o0 and oM are quantities of the same order).
When k tends formally to infinity (ato 6! 1), it naturally

follows from (11.16) that o � oDE. At kl5 1, when the local
relationship between e and j is valid, there is an opportunity
to introduce effective dielectric permittivity, hence the for-
mulas (11.1).

The opposite case analogous to the anomalous skin-effect
(kl4 1) is of special interest. In this case,

k4
o
c
; �kd0�2k4 o

vF
; d0 � c

oL
; o2

L �
4pNe2

m�
:

�11:18�

Magnetic frequencies �o0;oM;oDE� are so low that

ovF
oLc

5 1 :

The second condition is even more important than the first
one. The inequalities allow the asymptotic value of Kk�q�
proportional to �k2 � q2�ÿ1=2 to be used [see (11.14)]. As a
result, Eqn (11.16) yields

Reo ' oDE ÿ oMo2
DE

8�ck�2 ;

Imo ' ÿoMoDEo2
L

3p2c2vFk3
� 4psoMoDE

�ck�2kl : �11:19�

The comparison of the last equation and (11.1) indicates
that only the kl-th part of conduction electrons is involved
in the interaction with a DE wave. Spatial dispersion is
responsible for the faster tendency of the dissipative term
�kÿ3� to zero as compared with the dispersive one �kÿ2�.
At

k4
8

3p2
o2

L

vFoDE
�11:20�

the DE wave is a weakly damped one. It is to be remembered
that the condition (11.20) must not be in conflict with (11.17).
It is necessary that

a

d0
5

��������
bM
I

r �
vF
c

�1=3� oL

oDE

�1=3

: �11:21�

This condition is easy to satisfy. The non-local relationship
between current density and electric field strength is respon-
sible for the non-exponential dependence of electromagnetic
field and magnetization components on the coordinate y.
Also, it gives rise to `slowly' decaying terms proportional to
y3=2 exp�ÿky� but having low amplitude � �kd0�ÿ2o�kvF�ÿ1
which are likely to be apparent only far from the metal
surface.

It has been noted above that a magnetic field has no effect
on static conduction. Moreover, we simply neglect the
Shubnikov ± de Haas quantum effects and consider the
Fermi surface to be spherical. The situation changes if spatial
dispersion is taken into account; specifically, wave vector
dependence shows concurrently with dependence on the
magnetic field. Therefore, formulas in previous sections hold
if additional conditions are imposed on the averaged mag-
netic field B and the wave vector k:

krB 4 1 or kl5 1 ; �11:22�

where rB � cpF=eB is the radius of the electron orbit in a
magnetic field (pF � m�vF). Magnetic field effects will be
consistently discussed below.

Here is an estimate true for themaximally strongmagnetic
field where rB 5 l, krB 5 1, i.e. the electron orbit radius is the
smallest parameter of length dimension. The relationship
between l and 1=k is arbitrary, but the longitudinal conduc-
tion only slightly differs from its macroscopic valueÿ
s! s

�
1ÿ �1=6p��krB�2

��
as the analysis shows, and

o ' oDE ÿ ip
2

oMoDE

c2k2
s
�
1ÿ 1

6p
�krB�2

�
: �11:23�

Evidently, the effect of the strong magnetic field is restricted
to a small decrease in the intensity of DE wave annihilation.

A most interesting case is that of intermediate fields
influenced by limiting anomalous skin-effect (see [22]) when
the electron orbit radius rB is much bigger than the length of a
DE wave l � 1=k but significantly smaller than the free path
length l:

l4 rB 4 l : �11:24�

In the situation described by (11.24) the interaction between
conduction electrons and a plane wave (e.g. acoustic or spin
wave) propagating perpendicular to the magnetic field gives
rise to a specific geometric resonance effect referred to as the
Pippard oscillations (A B Pippard was the first to notice the
potential of this effect for spectroscopy). Oscillations (peri-
odic dependence of wave velocity and damping coefficient on
the reversed magnetic field) are of simple (kinematic) nature:
the situation reiterates each time the inside of an electron
orbit in the magnetic field hosts an integer number of waves.
It immediately follows from the condition of

cDF

eB
� Nl
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(N4 1 is the integer and DF is the maximum diameter of the
Fermi surface; for a sphere DF � 2pF) that the period is

D
1

B
� 2pe

kcDF
: �11:25�

The DE wave being examined is not plane. However, it
appears from the analysis [20] that the dependence of the
wave amplitude on the coordinate normal to the magnetic
surface does not eliminate the oscillatory dependence of its
characteristics.

12. Electromagnetic waves
in a gyroanisotropic medium

A magnetic crystal is a gyroanisotropic medium the electro-
dynamic properties of which are defined by two tensors, those
of dielectric permittivity (eik) andmagnetic permeability (mik).
Both tensors (especially the latter one) are very sensitive to the
external magnetic field and their components may have very
different values due to the resonance dependence on fre-
quency. Therefore, there is no reason to maintain that tensors
eik and mik have similar structures. Moreover, rotation of
magnetic moments makes both tensors gyrotropic which
means that they are not subject to diagonalization by a turn
of the Cartesian coordinates. Gyrotropy of tensor eik, unlike
that of tensor mik, is very small in the general case. Properties
of electromagnetic waves travelling in a medium are deter-
mined by a combination of tensors eik and mik. Evidently, such
media must exhibit an infinite variety of high-frequency
properties.

Let us see how unusual electromagnetic fields look in a
gyrotropicmedium [23]. To beginwith, there is a simplest case
in which the medium is considered to be non-dissipative,
which implies that the tensors eik and mik are Hermitian:

e�ik � eki ; m�ik � mki : �12:1�

Secondly, the direction in which the wave propagates (z-
axis in the notations used in this section) is such that

eza � eaz � mza � maz � 0 :

Then,

eab �
exx ie 0

ÿ ie 0 eyy

 !
; mab �

mxx im 0

ÿ im 0 myy

 !
: �12:2�

Possibly, je 0j5 1. The expressions for mxx, myy, and m 0 can be
found in previous sections, but they will not be used here.

Maxwell's equations for a monochromatic wave may be
written as follows, using the concrete forms of tensors eab and
mab:

nabEk � n2Ea : �12:3�

Here, n is the refractive index and

nab � mggeab ÿ mgaegb : �12:4�

The dispersion equation naturally takes the form

jn2dab ÿ nabj � 0 : �12:5�

The asymmetry of the matrix nab relative to eab and mab can be
accounted for by the fact that Eqn (12.4) was derived by the

exclusion of magnetic field. Removal of the electric field
would result in the dispersion equation with a matrix ~nab
obtained by exchanging positions of eab and mab in nab.
Naturally eigenvalues of both matrices coincide.

In the present case, the matrix nab has the form

nab �
myyexx � m 0e 0 i�myye 0 � m 0eyy�
ÿ i�mxxe 0 � m 0exx� mxxeyy � m 0e 0

 !
: �12:6�

The matrix nab is non-Hermitian because the medium
simultaneously displays anisotropy and gyrotropy of electric
and magnetic properties. It is non-Hermitian character of the
matrix nab that is responsible for the specific distribution
patterns of electromagnetic waves in such media.

Two refractive indices can be found from Eqn (12.6):

n21;2 �
1

2

�
nxx � nyy �

��������������������������������������������
�nxx ÿ nyy�2 � 4nxynyx

q �
: �12:7�

Eigenwaves in a gyroanisotropic medium undergo character-
istic polarization, and in the general case, the former and the
latter waves are non-orthogonal to each other. It follows from
(12.3) ± (12.7) that

gE � Ex

Ey
� n2 ÿ nyy

nyx
; gH � Hx

Hy
� n2 ÿ ~nyy

~nyx
;

Ez � Hz � 0 : �12:8�
The relationship between electric and magnetic field compo-
nents has the form

H � nm̂ÿ1E� s ; s � �0; 0; 1� : �12:9�

We have omitted subscripts 1 and 2 which denote the wave
type.

Let us analyse an interesting case of degeneracy, that is
root coincidence in the dispersion equation (12.5). According
to (12.7), the roots coalesce if the equality

�nxx ÿ nyy�2 � ÿ4nxynyx �12:10�

is fulfilled. For the Hermitian matrix nxy � nyx, degeneracy is
feasible only if nxx � nyy � n0, nxy � nyx � 0 i.e. when
nab � n0dab. These conditions being satisfied, anisotropy of
electromagnetic properties of the medium in the plane normal
to the direction of propagation is absent and the choice of
basis directions is arbitrary. As before, the system of equa-
tions (12.3) has two linearly independent solutions, i.e. there
are two linearly independent polarizations E�1� and E�2�,
while refractive indices of the two waves coincide.

In the case of the non-Hermitian matrix nab, root
coincidence in Eqn (12.5) results in the merger of eigenvec-
tors. The matrix is devoid of the complete set of axes, i.e. has
only one eigenvector; hence, only plane waves with one
polarization can propagate in the medium:

Ex

Ey
�

�����������
ÿ nxy
nyx

r
: �12:11�

This observation is not new (see Ref. [24]), but non-Hermitian
character of the matrix nik is normally associated with decay.
Then, root coincidence requires that the solutions like

�a� bz� exp�ikz� �12:12�
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be introduced since plane waves by themselves are unable to
create the complete system.

In the present case, the medium is a non-dissipative one,
and the solutions of the (12.12) type are unlikely to arise
because the field strengths tend to infinity at z!1 (the wave
vector k is real). If the expression under the root sign in (12.7)
vanishes ato0, the square of the refractive index is complex at
o < o0.

