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Abstract. A review is presented of the theory of pattern forma-
tion in extended, dissipative, highly nonequilibrium systems.
Emphasis is placed on systems which, in addition to spatial
translations and rotations, have additional continuous symme-
try group(s). It is shown that the additional symmetry destabi-
lizes dramatically the ground state of the system thus causing it
to make a direct transition from a spatially uniform to a turbu-
lent state in an analogous fashion to the second-order phase
transition in quasi-equilibrium systems. Apart from the theore-
tical analysis, a discussion of experimental data is given.

To the respectful memory of I M Lifshitz.

1. Introduction

Iregarditas a great honour to have my paper published in the
special issue of Physics Uspekhi dedicated to I M Lifshitz on
the memorial of his 80th birthday. It is a great responsibility
too, bearing in mind the problems with which the present
review is concerned. In fact, the field the review belongs to,
namely self-organization and transition to chaos, attracted
much of I M Lifshitz’ attention during the last years of his life.
I personally believe that in spite of the fact that he has not
published any paper devoted to the subject, this was mainly
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due to the fact that he had been collecting information in this
field that was new to him. This preliminary work would most
certainly have been crowned with an article (or a series of
papers) laying down a programme of further progress, as had
been the case of his studies in polymer physics [1]. It would
have been... but it did not take place — this hope was dashed
by the premature death of I M Lifshitz.

The objective of the present review is to draw attention of
research scientists to selected results of recent studies on
pattern formation and transition to chaos in dissipative
systems. These results in many respects digress from tradi-
tional concepts in this field indicating that the symmetry of
the problem is of greater importance than it was believed to be
till now.

The review is addressed to a broad audience of both
specialists and non-experts. For this reason I shall try to
avoid, whenever appropriate, cumbersome mathematical
calculations, which are normally inseparable from the theo-
retical description of the problems and refer the readers to
original papers for details. This is supposed to allow to focus
on the key aspects of the analysis with special reference to
specific qualitative features of the phenomena of interest.

Terminology relevant to the problems discussed is this
review has not settled yet, and some authors read their own
thoughts into the terms which actually have quite different
sense. To avoid misunderstanding, I shall start with explain-
ing the meaning of special terms which the reader will
encounter below.

Distributed systems are any objects or phenomena
described by equations in partial derivatives (mainly, non-
linear ones). The term dissipative implies that the considered
systems are non-equilibrium and certain dissipative processes
occur. In the case of open systems (where energy is fed from
the outside to be further dissipated and eventually removed
from the system or released ‘to infinity’), ‘the energy flux
through the system’ is supposed to remain constant. This
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creates necessary prerequisites for the formation of stationary
non-equilibrium states in the system.

The problem of pattern formation and transition to chaos
in such systems is very broad and includes a wealth of specific
issues pertaining to hydrodynamic flows, the combustion
theory, phase transition kinetics, the theory of reaction-
diffusion systems of the Belousov—Zhabotinsky type, biol-
ogy, and even sociology and psychology (see, for instance,
Refs [2—4] and references therein).

Of the whole variety of issues, I have chosen to consider
systems with short-wavelength instability of spatially uniform
states and an additional continuous group of symmetry.
These terms also need to be specified.

To be concrete let us consider, by way of example,
convection in a horizontal fluid layer placed in the field of
gravity forces known as the Rayleigh—Benard problem. In
the simplest realization of this problem, both lower and upper
surfaces of the layer are kept at constant temperatures (77 and
T, respectively, with T > T»), that is the layer is heated from
below and cooled from above. Evidently, such a system is
open because energy (heat flux) comes in through the lower
surface and goes out through the upper one.

It is well-known (see, for instance, Ref. [5]) that as long as
AT =T, — T, is below a certain critical value (convection
instability threshold or, simply, convection threshold), the
stationary state of a fluid in the absence of any hydrodynamic
motion is stable against (infinitely) small perturbations.
Hydrodynamic velocity of the fluid in such a stationary state
identically vanishes, and its temperature and pressure depend
only on one spatial coordinate, z, where z-axis is vertical.
Thus, the state of the fluid at the layer plane (plane xy) is
spatially uniform. Such spatially uniform states of a dissipa-
tive system are henceforth termed trivial.

However, the heated fluid at the bottom of the layer tends
upwards whereas the cool one atop is always ready to sink.
Therefore, the increasing difference between temperatures of
the lower and upper surfaces of the layer must eventually
result in a hydrodynamic flow, that is in a loss of stability of
the stationary spatially uniform state.

It is essential that the continuity equation does not allow
such a flow to be realized in the spatially uniform manner: the
bottommost layer can not rise as a whole since there would be
no room for the fluid above it to go. For this reason, any
convective flow inevitably results in a loss of spatial uni-
formity in the horizontal plane. This, in turn, creates a certain
spatial scale at this plane. On the other hand, the thickness of
the layer, d, is the only characteristic spatial scale of the
problem and is therefore responsible for the characteristic
horizontal scale of the flow.

In other words, exceeding convection threshold leads to a
spontaneous symmetry breaking of the system’s state. Mathe-
matically it is expressed as instability of the spatially uniform
state to spatially non-uniform perturbations described by
multipliers of the form

exp(yt +ik - r), (1)

where k is the two-dimensional wave vector of the perturba-
tion which lies in the xy plane and r = (x,y) is the
corresponding two-dimensional radius-vector.

The dispersion function y(k) in the Rayleigh—Benard
problem is purely real (Imy = 0 is aperiodic instability). It
follows from the previous discussion that
max {y(k)} = y(kc) = 0 at the instability threshold, and the
critical wave number k. satisfies the relation k.d ~ 2.

Therefore, the above account of the processes, leading to
the spontaneous creation of the characteristic scale of the
problem at the horizontal plane, arises from the consideration
of instabilities in systems with constrains (the upper surface
that constrains fluid’s motion) and conservation laws (of mass,
in this case) [4].

In view of the importance of this problem, it is worth to
examine it from a different standpoint. Recall that the
problem is isotropic in the horizontal plane, and, therefore,
y can not depend on the orientation of k in this plane;
actually, y(k) means y(k), and perturbations (1) may be
substituted by those of the form

exp(yt + ikx) (2)

without loss of generality.

Note further that the problem contains frwo physically
different mechanisms of dissipation, i.e., viscosity and heat
conduction, whose relative importance varies with changing
k. Let us consider two limiting cases, namely long-wavelength
(k — 0) and short-wavelength (kK — oo) perturbations. Tra-
jectories of a small element of fluid volume (fluid particle) in
case of long-wavelength and short-wavelength perturbations
are shown in Figs 1a and 1b, respectively.

Figure 1. Trajectories of a ‘fluid particle’ in case of long-wavelength (a) and
short-wavelength (b) perturbations of a spatially uniform state. Generally
speaking, the trajectories are not closed since the flow is not stationary.

In the case of long-wavelength perturbations, the large
characteristic size of the trajectory accounts for small values
of the horizontal projection of the temperature gradient
associated with the break of spatial uniformity (i.e., with
perturbation) because the magnitude of this projection is
inversely proportional to the horizontal size of the trajectory
(the upward and downward flows correspond to motions of
‘hot’ and ‘cold’ fluids, respectively). Therefore for such
perturbations thermoconductive dissipation is suppressed
whereas viscous dissipation is pronounced due to the large
trajectory length; it grows further with decreasing k. For this
reason, very long-wavelength perturbations are ‘energetically
disadvantageous’ and can not lead to instability.

On the other hand, for very short-wavelength perturba-
tions (Fig. 1b) viscous dissipation is relatively weak while
thermoconductive dissipation is strong due to the large
temperature gradient arising from the small horizontal scale
of the trajectory. Hence, such perturbations are also dis-
advantageous.

Competition between these two mechanisms is responsi-
ble for selection of the most ‘dangerous’ (i.e., leading to
instability) perturbations whose wavenumbers are neither
too large nor too small but have a certain finite value.

However, it should be borne in mind that such an
explanation for arising of characteristic spatial scale in the
problem is actually based on the minimum entropy produc-



February, 1997

Short-wavelength instability and transition to chaos in distributed systems with additional symmetry 161

tion principle [2], which holds exclusively for steady states and
only under the condition that deviations from equilibrium are
small. The application of this principle to strongly non-
equilibrium and (or) non-stationary problems may lead
sometimes to erroneous and even absurd conclusions.

Thus, the appearance of a spatial scale in the Rayleigh —
Benard problem is related to instability against perturbations
with certain finite wavenumbers. Such instability will be
referred to as short-wavelength in contrast to long-wavelength
instability, where the wave number region corresponding to
unstable perturbations begins at k = 0.

Formalizing the definition, it may be said that at the
short-wavelength instability threshold y(k) =0 (in a more
general case of a complex spectrum, Rey(k) = 0) at a certain
finite k = k.. Moreover, y(k) < 0 (Rey(k) < 0) everywhere in
the vicinity of k.. When short-wavelength instability thresh-
old is slightly exceeded, the instability zone k1 < k < k, with
y(k) > 0 (Rey(k) > 0) appears, where k » are finite quantities
depending on the magnitude of the excess (see Fig. 2).

Rey

Figure 2. The real part of a dispersion dependence y(k) in case of a short-
wavelength instability. Cases 1, 2, and 3 correspond to different values of
the control parameter: / — slightly below the instability threshold, 2 —
right at the threshold, 3 — slightly beyond the threshold. k. is the critical
wave number, k1 and k; are the boundaries of the instability zone.

I introduce here the concept of an instability zone because
further discussion will concern systems infinitely extended in
the direction of spatial uniformity of a highly symmetric state,
with k being a continuous quantity.

Now let us consider the problem’s symmetry which is of
paramount importance in the context of this review.

It should be emphasized that the problem’s symmetry is
the symmetry of equations and complementary boundary
conditions of the corresponding boundary-value problem
rather than the symmetry of its solution which is quite a
different thing. The fact is that the symmetry of all non-trivial
solutions discussed in the present review is lower than the
initial symmetry of the problem (spontaneous symmetry
breaking previously mentioned with reference to the Ray-
leigh — Benard problem).

Usually, problems of infinite spatial extent in a certain
direction are translationally invariant in the same direction,
i.e., the corresponding boundary problem remains unaltered
by transformations of coordinates like

r—r+a. (3)

Here r is a radius-vector (one- or two-dimensional, depending
on how the problem is formulated), and a is an arbitrary
constant vector of the same spatial dimension.

In the case of a two-dimensional vector r, we additionally
assume the isotropy of the problem in the corresponding

plane, i.e., rotational invariance with respect to an arbitrary
axis perpendicular to the plane of spatial uniformity.

Moreover, ‘left’ and ‘right’ are considered to be equivalent
(left-right parity), i.e., the problem is invariant with respect to
a change of the sign of vector r components (spatial
reflections).

Finally, the problem normally contains time only in the
form of derivatives which accounts for invariance with
respect to the time shift

t — t+ const. 4)

The whole set of the above symmetry transformations will
be referred to as the conventional symmetry. In certain cases,
however, the problem may have an additional continuous
one-parametric symmetry group. This implies the existence of
a group of transformations which differ from those described
in previous paragraphs and cause no change in the examined
boundary-value problem. Each transformation in this group
is unambiguously fixed by a particular value of one scalar
parameter (uniparametricity), which may vary continuously
in a certain segment, either finite or infinite (continuity). It is
important for the forthcoming discussion that the segment
includes the zero value of the scalar parameter.

Here are several examples of such problems. In the first
place, it is worth mentioning different formulations of the
problem of motion of phase boundaries during first-order
phase transitions and of chemical reaction fronts (e.g.,
combustion). In the case of steady motion of a plane
boundary (front), the problem is translationally invariant in
the direction of motion, unless the latter is governed by
external factors. Since the translation occurs in the direction
normal to the boundary plane (i.c., in the direction of broken
spatial uniformity), such a transformation can not be reduced
to (3) and is, actually, an additional symmetry. Problems of
this type exhibiting short-wavelength instability of plane
boundaries (fronts) have been considered in Refs [6, 7] (only
those references are selected which appear to be most
pertinent to the details of the problems discussed below).

Another example involves problems with Galilean invar-
iance, they undergo no change upon the transformation

0 0

0
vovtw, o et g (5)

see Refs [4, 8]. Here v is velocity and vy is an arbitrary
constant. It seems appropriate to remind that the discussion
concerns an additional one-parameter group of symmetry;
hence, the system is Galilean invariant with respect to only
one component of the velocity vector.

Another important and theoretically most thoroughly
developed problem is the Rayleigh— Benard convection with
free-slip or no-stress boundary conditions [4, 9—15]. This issue
is worth discussing at greater length.