Let us consider the frequency interval near o0�o5o0�.
Of the four roots in Eqn (12.6) we choose those two for the
refractive index n which vanish at infinity following the
introduction of infinitely small damping. We assume here,
that the wave propagates in the direction of positive z. Let us
consider absorption only in eab:

exx � e 0xx � id ; eyy � e 0yy � id :

Due to the smallness of absorption d, the squared refractive
index n2 can be written in the following form

n2 � s� id�
� ���

p
p � i

2

q���
p
p
�
:

Here, p and q are the real and imaginary parts of the
expression under the root sign in (12.7), respectively:

p � Re

�
1

4
�nxx ÿ nyy�2 � nxynyx

�
;

q � Im

�
1

4
�nxx ÿ nyy�2 � nxynyx

�
;

and the value s � �nxx � nyy�=2 is naturally regarded as
positive. At s < 0, the waves do not propagate at all near
zero of the expression under the root sign. The imaginary part
q is a small quantity of the order of the imaginary part of
dielectric permittivity d while p is small in proportion to the
proximity to the root coincidence point p � �oÿ o0�=o0.

At d4 p4 1, we have

Im n2 � d�1� pÿ1=2� ' dpÿ1=2 ;

for the imaginary part n2, while the solutions satisfying the
conditions at infinity �Im n > 0� are

n1 � �s� ���
p
p �1=2 exp

�
i

2
arctan

dpÿ1=2

s� ���
p
p
�
;

n2 � �sÿ ���
p
p �1=2 exp

�
i

�
pÿ 1

2
arctan

dpÿ1=2

sÿ ���
p
p
��

: �12:13�

Passing d to zero, we find

n1 � �s� ���
p
p �1=2 ; n2 � ÿ�sÿ ���

p
p �1=2 : �12:14�

Therefore, the solution has the form

E�1� exp
�
i
o
c
n1z

�
� E�2� exp

�
i
o
c
n2z

�
: �12:15�

It should be emphasized that n1 is positive and n2 is negative.
This means that the phase in the first wave moves in the
positive direction (normal dispersion) while that in the second
wave in the negative direction (anomalous dispersion).

Certainly, energy propagates in the positive z-direction in
both waves.

When calculating characteristics of a medium near the
frequency o0, one must also bear in mind the opposite
limiting case �p4d4 1�, that is examine the immediate
vicinity of the point o � o0. It is easy to see that real parts
of the refractive index also have different signs. A specific
feature of this region of the spectrum is the root dependence
of the imaginary part of the refractive index onweak damping
which must also be apparent as the frequency dependence of
both the impedance and reflection coefficient (e.g. the root
approximation should be employed when estimating quan-
tities vanishing at d � 0).

The structural analysis of an electromagnetic field in a
medium has shown that it is possible to consider the incidence
of an electromagnetic wave onto a halfspace occupied by a
gyroanisotropic medium without introducing solutions of the
(12.12) type. Let us assume for simplicity that the incidence is
normal, the incident wave is polarized along the x-axis
(E
�i�
y � 0), and its amplitude is equal to unity (Ei

x � Hi
y � 1).

The boundary conditions have the form

1� E r
x � E �1�x � E �2�x ; 1�H r

y � H �1�y �H �2�y ;

E r
y � E �1�y � E �2�y ; H r

x � H �1�x �H �2�x : �12:16�

Using Eqns (12.8) and (12.9) together with the relations
E r
x � ÿH r

y , E
r
y � H r

x, we shall find for a reflected wave

E r
x �
�1ÿ b1g

H
1 n1��gE2 ÿ b2n2� ÿ �1ÿ b2g

H
2 n2��gE1 ÿ b1n1�

�1ÿ b1gH1 n1��gE2 � b2n2� ÿ �1ÿ b2gH2 n2��gE1 � b1n1�
;

E r
y �

2�b2gH2 n2 ÿ b1g
H
1 n1�

�1ÿ b1gH1 n1��gE2 � b2n2� ÿ �1ÿ b2gH2 n2��gE1 � b1n1�
:

�12:17�

Here

b1;2 � ÿ
mxxg

E
1;2 � myx
jmikj

:

The coefficient of reflection R � jE r
xj2 � jE r

y j2 is not
presented here. R turns into unity at the degeneracy point.
Indeed, at this point, gE1 � gE2 � ig, gH1 � gH2 � ÿig,
b1 � b2 � ib, and

jE r
xj2 � jE r

y j2 � 1 : �12:18�

Although the coefficient of reflection is unity, the field in
the medium does not decrease exponentially. Rather, it is a
superposition of two waves running in the opposite direc-
tions, with wave vectors equal to k � ��o=c� n0 respectively;
i.e. it is a standing wave. The strength of the electric field is
proportional to that of the magnetic field. Naturally, the
energy flux is zero.

At the frequencies at which the refractive index has the
negative imaginary part, the field in the medium is either a
superposition of two damped waves or a standing wave with
the amplitude exponentially decreasing into the depth of the
medium. The strengths of the electric and magnetic fields are
parallel to each other.

In the region where the expression under the root sign in
(12.7) is positive (o > o0), gE and gH are often purely
imaginary, which means that both waves are elliptically
polarized.
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An interesting specific case of the gyroanisotropic med-
ium is a metallic magnet in a strong magnetic field with the
magnetic susceptibility similar to that in the formula (12.2)
and the tensor of dielectric permittivity containing no
diagonal elements:

eab �
0

4pisxy
o

ÿ 4pisxy
o

0

0BB@
1CCA ; �12:19�

where

sxy � �ne ÿ nh�ec
B

is the Hall conduction component and ne�h� is electron (hole)
density in the metal. The diagonal (dissipative) elements are
omitted because they areocte-times smaller atocte 4 1 (oc is
the cyclotron frequency). The condition octe 4 1 defines the
requirement for the strength of the average magnetic field B.

Since the elements exx and eyy are zero, the matrices nab
and ~nab coincide:

nab � ~nab �
e 0m 0 imxxe

0

ÿ imyye
0 e 0m 0

 !
; e 0 � 4psxy

o
:�12:20�

It is worthwhile to note, that thematrix nab remains a non-
Hermitian one. Polarizations gE and gH also coincide:

gE;H � �
�������
myy
mxx

r
:

The refractive index is defined by the expression

n21;2 �
ÿ
m 0 � �������������

mxxmyy
p � 4psxy

o
: �12:21�

Degeneracy is feasible if either mxx or myy vanishes. Let myy � 0
and mxx 6� 0; then

n2 � 4psxy
o

m 0 ; g1 � g2 � 0 : �12:22�

This means that Ex � Hx � 0 while Ey andHy are other than
zero. Eigenwaves are linearly polarized. The zero energy flux
is especially conspicuous.

The above example is of special interest, largely because it
demonstrates how great is the difference between an electro-
magnetic wave in a gyroanisotropic medium and an ordinary
wave in a vacuum or an isotropic body. It should be borne in
mind that vectors E, H, and k in an ordinary wave are
mutually orthogonal.

13. Surface magnetic polaritons in a plate
magnetized parallel to the surfaces

Investigations of high-frequency magnetic materials were
greatly promoted by a study ofWalker [25] whodemonstrated
that magneto-dipole interactions lead to the existence of non-
uniform eigensolutions of magnetostatic equations (certainly
with frequency-dependent magnetic permeability) and the
corresponding frequencyspectrumofnon-uniformresonance.

Let us formulate two important qualitative results of early
studies on magneto-dipole modes in plates:

(1) Taking into account boundary conditions eliminates
non-analiticity of the dependence of frequency o on the wave
vector k (at k! 0) in magneto-dipole modes.

(2) The discrete Walker modes in a plate (rod) undergo
transformation to waves propagating along the plate (rod),
with the dispersion (k-dependence of o) being a result of
interference effects if the non-uniform exchange interaction
associated with magnetostatic oscillations is disregarded. In
this case, the characteristic non-dimensional parameter
responsible for the dependence o � o�kt� [kt is the wave
vector directed along the plate (rod)] is ktd (d is either plate
halfwidth or rod radius).

The objective of this section is to examine the dispersion
law for surface magnetic polaritons in a ferromagnetic plate
with width 2d which occupies the layer jyj < d and is
magnetized parallel to its surfaces [26]. The role of anisotropy
can be estimated by observing waves travelling perpendicular
to the magnetic field H and magnetization M (assuming that
M k H, as before) and along H and M.

Let a magnetic polariton propagate perpendicular to the
magnetic field and magnetization. Alternating fields are
concentrated inside the plate and near it and decrease
exponentially as the distance from the plate increases (along
the y-axis), with the logarithmic damping decrement

g0 �
����������������
k2 ÿ o2

c2

r
; ck > o ; k � kx : �13:1�

If the y-th component of the wave vector is denoted by q, it
follows from Maxwell's equations that

q2 � ÿk2 � o2

c2
emeff�o� ; �13:2�

with meff being given by formula (2.4) at y � p=2. The field
structure in the plate depends on the sign of q2. When q2 > 0
(case A), the alternating fields in the plate are actually a
superposition of trigonometric functions. At q2 � ÿg2 and
g2 > 0, (case B), the alternating fields are a superposition of
hyperbolic functions. The boundary conditions lead to the
following dispersion equations:

A: 2
�
o0�o0 � oM� ÿ o2�g0q cot�2qd�

� o2

c2
��o0 � oM�2 � e�o0 � oM�o0 ÿ �1� e�o2

�
ÿ k2

�
o2

0 � �o0 � oM�2 ÿ 2o2
�
;

B: 2
�
o2 ÿ o0�o0 � oM�

�
g0g cot�2gd�

� o2

c2
��1� e�o2 ÿ �o0 � oM�2 ÿ eo0�o0 � oM�

�
� k2

�
o2

0 � �o0 � oM�2 ÿ 2o2
�
:

Multivalued cotangent in case A accounts for an infinite
number of spectral branches (o � on�k�) which are all
localized outside the frequency range

ÿ�
o0�o0 � oM�

�1=2
,

o0 � oM=2
�
and originate at the straight line o � ck. The

frequency of the lowest brancho � o�0��k� at k! 0 vanishes
and tends to

o � olim �
����������������������������
o0�o0 � oM�

p
at k!1. The starting points of all the branches o � on�k�,
n > 0 lie at the straight line o � ck �g0 � 0�. There are two
groups of branches: one, o � o�ÿ�n , is below olim and
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condenses towards olim, the other, o � o���n , is above
o0 � oM=2 and asymptotically approaches o � ck=e1=2.

At eÿ 15 1, the initial frequencies of the branches

o���n ' c

�������������������������������������������������������������������������
p�nÿ 1�=2d�2 � oM�o0 � oM�=c2

eÿ 1

s
;

o�ÿ�n '
����������������������������������������������������������������������

o0�o0 � oM�
1� oM�o0 � oM�

�
2d=p�nÿ 1�c�2

s
:

Interestingly, all upper branches at e! 1 tend to infinity
(they are totally absent at e � 1!). At the initial segments of
the dispersion curves, group velocities are slightly different
from c. When the wave vectors are large (o! olim), group
velocities of the lower branches tend to zero while the upper
ones are not so markedly altered: they tend to c=e1=2 at
o!1.

In case B, there is one (specific) oscillation branch
o � osp�k� which occupies the interval olim < o <
o0 � oM=2. At kd4 1 and c!1, it `turns' into a DE wave
with the frequency o � oDE.

At o! olim,

osp�k� ÿ olim ' c2o3
M

2eo5=2
0 �o0 � oM�3=2

�kÿ k0�2 ;

kÿ k0 5 k0 ; k0 � o0

oM

�o0 � oM�2
c2

:

The group velocity of the specific wave at o! olim is

vsp � c

�������������������������������
2o3

M�oÿ olim�
eo0o3

lim

s
:

At o! oDE,

osp�k� ÿ oDE

oDE
' ÿ �1� e�oDEoM

8c2k2
;

vsp � c

���������������������
2oDE

�1� e�oM

s �
oDE ÿ o
oDE

�3=2

:

The velocity of specific wave vanishes at the ends of the
frequency interval, and its maximum is close to the velocity
of light.

It should be noted that the penetration depth at o � olim

is zero (g!1). Ifo! oDE, it tends to infinity, together with
k and g. In such cases, spatial dispersion of magnetic
permeability must be taken into consideration, as was
observed before. Moreover, dissipation processes impose
some restrictions. In order to be able to distinguish between
branches near the condensation point, the following condi-
tion must be satisfied (at n4 1):

k2 �
�
pn
2d

�2

<
p
2d

��
e
p oM

�
o0�o0 � oM�3

�1=4
c
���������
oDE
p �����

tn
p

: �13:3�

This is not the sole constraint on k and n (since we did not
take into consideration the non-uniform exchange interac-
tion):

ak5

����������
�hoM

I

r
; aq5

����������
�hoM

I

r
:

To fulfill the last inequality, it is necessary that the plate be
sufficiently thick and the number of n not very large:

d

n
4 a

����������
I

�hoM

r
:

Figure 13a presents magnetic polariton spectra described
above.
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Figure 13. Schematic dependence of the dispersion law for magnetic polaritons in a plate. The magnetic field H and the magnetic moment M are parallel

to the plate surfaces. The waves propagates (a) normal to M, (b) parallel to M; z > 1, (c) parallel to M; z < 1.
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If the plate is thick, the electromagnetic field associated
with the specific wave (which appears to be especially
interesting to consider) is concentrated at one side, depending
on the direction of propagation, and exponentially decreases
towards the other.

Let us now consider a magnetic polariton travelling along
the magnetic field in a ferromagnetic plate (see Ref. [27]).
There are two types of solutions in this case, q1 and q2, defined
by the formula

q21;2 � k2
�
o2 ÿ o0

�
o0 � oM

2

��
ÿ o2e

c2

�
o2 ÿ �o0 � oM�

�
o0 � oM

2

��
� oM

2
�
o0�o0 � oM� ÿ o2

�
�

���������������������������������������������������������������������������������
o2e
c2
�o0 � oM� ÿ k2o0

�2
� 4k2

o2e
c2

o2

s
; �13:4�

while the dispersion equation (zero determinant of the system
of equations describing boundary conditions) splits up into
two (which may reflect unknown intrinsic symmetry of the
problem):

mo2e=c2 ÿ k2 ÿ q21
o2e=c2 ÿ q21

�
cos�q1d� � g0

sin�q1d�
q1

�

�
�
cos�q2d� � g0e

sin�q2d�
q2

�
ÿ mo2e=c2 ÿ k2 ÿ q22

o2e=c2 ÿ q22

�
�
cos�q1d� � g0e

sin�q1d�
q1

��
cos�q2d� � g0

sin�q2d�
q2

�
� 0 ;

�13:5�

mo2e=c2 ÿ k2 ÿ q21
o2e=c2 ÿ q21

�
g0 cos�q1d� ÿ q1 sin�q1d�

�
� �g0e cos�q2d� ÿ q2 sin�q2d�

�
ÿ mo2e=c2 ÿ k2 ÿ q22

o2e=c2 ÿ q22

�
g0e cos�q1d� ÿ q1 sin�q1d�

�
� �g0 cos�q2d� ÿ q2 sin�q2d�

� � 0 : �13:6�

The dispersion dependence is essentially related to
x � pc=2

���
2
p

o0d. Its schematic representations at x > 1 and
x < 1 are shown in Figs 13b and 13c respectively. The number
of branches starting below o � o0 and intersecting other
branches is the greater the lower x. There are three types of
waves: fast ones with normal dispersion, slow ones with
anomalous dispersion turning in the limit into a known
MSW type, and specific waves. At x > 1, there are two
specific waves; if k! 0, they are very close to each other
and to the straight line o � ck:

ckÿ o0
0
0�k� ' ck

2
�kd�2

�
oM

o0 � oM

�2

;�
oM

o0

�2

:

8>>><>>>: �13:7�

At k!1, the frequency of one wave tends to its limiting
value from above:

o<
0
0�k� ' o0 � oM

2�ck�2
��

pc
2d

�2

ÿ 2o2
0

�
; k!1 : �13:8�

This occurs only at x > 1. Hence, the curve o<
0
0�k� intersects

the straight line o � o0. The branch o<
0
0�k� intersects all

curves of the lower branch group and asymptotically
approaches the straight lineo � ck=e1=2 when k!1, similar
to all the curves of the upper group. When x < 1 (even at an
arbitrarily small x), the number of branches displaying
specific behaviour is limited, but an infinite number of
branches o<

n and o<
n
0 come to o0 from above, and an infinite

number of branches o>
n and o>

n
0 lie above

o ��o0�o0 � oM�
�1=2

. They do not intersect other branches.
In the waves of the upper group, electric and magnetic

fields are superpositions of trigonometric and hyperbolic
functions at any k whereas other waves have finite values of
k at whichmixed (trigonometric/hyperbolic) waves `turn' into
the superposition of trigonometric waves only.

Here are some more frequency values at e � 1 (this case
considerably simplifies calculations). At the straight line
o � ck,

�o<�2 ' o0�o0 � oM�
�
1ÿ 2o0 � oM

An

�
;

An '
�
pcn
oMd

�2

at n!1 :

At x > 1,

o<
n �k� ' o0 � oM

2k2

��
pn
d

�2

ÿ 2o2
0

c2

�
; n � 1; 2; . . . ; k!1 :

For o<
n
0�k�, nÿ 1=2 must be substituted for n.

Spectra of magnons propagating along and across M are
significantly different. This rises the problem of transition
from one wave type to another and the problem of the critical
value of angle y at which the specific wave exists (see Fig. 13a).
It proved impossible to analytically consider wave propaga-
tion at an arbitrary angle to M without using numerical
methods. A distinctive feature of the wave spectrum at k kM
is the existence of a wave group with anomalous dispersion in
a broad range of wave vectors k, with their frequency intervalÿ
o0;

�
o0�o0 � oM�

�1=2�
being readily governed by both

magnetic field and temperature.

14. Magnetostatic waves in a plate

Certainly, the dispersion law of MSW can be derived from
equations describing magnetic polaritons by means of the
limiting transition k!1 at o 6! 1. However, the formula-
tion of the dispersion equation for MSW directly from
magnetostatic equations allows more general cases to be
considered than in the solution of the magnetic polariton
problem.

Assuming that the tensor of magnetic permeabilities has
the pattern (1.19), the plate occupies intervalÿd < y < d, and
the axis 3 is parallel to its surface, the equation for finding g
has the form (here, we confine ourselves to the case of
`hyperbolic' fields in the plate)

m1k
2
x ÿ m2g

2 � m3k
2
z � 0 : �14:1�
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From the boundary conditions, we obtain the dispersion
equation to find the MSW frequency at an arbitrary angle y
�tan y � kx=kz), if MSW does exist.