When a layer of a fluid is enclosed between solid surfaces,
it follows from the natural boundary conditions that the
velocity of the fluid vanishes at these surfaces: v = 0 (rigid or
no-slip boundary conditions). Nevertheless, the majority of
theoretical works on the Rayleigh — Benard problem starting
from those by Lord Rayleigh himself [9, 10] proceed from the
concept of free-slip boundaries, v. = 0, Ov,,,/0z = 0. Indeed,
these boundary conditions are convenient to use by virtue of
the form of z-dependence of eigenfunctions for the stability
problem of the trivial state (v = 0). In the case of free-slip
boundaries, these eigenfunctions are reduced to ordinary
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trigonometric functions, which simplifies calculations sub-
stantially.

It is worthwhile to note that the boundary conditions
v. =0, Ov,,/0z =0 admit of persistent motion of a fluid
along such boundaries. Really, if the fluid moves as a solid
(i.e., the vertical component of its velocity is identically zero,
the horizontal components show no dependence on z, and
shear strains are absent), the viscous stress tensor correspond-
ing to such a flow vanishes identically and the flow becomes
non-dissipative. Evidently, two types of such flow are
conceivable. One is translational motion with constant
horizontal velocity, the other is rotation of the liquid layer
about the vertical axis at a constant angular speed. The
possibility to maintain a flow with constant horizontal
velocity leads to Galilean invariance of the problem discussed
in previous sections. It should be borne in mind, however,
that, notwithstanding the assumption of the infinite extension
of the fluid layer at the horizontal plane, such a formulation
of the problem is, actually, an idealization, and there are
always sidewalls under the real conditions which preclude
realization of a flow with non-zero mass transfer to ‘infinity.’
Therefore, Galilean invariance in the convective layer is
normally suppressed even though it may be restored in some
special cases.

However, if the translational motion of the liquid layer is
forbidden, there is nothing to hamper its rotation, which does
not lead to mass transfer to infinity: invariance of the problem
with respect to such rotations (analogs of Galilean invariance
for rotational motion) is the additional symmetry of interest.
It should be emphasized once again, to avoid misunderstand-
ing, that invariance in question is the one with respect to
rotations with an arbitrary fixed angular velocity contrary to
the conventional invariance under rotations through an
arbitrary angle.

It is worthy of note that despite experimental realization
of the free-slip convection is a difficult problem, the case is not
altogether hopeless (see, for instance, Ref. [16] and the
discussion of this question in Ref. [4]).

An analog of the Rayleigh—Benard problem for aniso-
tropic fluids (liquid crystals) is electroconvection in thermo-
tropic nematics [17—20]. Molecules constituting such a
substance have a shape stretched in a certain direction. In
the nematic phase, while the position of the center of mass of
each molecule is not fixed, the molecules are aligned parallel
to one another. Thus, the corresponding substance being a
fluid becomes anisotropic. In the electroconvection an AC-
voltage V' is applied to two parallel (usually transparentt)
electrodes confining a nematic layer whose typical width is
about 10—100 pum. Under conditions described in the above
references, a rise in J over a certain threshold value V. results
in the convective motion analogous to that observed in the
Rayleigh—Benard convection. In this case, unlike that of
thermoconvection, the system normally becomes thermo-
static, with the squared voltage playing the role of tempera-
ture difference between the upper and lower boundaries of the
layer and its frequency corresponding to the Prandtl number}
in thermoconvection.

Where does the additional symmetry come from in this
problem? The thing is that rigid surfaces bounding the
nematic layer are normally treated in such a way as to impose
the desired orientation of liquid crystal molecules in contact

T This allows to study the problem employing optical technique.
1 Ratio of kinematic viscosity to thermal conductivity.

with them. Let us consider the case of homeotropic orienta-
tion, where nematic molecules are aligned perpendicular to
the surfaces. In the absence of an external electric field, the
orientation of the molecules by the surfaces determines
molecular orientation throughout the layer.

What effect may an electric field have on such oriented
layer? It will be significantly dependent on the sign of
dielectric anisotropy of the nematic. I am interested in
negative anisotropy when molecules of a liquid crystal tend
to turn perpendicular to the field lines, that is their orientation
by the field is in conflict with the orientation imposed by the
boundary conditions.

It is well-known that such a situation is characterized by a
certain threshold voltage Vg. At V' < Vg the uniform home-
otropic distribution of molecules remains constant. At
V > Vg the Freedericksz transition occurs, and the equili-
brium orientation of the molecules becomes oblique relative
to the layer plane everywhere except a narrow subsurface
layer adjacent to the boundary surfaces [17—19].

Therefore, at V' > V' molecule axes have the a non-zero
projection on the layer plane, which yields anisotropy in this
plane. At the same time, all external factors that affect the
system, including the electrical field responsible for this
anisotropy, remain spatially uniform and isotropic at the
plane of the layer. For this reason the anisotropy axis may
randomly take any orientation.

Certainly, all states different only in the direction of the
anisotropy axis are physically equivalent. In other words, the
system undergoes a spontaneous break of isotropy in the
plane of the layer followed by degeneracy with respect to
rotations through an arbitrary angle about the axis perpendi-
cular to the layer plane [21].

In typical cases, Refs [22—24], the threshold of the
Freedericksz transition is lower than that of convection
instability. Therefore, the system’s state at the threshold of
convection is degenerated with respect to the above rotations,
which brings about the required additional symmetry.

It should be emphasized that a specific feature of this
problem is that symmetry with respect to rotations through
an arbitrary angle referred to as conventional in a previous
paragraph is actually an additional symmetry due to the
spontaneous breaking of the system’s isotropy.

It follows from these and many other examples that the
number of problems with short-wavelength instability of the
spatially uniform state and an additional continuous group of
symmetry is not so small. It will be shown below that in such
problems evolution of unstable perturbations is qualitatively
different from that in analogous systems without the addi-
tional symmetry. However, before undertaking the compar-
ison, it needs to be understood how such perturbations
behave in the conventional cases. This issue is briefly
discussed in the next Section.

2. Short-wavelength instability in conventional
systems

2.1 Universality of the Swift — Hohenberg

and Ginzburg—Landau equations

Let us turn back to the Rayleigh—Benard problem and
consider (at first, qualitatively) what happens with an
arbitrary small spatially non-uniform perturbation of a trivial
state upon a slight rise over the convection threshold.
Expanding such a perturbation in the plane xy in the Fourier
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integral and employing the superposition principle, which
remains valid till the Fourier transform amplitude is suffi-
ciently small, one arrives at the conclusion that at the early
stage evolution of each spatial harmonic is described by the
factor exp[y(k)7] (increment y(k) is shown in Fig. 2). It means
that regardless of the particular form of the initial perturba-
tion, almost all of its spatial harmonics undergo fast
exponential fall, except a narrow wave packet centered in
the vicinity of k = k.. Therefore, long-time behavior of the
problem will be determined by slow evolution of the modes
from this narrow packet.

Ata small rise over the threshold y,,,, = max{y(k)}isalso
relatively small (see Fig. 2). Since the characteristic time for
the instability development is determined by the inverse
increment value (i.e., by 1/7,,.4), the smallness of y..,. is a
quantitative measure of the process slowness. In practice,
however, it is more convenient to relate the slowness of the
instability development to the value of the control parameter
responsible for the stability or instability of the system. The
role of such a parameter in the Rayleigh — Benard problem is
played by the temperature difference, AT, between the upper
and lower surfaces of the layer or, to be precise, by a certain
dimensionless combination of problem constants called the
Rayleigh number, Ra, which is proportional to this difference
[4, 5]. Near the instability threshold, Rac, it is appropriate to
introduce the normalized or reduced control parameter,

Ra — Rac

8 )
Ra,

(6)

which will be referred to as a control parameter, for brevity.

It is clear that y,,,, is a certain function of ¢ satisfying the
condition y,,,, = 0 ate = 0. Assuming the dependence y,,,,(¢)
to be smooth and expanding it in powers of ¢, it is easy to see
that at small ¢ the quantities y,,,, and ¢ may be considered
proportional to each other.

Let us now turn back to dynamics of instability develop-
ment in the Rayleigh — Benard problem. As the amplitude of
unstable modes grows, the linear approximation becomes
inapplicable sooner or later, and non-linear mode coupling
should be taken into account. To understand the role of this
coupling note that the arising convective flow improves heat
exchange between the upper and lower surfaces compared to
that in a quiescent fluid. The improvement must decrease the
temperature difference between the top and the bottom of the
layer and hence diminish the primary cause of instability. In
other words, the non-linear mode coupling promotes stabiliza-
tion of the flow. For this reason it may be expected that the
asymptotic state of the system should correspond to hydro-
dynamic motion with relatively low characteristic velocities
— the lower the smaller ¢ (weakly non-linear regime), what
does agree with experiment [4, 5].

These features of the phenomenon are employed as a basis
to develop various versions of perturbation theory, where
non-linearity of the problem yields certain correction to the
eigenfunctions of the linear stability problem of the trivial
(non-convective) state. The important point of such an
approach is that the amplitudes of the eigenfunctions are
not arbitrary small constants any more — they are fixed at
certain small values obtained as a result of the analysis. These
studies initiated by the works of Gor’kov [25], Malkus and
Veronis [26], and Schluter et al. [27], now constitute a self-
contained area of hydrodynamic research (see the review of
recent progress in this field in Ref. [4]).

The initial equation in all versions of the theory is the
Navier — Stokes equation. The z-dependence of the solution is
assumed to be the same as for eigenfunctions of the linear
stability problem, the coordinate z is easily excluded and the
problem is reduced to a two-dimensional. It should be
emphasized that near the threshold of the short-wavelength
instability different problems exhibit certain universality. To
some extent the situation is similar to that in phase transition
phenomena. As well as in the latter case when peculiarity of a
given system in the vicinity of a transition point is reduced to a
set of critical exponents [28], peculiarities of a given dis-
sipative system near the threshold of the short-wavelength
instability are reduced to certain universal non-linear partial
differential equations [2—4].

The universal nature of these equations can be understood
in the framework of the phenomenological approach [4, 29]
tracing back to Landau’s basic works on the theory of phase
transitions [28, 30] and turbulence [31, 32]. Let us consider the
problem arising when z-dependence of the solution is already
removed, confining ourselves, for the sake of simplicity, to a
one-dimensional case, where the dependence of the solution
on the coordinate y is suppressed, say due to geometry
(convection in a long narrow container with the width close
to that of the layer). Let u(x,t) be the z-component of the
velocity at the midplane (the plane passing through the midst
of the layer), and Ui (7) be its spatial Fourier transform:

Ur(t) = % [u(x, 1) exp(ikx) dx.

It is clear that in the linear approximation Uy (#) must
satisfy the following equation (here and henceforth, y(k) is
taken to be purely real):

dUx

dt

Furthermore, it is worth to note, following Refs [31, 32],

that the right-hand side of Eqn (7) is actually the first term of

the expansion in powers of Ui. Adding to this expansion

terms of higher order, one obtains that in the most general

case the evolution equation must have the following form
[33]:

dUx

dt

= (k) Uk (7)

() Uk — Joc(lg i, Jos) Up, Und(k — Jet — o)
x dky dky - Jﬁ(k, ku, ka, ks) U, U, Us,

X(S(k—kl—kz—k3)dk1dk2dk3—... (8)

Here, a(k, ki, k2) and f(k, ky, ks, k3) are certain real coeffi-
cients (vertices, or matrix elements), while the J-functions
reflect the fact that non-linear mode coupling affects a mode
with a given wave vector k if and only if the sum of the wave
vectors of these modes is k.

Formally, integration in Eqn (8) is from plus to minus
infinity. However, it is clear from the above qualitative
features of the problem that the major contribution to the
integrals comes from the vicinities of the point k = k. and the
points k = nk., n = 0,41,+2, ..., which correspond to wave
vectors of the mode’s spatial satellites. Satellites appear due to
non-linear effects responsible for generation of multiple
spatial harmonics. It is essential that all satellites lie far in
the linear stability region (sincey(nk;) < 0, and its absolute
value is high at n # 1). On the other hand, the non-linear
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effects are weak, and each subsequent term on the right-hand
side of Eqn (8) has additional smallness in U. It is therefore
natural to suppose that characteristic values of U, decrease
with || increasing, and Ui with k ~ £k, have the highest
values.

Thus, the integrals on the right-hand side of Eqn (8)
actually split up into sums of integrals taken over small
vicinities of points k = nk.. In this case, assuming that
coefficients a(k, ki,ky) and B(k, ki, ko, ks) are smooth func-
tions of wave vectors, expanding them in small deviations of
each argument from the corresponding nk,, and restricting
ourselves to the main approximation (i.e., keeping only the
first non-trivial terms), we obtain that

ok, ki, ka) ~ a(nke, nike, noke) = const
in each vicinity. Similar considerations give

ﬁ(k7k17k27k3) = ﬁ(nkmnlkngkCan}kC) o~ const.

Certainly, the values of the constants are different for
different sets of n.

It has been already mentioned that the modes with k ~ k,
are of special interest. Let us suppose that k = k. + p in Eqn
(8), with p being a small quantity, and show that in this case
the quadratic term on the right-hand side of Eqn (8) is
actually of the third order of smallness and may be included
into the cubic one. Indeed, if the conjectural hierarchy of
distribution of characteristic values of U with the number 7 is
taken into account, this term in the main approximation at a
given k is divided into two integrals,

J%(k,k17k2) Uk1 U/CZ(S(k — k] — kg) dkl dk2
= 2{“(k07kmo) J Uk.+py Upzé(P —p1 —p2)dpidps
+ a(ke, 2ke, —ke) J Uskepy Uk p,0(p — p1 — p2) dp1 dpz},

©)

(factor 2 on the right-hand side of Eqn (9) appeared due to the
symmetry of coefficient o with respect to permutation of
‘dummy’ variables ky »: a(k, ki, ky) = a(k, ka, k1)).

Let us consider for certainty the first integral. Besides the
amplitude U, of the mode with k =k, it includes the
amplitude U, of a long-wavelength mode with small p;. In
turn, the equation for long-wavelength modes’ amplitudes in
the main approximation has the form

du,

= 1)Uy ~ 250, ke k) [ Uncop Ui

X 0(p—p1—p2)dpidps. (10)

It is worthwhile to note that temporal evolution of the
long-wavelength mode with & = p occurs generally due to its
non-linear coupling with short-wavelength modes with
k ~ k.. Therefore, the characteristic time of the amplitude
U, (t) changes coincides with that for Uy (¢); in other words, it

is of the order 1/y,,,,. Hence,
dUu
Tl‘p NymaxlUP| < 7(]7)UP|7 (11)

since y(p) =~ y(0) is a large negative quantity.

Condition (11) provides grounds for neglecting dU,/ dzin
Eqn (10), compared to y(p)U,. This allows U,() to be
expressed in the explicit form. Substitution of this expression
into Eqn (9) yields the formula

Ja(kCakCaO)Ukc+p| Up,0(p — p1 — p2) dp1 dps
 2u(ke, ke, 0)a(0, ke, —ke)
B 7(0)

X 5[(kc +p) = (ke +p1) = (ke +p2) — (—ke +P3)}
(12)

J U/ccﬂn U/cc+pz Ufkﬁpz

x dpidp2dps,

which has the same form as that of the main approximation to
the cubic term on the right-hand side of Eqn (8)1. The second
integral on the right-hand side of Eqn (9) is reduced to the
same form by a similar procedure.

Thus, the quadratic term on the right-hand side of Eqn (8)
is excluded and the equation in the said approximation takes
the form

dU
le = y(k)Ur — ﬂj U, U, Uy,

x 0(k — ky — ko — k) dky dk, dks (13)

where f is a constant which may be derived from
Bke, ke, ke, —k¢) if we take into account the symmetry relative
to permutations of dummy variables ki > ;3 and the contribu-
tions due to the exclusion of the quadratic term. Despite
actually integration in Eqn (13) is carried over a small vicinity
of ky = k¢, ko = k¢, and k3 = —k., it may be extended from
minus to plus infinity because of fast convergence of the
integrals.

Now let us discuss the dispersion relation y(k). Note that
invariance of the problem with respect to spatial reflections
dictates that y(k) must be the an even function of k, since the
replacement x — —x in x-space is equivalent to the replace-
ment kK — —k for Fourier transforms. Moreover, it follows
from the above that the most important partin Eqn (13) is the
region of k close to k.. Therefore, the true dependence y(k)
may be approximated in such a manner that the approxima-
tion is in quantitative agreement with the true dispersion
relation within the specified region, while outside of it only
qualitative agreement (viz y(k) < 0 and should not be small at
|k — k¢| = k) is sufficient. The simplest approximation of this
kind is represented by the expression

1) =+ [o = 07~ 2P

(14)
70

where 79 and &, are constants having the meaning of the
characteristic temporal and spatial scales, respectively.

Insertion of relation (14) into Eqn (13) supplemented by
inverse Fourier transform (with &k — —i0/0x) leads to an
equation which after scale transformation

e \2
Uﬂi(kcg()) U, t— to il
\/E (fokc)
xﬁkﬁ, e — (ke&o)e (15)

C

T This procedure is actually the exclusion of slaved modes from the
problem according to Haken’s approach [3]. Note also, it is clearly seen
from Eqn (10) that the conjectured hierarchy of the characteristic values of
the amplitudes does hold.
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is reduced to the following universal form:

du AN ;

i [a— < —l—@) }u—u .

Here, old notations are used for the new dimensionless
quantities, since it cannot cause misunderstanding. It is worth
noting also that Eqn (16) was derived under an implicit
assumption that the constant f is positive. When f > 0 the
non-linear term on the right-hand side of Eqn (13) has
stabilizing effect. When f# < 0 the same term destabilizes the
problem, and higher non-linearities need to be taken into
account to describe the problem adequately, as it was pointed
out already by Landau [31].

Eqn (16) known as the Swift— Hohenberg equation was
first derived (from the Navier—Stokes equation in a way
different from that described above) in the two-dimensional
form 0° /ox? — A,, where A, is the two-dimensional Lapla-
cian, to study the role of fluctuations in the Rayleigh — Benard
convection [34]. The importance of this equation for the
description of pattern formation in distributed systems was
perceived later (see, for instance, Ref. [4] for more details).

At the same time, Eqn (16) admits of further simplifica-
tion. To do this, the fast-oscillating part of the solution should
be singled out in an explicit form; in other words, u(x, ) must
be represented as

(16)

(17)

where (x,7) is a slowly varying function, an envelope. It
ought to be remembered that in new dimensionless variables
k. = 1 because now

1) = 3 [0, 1) expli) + (. 1) exp(—ix)]

p(k) =& — (k> —1)° (18)
[see Eqn (16)]. Substituting & in the form 1 + p, where p <+/e,
it is possible to rewrite Eqn (18) as

y(k) 23—4]72, (19)

where dropped terms are of order p* ~ &3/2.

On the other hand, representing U(x, ¢) and y/(x, ¢) in the
form of the Fourier integrals, it is easy to see that

oy

ip[y exp(ix)]p — exp(ix) e (20)

Therefore, the dispersion relation (19) in the x-representation
corresponds to the operatorf

2

i

21

where differentiation acts only on  and does not act on
exp(ix), in accordance with Eqn (20).

At last, raising the right-hand side of Eqn (17) to the third
power and omitting higher spatial harmonics, Eqn (16) can be
reduced to the form

3 o’ 3
e 15 2

T It is possible to obtain the same result by a much more complicated
procedure, substituting Eqn (17) into (16), taking into account that
QY /0x ~ /ey < because Y is slow, and retaining only the main
approximation in spatial derivatives.

The scale transformation

2 T €
X=X, (== =2,/2y 2
= 2x =Ly ft @)
yields the final form of this equation,
Yr=%xx+ (1-|PP)Y, (23)

where indices denote respective differentiations.

Eqn (23) is nothing but the well-known Ginzburg-—
Landau equation. It is noteworthy that this equation written
in the form (23) contains neither small nor large parameters,
all its quantities being of order of unity. Hence, characteristic
values of the initial variables can be estimated straightfor-
wardly from the scale transformation (22):  ~ /¢, the
characteristic spatial scale of (x, ) variations is of order
1/+/¢, and the characteristic temporal scale ~ 1/e.

It should be emphasized before proceeding further that
Eqn (23) is invariant with respect to the transformation
¥ — Yexp(ip), where ¢, is an arbitrary constant phase
(rotational invariance in the complex plane). This invariance
generates a certain conserved quantity maintained to be
equivalent to the angular momentum in the problem of a
classical particle dynamics in an axially symmetric potential.
The presence of an additional conservation law plays, in turn,
an important role in some specific problems, e.g., strict
selection of the wavenumber of a spatially periodic pattern
in a domain wall [35, 36].

It is essential, however, that the symmetry in question is
not an additional symmetry of the initial problem. It appears
upon transition from Eqn (16) to Eqn (23) due to approxima-
tions made during this transition. Such a symmetry is called
accidental and disappears in higher orders of the theory of
perturbations. Indeed, some terms omitted upon transition
from Eqn (16) to Eqn (23) (e.g., those of the form of
Y exp(3ix)) break this symmetry together with the conserva-
tion law mentioned in the previous section. The symmetry
breaking leads to certain qualitatively new effects related to
higher orders of perturbation theory [36].

In fact, these issues are beyond the framework of the
present review, but I could not help taking this opportunity
and drawing attention of readers to the insidiousness of
accidental symmetry. The overwhelming majority of equa-
tions used in theoretical physics are approximate and can be
supplemented with small (compared to the examined approx-
imation) terms. If these small terms reduce the symmetry of a
given problem, it is always the cause for expectation of
qualitatively new effects which may appear in association
with such terms, no matter how small they might be.

Let us turn back to the Swift—Hohenberg equation and
discuss how a problem changes if short-wavelength instability
is considered in two spatial dimensions. The starting point in
this case is again the evolution equation in the form (8) , where
scalar k must be now replaced by corresponding two-
dimensional vectors. This results in two qualitatively new
effects.

First, the quadratic term is of the second (rather than the
third, as before) order of smallness, as it should be, and can
not be reduced to the cubic one. When the problem contains
no special reason accounting for the numerical smallness of
coefficient a, it is not difficult to show (see, for example, Ref.
[33]) that explosive instability associated with the unlimited
growth of the amplitude of a hexagonal cellular pattern
occurs at & > 0.
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However, it should be noted that the quadratic term in
Eqn (8) breaks the invariance of this expression with respect
to change in sign of U;. Meanwhile, such an invariance in
certain problems follows from their symmetry. Specifically, in
the case of convection in a fluid layer placed between two
solid surfaces, the net force acting on an upflowing fluid
particle, overheated by 8 T'compared to the surrounding fluid,
is of the same magnitude (although opposite in sign) as that
for an analogous sinking particle overcooled by 67 and
located symmetrically with respect to the midplane. For this
reason, the profile of the x-component of the fluid velocity
must be invariant under reflections in the midplane, resulting
in symmetry of the problem with respect to Uy — —Uy, so
that a(k, ki, k,) = 0 vanishes identically.

When more subtle effects (e.g., temperature dependence
of viscosity) are taken into consideration, the symmetry
U, — —U; is broken. In such cases, the coefficient
a(k, ki, ky) does not vanish identically but remains small, in
conformity with the smallness of the mentioned effects. At
small «, the quadratic and cubic terms in the two-dimensional
version of Eqn (8) may be of the same order and both must be
taken into account.

Another qualitative difference between one and two-
dimensional versions of Eqn (8) is that the quantity
p(k,ki, ko, k3) is no longer constant even in the main
approximation in deviations of vectors k, ki, ks, k3 from k.
— it becomes a function of the rhomboid cone formed by the
four vectors:

ﬂ(k7 k] ) k27 k3)k:k|:k3:k3:k4:kc = ﬂ(e) .

Thus, in the two-dimensional case the Swift — Hohenberg
equation is no longer a universal equation describing weak
non-linear dynamics of a broad class of problems with short-
wavelength instability. The more general Eqn (8) is reduced to
the two-dimensional version of the Swift—Hohenberg equa-
tion if and only if a(k, ki, ky) = 0 and $(0) = const. Never-
theless, the two-dimensional Swift — Hohenberg equation and
its various generalizations provide good and rather simple
models whose study is beneficial for understanding certain
general aspects of pattern formation (see Ref. [4] for a detailed
discussion of these issues).

2.2 Spatially periodic solutions and their stability.
Eckhaus criterion
Now, it is appropriate to present a summary of major findings
pertinent to spatially periodic solutions of Eqns (16), (23) and
their stability (readers interested in details are referred to Refs
[4,37—-43)).

It is easy to see that Eqn (23) has a family of steady
spatially periodic solutions of the form

¥ =V1-—K2exp|i(KX + ¢g)] , (24)
which formally exist at any K < 1. Let us discuss stability of
these solutions for small perturbations. To this effect, it is
convenient to represent function ¥ as ¥ = Rexp(i®) and the
Ginzburg-Landau equation in the form

Rr=Ryy+ (1 — R* — ®3)R, (25)
1
¢T:ﬁ(R2d§X)X. (26)
Then solution (24) is transformed into
R=VI1-K?, ®=KX+¢q,. (27)

Linearizing the system (25), (26) about this solution and
representing the perturbed solution in the form

R=R+rexp(cT+i0X),
® =+ pexp(aT +i0X),

(28)
(29)

where r and ¢ are infinitesimal constantst, one arrives at a
quadratic dispersion equation for ¢(K, Q) obtained by the
standard procedure, whose solutions are

al,Z:Kz—l—in\/(l — K2)? +4K202. (30)

It is worthwhile to note that the dispersion relation (30)
always corresponds to purely real values of ¢. It means that
small perturbations of the steady solution evolve monotoni-
cally in time. Furthermore, sign ‘minus’ in front of the radical
in Eqn (30) corresponds to negative values of ¢ at any K and
Q, that is one of the branches of the spectrum described by the
relation (30) (hereinafter denoted as a5, for brevity) is always
stable. The second branch ¢; ( sign ‘plus’ in front of the
radical) corresponds to stable perturbations (o1 < 0 at any Q
values) only if

1
K* < Ki= 3 (31)
At K? > 1/3, the spectrum contains an instability region:
a(K, Q) becomes positive at

—\/2BK2—1) < 0 < /23K — 1).