ÿ2m2kg coth�2gd� � k2x�m1m2 ÿ m 0 2 � 1� � k2z�m2m3 � 1� :
�14:2�

In the case of a ferromagnet, formulas (1.20), (14.1), and
(14.2) taken together yield

g2

k2
� o0�o0 � oM sin2 y� ÿ o2

o0�o0 � oM� ÿ o2
;

g2

k2
�oM sin2 yÿ o0 cos

2 y� ÿ 2
g
k
coth�2gd�o0 cos

2 y

ÿ �oM sin2 y� o0 cos
2 y� � 0 ; �14:3�

with y 6� p=2. At y � p=2, the first equation is automatically
satisfied (the equality g � k ensues fromEqn (14.1) at m1 � m2
[see (1.20)], and it follows from (14.2) that

o2 � o0�o0 � oM� � o2
M

2
�
coth�2jkjd� � 1

� : �14:4�

An analysis [27] demonstrated that the second Eqn (14.3) has
the solution at an arbitrary plate width only if

y > yc � arcsin

�������������������
o0

o0 � oM

r
; �14:5�

while there are no solutions at y < yc. Therefore, the angle yc
(14.5) is the critical MSW angle, as in a halfspace (see Section
10). A change of the sign at sin y has no effect on frequency:
the wave is reciprocal. At kd4 1, it follows from the first
equation (14.3) that formally there are two solutions

o � �o0 � �o0 � oM� sin2 y
2 sin y

; sin y00 ; �14:6�

or

o � o0 � �o0 � oM� sin2 y
2j sin yj :

The waves with sin y > 0 are concentrated at one side of the
plate and those with sin y < 0 on the other. We have taken
advantage of this fact to analyse the mechanism of generation
of irreversible surface waves at the halfspace boundary and
especially their damping mechanism associated with the
presence of bulk spin waves (see Section 10).

The field and magnetization in a plate can be both
trigonometric and hyperbolic functions. Then, instead of
(14.2),

ÿ2m2kq cot�2qd� � k2x�m1m2 ÿ m 0 2 � 1� � k2z�m2m3 � 1� ;
�14:7�

where q is the y-th component of the wave vector determined
from Eqn (14.1) by substituting �q2 for ÿg2.

`Hyperbolic' and `trigonometric' waves appear to possess
complementary properties. At any rate, there are no `trigono-
metric' waves in a ferromagnet at y � p=2 (indeed, q2 > 0 at
kz � 0 only if m3 < 0 while in ferromagnets m3 � 1). `Trigono-
metric' waves do occur when y � 0 (the waves propagate

parallel to the magnetic field), and

tan

�
2kd������jmjp �

� 2
������jmjp

1ÿ jmj ; �14:8�

the solutions to be sought for in the frequency interval where
m < 0.

In the limiting cases of long and short waves,

o '
o0�o0 � oM� ÿ o0oM

�
2kd

pn

�2

; kd5 1 ;

o0 � oM

2

�
pn
2kd

�2

; kd4 1 ;

8>>><>>>: �14:9�

n � 1; 2; . . .

Figure 14a schematically represents a few MSW branches.
Dashed and solid lines denote branches which coincide (at
kd4 1) with the corresponding branches of the magnetic
polariton discussed in Section 13 �o<

n �k� and o<
n
0�k��.

An important feature of the MSW spectrum is the
presence of concentration points, k � 0, o ��
o0�o0 � oM�

�1=2
and k!1, o � o0. It is worthy of note

that retardation eliminates the concentration point at
o � �o0�o0 � oM�

�1=2
[in accordance with Maxwell's equa-

tions, there are no waves with a finite frequency at k! 0 (cf.
Fig. 13b and 13c)].

Till now, we considered the magnetic field H and
magnetization M to be parallel to the surface, both in a

k
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Figure 14. Graphic representation of the dispersion law for an MSW in a

ferromagnetic plate magnetized parallel (a) and perpendicular (b) to the

surface.
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plate and a halfspace. In order to demonstrate the importance
ofH andM positions relative to the surface, we shall consider
MSWs in a ferromagnetic plate �jzj < 2d� magnetized per-
pendicular to the surface. In this case, the dispersion equation
splits up into two, one for an MSW whose potential is
symmetric with respect to the plane z � 0 �/ cos�q sz�� and
the other for an MSW with antisymmetric potential
�/ sin�q az��. These equations have the form

k � q s tan�q sd� ; �14:10�
ÿ k � q a cot�q ad� ; �14:10 0�

o � on�k� �
����������������������������������������
o2

0 � o0oM
k2

k2 � q2n

s
: �14:11�

The dispersion dependence is shown in Fig. 14b.
It is clear that the MSW spectrum contains two concen-

tration points and differs from the previous case largely in
terms of dispersion patterns (cf. Fig. 14a and 14b): MSWs
exhibit normal dispersion in a platemagnetized perpendicular
to the surfaces, similar to `hyperbolic' waves (14.4). The
dispersion pattern governs the direction of the wave vector k
relative to H�M�.

The qualitative difference between symmetric (4.10) and
antisymmetric waves (14.10 0) consists in that the former have
finite velocity:

os
n�0 ' o0 � oM

2
kd ; v s

0 �
oM

2
d �14:12�

at n � 0 and o! o0 and

os
n ' o0 � oM

2�pn�2 �kd�
2 ; n � 1; 2; . . . �14:13�

at n 6� 0. At kd4p�n� 1=2�,

os
n '

����������������������������
o0�o0 � oM�

p �
1ÿ p2

2

oM

o0 � oM

�
n� 1=2

kd

�2�
;

n � 0; 1; . . . ; kd4p
�
n� 1

2

�
: �14:13 0�

For antisymmetric branches,

oa
n

'
o0 � oM

2

h
kd

p�n�1=2�
i2
; kd5 1 ;����������������������������

o0�o0 � oM�
p h

1ÿ p2
2

oM

o0�oM

�
n�1
kd

�2i
; kd4 p�n� 1� ;

8><>:
n � 0; 1; . . . �14:14�

There is specific anomalous dependence on themode number:
the bigger n the lower frequency. It should be remembered
that the mode number has real physical sense for it gives the
number of waves that the plate is able to host.

In our opinion, the magnetostatic spectrum of antiferro-
magnetic plates remains to be investigated inmore detail. One
may use formulas (14.1) and (14.2) to elucidate the dispersion
law for the MSW spectrum of a uniaxial antiferromagnet
substituting into them the values of m1, m2, and m 0 from Table
2 (Section 5).

To conclude the present section, here is a formula valid at
m1 � m2 � m�o�, m3 � 1, and m 0�o� 6� 0 for the `hyperbolic'

wave propagating perpendicular to axis 3:

�1� m�2 ÿ m 0 2

�1ÿ m�2 ÿ m 0 2
� exp

ÿÿ4jkjd� : �14:15�

This dispersion equation describes the reversible wave. At
jkjd!1, it gives rise to two equations

1� m� m 0 � 0 ; 1� mÿ m 0 � 0 ; �14:16�

each describing the surface wave on either side of the plate. It
is easy to see that these waves propagate in opposite
directions.

The dispersion equation is especially simple at H � 0,
when for an antiferromagnet m 0 � 0:

m�o� � ÿsinhÿjkjd� : �14:17�

Hence, according to Table 2 and Section 10,

o2 � O2
SF

�
1� 4p

d
1

1� sinh
ÿjkjd�

�
: �14:18�

It is clear that as before, the wave frequency in an anti-
ferromagnetic plate is in the immediate proximity to the
uniform oscillation frequency of the magnetic moment, if
d4 1. The wave shows anomalous dispersion. Its group
velocity is low and varies from �ÿp=d�OSFd at k � 0 to zero
at k!1. The dependence o � o�k� for this wave is
presented in Fig. 15.

15. A plate magnetized perpendicular
to the surfaces. Magnetostatic waves.
Taking into account non-uniform
exchange interaction

The purpose of this section is to carry out a qualitative
analysis of the outcome of interaction between two processes
accounting for wave dispersion: the interference due to the
boundary effect (see the previous section) and non-uniform
exchange interaction [28].