It is essential that the range (32) always includes the point
Q = 0. On the other hand, for the examined branch of the
spectrum ¢ = 0 at Q = 0 and any K. It will be shown below
that nullification of ¢(K, Q) at Q = 0 is not accidental — it
constitutes the basic attribute of the problem related to
translational invariance of Eqn (23). The corresponding
neutrally stable mode is called the Goldstone mode and
plays a very important role in the stability problem.

Atsmall Q, it is easy to obtain from the dispersion relation
(30) that

(32)

3K -1

o1 :ﬁQ2+O(Q4),

(33)
i.e., instability is associated with change in sign of the
coefficient in front of Q? in the expansion of ¢(K, Q) in
powers of Q2. The branch of the spectrum describing unstable
modes detaches from the point Q = 0 (the Goldstone branch),
and the wave numbers Q corresponding to unstable modes
are concentrated at 0 < 3K%> —1 < 1 in a small vicinity of
zero. In other words, instability is related to the long-
wavelength modulation of spatially periodic patterns.
Therefore, formally existing steady spatially periodic
solutions of the Ginzburg—Landau equation appear to lose
stability when their wavenumber K becomes too large. It is
possible to obtain the stability criterion (31) in a somewhat
different form employing the expression (27), which relates K
to the amplitude of the examined spatially periodic pattern.

T Phase perturbation (29) corresponds to perturbation ¥ of the form
Rexp[® + ¢ exp(cT +iQX)] which looks rather unusual. However, tak-
ing into account the smallness of ¢, this expression may be rewritten as
Rexp(®)exp[pexp(cT +iQX)] ~ Rexp(®)[l+¢p exp(aT +iQX)], which
reduces the perturbation to the standard form.
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Namely, spatially periodic solutions are stable if their
amplitude R(K) satisfies the condition

R*(K) . 2
R 3’

max

(34)

where Rp.x = maxi{R(K)} = R(K.). It should be recalled
that K. corresponds to the maximum of instability growth
rate of perturbations of the trivial state. The trivial state for
the Ginzburg—Landau equation is ¥ =0,y(K) = 1 — K?
and K. = 0.

The advantage of the stability criterion in the form (34) is
its scale invariance, i.e., independence of its form of the units
of measure. Therefore, this criterion is the universal law which
equally holds for the Swift—Hohenberg equation (16) and
any other equation with short-wavelength instability which
can be reduced to Eqns (16), (23) at a small rise over the
threshold by making use of the previously described proce-
dure. It should be emphasized that 2/3 in the right-hand side
of Eqn (34) is the world constant, the same as, say, .
Conditions equivalent to Eqns (31), (34) were first obtained
in Refs [44, 45] and are known as the Eckhaus criterion.

Finally, there is one more variant of the Eckhaus criterion
convenient for the purpose of comparing theory and experi-
ment. Let us construct in the plane ke a curve describing
neutral stability of a trivial state, in accordance with the
condition y(k) =0. It follows from Eqn (14) that at
|k — ke| < ke this curve is the parabola

e =48k (k — k)’ (35)
On the other hand, the neutral stability condition y(K) =0
for the Ginzburg—Landau equation corresponds to the
condition K* = 1. Comparison with Eqn (35) yields the
scale correspondence

_ 4ok
&

K? (k —ke)*. (36)
Then, the Eckhaus criterion in the form (31) in dimensional
variables corresponds to the condition

e >3- 45k (k — ke)*, (37)
and defines one more parabola inside the former one, given by
Eqn (35), which is steeper than that. This second parabola
separates stable spatially periodic solutions from unstable
ones.

Such curves separating stable and unstable spatially
periodic states in the space of problem’s parameters (con-
ventionally in k, plane) are usually referred to as stability
balloons or Busse balloons, named after F. Busse to emphasize
a valuable contribution of this author to the problem of
stability of spatially periodic patterns in the Rayleigh—
Benard convection (a review and bibliography of these
Busse’s works can be found in Refs [4, 46, 47]).

It is worthy of note that the universal nature of the
Eckhaus criterion is essentially related to the reduction of
the evolution equation in the general form (8) to the
Ginzburg—Landau equation, which is true only to the main
approximation in small \/s. Terms of higher order in &
generate corrections to the conditions (34), (37), whose
particular form is not universal and depends on particular
form of the governing equations. It is important, however,
that all such corrections are small (see, for instance, Ref. [48]).

To conclude, here is a summary of major qualitative
results for conventional systems which were obtained above:

(1) When ¢ values are sufficiently small, the problem
always has a certain family of stable stationary spatially
periodic solutions.

(2) The mentioned family determines in the k¢ plane a
finite Busse balloon whose width (i.e., the distance between
the right and left boundaries at a fixed ¢) is of order of /e.

(3) Relaxation of stable perturbations of spatially periodic
solutions (inside the Busse balloon) and the growth of
unstable ones occur monotonically in time (Im o = 0).

(4) Unstable modes outside the Busse balloon are always
associated with the Goldstone branch of the spectrum.

(5) Stability criterion for spatially periodic solutions in the
main (in small 1/¢) approximation can be obtained from the
main approximation to the evolution equation; small correc-
tions to this equation yield small corrections to the stability
criterion.

In the case of short-wavelength instability in two-dimen-
sional systems the problem is more complicated: there appear
new types of patterns (spatially periodic cellular patterns [4]
and even quasiperiodic patterns [4, 49, 50 — 53]) and new types
of instability. At the same time, the above qualitative features
of the stability problem for steady patterns as a rule hold for
two-dimensional problems also.

The situation changes dramatically in the case of pro-
blems with additional symmetry. The presence of an addi-
tional continuous symmetry group regardless of spatial
dimension of the problem leads to a change in all the five
features listed above. Let us try to understand what causes
such changes.

3. Short-wavelength instability in systems with
an additional continuous group of symmetry

3.1 Symmetry and Goldstone modes

It should be emphasized from the very beginning that any
continuous symmetry group as a rule leads to appearance of
the corresponding Goldstone branch(s) in the spectrum of
perturbations of steady solutions. Indeed, let u(r) be a certain
steady solution of the problem and 7, the operator of a
continuous one-parameter symmetry group, which trans-
forms the solution u(r) into u,(r):

~

Tu(r) = u,(r). (38)

Here a is the parameter which specifies this transformation.
Specifically, for the spatial translation group we have

~

T,u(x) = u(x+a), (39)
for the group of rotations in a complex plane
Tu(r) = u(r) exp(ia) (40)

etc.

Certainly, u,(r) is also a stationary solution to the
problem, that is it identically satisfies the corresponding
equations and boundary conditions. Now, let us consider
the case of an infinitesimal a, when

(41)
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(we took into account that u,(r)|,_o = u(r)). On the other
hand, the second term on the right-hand side of Eqn (41) may
be regarded as a perturbation of the stationary solution u(r).
This perturbation transforms u(r) into another stationary
state u,(r). Such a perturbation must be neutrally stable. In
other words, (0u,/0a),_, must be an eigenfunction of the
corresponding stability problem for u(r) whose eigenvalue
equals zero, i.e., a Goldstone modef.

Therefore, the number of Goldstone modes in the pro-
blem of stability of a given solution u(r) as a rule coincides
with the number of continuous scalar quantities which
parametrize all possible symmetry transformations, i.e., the
entire continuous symmetry group of the problem of interest.
Passage ‘as a rule’ means that it is not the case always. Indeed,
there are exceptions to this rule including the two major ones
below.

Firstly, an individual solution subjected to some symme-
try transformations may remain unchanged, i.e., these
transformations applied to this solution do not generate any
new equivalent solution, transforming the solution into itself,
so that u,(r) = u(r). In this case, (0u,/9a),_, is identically
equal to zero and no Goldstone mode arises. Examples
include spatial translations, rotations, etc., of the trivial
solution u =0, or translation along the axis y in a two-
dimensional problem applied to an y-independent quasi-
one-dimensional solution u(x).

Another important exception may occur in a problem
with several different symmetry transformations (the entire
symmetry group G is the direct product of a certain number of
lower-symmetry subgroups: G = G| X Gy X ... X G,). In this
case action of different subgroups on a given particular
solution may be described by the same operator T, due to
accidental degeneracy of the solution. It is the case, e.g., when
solution (27) to the Ginzburg—Landau equation is subjected
to spatial translations (X — X + a), or rotations in a complex
plane [V — Yexp(ip)]: the results are the same if ¢, = aK.
For this reason the accidental symmetry of the problem with
respect to rotations in the complex plane does not cause any
complication in the stability analysis of solutions (24). The
stability problem has a single Goldstone mode [see Eqn (33)]
despite the presence of rwo continuous one-parameter groups
of symmetry.

Why do I pay so much attention to Goldstone modes? The
fact is that these modes are not so much important by
themselves as they are due to their giving rise to Goldstone
branches of the spectrum, which determine bands of slowly
evolving perturbations. Presence of these hands must in turn
be taken into account explicitly in both derivation of the
corresponding evolution equation (Goldstone branches in the
stability problem for the trivial state) and analysis of stability
of its solutions.

For example, in the above discussion of short-wavelength
instability in systems with conventional symmetry, the pro-
blem of the trivial state stability had no Goldstone modes at
all, while the problem of stability of weakly non-linear
spatially periodic solutions had only one Goldstone mode
related to translational symmetry of these solutions. Accord-
ingly, in the derivation of the evolution equation, slowly
evolving modes were only those with the wave numbers
k ~ k. associated with short-wavelength instability. All

1 The operator (07,/da),_, which produces this mode from the solution
u(r) is called an infinitesimal generator of the corresponding symmetry
group.

other modes followed them adiabatically. As a result, the
evolution equation was reduced to the Swift-Hohenberg
equation (16) and the problem of stability of spatially periodic
solutions to the Eckhaus criterion (34). Let us trace changes
resulting from the appearance in the problem of Goldstone’s
modes associated with its additional symmetry.

3.2. (Quasi)one-dimensional spatially periodic solutions
and their stability

As it has been noted in the Introduction the Rayleigh—
Benard problem with free-slip boundaries is one of the best-
known problems of short-wavelength instability in systems
with additional symmetry [4, 9—15]. The additional symme-
try (associated with steady rotation of the layer as a whole) is
responsible for appearance of a Goldstone branch in the
perturbation spectrum of the trivial (non-convective) state.
The branch describes slow relaxation of vortex modes with
the vertical component of the vorticity vector

Q=[Vxv]=(000.), (42)

where v is the three-dimensional velocity vector. With this in
mind, the authors of Refs [9—-15] derived a system of
evolution equations for two slowly evolving fields coupled
by quadratic non-linearity: the field u(x, y, t), where u is the v,
value at the midplane (as before), and the field Q.. The
starting point was the system of the Navier — Stokes equations
in the so-called Oberbeck —Boussinesq approximation lead-
ing to the symmetry of the problem with respect to change of
sign of u. It is known (see, for instance, Ref. [4]) that the only
weakly non-linear stationary spatially periodic solution to the
problem in this approximation is formed by quasi-one-
dimensional rolls, where u depends on a single spatial variable
and has the formi

u = R(k)cos(kx + ¢y) + O(¢), (43)
see Eqns (17), (22), (24).

Such a solution corresponding to zero vorticity (2, = 0)
was obtained in Refs [9—15]. However, the key aspect is the
stability analysis of this solution. The results of this analysis
reported in Ref. [14] have nothing in common with the
Eckhaus criterion and can be summarized as follows:

(1) There is an anomalous contraction of the Busse
balloon to the width of order of ¢ or its eventual disappear-
ance (depending on the Prandtl number), i.e., instability of all
stationary spatially periodic solutions.

(2) In the presence of a finite Busse balloon there is
oscillatory relaxation of perturbations of stable solutions
inside the balloon, oscillatory growth of unstable perturba-
tions outside one of the balloon’s boundaries and their
monotonic growth beyond the other.

However, the most unexpected result of the study [14] is
that the stability criteria and some types of the most
‘dangerous’ (i.e., the first to cause instability) perturbations
differ significantly from the criteria and perturbations
obtained in the same problem by other authors [12, 13]. Tt
should be emphasized that studies [12, 13] and [14] are based
on different but equivalent versions of the perturbation theory,
and the above discrepancy is not related to a trivial mistake in
calculations.

1 In this case, more complicated two-dimensional solutions u(x,y)
describing cellular patterns do not satisfy the evolution equations.
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This paradox is resolved by Bernoff [54] who shows that
the stability problem in the case under consideration has the
following peculiarity: certain small (in 1/¢) corrections to the
evolution equations always ignored in the traditional
approach (see Section 1) may undergo rescaling during
calculations in the given problem, so that the contribution
of these terms into the final stability criterion is of the same
order in /¢ as that for the main approximation. In other
words, the problem becomes very sensitive to truncation of
the series of perturbation theory. Approximation to the first
non-trivial terms of this series used in Refs [12, 13] by
analogy with the traditional approach is responsible for
inadequate stability conditions. However, the approaches
adopted in Refs [12, 13] and [14] are in excellent agreement
with Ref. [54] if higher orders of the theory are taken into
account.

This result of Ref. [54] naturally generates a number of
questions regarding the minimally acceptable accuracy of the
series of perturbation theory and the most convenient specific
realizations of this theory for the analysis of stability of the
solutions for a given problem.

To answer these questions as well as to make sure that the
highlighted peculiarities of the stability problem should be
regarded as the common property of all problems with
additional symmetry, rather than a unique feature of the
free-slip convection, let us consider, following Refs [55—57],
one of the simplest realizations of the problem, involving the
equation

@_Fa_z & — 1+a_2 ’ v_i_v@—()
or 0Ox? ox2 ox

(44)

Eqn (44) was suggested by Nikolaevsky [58, 59] to
describe seismic waves in visco-elastic media. The equation
is written in dimensionless variables and v has the meaning of
the displacement velocity. It is important that quadratic non-
linearity v0v/0x in Eqn (44) is due to the transition to a
‘running’ variable and is therefore typical of a broad class of
problems involving front and/or interface motion [4]. As
usual, the problem is formulated in infinite space:
—00 < X < 0.

The analysis of stability of the trivial solution v = 0 with
respect to spatially periodic perturbations of the form (2)
yields the dispersion relation

p(k) = K2 [e = (& = 1), (45)
which differs from Eqn (14) by presence of the Goldstone
mode: y(k) =0 at k=0. Let us show that this mode is
related to an actual additional symmetry of the problem and
is not accidental. With this end in view we consider the
equation

U PR R N P T R
or o2 |° o) |Y T \ex) T

It is evident that differentiation with respect to x and
redesignation 20u/0x = v reduce Eqn (46) to Eqn (44), i.e.,
these equations are equivalent in terms of formation of
spatially periodic patterns. However, Eqn (46) unlike (44)
explicitly exhibits additional symmetry with respect to the
transformation

(46)

u — u+ const.

(47)

Despite apparent similarity of the problem (44) and the
Swift — Hohenberg equation, their properties are significantly
different, and this was understood very early [60, 61]. A
detailed analysis of Eqn (44) and a number of its general-
izations can be found in Ref. [61]. However, this analysis
based on reduction of Eqn (44) to equations of the Ginz-
burg—Landau type for slowly varying envelopes is based on
main approximation to these equations, that is, it contains the
same mistake as that in Refs [12, 13]. For this reason, such a
consideration is on the whole inadequate despite the correct
description of certain qualitative features of the problem.
Specifically, the presence of the finite Busse balloon for
spatially periodic solutions of Eqn (44) reported in Ref. [61]
is in conflict with the real situation; in fact, all such solutions
turn out to be unstable [56].

To be sure, let us firstly obtain spatially periodic solutions
to Eqn (46) in explicit form?}. Representing u(x, ¢) as a Fourier
series

u(x,t) = i Ui (1) exp(inkx) ,

n=-—0o0

U;k = Ufnk7 (48)

and substituting Eqn (48) into (46), we have the following
sequence of equations for amplitudes U,:

d Uk

& = y(nk) U + k2 Z /(n — /) U[/(U(n,/)/( .

l=—00

(49)

It follows from the condition y(nk) =0 at n =0 and the
concrete form of non-linearity in Eqn (46) (the squared
gradient of u) that the amplitude Uy(¢) is absent on the right-
hand side of Eqn (49) and can always be completely excluded
from the problem by means of transformation #(x,t) =
u(x,t) — Uy(t). For this reason later we will not pay any
attention to this amplitude.

Let us consider the case of small positive ¢ and find the
boundaries & » of the range (0 < k; < k) of neutral stability
in agreement with their standard definition, y(k;,) = 0. It is
easy to see that if the series (48) is truncated to a finite number
of terms, i.e., if |n| < N, where N is any integer higher than or
equal to two, for any k from the segment k| < k < k; there is
a stationary solution of the form

N
Uy = Z USZ) ’ U’(;;:) _ 0(8(n+2m)/2) ) (50)
m=0
For example, for N = 3,
k)y(2k
il = =130 14 4 o) o)), (51)
sz%{:k
Uiy = — k) [1+0()], (52)
Usy = 0(£?) (53)

[at |k — 1] ~ /& (k) ~ ¢, and y(2k) ~ 1, see Eqn (45)].
Therefore, to the main order in /¢, the amplitude of the
stationary solution for the problem being examined is ~ /¢
[see Eqn (51)], that is of the same order as that for the Swift-
Hohenberg equation [see Eqns (17), (22), (24)]. In other

T Due to pronounced additional symmetry of Eqn (46) mentioned above,
this equation is more convenient for the subsequent analysis than Eqn
(44).
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words, the presence of an additional symmetry in Eqn (46) has
no effect on the order of magnitude of its stationary solution
amplitude. The reason for it is quite obvious. Equations for
stationary amplitudes can include only amplitudes coupled
resonantly with Uj;. Of the whole spectrum of long-wave-
length modes related to the additional symmetry, only the
Goldstone mode itself satisfies this condition. On the other
hand, & = 0 for the Goldstone mode, i.e., the mode is x-
independent. Such a mode can not by itself play any role in
formation of spatially periodic patterns and can always be
excluded from the consideration either by transforming the
order parameter u, as above, or by its differentiation with
respect to x.

The stability problem constitutes quite a different case.
Here, any spatially periodic perturbation can be related to the
mode Ujexp(ikx), including those belonging to the long-
wavelength Goldstone branch of the spectrum with small but
non-zero wave vector. Interaction between such a perturba-
tion and a stationary solution results in the long-wavelength
spatial modulation of the latter, and it is impossible to avoid
this modulation by trivial transformations of the order
parameter. In other words, despite the additional symmetry
does not affect the structure of spatially periodic solutions of
the problem, it must result in dramatic changes in their
stability problem. These changes and their nature are revealed
in the next Section.

3.3 Symmetry and dispersion equation in case
of mixed g-scales
First of all let us try to understand the cause of the above-
mentioned scale-mixing in the expansion of operators of
evolution equations and their solutions in powers of /¢ (-
scale-mixing, Refs [55, 56]) and to reveal what determines the
minimally acceptable accuracy of calculations in such cases.

The formal answer to the latter question is trivial: the
accuracy of intermediate calculations should be gradually
increased until the stability criterion for stationary solutions
stops changing at the leading order in v/e. However the real
situation is not so simple as this. The calculation of each
consecutive correction in /¢ requires more and more efforts
because the number of terms of the order (y/e)" sharply
increases with n growing. On the other hand, only a few of
these small corrections undergo rescaling in course of
calculations and are responsible for a non-zero contribution
to the main order of the stability criterion whereas all others
may be dropped without serious detriment to the problem
[56]. It is therefore crucial to be able to estimate the order of
magnitude of the contribution made by each correction to
the final stability conditions without calculating this con-
tribution in the explicit form. This problem was solved in
Ref. [56] due to an appropriate choice of the form of the
perturbation theory in powers of +/c. This is a special
question and its detailed discussion is beyond the scope of
the present review. Therefore, only key aspects of such
analysis are touched upon below. The reader is referred to
Ref. [56] for more details.

A perturbation of the stationary solution of Eqn (46) is
represented as

du = exp(at) Z Viterq xpi(nk + q)x] , (54)
where k| < k < k; and ¢ is the wave vector of the perturba-
tion. Substitution of expression (54) into Eqn (46) linearized
near the solution (48), (50) results in a dispersion equation,

which has a usual form of a certain determinant equal to
zerot. It is easy to see that the diagonal elements of such a
determinant have the from ¢ — y(nk + ¢).

It is relevant to note that the above analysis of stability of
stationary solutions for the Swift—Hohenberg equation has
shown that characteristic values of ¢ for unstable modes turn
out to be of the order ¢ and characteristic values g ~ /e, see
Eqns (17), (22), (30), (32), (36). It is therefore believed that
similar relations must hold in the present case also. Certainly,
this hypothesis needs to be verified as soon as the final answer
(i.e., the dispersion dependence o (k, ¢)) is available.

Bearing in mind what has been postulated in previous
sections, the quantity y(nk + ¢) appears to be of the order o at
n = 0,=£1, and of order of unity in all other cases (it should be
remembered that the condition k; <k <k, implies
k =1+, where % ~ /). For this reason, the product of
elements of the leading diagonal of the determinant at any
large but finite order proves to be of the order of &3, which
defines both the accuracy of the determinant’s evaluation and
the order of the dispersion equation, ¢°, at the main
approximation in /e.

However, the fact is that the minimal (in +/¢) order of
terms arising from the evaluation of the determinant turns out
to be actually ¢¥2 rather than &°, and it is related to non-
diagonal elements of the row corresponding to the projection
of the evolution equation for the eigenvector of the problem
(54) on the long-wavelength mode ~ exp(igx), i.e., a mode
belonging to a new (compared to the Swift—Hohenberg
problem) Goldstone branch of the spectrum. Therefore, to
obtain the dispersion equation with the specified accuracy
~ & one should take into account corrections to elements of
the determinant with the relative smallness up to order /e.
The necessity to consider these corrections is the actual cause
of e-scale-mixing. Thus, the e-scale-mixing follows directly
from the fact of the existence of an additional Goldstone
mode in the perturbation spectrum, that is from the symmetry
of the problem.

No serious difficulties are encountered in connection with
performing calculations necessary to take into account the
above corrections, even though they are very tiresome. They
lead to a dispersion equation whose coefficients depend on
subtle peculiarities of behavior of y(k) in the vicinity of the
maximum corresponding to short-wavelength instability
(such as y'|,_,; = O(e) and y"|,_,, where the prime indicates
differentiation with respect to k), and also on the value of
derivative y'|,_,. It can be inferred that the spectrum of the
stability problem ‘feels,” already in the main approximation in
/¢, the deviation of the wave number maximizing y(k) from
ke =1 (defined by y'|,_,), asymmetry of this maximum
described by y”|,_,, and the slope of the dispersion curve far
in the linear stability region (}'|,_,). Taken together, these
make the problem essentially non-local.

If the stability problem is generalized and is represented in
the integral form (8), it shows dependence not only on the
aforementioned subtle characteristics of the dispersion rela-
tion y(k), which determines /inear evolution of amplitudes Uy,
but also on fine details of non-linear mode coupling that arise
from the expansion of vertices in powers of deviation k — k;
[56]. Certainly, in this case contrary to Eqn (8), quadratic non-
linearity is not reduced to cubic because long-wavelength

T Summation in Eqn (54) must be stopped at a certain, sufficiently large
number of terms |n| < M, similar to how it is done in building up a
stationary solution of Eqns (49).
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modes are now independent degrees of freedom and no longer
adiabatically follow modes with k ~ k..

It has been noted before that the dispersion equation
describing the dependence a(k, ¢) is in the general case very
complicated (see Ref. [56]). Therefore, it is not presented here.
It is however remarkable that the structure of this equation is
sufficiently universal to be obtained without calculations
since it follows from the symmetry of the problem [55].

Indeed, we know that the dependence o(k, ¢) in the main
(in /) approximation is defined by a cubic equation, which
means that the required dispersion equation has the form

> +ayk,q)o* + ai(k,q)o+ay = 0. (55)

This is actually due to the fact that the perturbation spectrum
(54) contains three spatial harmonics with wave numbers
—k + ¢q, q and k + ¢, respectively, and they correspond to
small y. Note, that since there are only two such harmonics
(=k + ¢ and k + ¢) for the Swift—Hohenberg equation, the
corresponding dispersion equation for the stability problem
in the main approximation is quadratic in ¢ [see the discussion
of Eqns (25)—(29)].