Let us introduce the exchange interaction parameter lwith
dimension of length. Then, the natural dimensionless para-
meter of the problem is

l

d
�

��������
I

mM

s
a

d
: �15:1�

k

o
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�
1� 2p

d

�
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Figure 15. Schematic representation of the frequency o � o�k� for an

antiferromagnetic plate magnetized parallel to the surface, atH < HSF.
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We shall confine ourselves to considering the simplest case of
a plate which occupies the layer jzj < d=2 (in this section, the
plate width is d) and is magnetized along the z-axis. Taking
into account the non-uniform exchange interaction leads to
spatial dispersion of magnetic permeability and formally
means the substitution of frequency o0 in formulas (1.20) by
the function O � o0 � oex, where oex � gM�kl�2. Increasing
power of the dispersion equation requires additional bound-
ary conditions (see Section 10). We shall analyse the case of
`free' magnetic moment:

dm

dz

����
z��d=2

� 0 : �15:2�

It has been observed in the previous section that the geometry
of the problem admits of a search for a solution in the form of
symmetric (in z) and asymmetric functions:

j � exp�ik � q� cos�qz� ;
sin�qz� ;

�
jzj < d

2
;

j ' exp�ik � q� exp�ÿkz� ; z >
d

2
;

j � � exp�ik � q� exp�kz� ; z < ÿ d

2
; �15:3�

wherej is themagnetic field potential (ÿHj � h),k and q are
the two-dimensional vectors, k � �kx; ky; 0�, q � �x; y; 0�,
and q is one of the roots in the bicubic equation

q2 ÿ k2
�
1� oMO

O2 ÿ o2

�
� 0 ; �15:4�

where O � o0 � oex�k; q�, and oex�k; q� � gMl 2�k2 � q2�.
Let us write the dispersion equation satisfying the above

boundary conditions and having symmetric

X3
i�1

Fi

�
1ÿ k

qi
tan

�
qid

2

��
� 0 ; �15:5�

and antisymmetric

X3
i�1

Fi

�
1� k

qi
cot

�
qid

2

��
� 0 : �15:6�

solutions. Here,

F1 � q22 ÿ q23

o�1�ex

ÿ
o0 � o�1�ex

�
; F2 � q23 ÿ q21

o�2�ex

ÿ
o0 � o�2�ex

�
;

F3 � q21 ÿ q22

o�3�ex

ÿ
o0 � o�3�ex

�
; o�i�ex � oex�k; qi� : �15:7�

Equations (15.5) ± (15.7) determine the spin wave spectrum in
the plate:

o � os; a
n �k� ; �15:8�

n � 1; 2; . . . is the solution number, subscripts `s' or `a' denote
the symmetry of the solution.

Neglecting the exchange interaction, we achieve max-
imum simplification of the spectrum:

o � o0 � gMl 2
�
k2 �

�
pn
d

�2�
: �15:9�

Its structure is shown in Fig. 16.

If the exchange interaction �l � 0� is neglected, the
magnetostatic spectrum can be obtained [see (14.10) ±
(14.14) and Fig. 14b].

A marked difference in the spectral patterns is revealed in
their interaction. A thorough analysis of the spectrum can be
found in Ref. [28].

When the distance between branches of the exchange
spectrum in a thin plate exceeds the width of the interval of
magneto-dipole frequencies

ÿ�
o0�o0 � oM�

�1=2 ÿ o0

�
, no

substantial restructuring of the exchange spectrum occurs.
The role of the magneto-dipole interaction is restricted to

the specification of the minimal frequency values in each
subzone. True, the lowest exchange subzone is an exception.
Due to the magneto-dipole interaction, a wave with the
frequency o which is close to o0 at k! 0 has the finite
velocity

os
n�0�k� ' o0 � 1

8
oMkd 1�

��������������������������
1� 16

p

�
l

d

�2
s24 35 : �15:10�

Curiously, this expression allows for the limiting transition to
d! 0:

os�k� ' o0 � oM

2
���
p
p kl ; d5 l : �15:11�

16. Interaction between magnetostatic waves
and phonons in a plate (kinematics)�

Dissipative processes in ferromagnetic plates have not until
recently attracted much attention. This is first of all true of
dissipative processes in the region where MSW spectral
characteristics dictated by boundary conditions need to be
taken into account (see Section 14).

The present section largely based on the results obtained
in Ref. [29] focuses on the kinematics of interactions between
MSWs and phonons. We have chosen those one-phonon
processes (emission and absorption) which satisfy two condi-
tions:

(1) the process is not accompanied by changes in theMSW
symmetry,

o0

o

n � 4

n � 3

n � 2

n � 1

n � 0

k

Figure 16. The dependence of the first four exchange frequencies on the

wave vector k.
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(2) the translational vector of a phonon involved in the
process is uniform along the plate normal, i.e. the quasiwave
vector of the phonon has two non-zero components (fx and
fy). Therefore the phonon dispersion law is

O � sf ; f � �fx; fy; 0� : �16:1�

It has been shown that the interaction with such phonons
makes the major contribution to the probability of MSW
suppression (at least at limiting parameter values). Here, we
are especially interested in kinematics of the interaction
process. Conceptually, this section overlaps Section 7.

In order to be confined to themagneto-dipole approxima-
tion, i.e. to ignore non-uniform exchange interactions, we
assume that the following inequality is satisfied:

o0 � oM 5
s2

2oexa2
�16:2�

(the notations are as above).

16.1 Phonon emission
The laws of conservation of energy and momentum are:

k � k0 � f ; on�k� � on 0 �k 0� � O� f � : �16:3�

The MSW dispersion law is given by formula (4.11) supple-
mented with Eqns (4.10) and (4.10 0).

Let n � n 0 � 0 and kd5 1.{ Then, the MSW dispersion
law is very simple [see (4.12)] and (16.3) yields

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2 � a�kÿ k 0� ;

a � oMd

2s
; k > k 0 ; �16:4�

where j is the angle between two-dimensional vectors k and
k 0. It follows from (16.4) that

ÿ14 cosj � �k
2 � k 0 2��1ÿ a2� � 2akk 0

2kk 0
4 1 ; k 0 < k :

�16:5�

The equation has no solutions at a < 1 whereas at a > 1
emission creates an MSW with the wave vector k 0 from the
interval ��aÿ 1�k=�a� 1�; k�; according to (16.4), two angle
values, j�k 0� and 2pÿ j�k 0�, correspond to each k 0. Figure
17 presents possible values of k 0 � k 0�k;j�. The ends of the
vectors k 0 are located at the curve K between circumferences
with radii k and �aÿ 1�k=�a� 1�. At a! 1, the curve K
contracts to a straight line �0; k� at the axis j � 0 whereas
Eqn (16.4) undergoes degeneration to the equality cosj � 1,
i.e. j � 0 and j � 2p.

It follows from the formulas in the next section that the
probability of phonon creation at a � 1 turns into infinity as a
result of specific resonance: at a � 1, MSW and phonon
velocities are identical. However, one should recall that the
dispersion law (14.12) results from approximation. Reso-
nance situations need to be considered more carefully.
According to (4.10), the corrected dispersion law for an

MSW has the form

on�0 ' o0

�
1� oM

2o0
kdÿ oM

4o0

�
1� oM

2o0

�
�kd�2 � . . .

�
: �16:6�

Then, we have

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2 ÿ �kÿ k 0�

� �aÿ 1��kÿ k 0� ÿ
�
1� oM

2o0

�
d

2
�k2 ÿ k 0 2� �16:7�

instead of (16.4). This equation has the solution at
0 < aÿ 15 1 if the following condition is fulfilled:

1

2

�
1� o0

2oM

�
kd < aÿ 1 : �16:8�

It turned out that the process being examined has the
threshold at a5 1: it is necessary that the wave vector of
MSW �k� be smaller than kth

kth � 2�aÿ 1�
d

�
1� o0

2oM

�ÿ1
: �16:9�

Since kthd5 1, the expansions used are valid.
The estimated probability of phonon emission indicates

that the specification of the MSW dispersion law leads to the
elimination of infinity: the inverse lifetime shows the peak in
the dependence on the wave vector k without turning into
infinity (see Section 17).

The existence of the threshold at kd5 1 raises the
question: is there a threshold value of k when the parameter
a is significantly different from unity? To answer this
question, it is necessary to analyse the conservation laws
without expanding the dispersion law on�0�k� � o0�k� in
powers of kd. From (16.3),

cosj � k2 � k 0 2 ÿ �o0�k� ÿ o0�k 0�
�2
=s2

2kk 0
�16:10�

is readily obtained, and the condition for the existence of the
solution has the form

s�kÿ k 0� < o0�k� ÿ o0�k 0� : �16:11�
{This case is probably the most interesting one because the magneto-

dipole patterns of the spectrum are especially prominent in the linear jkj-
dependence of o at jkj ! 0.

K

k0

k
j

2pÿ j

Figure 17. K-curve: the dependence of k 0 on the angle j for phonon

emission. The vector k is fixed, n � n 0 � 0, k 0�j � 0� � k, k 0�j � p� �
�aÿ 1�k=�a� 1�, kd5 1.
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The graphic analysis shows that the condition (16.11) is
satisfied if k < kth; naturally, kth has the former value (16.9)
at a ' 1, and at a4 1,

kth ' o0oM

s
�
o0 �

�
o0�o0 � oM�

�1=2	 : �16:12�

(The inequality a4 1 does not contradict (16.2) provided the
condition d4 aYC=YD,YD � ps=a is satisfied). It turned out
impossible to obtain a non-analytical expression at an
arbitrary value of a. Writing down the expression (16.12) in
terms of a and assuming that o0 and oM are of the same
order, we come to the conclusion that in the given case
kthd � a4 1 (which is certainly not at variance with ka5 1).

At k4 kth, the range of quasimomentum values of arising
MSWs is very narrow and further shrinks to a point at
k! kth:

k 0min 4 k 04 k 0max ;

k 0min � �kth ÿ k�
�
sÿ

�
qo0�k�
qk

�
k�kth

�
1

s�a� 1� ;

k 0max � �kth ÿ k�
�
sÿ

�
qo0�k�
qk

�
k�kth

�
1

s�aÿ 1� : �16:13�

It can be shown that the angle j at the ends of the interval
equals p and 0.

A kinematic analysis of phonon creation is necessary to
calculate MSW lifetimes (Section 17). It is important to
emphasize that magnon dispersion due to the non-uniform
exchange interactionmay also account for the existence of the
threshold (see Section 7):

k ex
th �

s

2oexa2
:

The described threshold is possible to observe if kth is smaller
than k ex

th , which is the case when the condition (16.2) is met.
The anomalous dependence of the MSW frequency on n

explains why phonon emission by an MSW with n � 0 may
give rise to an MSW with n 0 > 0.