Furthermore, according to Eqns (51), (52), the two
amplitudes, Uy and Uy, of the examined steady solution of
Eqn (46) may be regarded as real quantities without loss of
generality. This feature of the solution means that in the x-
representation u(x) is an even function: u(x) = u(—x).
Finally, linearization of Eqn (49) about the solution (51),
(52) at real Uy, Uy leads to the equation for amplitudes Vg
with real coefficients; hence the coefficients a1 (k, ¢) in Eqn
(55) are real too. Moreover, the problem of u(x, y) evolution
must also be invariant with respect to the transformation
x — —Xx, since u(x) is even and the initial non-linear problem
which defines evolution of du is symmetric with respect to
spatial reflections. It has been noted earlier that the reflection
symmetry in the x-representation corresponds, for Fourier
transforms, to invariance of the problem with respect to the
transformation ¢ — —¢q, which means that the coefficients
ao12(k, q) are even in q.

Note also, the dependence of these coefficients on ¢
originates from differentiation of Eqn (54) with respect to x
(which yields only integer powers of ¢) and evaluation of the
corresponding determinant. Therefore, we conclude that a1 »
must be rational functions of ¢*> and may be expanded in the
Taylor series at ¢ = 0 (since all the coefficients ap;, must
remain finite at ¢ = 0).

The last thing to be taken into account is the presence of
two Goldstone modes in the stability problem, which
correspond to two continuous symmetry groups: spatial
translations (x — x + const), and order parameter transla-
tions (# — u + const). Due to this, Eqn (55) must have a
double root 61, =0 at ¢ = 0.

It follows from the above that in the limit of long-
wavelength perturbations (¢ — 0), Eqn (55) must have the
form

0> + by(k)o® + by (k)qPa + bo(k)g* = 0. (56)
Building up its solution as a power series in ¢, it is easy to find
that two Goldstone branches of the perturbation spectrum
are described by the relation

B [ bo  ¢* (bo 3
0'172—:|:q _b_2+2_bz b_z_bl +0(q)

(57)

Eqn (57) immediately leads to the conclusion that stability
of the problem is essentially dependent on the sign of the ratio
bo(k)/by(k). When the ratio is negative, sign “+ in front of
the radical in Eqn (57) corresponds to an unstable branch of
the spectrum, with ¢ for this branch being purely real
(monotonic development of instability).

Conversely, if by (k) /b (k) > 0, the first term on the right-
hand side of Eqn (57) is purely imaginary and stability of the
solution depends on the correction to this term.

In this case, stability conditions are reduced to the
following obvious inequalities

bo(k)

B () >0, (58)
1 [bo(k)

@ o) <0 %)

which must be satisfied simultaneously. Evidently, these two
conditions define the two boundaries of the Busse balloon.
Eqns (57)—(59) imply oscillatory relaxation of perturbations
inside the balloon. If the condition (58) fails to be fulfilled,
unstable perturbations monotonically grow in time whereas
they show oscillatory growth when condition (59) is violated
(cf. properties of the perturbation spectrum in the case of
convection with free-slip boundaries discussed in the begin-
ning of Subsection 3.2).

Certainly, conditions (58) and (59) may be incompatible.
In such a case, a Busse balloon does not exist at all, i.e., all
steady spatially periodic solutions of the problem are
unstable. The particular expressions for coefficients by ;>
obtained in Ref. [56] for the solutions (51)—(53) result in the
conclusion that the solutions are stable against long-wave-
length perturbations in the narrow domain

91 » 11

445 12
where x is the introduced earlier deviation of the wave
number k of the solution (51)—(53) from unity: » =k — 1.
Note a sharp contraction of the stability region compared to
the Eckhaus criterion [see Eqn (37)].

However, stability against long-wavelength perturbations
does not mean stability with respect to arbitrary perturba-
tions. Generally speaking, a band of unstable perturbations
can be separated from Goldstone modes by a finite gap. A
detailed analysis of the stability problem regardless of the
limitations imposed by the condition ¢ — 0 shows that it is
true in the examined case: instability persists in the region
defined by the inequality (60), but turns out to be associated
with perturbations corresponding to finite values of ¢ [56]. It
should be emphasized that such a property of the perturba-
tion spectrum constitutes another qualitative distinction of
the problem with additional symmetry from the Swift—
Hohenberg equation in which instability is always associated
with the Goldstone branch of the spectrum [see Eqn (32)].

Note also that the above estimations of ¢ ~ ¢ and g ~ /¢
are valid only at x ~ ¢. On the other hand, solutions (50) exist
at any value of k from the interval k; < k < k, to which
% ~ /¢ corresponds. For such x values the dependence of ¢
on ¢ proves to be even more complicated and, generally
speaking, is not reduced to the proportionality of ¢ to a
certain fixed ¢ [56]. In the context of the stability problem
values » ~ /& are of no special interest because all such
solutions are unstable already with respect to long-wave-
length perturbations [see Eqn (60)]. However, the above

(60)
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complicated dependence of ¢ on ¢ indicates that, unlike the
case where the Swift — Hohenberg equation may be reduced to
the Ginzburg—Landau equation in the form (23), the pro-
blem can not be reformulated in such a way as to allow ¢ to be
excluded by a simple scale transformation of variables [57,
61]. This in turn provides grounds to expect complicated
spatiotemporal evolution of the solution associated with
interplay of different characteristic scales at any positive &,
as small as desired [55, 57]. Indeed such evolution takes place
and will be discussed in the next Section.

Ending this Section it seems relevant to note the following.
Although all steady spatially periodic solutions of Eqn (46)
turn out to be unstable, it may be regarded as a specific
property of this particular equation — other equations with an
additional continuous one-parameter group of symmetry may
still possess stable solutions of such a type. Let us discuss how
the general situation changes when the problem has two
additional one-parametric groups of symmetry, apart from
the conventional translational symmetry. In this case, follow-
ing the same line of reasoning as before, it is easy to conclude
that in the relevant pattern stability problem the dispersion
equation has a triple zero 6,3 =0 at ¢ = 0, which corre-
sponds to three Goldstone branches of the spectrum. Then, in
the long-wavelength limit, this equation has the from

Geo(k) + Ger(k)o + ger(k)e® +0° +...=0, (61)
where dots denote higher powers of a. At small ¢, Eqn (61)
has the form

2nm

0123 = (—qzco)l/3 exp (1T> , m=0,1,2. (62)

Evidently, the real part of at least one of the roots in Eqn (62)
is positive at any sign of ¢q(k), which means instability of all
stationary spatially periodic solutions in the problem with
such symmetry.

However, it needs to be emphasized that in spite of the
apparent simplicity of these arguments they are applicable
only within a strictly defined region and any digression may
be fraught with serious mistakes. An example of such
incorrect generalization is provided by the stability problem
of a two-dimensional pattern of square cells with only the
conventional (but two-dimensional, i.e., two-parameter)
group of symmetry with respect to spatial translations. At
first sight, it appears that since two independent transforma-
tions of this group, i.e., translations along directions x and y,
give rise to two independent Goldstone modes, this problem is
reduced to that discussed earlier in this paper, and the
criterion of stability with respect to long-wavelength pertur-
bations must be defined by inequalities (58), (59).

Nevertheless, the structure of the dispersion equation is
altogether different from that defined by expression (56),
because nullification of the free term in the dispersion
equation leading to the appearance of Goldstone modes
occurs at both g, — 0, ¢, # 0 and ¢, — 0, g # 0, where g, ,
are the corresponding projections of the perturbation wave
vector. Thus, the equation describing Goldstone branches of
the spectrum in the long-wavelength limit has to have the
following formf:

T A detailed discussion of the stability problem for cellular patterns in
dissipative systems can be found in Refs [49, 62, 63], and for Hamiltonian
systems in Ref. [64].

280 + 381 + g1lo + g20” + ... = 0. (63)
Here coefficients gy 1,,1,,2 are independent of the perturbation
wave vector. Certainly, properties of the dispersion relation
defined by Eqn (63) differ dramatically from those of o(k, g),
which follow from Eqn (55) and have been discussed earlier.

4. Soft turbulent modes and ‘continuous’
transition to chaos

A natural question that arises from instability of all
stationary spatially periodic solutions of Eqn (46) is ‘What is
to come of this ?” In other words, what is the asymptotic state
into which the unstable trivial solution u =0 evolves at
t — oo ? Since analytical study of such a problem is hardly
possible, to answer this question it is natural to employ
numerical methods. It is worth noting, however, that the
problem (46), similar to the majority of problems with
additional symmetry, is very difficult for numerical integra-
tion. Besides trivial reasons, such as approximation to high-
order derivatives by finite differences, these difficulties are
closely connected with intrinsic properties of the problems,
e.g., with its symmetry. The following two of these ‘internal
factors’ need to be mentioned in the first place. To begin with,
the aforementioned scale mixing and the impossibility to
reformulate the problem scaling out small ¢ result in
simultaneous presence in the problem of e-independent
characteristic small scales of order of unity and characteristic
large scales diverging at ¢ — 0. A proper description of such a
problem at small scales requires integration in small spatio-
temporal steps. At the same time, integration for the descrip-
tion of the asymptotic state of the system must cover time
intervals substantially wider than 1/¢, which imposes strict
constraints on the stability of the differential scheme and
leads to the enormous expenditure of machine time which is
the greater the smaller ¢.

Secondly, long-wavelength modes play a very important
role in the problem being examined as was noted more than
once in the previous Sections. However, in any computer
simulation the problem on an infinite straight line
—00 < X < ¢ 18 replaced by a problem on a finite segment
0 < x < L (usually with periodic boundary conditions at the
ends), which cuts the spectrum at wave numbers of order
2n/L (2r/ L is the exact spectrum boundary from below for
the periodic boundary conditions). It is essential that the
value of 2n/L must be compared with 1/¢ [see Eqn (60)],
rather than with unity or 1//¢ (as is the case of the Swift—
Hohenberg equation [see Eqn (22)]. Therefore, the L value at
small ¢ must be very large, which also greatly contributes to
the expenditure of machine time.

One of the earliest numerical studies on the short-
wavelength instability in problems such as (44), (46) has
been reported in Ref. [65]. But this paper considered the
generalization of Eqn (44) rather than the equation itself, with
the linear differential operator supplemented with the third
derivative in x. This difference is crucial, for it does not only
account for the complex dispersion dependence y(k), but also
breaks symmetry of the problem with respect to spatial
reflection (x — —x). Ref. [65] discusses evolution of a small
initial perturbation in the form of white noise. Evolution
leads to the appearance of a spatial pattern interpreted by the
authors as stationary one. However, their results admit of
another interpretation. Dependences v(x) reported in Ref.
[65] as examples of stationary asymptotic states have clear-cut
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long-wavelength modulation which may be regarded as the
onset of long-wavelength instability. Unfortunately, difficul-
ties encountered by the authors made it impossible to advance
farther in time than a few inverse ¢!, and this is not enough to
judge the asymptotic states for the reasons given above. It
appears from Ref. [65] that the value of L in this simulation
conformed to the condition k. L/(2w) ~ 10, which is not quite
satisfactory either.

The numerical study of Eqn (46) presented in Refs [55—
57] yielded more relevant data. The simulation was performed
using a CRAY C-90 supercomputer and the differential
scheme specially designed to integrate equation (46) at
extremely small ¢ values [66], which enabled the authors to
advance in time as far as ¢~ 103/¢. The scheme was
thoroughly tested by comparing the results of simulations
with the corresponding analytical expressions obtained in
Ref. [56] by the methods of the theory of perturbations.

The simulation provided the following results. Regard-
less of smallness of ¢ (the smallest examined ¢ was 10~* at L
large enough (typical values of k.L/(2r) at ¢ = 10~* were
about 10%) evolution of small initial perturbations invariably
resulted in a chaotic regime with very unusual properties.
This regime is characterized by excitation of a large number
of modes (apparently, up to continuum at L — oo) concen-
trated in small vicinities of the zero wave number (Goldstone
branch) and k = k. (short-wavelength instability-associated
branch) supplemented by their spatial satellites (see Fig. 3).
At the same time, the amplitudes of these modes, being of
order of /e, undergo chaotic time-dependent variations
(Figs 4 and 5). Such dynamics exhibits all features of
developed chaos including exponential separation of adja-
cent trajectories in the phase space and exponential decay of
autocorrelation functions [57]. It is noteworthy that char-
acteristic values of amplitudes of long-wavelength modes
(which in the linear problem correspond to the slowly
varying but stable branch of the spectrum with y(k) < 0 in
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Figure 3. Typical dependence of the amplitude of spatial harmonics in the
solution of Eqn (46) on their wave number at a fixed moment after the
asymptotic state is achieved. Numerical integration with periodic bound-
ary conditions was performed at ¢ = 10~*. The distance Ak between two
adjacent modes related to spectrum discretization due to finiteness of L is
3.125 x 1073, Each of the three parts of the spectrum is presented in its
own scale (from Ref. [55]).
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Figure 4. Temporal evolution of the real part of the amplitude of a mode
with k =3.125 x 1073 corresponding to Fig. 3, (a), and a selected
fragment of this curve suggesting the ‘fine structure’, (b), (from Ref. [57]).

the vicinity of k£ = 0) turn out to be greater than those for the
modes concentrated in the vicinity of k=1 which are
directly related to short-wavelength instability: y(k) > 0 at
k =1 (Fig. 3).