Let kd5 1. The same line of reasoning as before leads to
the conclusion that when an MSW with n � 0 decomposes
into a phonon and an MSW with n 0 6� 0, the following
relation for k 0 [analogous to (16.4)] is satisfied:

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2 � ak : �16:14�

This equation does not include n 0 because the term �k 0=n 0�2 is
omitted, being negligibly small as compared with other terms.
Equation (16.4) has the solution at arbitrary a. At a < 1, the
angle j is subject to the constraint

j sinjj < a : �16:15�

Possible values of k 0 are presented in Fig. 18a. There are two
solutions Ð two functions of k 0�j�. For one,

min k 0�j � 0� � k�1ÿ a� ;

for the other,

max k 0�j � 0� � k�1� a� :

At the intersection point,

k 0�j � arcsin a� � k
�������������
1ÿ a2
p

; a < 1 :

Let us now examine phonon emission by an MSW with
n 6� 0, assuming that kd5 1, as before. The emission is
possible only if qn 0 > qn (see Section 14). The conservation
laws in the first non-vanishing order in kd lead to the
following equation:

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2 � ad
p2

�
k2

n2
ÿ k 0 2

n 0 2

�
: �16:16�

For the solutions to exist, the following inequalities should be
fulfilled :

j sinjj < a
p2

�
1

n2
ÿ 1

n 0 2

�
kd5 1 ; �16:17�

jc

b

k

K2K1

jc

a

K2

K1
k jc

c

K1

K2

k

Figure 18. Curves K1 and K2: the dependence of k
0 on the angle j. Possible k 0 values upon phonon emission for n � 0, n 0 > 0, kd5 1 (a), n > 0, n 0 > n,

kd5 1 (b) and for n > 0, n 0 > n, kd4 1 (c) (see the text).
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i.e. the interval of possible angles j is very small. An MSW
does not virtually change its direction upon emission of a
phonon. Figure 18b shows possible values of k0. There are
two solutions for k 0�k� (lines K1 and K2). For one of them,

max k 0�j � 0� � k

�
1� a

p2

�
1

n2
ÿ 1

n 0 2

�
kd

�
;

for the other,

min k 0�j � 0� � k

�
1ÿ a

p2

�
1

n2
ÿ 1

n 0 2

�
kd

�
;

and for both,

k 0�jc� � k

(
1ÿ

�
a
p2

�
1

n2
ÿ 1

n 0 2

�
kd

�2)1=2

:

The jc value is very small.

sinjc �
a
p2

�
1

n2
ÿ 1

n 0 2

�
kd :

Small kd (longwaves) are characterized by closeness to the
point of condensation. At kd4 1, there is also a condensation
point. Let us consider phonon emission at kd4 1. If phonon
emission occurs without a change in the MSWmode number
�n 0 � n�, the wave with n � 0 is in no way singled out. Always
qn 0 > qn and k 0d4 1 together with kd4 1. It follows from
(16.3) that

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2

� p2

2s

o0oM�n 0 2 � 2n 0 ÿ n2 ÿ 2n��
o0�o0 � oM�

�1=2�kd�2 ; n 05 n : �16:18�

In accordance with (16.8), the range of possible angles j is
very small, of the order of �kd�ÿ3. Figure 18c shows possible
values of vector k0. There are two solutions for k 0�j� (linesK1

and K2). For K2,

max k 0�j � 0� � k

�
1� B

k3

�
:

For K1,

min k 0�j � 0� � k

�
1ÿ B

k3

�
:

At the intersection point,

k 0�jc� � k

�
1ÿ

�
B

k3

�2�1=2
; sinjc �

B

k3
;

B � o0oM

2
�
o0�o0 � oM�

�1=2 p2�n 0 2 � 2n 0 ÿ n2 ÿ 2n�
sd 2

:

16.2 Phonon absorption
The contribution of this process to the inverse time of an
MSW with n � 0 at kd5 1 is much smaller than that of
emission. However, this contribution becomes critical for an
MSWwith n 6� 0. Therefore, we shall confine ourselves to the
case of n 6� 0.

Let us suppose n 0 to be zero since the probability of
processes with all other values of n 0 6� 0 is significantly
smaller. It follows from the conservation laws that

�k2 � k 0 2 ÿ 2kk 0 cosj�1=2 � ak 0 ; k 0 > k : �16:19�

There are no restrictions on the angle at a > 1, and k 0 values
lie in the region�

k

a� 1
;

k

aÿ 1

�
; �16:20�

and

max k 0�j � p� � k

aÿ 1
; min k 0�j � 0� � k

a� 1
:

There are restrictions at a < 1:

sin2 j < a2 : �16:21�
Also, there are two values of k 0 for each k;j [29]. For one of
them

max k 0�j � 0� � k

1ÿ a
;

for the other

min k 0�j � 0� � k

1� a
;

and for both

k 0�j � arcsin a� � k

�1ÿ a2�1=2
:

To avoid misunderstanding, it should be noted that the
emission and the absorption are not reciprocally inverted
processes. Either has its own inverse process. Concurrently, k
and k0 change places. The direct and inverse processes are
identical in terms of kinematics.

17. Lifetimes of magnetostatic waves
and phonons�

This section deals with MSW lifetimes [29] during the
processes kinematically characterized in Section 16.

Quantization is performed by the standard procedure
using the Holstein ± Primakov expansion. The interaction
Hamiltonian is limited by a simple invariant (as in Section 8)

Hint � g
�
MiMkuik dv ; �17:1�

where g is the magnetoelastic constant and uik are the
components of the strain tensor. We are interested only in
one of the four types of acoustic oscillations present in the
plate whichmakes amajor contribution toMSWdecay. It has
been noted in Section 16 that the translational vector in this
wave is homogeneous in the z-coordinate.

The MSW lifetime tÿ1n �k� is constituted by the contribu-
tions of three one-phonon processes two of which, phonon
emission and absorption by an MSW, were described earlier
while the probability of the third one (phonon creation by the
fusion of two MSWs) contains the exponentially small factor
exp�ÿ�ho=T�. Therefore its contribution in tÿ1n �k� may be
neglected.

Let us first consider phonon emission by a symmetric
MSW at n � n 0 � 0, kd5 1 and a > 1 (there is no such
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process at a < 1). It gives rise to two new parameters kM and
kth (from a and d). Let kthd5 1 [see (16.9) and (16.12)]. Then,�
t00�k��ÿ1 6� 0 in the wave vector range from k � 0 to k � kth.
The dependence of the inverse MSW lifetime shows max-
imum at a certain value of the wave vector k � kM (Fig. 19).
In the peak of the curve at a5 1,

1

t00max

� g2k3th
215r�aÿ 1�1=2d

T

s
; T4 �hoMkthd ;

�hkth
s

; T5 �hoMkthd :

8>><>>: �17:2�

At a4 1,

kM ' 1

d

"
27

pa

�
o0

o0 � oM

�1=3
#1=4

;

�
1

t00�k�
�
max

' �ggM�2�h
25p2ro2

0d
5

�������������������
o0

o0 � oM

r
a2 : �17:3�

In the beginning of the curve at kd5T=�hoM,

1

t00�k� �
�ggM�2T�kd�2k2

210prd3o2
0s

��������������������������
2�aÿ 1�kthk

p : �17:4�

The inverse lifetime
�
t00�k��ÿ1 vanishes according to a linear

law at k! kth.

When values of k are close to kth and the parameter a is not
close to unity,

1

t00th
� �ggM�

2�h

26rd 3

ak3th
�a2 ÿ 1�3=2

1ÿ ÿqo0�k�=qk
�
th
sÿ1

o0�o0 � skth�

�
�
sin�q0d�

q0

�2
th

�kth ÿ k�
1; T5 �hskth ;
T

�hskth
; T4 �hskth .

8<: �17:5�

Here, q0 is the zero solution of Eqn (14.10).

As a grows from 1 to a4 1, the curve in Fig. 19 retains its
shape but the peak is `shifted' to the right, i.e. towards higher
k.

The probability of phonon emission at n � 0, as theMSW
passes towards the state with n 0 > 0 at kd5 1 (i.e. of the
process with a change in the mode number), is significantly
smaller than that of the process described above (without a
change in the mode number). Therefore, we present the
expression for

�
t0n

0 �k��ÿ1 only for the case of a < 1 in which
the process without a change of the mode is impossible:

1

t0n 0 �k� �
1

2n 0 4

�
g
8p

�2 o2
M

o3
0

a4�a2 � 1�
rd 5

�
�kd�5T ; kd5

T

�ho0
5 1 ;

�kd�6�ho0 ;
T

�ho0
5 kd5 1 :

8>><>>: �17:6�

The summarized probability
�
t0�k��ÿ1 that an MSW emits a

phonon of the zero mode with all n 0 values is approximately
equal to

�
t00�k��ÿ1 at a > 1 while at a < 1,

1

t0�k� '
1

2

�
g
8p

�2 o2
M

o3
0

a4�a2 � 1�
rd 5

�
�kd�5T ; kd5

T

�ho0
5 1 ;

�kd�6�ho0 ;
T

�ho0
5 kd5 1 :

8>><>>: �17:7�

However, the probability
�
t0n

0 �k��ÿ1 at a > 1 (not presented
here) differs from zero and hence the summarized prob-
ability of phonon creation at k > kth is also other than zero.
The presence of threshold is suggested by the inflection of
the curve which describes the dependence of the inverse
MSW lifetime on the wave vector. For the phonon emission
by an MSW with n 6� 0 at kd5 1, the following formula is
valid:

1

tnn 0 �k� �
1

2n6

�
g
8p

�2
�ha4

rd 5
�kd�10

�
1� n

n 0

�2
"
1�

�
n

n 0

�2
#2
;

T

�ho0
5 kd5 1 : �17:8�

We do not present here the formula for
�
tnn

0 �k��ÿ1 at
kd5T=�hoM because the major contribution to the suppres-
sion of an MSW with n > 0 is made by phonon absorption
rather than emission.

The MSW spectrum shows two condensation points. The
inverse lifetime is of interest only at kd4 1:

1

tnn 0 �k� �
�ggM�2�h
27pdrs2

A2�kd�ÿ6 ; 15 �kd�2 5 �hsA

T
;

TA

�hs
�kd�ÿ4 ; �kd�2 4 �hsA

T
4 1 :

8>><>>: �17:9�

Here, we use the notation

A � o0oMp2�n 0 2 � 2n 0 ÿ n2 ÿ 2n�
2
�
o0�o0 � oM�

�1=3
s

:

kM kth k

1=t00

Figure 19. The dependence of �t00�k��ÿ1 on k upon phonon emission

�a5 1; kd5 1�; k � 4�aÿ 1�=d�2� oM=o0�.
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�tnn�ÿ1 � 0 since A � 0 at n � n 0. This formula cannot be
used to calculate the total phonon emission time

1

tn
�
X
n 0

1

tnn 0
:

Consideration of limiting cases allows for the estimation of
the order of the MSW inverse lifetime resulting from
phonon emission. Assuming a5 1 and o0 � oM, it is easy
to see that

1

tem�k� �
g2�h
rd 5

f �kd� ; �17:10�

and the function f�kd� the form of which (at kd5 1 and
kd4 1) is not difficult to deduce from the above formulas has
the maximum at kd � 1, with fmax � 1. Therefore,�

1

tem

�
max

� g2�h
rd 5

: �17:11�

Of course, it is a very rough estimate because we have omitted
all dimensionless multipliers.

The computation of the inverse lifetime dependent on
phonon absorption by a symmetric MSW yields

1

tn�k� �
�ggM�2a4
26p3o2

0oMr
k5T

n2
; kd5

T

�hoM
: �17:12�

At kd4 1, the contribution of phonon absorption to the
inverse lifetime is significantly smaller than that of phonon
emission (the corresponding formula is not presented).

Summarizing the results obtained for the twoMSWdecay
processes (the contribution of the third process being
exponentially small), it is appropriate to present the graphic
dependence

�
tn�k��ÿ1 at d4 dex (Fig. 20). At a � 1, the

maximum of the first curve lies outside the wave vector region
kd � 1 [see (17.10)].

Let us briefly discuss suppression of an antisymmetric
MSW. The main contribution to it at kd5 1 is made by
phonon emission. All calculations are similar to those for the
case of the symmetric wave when n > 0 (formally, pn is
substituted by pn� p=2). The process is possible only if

n 05 n:

1

tn�k� �
�ggM�2
212p4o2

0

�ha4d 5k10

r�n� 1=2�8

�
1 ;

2pn2T
�hoM

5 �kd�2 5 1 ;

2p2n2T

�kd�2�hoM

; �kd�2 5 2p2n2T
�hoM

:

8>>><>>>: �17:13�

There is no necessity to specially consider anMSWwith n � 0
because in this case the frequency o0�k� shows quadratic
dependence on k at k! 0.

In order to obtain
�
tnn

0 �k��ÿ1 at kd4 1, suffice it to
substitute n� 1=2 by n� 1 and n 0 � 1=2 by n 0 � 1 in (17.9).
The lifetime grows with the mode number as in the case of
symmetric MSW. It is clear from the comparison of the
formulas for symmetric and antisymmetric MSW that the
lifetime of the former at the smallest kd is shorter than that of
the latter whereas the lifetimes of both are of the same order
when kd have maximum values.

It is worthwhile to emphasize two facts:
(1) The lifetime of an MSW in all above cases is virtually

dependent on the wavelength (wave vector k). MSW experi-
ments are usually carried out at a fixed frequency o, with the
magnetic field being the parameter to measure. Inverting the
dispersion law, it is easy to express k through H (recall that
o0 � gH and H4o=g) which allows the dependence of
MSW lifetime on the magnetic field to be found.

(2) The most interesting of the above findings are the
existence of threshold values of the wave vector k � kth
(hence, magnetic field H � Hth < o=g), quasiresonance
peaks of the k �H�-dependence of the lifetime, and certainly
inflections atH � Hth when one of the scatteringmechanisms
proves to be `out of the game'.

Taking into account the MSW±phonon interaction
allows effects of two-magnon processes to be estimated not
only on MSW attenuation but also on the suppression of
phonons. If phonon energy is smaller than the double
magnon energy, phonon decomposition into two MSWs is
forbidden, and two-magnon processes lead to the exponen-
tially long (in terms of temperature) phonon lifetime.

Let us consider a phonon with very small wave vector
f! 0 and homogeneous in z, taking into account its interac-
tion with a symmetric MSW. Merging of two MSWs and the
resulting creation of a phonon are impossible at f! 0 (this
may occur only if sf > 2o0).

The conservation laws for phonon absorption and emis-
sion by anMSW in the case of nÿ n 0 � 0 are fulfilled only at
a > 1, and the inverse lifetime of a phonon is

1

t00ph� f �
� 3!

28p3
a

�a2 ÿ 1�1=3
g2T

rd 4oM

�
T

�hoM

�2

exp

�
ÿ �ho0

T

�
f :

�17:14�
When aÿ 15 1, more exact formulas are needed for inverse
lifetime computations, in order to eliminate the divergence
(17.14) at a! 1:

1

t00ph� f �
� �aÿ 1�1=2

212 � 21=3p3
oM

o0�o0 � oM=2�
��hoM�2
rd 4T

� exp

�
ÿ �ho0

T

�
f ; aÿ 15 fd : �17:14 0�

� 1 kdkthd

1

t
g2�h
rd 5

� �ÿ1

Figure 20. Qualitative wave vector dependence of the decay time of an

MSW interacting with phonons. Solid line gives the dependence of

1=t0�k�; it has an inflection at k � kth. Dashed line plots 1=tn�k� at

n > 0. Maximum inverse lifetime is estimated only up to the order of

magnitude, the exact value of �1=t��g2�h=rd 5�ÿ1 largely depends on the

parameters of the system.
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The appearance of the small factor �aÿ 1�1=2 is compensated
by the large one ��hoM=T�4 (recall that T5 �hoM; �ho0).

The conservation laws with n � 0, n 0 > 0 are satisfied at
any a.

Following summation over n 0 > 0, the corresponding
contribution to the inverse decay time of phonon is

1

t0; n
0>0

ph � f � �
g2�h2s4f 6

27p4d 3roMo2
0T

exp

�
ÿ �ho0

T

�
: �17:15�

The contribution of the terms with n > 0, n 0 > 0 is signifi-
cantly smaller and may be neglected, along with the contribu-
tion from the interaction with an antisymmetric MSW.

To conclude, the inverse lifetime of a phonon in plates
with a < 1 is defined by formula (17.15) and at �aÿ 1�4 fd,
by formulas (17.14) and (17.15); note that only formula
(17.15) may be used if T5 �hO� f �� fd�1=4 and only (17.14) if
T4 �hO� f �� fd�1=4.

18. Antiresonance. Selective transmittance
of ferromagnetic metal plates

Both theorists and experimenters have long paid much
attention to the properties ofmetal plates. It is hardly possible
to list all relevant problems attacked by physicists as well as
those awaiting solution. Naturally, one focus of interests is
metal plate properties responsible for the ability of electrons
to reach one side of the plate after starting from another
practically without collisions, that is when ld4 1, where l is
the average free path and d is the plate thickness.

In ferromagnetic and other magnetic plates, the magnetic
excitation spectrum is significantly different from that in an
infinite magnet. If electron andmagnon systems are supposed
to be quasi-independent, i.e. coupled only due to effects of
retardation (see Section 11), conduction electrons must
manifest themselves in renormalization of the dispersion law
for surface magnetic polaritons (Section 13) responsible for
their decay associated with electron dissipation.

In the transition from magnetic polaritons to MSWs
(Section 14), it is possible to retain the terms involving
conductance, to be able to calculate electron damping
coefficient for MSWs. To our knowledge, this procedure has
never been examined in detail. It should be mentioned that
this problem is very complicated if one considers the
dependence of the electron subsystem on collisions not only
with plate bounds but also with impurities, phonons, and
magnons, along with the influence exerted by the average
magnetic field B � H� 4pM on conduction electron
dynamics. True, the problem appears to lend itself to solution
on a step-by-step basis since it is difficult to perceive that all
factors responsible for its complicated nature are equally
important at one time.