A conspicuous feature of the problem is that chaotic
evolution of each mode has a specific ‘fine structure’ with a
certain characteristic time t(k) which actually determines the
time of decay of the autocorrelation function (correlation
time) (Figs 4b, 5b). At a fixed ¢, the value of (k) increases
with decreasing k (cf. Figs 4b and 5b). It is however essential
that all these characteristic times are not of order of unity as
might have been expected, but of the order of 1/¢; in other
words, they diverge at ¢ — 0.

All this indicates that at ¢ =0 the system undergoes
bifurcation which leads to direct transition of the ‘quiescent
state’ (# =0) to chaotic dynamics. In this process, the
corresponding turbulent} modes are soft, i.e., the ‘rest-to-
chaos’ transition is continuous. Of course, the word contin-
uous in this context does not imply that asymptotic behavior
of the system gradually (?) becomes chaotic in a certain

T In this review, the term ‘turbulence’ is used in the broad sense to describe
any spatio-temporal chaos.



174 M I Tribel’skii

Physics— Uspekhi 40 (2)

ReU
0.4 Ve
a
02
0+
—-0.2 -
—04 | | | |
0 200 400 600 800 1000
&t
ReU
NG
0.2
b
0.1
0
—0.1 ' ' '
300 305 310 315 320

&t

Figure 5. Temporal evolution of the real part of the amplitude of a mode
with k = 1 corresponding to Fig. 3, (a), and a selected fragment of this
curve suggesting the ‘fine structure’, (b), (from Ref. [57]).

mysterious way. This would be absurd. Chaos is either
present or absent. It appears jumpwise at ¢ = 0. But quanti-
tative parameters of this chaos, such as the characteristic
amplitudes of turbulent modes or characteristic correlation
time (as well as characteristic time of transition to the
asymptotic regime), merge to the quiescent state in a con-
tinuous manner through vanishing of the amplitudes and
divergence of the characteristic time (critical slowing down) at
¢ = 0. In this context, the word ‘continuous’ has the same
sense as that set by Landau when he applied this attribute to
second order phase transitions.

An additional evidence that turbulent modes in this
problem are soft is absence of any hysteresis in the ‘adiabatic’
scanning of ¢ from small positive towards small negative
values and in the opposite direction (see Ref. [57]).

The simulations also show that the problem is highly
sensitive to cutting off the long-wavelength part of the
spectrum due to the finiteness of L. If L is not large enough,
the asymptotic state corresponds to strongly non-linear, but
periodic oscillations of amplitudes of the modes, rather than
to chaos. For example, such oscillations at ¢ = 10™* were
possible to observe even at k.L/(2n) = 50. This gives reason
to believe that phase space of the problem contains limiting
cycles (cycle) stable in certain directions and unstable in

others. When L is sufficiently large, chaotic dynamics
corresponds to random wandering of the phase trajectory
which is in fact an attraction along stable directions followed
by repulsion along unstable ones. In such a case reduction of
the phase space caused by decrease of L can stabilize the
limiting cycle(s), giving rise to the periodic dynamics men-
tioned above [57].

5. Experiment. Turbulence with zero critical
Reynolds number

‘Symmetry, Goldstone modes, numerical simulation. All this
is very good, but what does it have to do with real physics? All
kind of equations may be thought of but few are likely to
withstand experimental validation.’

These are thoughts which are sure to occur to the reader
who has worked through the text as far as this Section. In fact,
what can be learnt from the experiment?

Ref. [16] was one of the first attempts to realize experi-
mentally a system with short-wavelength instability and
additional symmetry for the case of Rayleigh—Benard con-
vection in a layer with free-slip boundaries. The free-slip
boundary conditions were achieved by virtue of the original
design of the apparatus in which a layer of silicone oil was
separated from the rigid walls by a layer of liquid mercury
from below and a helium layer (gaseous phase) from above
(Fig. 6). Due to the drastic difference between coefficients of
kinematic viscosity of helium and mercury on the one hand,
and silicone oil on the other hand (the corresponding ratios
are 2.1 x 107® and 1.6 x 107*, respectively), such a system
provides a good model of free-slip boundaries for the test oil
layer. Indeed, the critical Rayleigh number corresponding to
the onset of convective motion measured in Ref. [16] is in
excellent agreement with that predicted by Lord Rayleigh
himself for convection with free-slip boundaries [9, 10].

Unfortunately, the study [16] had been carried out long
before Siggia and Zippelius took notice of the role of vertical
vorticity in the destabilization of stationary patterns during
convection with free-slip boundaries [11]. Although the
authors of Ref. [16] mentioned that they made all measure-
ments after the asymptotic regime of convection was estab-
lished, they did not describe this regime in detail, so it was not

Water of controlled temperature

LS = 064em W Aluminium
4 .
9 —_Helium
Ly~ 0.14cm 3 \4

L;=25cm

= D
L, ~0.51 cm 2

Mercury

Figure 6. Cross-sectional scheme of the test apparatus to study thermal
convection with the free-slip boundary conditions (from Ref. [16]).
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clear whether the regime corresponded to steady spatially
periodic or to chaotic states.

Another example of systems with the desired additional
symmetry is provided by electroconvection in a layer of a
homeotropically oriented nematic which has been extensively
used as a model in recent experimental studies [22 —24, 67, 68].

These experiments were almost simultaneously initiated
by two different groups which will be henceforth referred to
for brevity as European [22, 23] and Japanese [24, 67, 68]. The
two groups designed their experiments in a similar way. A
reference nematic, p-methoxybenzilidene-p’-n-butylaniline
(MBBA), with negative dielectric anisotropy was used,
which allowed the onset of convective motion to be preceded
by the Freedericksz transition. Convection was studied at
small values of the control parameter ¢ derived from the
condition

V:-12
e

C

&=

where V. is the critical voltage applied to the sample and
responsible (at a given oscillation frequency f) for convection
instability. Degeneracy associated with the Freedericksz
transition was removed (if required) by a magnetic field
applied at the layer plane to create a singled out direction in
this plane. The results obtained by the two groups are in
agreement. Minor differences unessential in the context of
this review can be accounted for by different values of the
material constants of the nematic and other experimental
parameters. However, the Japanese group, as opposed to the
European one, reported not only the observed patterns, but
also important quantitative information about their time
spectra, which is crucial for the comparison with the theories
described in previous Sections. Therefore, further discussion
will be focused on the results obtained by the Japanese
authors.

The most important details of the experimental design are
as follows. The MBBA layer was 50 pm in width and had
lateral size of 1 x 1 cm?. The homeotropic orientation of the
nematic was achieved by the treatment of the glass plate
surfaces between which the layer was enclosed with a
surfactant, n-n’'-dimethyl-n-octadecyl-3-aminopropyl-tri-
methoxysilyl chloride (DMOAP). Nematic conductance was
o =3.30x x1077Qm™" and 6, =2.34x 107" Qm~! and
was monitored by the addition of 0.012 weight percent of
tetra-n-butylammonium bromide (TBBA). Dielectric con-
stants were ¢ = 4.21 and ¢, = 4.70. A sample was placed in
a thermostat at 30 4+ 0.02 °C. The most systematic study was
carried out at the frequency of the applied voltage equal to
500 Hz (the corresponding V, = 8.34). The threshold Free-
dericksz transition Vg was 3.92 V. As soon as convective
motion was apparent, spatial modulations of the director (a
unit vector n indicating the direction of the predominant
molecular orientation) led to corresponding variations of
refractive index which facilitated visualization of the convec-
tion patterns. All images were recorded on magnetic tapes
and disks for further computer-assisted analysis.

The experiment was carried out as follows. Firstly, the
voltage applied was jumpwise increased from zero to 6.00 V
(higher than V' but lower than V) to trigger the Freedericksz
transition in the non-convective state. The sample was then
left at this state for 50 min to ensure that the angle between the
director and the vertical axis (associated with the Free-
dericksz transition) had time to relax to its equilibrium

value. Next, the voltage was again raised stepwise and then
fixed at a certain value above the convection instability
threshold. Measurements were made after a 50-min pause
from the moment of this voltage jump to avoid influence of
transient processes. Upon completion of measurements (that
normally took about 5 min), the voltage was removed and the
sample left for 50 min for reset to erase ‘memories’ of the
experiment. Then the procedure was repeated.

Convection patterns observed in this experiment were
chaotic both in space and time at all values of ¢ including
minimal experimentally available. The patterns underwent
slow evolution in time and showed no tendency to reach any
stationary state. A typical pattern at a fixed moment of time is
shown in Fig. 7a. Interestingly to note that the pattern retains
characteristic ‘micro’-scale (short-range order) related to the
critical wave number of short-wavelength instability while the
development of chaos is associated with long-wavelength
modulations of the ‘micro’-relief (absence of long-range
order).

Figure 7. Typical turbulent pattern near the electroconvection threshold in
a homeotropically aligned liquid crystal at a fixed moment ¢ = 0.1,
V'=28.75V, (a), and its stabilization, (b), by a magnetic field applied to
the layer plane, H = 1600 Gauss, V' = 10.07 V. Taking into account
variations of V. caused by the magnetic field, this corresponds to
& = 0.1. See text for details (from Ref. [67]).

What should be expected if a similar experiment is carried
out in the presence of a magnetic field applied to the layer
plane? Such a field generates anisotropy in this plane, i.e.,
reduces the symmetry of the problem to conventional. This, in
turn, must lead to the appearance of spatially periodic
patterns provided the theoretical background is relevant. It
has been experimentally confirmed that application of the
magnetic field indeed resulted in the stabilization of chaos and
the appearance of long-range order in the system (Fig. 7b).
The pattern shown in this figure (the so-called oblique rolls) is
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typical of electroconvection at onset in case of the planar
orientation of the director (the director is parallel to the layer
plane, i.e., the problem is originally anisotropic in this plane)
[17-20]. It is essential that stabilizing effect of the magnetic
field on chaotic dynamics is reversible. That is, removal of the
field restores additional symmetry of the problem and leads to
spontaneous destruction of stationary spatially periodic
patterns; as a result, the system is brought back to chaotic
dynamics shown in Fig. 7a. The latter confirms that spatio-
temporal chaos is not a protracted trivial transitional relaxa-
tion to the spatially uniform state of the initial (spatially non-
uniform at large distances) azimuthal orientation of the
director projection upon the layer plane, but is rather an
intrinsic property of the problem [23, 24, 67, 68].

The following approach was used to obtain temporal
characteristics of the observed turbulence. An arbitrary line
of the image served as the x axis. The brightness of different
points at this line was loaded into computer in the form of a
space-time profile &(x, ¢) (Fig. 8). The local autocorrelation
function,

¢ (1) = ([E(x, 1+ 1) = (E0x, )] [60x, 1) = (€, ))])
(64)

was calculated for each point, where angular brackets denote
averaging over time ¢ (0 < ¢ < T here, T is the total
observation time).

0 200 400 600

100

100

100

Figure 8. Space-time intensity profiles of an arbitrary line of the image.
Spatial resolution is 1.27 pm pixel~' x 512 pixels. Time resolution 1.0 s
pixel 1 x256 pixels; ¢ =0.010, (a); ¢ =0.24, (b); £¢=0.69, (c) (from
Ref. [67]).

In the end, the resulting set ¢ () was averaged over x. The
autocorrelation functions ¢(¢) obtained by this approach at
different ¢ values are shown in Fig. 9. It can be seen that
autocorrelation functions rapidly decay regardless of ¢ values,
which is typical of a developed chaos.

1.0

0.8

0.6

b(1)/$(0)

0.4

0.2

Figure 9. Autocorrelation functions corresponding to space-time profiles
in Fig. 8. See text for details (from Ref. [68]).

Characteristic correlation time t was estimated by the
approximate representation of experimentally obtained func-
tions ¢(¢) in the form

() = d0)exp( 1) (65)

T

where the value of ¢(0) was found in the experiment and t was
the only adjusting parameter determined by the least square
method. The obtained dependence ¢(0) is shown in Fig. 10.
Experimental points fit well to the straight line 1/t = conste.