This section deals with the modification of electromag-
netic properties of metals by the magnetic subsystem or, to be
precise, by dispersion of magnetic permeability. To better
illustrate the role of magnetic permeability dispersion, we
disregard effects of the limited sample size and the magnetic
field on conduction electrons. This means that the following
conventional relation between the electric field strengthE and
current density j (Ohm's law) holds:

j � sE ; �18:1�

where s is specific metal conductivity.When solving problems
of electrodynamics, it is sometimes convenient to use the
inverse tensor of magnetic permeability n̂ � m̂ÿ1 rather than
the tensor m̂ itself. Then, the magnetic material equation has
the form

ha � nabbb ; a; b � x; y : �18:2�

Axis z coincides with the direction of the wave vector k, and
the two-dimensional nature of (17.2) is the result of bz � 0 due
to the absence of magnetic charges (the induction vector b is
always transverse, divb � 0). For a ferromagnet under the
same conditions as before,

n̂ �

o2 ÿ oAM�oAM ÿ 4pgM cos2 y�
o2 ÿ o2

AM

i
4pogM cos y
o2 ÿ o2

AM

ÿ i
4pogM cos y
o2 ÿ o2

AM

o2 ÿ oAMo0

o2 ÿ o2
AM

0BBB@
1CCCA ;

�18:3�
where

oAM � gB � g�H� 4pM� �18:4�

is the antiresonant frequency (see the Introduction) and y is
the angle between z-axis (or k) and H (H also includes the
anisotropy field). Physical nature of antiresonance is appar-
ent from formula (18.4), where oAM is the free precession
frequency of vector h (at b � 0). It is noteworthy that the
antiresonant frequency, unlike resonant one, does not depend
on the direction of wave propagation (on angle y). This may
be due to the absence of effect of the demagnetizing factor at
b � 0.

The matrix n̂ for elliptically polarized waves is diagona-
lized:

h� � n��o�b� ; h� � hx � ip�hy ;

p� �
oAM sin2 y�

������������������������������������������������
o2

AM sin4 y� 4o2 cos2 y
q
2o cos y

;

n� �
�
o2 ÿ o2

AM � 2pgM
�
�1� cos2 y�oAM

�
���������������������������������������������������������������������������������
�1� cos2 y�2o2

AM � 4�o2 ÿ o2
AM� cos2 y

q ��
� �o2 ÿ o2

AM�ÿ1_: �18:5�

The component nÿ remains finite in antiresonance (at
o � oAM) while n� is converted into infinity. This allows
polarization of the freely precessing field h to be determined
(p� � cosÿ1 y at o � oAM).

Naturally, we shall be further interested in a wave with
polarization p� for which values of n� at y � 0 and y � p=2
can be written down:

n� �

oÿ o0

oÿ oAM
; y � 0 ;

o2 ÿ o0oAM

o2 ÿ o2
AM

; y � p
2
:

8>>><>>>: �18:6�
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At an arbitrary angle y near resonance,

n� ' 2pgM�1� cos2 y�
oÿ oAM

; o ' oAM : �18:7�

The dispersion equation, a corollary of Maxwell's equations
with material equations (18.1) and (18.2) [see also (18.5)],
allows the wave vector of a `�'-wave to be determined:

k2 � 4pios
c2n��o� : �18:8�

Near antiresonance,

k2 � 2pioAMs�oÿ oAM�
gM�1� cos2 y� : �18:7 0�

A fewwords are in order about the surface impedance of a
ferromagnetic halfspace. As is known, the surface impedance
z in the case of optically dense medium is a sufficiently
complete electromagnetic characteristic of the surface. This
means that z is unrelated to the shape (direction and
polarization) of the wave incident onto the surface. There-
fore, first, it can be computed based on the simplest
assumption of normal wave incidence and, second, may be
used to formulate effective boundary conditions (Leonto-
vich ±Fock conditions) for the solution of external (with
respect to an optically dense body) problems of electrody-
namics. The situation is more complicated in the case of a
magnet. It has been noted in the Introduction that the
refractive index n � �em�1=2 and impedance z � �m=e�1=2 are
not related by the simple expression{ �z 6� 1=n� and the
smallness of the impedance �jzj5 1� does not automatically
imply high optical density (not always jnj4 1). This accounts
for the dependence of the impedance on the wave shape.
Indeed, in the case of oblique incidence, the impedance is
either

z1 �
����������������������
emÿ sin2 y

q
e

or z2 �
m����������������������

emÿ sin2 y
q :

Here, y is the angle between k and the normal to the surface
while subscripts 1 and 2 correspond to polarization of the
electric vector at the plane of incidence and in the perpendi-
cular plane. It is clear that z1 and z2 are significantly different
even at jej4 1, and one cannot neglect y-dependence near
antiresonance.

Considering normal incidence of an electromagnet wave
with the polarization p� onto a metallic halfspace, it is easy to
obtain

z� �
ock
4pis

: �18:9�

The wave vector k is defined by (18.7) and (18.7 0), i.e.

z� �
����������������������

o
4pisn��o�

r
: �18:10�

Near antiresonance,

z� '
�������������������������������������������������

oAM�oÿ oAM�
4pis � 2pgM�1� cos2 y�

s
: �18:11�

Thus, the impedance vanishes in the root-like manner at
o � oAM. The fact that the spatial dispersion of magnetic
permeability necessary for the estimation of the impedance
singularity in antiresonance has to be taken into account
indicates that the impedance z� has a small addition near
the antiresonance because a part of energy of the electro-
magnetic wave is carried away by a magnon. By the order of
magnitude,

zex �
oAM

ckex
; kex � 1

a

�
oAM

oex

�1=2

:

Strictly speaking, the singularity at o � oAM should be
separated by examining the derivative of z� � z��o� rather
than the dependence itself because this derivative goes into
infinity at o � oAM as �oÿ oAM�ÿ1=2.

Finally, let us consider the passage of an electromagnetic
wave through a plate as thick as 2d (it occupies the layer
jzj4 d). The observation of selective transmittance of a thick
metal plate (far from the antiresonance d5 d) led to the
discovery of antiresonance in 1969 [30]. Let us suppose that
an incident wave has the polarization p� (it is justified because
the plate shows no anomalous transmittance for a wave with
the polarization pÿ). If a wave with the unit amplitude falls
onto a dielectric plate, the amplitude of the wave b that passed
through the plate is given by the following expression:

b � iz exp�ÿ2ik0d��
cos�kd� ÿ iz sin�kd���sin�kd� � iz cos�kd�� ; k0 � o

c
;

z �
���
m
e

r
; k � o

c

�����
em
p

; m � 1

n�
: �18:12�

For the dielectric, both e and m are real quantities. Transmit-
tivity is

jbj2 � m
e

�
m
e
� 1

4

�
1ÿ m

e

�2

sin2�kd�
�ÿ1

�18:13�

at m > 0 or

jbj2 � m
e

�
m
e
� 1

4

�
1ÿ m

e

�2

sinh2�kd�
�ÿ1

at m < 0. In antiresonance (o � oAM, m � 0),

jbj2 �
�
1� o2e2d 2

c2

�ÿ1
: �18:14�

For a metal, e � 4pis=o, and if z is neglected as compared
with unity, we have

jbj2 � c2

16p2s2d 2

2x2

sinh2x� sin2 x
;

x �
���� 2dd

���� ; d � c��������������
2psom
p : �18:15�{For simplicity, this paragraph focuses on an isotropic magnet with

dielectric permittivity andmagnetic permeability e and m respectively (as in
the Introduction).
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Maximum transmittance

jbj2max �
c2

16p2s2d 2
�
�
ds
d

�2

; ds � c

4ps
�18:16�

is not great since ds � dL=oLt is significantly smaller than the
interatomic distance (dL � c=oL, a o2

L � 4pne2=m�,
t � l=vF). However, transmittivity is many orders of magni-
tude higher than that for ordinary plates (non-magnetic or
magnetic at o 6� oAM) due to the non-exponential thickness
dependence. The function of x describes the shape of the
transmittance line which narrows as the plate becomes
thicker.

Magnetic dissipation was disregarded in this section.
Naturally, all the above formulas are valid with good
accuracy if m 005 1 ato � oAM. This means that antiresonant
frequency must be significantly different from resonant one.
In an antiferromagnet of the EA type at H < HSF, zero and
infinite values of meff are very close, and antiresonance is
difficult to observe based on selective transmittance of the
plates.

Selective transmittance of ferromagnetic plates was dis-
covered 25 years ago (predicted 10 years earlier [31]) but failed
to be used for practical purposes (notwithstanding its obvious
technological implications). Nor did it become an additional
tool for the investigation of magnetic order although it may
serve for exciting electromagnetic field in a plate with spatial
distribution patterns totally different from those in other
cases (e.g. in resonance).

19. Conclusions

We have already mentioned that the concept of magnons
(spin waves) first formulatedmore than half a century ago has
not since undergone substantial modification. We are far
from the ambitious thought that the present review can
drastically change the situation. Yet, we hope that it
illustrates a variety of interesting problems in the framework
of the magnon concept which deserve attention of theoretical
physicists, to say nothing about many intricate properties of
magnets that remain to be elucidated.
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administration of the Institute whose support made this work
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A note by M I Kaganov: This review is published in the
special issue of Uspekhi Fizicheskikh Nauk (Physics Uspekhi)
celebrating the 80th anniversary of I M Lifshitz' birth.
Therefore, a few more lines will be in order.

We largely cited in the review recent papers and other
publications which we were unable to discuss with I M
Lifshitz. However, he had greatly influenced the development
of the macroscopic approach underlying this review. It is
tempting to believe that the reader was sensible to the spirit of
I M Lifshitz' school. When working on this review, it often
grieved me to think that many problems and ideas might have
been discussed with I M Lifshitz...
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