Another important characteristic of a random quantity is
its spectral density. The spectral density of a quasistationary
random process is not an independent quantity and may be
expressed in terms of Fourier components of the autocorrela-
tion function [28]. Therefore, comparison of these two
quantities provides a good criterion for checking up all
propositions underlying the present discussion. At the same
time, the expression relating spectral density of a random
quantity to its autocorrelation function was obtained in [28]

Figure 10. Plot of correlation time vs ¢. See text for details (from Ref. [68]).
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essentially on the grounds on the ergodicity hypothesis,
whose application to fluctuations in non-equilibrium systems
requires a special substantiation. Moreover, Ref. [28] con-
siders the case of T — oo, whereas the transition from finite to
infinite observation time in the given problem is not trivial.
For this reason, it appears appropriate to describe the
derivation of this relation taking no account of ergodicity of
the process and relevant at finite values of T (see Appendix).
With the assumed form of ¢(7) [see Eqn (65)] and &-
dependence of the correlation time 7= (Ag) ', where
A = const, the formula (A.7) leads to the following expres-
sion:

S, 24
Tp(0) A2+ @

(66)

Here Q = w/¢, and S, is the absolute value of Fourier
coefficients for spectral expansion of time-dependence of
signal intensity averaged over x in the same manner as that
in the case of local autocorrelation functions (subscript 7 in
w, in Eqn (66) is omitted, for brevity).

Itis worthwhile to note that the right-hand side of Eqn (66)
is a universal e-independent function and that ¢(0) and 4 in
Eqn (66) were deduced from examining the autocorrelation
functions, while ¢ and T are given by the experimental
conditions; therefore, the expression (66) does not contain
any adjusting parameters.

Spectral density of signal brightness measured experimen-
tally at different ¢ is compared to the expression (66) in Fig. 11.
Evidently, the measured values and Eqn (66) are in excellent
agreement.

10!

1073 '
102 10! 10° 10! 102

/e, Hz

Figure 11. Power spectrum of brightness of the turbulent pattern images at
different ¢. Solid line — the right-hand side of dependence (66).

To summarize, experiments confirmed all qualitative
inferences and specific features of the transition to chaos in
systems with additional symmetry as well as characteristic
scale relations following from the theoretical analysis of the
phenomenon in previous Sections.

Unfortunately, neither theoretical nor quantitative
experimental data on spatial properties of chaos are currently
available. Nevertheless, on the grounds of the qualitative
description of the patterns in [22-24, 67, 68] it may be
concluded that the observed chaos is of spatiotemporal nature
and arises at ¢ = 0, i.e., at the onset of any hydrodynamic

motion. In other words, what is observed is a turbulence with
the critical Reynolds number equal to zero.

In the end, a great deal of progress has been achieved in
development of the quantitative weakly non-linear (valid at
small ¢) theory of electroconvection in a layer of a home-
otropically aligned nematic [69, 70]. Numerical integration of
the equations performed at the values of parameters close to
the experimental ones [22, 23] leads to spatio-temporal chaos
similar to the patterns observed in Refs [22, 23]; processing of
these data also yields ¢-dependence of correlation time of the
form t  1/¢. However, the equations derived and studied in
Refs [69, 70] are very complicated, and their discussion is
beyond the scope of the present review, being of interest for
narrow experts rather than for a broad audience.

6. Conclusion

Usually, Conclusion is intended to sum up the results and
discuss prospects of further studies. In our case, this is hardly
reasonable. Any summary would be premature since neither
theory nor experiment provided enough data for the purpose.
The same is true of prospects; in fact, any study should be
encouraged if it promises a breakthrough in the area in
question. At present, it appears safe to assert only that, firstly,
the behavior of different systems with short-wavelength
instability and additional symmetry has much in common
and, secondly, this behavior is so much unlike the conven-
tional one that such systems ought to be undoubtedly
regarded as a special class of pattern-forming systems. Their
study would not only enlarge our knowledge about the origin
of order and chaos, but also stimulate revision of many deep-
rooted ideas.

In conclusion, I would like to make a few general remarks
on both the similarity and the difference between the
problems reviewed in this paper and those concerning
thermodynamics and kinetics of phase transitions.

To begin with, there is an analogy between these two
problems, which inevitably rises in mind and was noticed by
many authors (see Refs [2—4] and references therein); also, it
was many times emphasized in the present review (the role of
symmetry, expansion in powers of the order parameter, etc.).
However, this analogy is usually ‘strongly anisotropic’, i.e.,
directed to the transfer of ideas from the nature and well-
known field of phase transitions to the younger and therefore
less-developed area of pattern formation in dissipative

T It should be emphasized that the case of soft-mode turbulence in
electroconvection of a homeotropically aligned layer is a little bit more
complicated than it could seem from the above discussion. The point is that
there are two different types of perturbations of a spatially uniform state,
viz (i) perturbations whose wave vector k is orthogonal to the director
projection on the midplane nj — the so called normal rolls, and, (ii), all the
rest mutual orientations of k and nj — the so called oblique rolls. In case (i)
at small ¢ the governing equations admit weakly non-linear steady
solutions of the normal-roll-type [21, 69, 70]. All these solutions are
unstable under very general conditions [21, 69, 70], so the situation is
indeed similar to that of Refs [S5—57]. As for the case (ii), the correspond-
ing steady solutions do not exist since the torque on n| exited at the oblique
orientation cannot be compensated [21, 69, 70]. On the other hand, in the
discussed experiments [24, 67, 68] the most unstable perturbations of the
spatially uniform state belong to the case (ii), so strictly speaking, the
analogy with the problem discussed in Refs [55—57] may be irrelevant.
Nevertheless, preliminary experiments mentioned in Ref. [68] show that
change of the type of the most unstable modes from (ii) to (i) caused by an
appropriate change of the frequency of the AC-voltage does not make
much difference in the pattern dynamics. (Note added in English proof.)
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systems. I would like to change the sign of this anisotropy and
discuss which properties of dissipative systems with addi-
tional symmetry are likely to emerge in the field of phase
transitions and how they can be recognized.

One of the most important attributes of dissipative
systems with additional symmetry is destabilization of sta-
tionary spatially periodic patterns resulting from their cou-
pling with long-wavelength modes of the Goldstone branch of
the spectrum. It is essential that destabilization may under
certain conditions be responsible for the complete disappear-
ance of stable spatially periodic solutions of the problem.
Another important aspect is mixing of ¢-scales, which makes
it inadequate to consider the problem in the lowest order of
perturbation theory.

Formation of stationary spatially periodic patterns close
to onset of short-wavelength instability obviously corre-
sponds in phase transition phenomena to the transition with
a spontaneous reduction of symmetry from a certain highly
symmetric (e.g., isotropic) phase I to a less symmetric phase
I1. In the framework of the analogy being examined if such a
phase transition problem has an additional symmetry, the
interaction between long-wavelength macroscopic fluctua-
tions detaching from the corresponding Goldstone modes
and phase Il must result in its destabilization up to complete
suppression of the phase transition in a certain range of values
of the problem parameters.

A possible example of such a situation is constituted by
the isotropic phase — cholesteric phase or nematic — smectic
transition in a liquid crystal placed in a capillary. One of the
types of long-wavelength fluctuations in such system is
associated with excitation of hydrodynamic modes. On the
other hand, it is well-known that capillary flow of a
cholesteric or smectic liquid crystal with a sufficiently low
speed resembles ‘permeation’ of molecules through helicoid
(cholesteric) or lamellar (smectic) patterns of liquid-crystal
order whose position is fixed due to interaction with the
capillary walls (the so-called Helfrich mechanism [17, 18, 71]).
For this reason, long-wavelength Helfrich modes in such a
problem are analogous to the modes associated with vertical
vorticity in the Rayleigh—Benard problem with free-slip
boundaries; both cause fluid displacement relative to the
small-scale pattern (liquid-crystal in the case under considera-
tion and convective in the Rayleigh — Benard problem), which
arises in this fluid [72].

Application of concepts and methods discussed in this
review to investigation into stability of the cholesteric
(smectic) phase with respect to ‘Helfrich fluctuations” would
provide an interesting example of the ‘feedback’ effect of the
problems of the theory of dissipative pattern formation on the
problems of the phase transitions.

On the other hand, it should be remembered that any
analogy is only similarity but not identity. Therefore, the
presence of certain properties in the phase transition problem
only gives reason to expect similar properties in an analogous
problem for dissipative patterns, but in no way warrants their
existence. The role of additive (thermal) fluctuations in both
problems is a good illustration of how dangerous the
indiscreet use of such analogies may be.

The crucial role of fluctuations in a close neighborhood of
phase transition points is widely known [28]. Sometimes
fluctuations may even change order of phase transition from
the second to the first [73]. It may seem that negation of
fluctuations invalidates the conclusions of this review con-
cerning behavior of dissipative systems in a close vicinity of

the short-wavelength instability threshold. Nevertheless, such
negation is fully justified. The fact is that patterns formed in
dissipative systems are invariably of macroscopic scale unlike
the situation in phase transitions, where spontaneous sym-
metry breaking is associated with the atomic scale ordering.
This explains why the corresponding dimensionless para-
meter responsible for the width of the ‘fluctuation’ region
(Ginzburg number) in dissipative systems always includes the
characteristic atomic to macroscopic size ratio. As a rule, this
causes such shrinking of the fluctuation region, that the
question of fluctuation effect on system’s dynamics becomes
senseless [34]. It should be emphasized, to avoid misunder-
standing, that I am speaking about the effect of fluctuations
on the dynamics of short-wavelength instability, but not of
the fluctuations themselves. The problem of examining
fluctuations seems quite reasonable and was elegantly solved
in Ref. [74] with the aid of short-wavelength instability as a
sort of amplifier for thermal fluctuations.
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7. Appendix

In order to derive the expression relating the spectrum of a
random quantity to its autocorrelation function, let us
consider a real random quantity {(¢) observed for some time
T(—T/2 < t < T/2) and satisfying the condition ({) = 0. Let
us further define {(¢) at the entire time-axis (—oo < ¢ < 00)
periodically extending this function beyond the boundaries of
the interval —7/2<t<T/2 ({(t+T)={(¢)) and then
expanding it into a Fourier series, which is convenient to
write down in the form

1 & .
C(t) = ?—v Z gw,, exp(la)nt) ;

n=—0C

2nn (7/2

o =T o= = | twen(-iondr. (A1)

T —1)2

Note that in this case w, satisfies the evident identity
Wy + Wy = Oy, Then, in accordance with the definition of
autocorrelation function, we have

o(1) = (Lt + 1))

| _ o
= ﬁ Z Cc),, Cw”, eXp (w)n [)< eXP(lwn+mt )> .

nm

(A.2)

The last expression is due to averaging over ¢’ and the only #-

dependent quantity under the summation sign is
exp(iwy,mt'). On the other hand,
. / 1 T/2 . / /
<exp(1w,,+mt )> == exp(iwpim? ) dt = 0_pm, (A.3)
T) 7

where 0_,, is the Kronecker symbol. Substituting Eqn
(A.3) into (A.2) and taking into account that &, =& ,
we have
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1 . .
¢(t) :ﬁ2|(vw”|2 exp(lwn[) ’ (A4)
n
ie.,
L. 2
¢w,, :7—-|C(u,,| ) (AS)
where ¢,, are coefficients of expansion of ¢(7) into a Fourier

series. Also, since ¢, are real, we see that ¢(7) = ¢p(—1), as
expected [28].

For an exponentially decaying autocorrelation function
(65), direct integration at 7' > t yields (according to general
rules, in the exponent |7| must be substituted for 7if < 0, see
Ref. [28])

2t¢(0
g, =200

~ . A.6
1 + wit? (A-6)

Comparison of Eqns (A.5) and (A.6) leads to the conclusion
that the following relation holds for the autocorrelation
function (65):
1 2t (0
g - 20 (A7)

T 1+

Here the notation S,,, = [{,,, |* is introduced and by definition
$(0) = (%), [see Eqn (A.2)].

There are two remarks with respect to the relations (A.5),
(A.7) and the method of their derivation. First, it may seem
that deriving (A.5) we did employ besides the assumption of
ergodicity (the problem of ergodic fluctuations in this case is
totally immaterial since a single random quantity was
considered) also the assumption of quasistationarity of the
process, i.e., independence of statistical characteristics from a
particular instant of the beginning of observations. However,
it is not the case: periodic extension of the random function
defined on a finite time-interval to the entire axis automati-
cally guarantees the quasistationarity (the integral of the
periodic function over its period is evidently independent of
the position of the initial integration point).

The second remark concerns transition to the limit
T — oo. Introducing Aw = 2n/T, writing Eqn (A.1) as the
integral sum, and passing to the limit, we find

{0 = 5 2o, expliondo — 5| ¢ explion do,

2n 21 )

where the formal limit {, at T'— oo is denoted as {,, [see
Eqn (A.1)]. Furthermore, denoting the limit ¢, at 7' — oo as
¢, we find that the expression (A.7) turns into the familiar
relation given in [18]. It is however essential that the two
limits, {,, and ¢,,, generally speaking, can not be finite at the
same time. Indeed, if ¢, is assumed to be finite, it follows
from Eqn (A.5) that {,,, o« /7 and diverges at T — oo, which
is actually due to the fact that {(¢) does not tend to zero at
t — o0.
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