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Abstract. A single polymer macromolecule is considered with
disorder types such as branches, knots, and heterogeneous
sequences of chemical units. In all cases, simple theoretical
approaches are employed to gain useful physical insights. For
branched polymers, a simple Flory-type theory is described by
means of which the difference between the universality classes
for molecules with quenched and annealed branches is demon-
strated. For knots, another Flory-type theory is suggested to
describe the swelling and/or collapse of a quenched topology
ring or the size distribution for the annealed case. To consider
heteropolymers, the Random Energy Model borrowed from
the spin glass theory is systematically employed. This allows
a simple yet rigorous description of both the freezing transition
of a random sequence globule and the use of the canonical
ensemble for designing sequences with energy-optimized
ground state conformation. Along with the analytical theory,
computer tests for the freezing and design processes are dis-
cussed. The sequence design scheme is shown to yield a specific
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prediction concerning the character of correlations in protein
sequences. Statistical tests confirming this prediction are de-
scribed.

1. Introduction

Although in the 45 years of his scientific career II'ya
Mikhailovich Lifshits worked fruitfully in many areas of
theoretical condensed matter physics, the theory of disor-
dered systems lies at the very heart of his scientific legacy. In
particular, he came to polymers from the biopolymers side
(see the title of his first work [1]), and his view of polymers was
always somewhat tilted toward the disordered systems
perspective, as for example, in his concept of a ‘linear
memory.” The approach of Lifshitz, in this respect, contrasts
the approaches of S F Edwards [2] and P-G de Gennes [3], for
whom the field-theoretical and critical phenomena aspects
were the most important. When, in the mid-sixties, several
prominent soviet physicists and mathematicians started to
participate in molecular biology gatherings, and some of
them were said to ‘switch to biology,” friends tried to talk
Lifshits out of this move. His friends fears were groundless: he
did not switch anywhere, but found a real physical approach
to biopolymers, and his works in this direction were an
‘analytic continuation’ of his other works in physics.

The present author witnessed the enthusiasm and curios-
ity that Lifshits kept literally till the last day of his life, for the
physical understanding of what allows biopolymers to func-
tion in the way they do. In recent years, a deeper level of
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understanding of these problems has been achieved. It seems
very natural to review this progress in the journal dedicated to
I M Lifshitz.

To simplify its reading, we begin the article with a brief
glossary of the main terms:

Conformation — the spatial shape of the polymer back-
bone. In the statistical mechanics of polymers, conformation
plays the role of microstate, the partition function represents
the sum over conformations.

Construction of sequences —the process of formation of
sequences of heteropolymer in such a way that the polymer
takes on the desirable conformation (corresponding to self-
organization of protein conformations).

Disorder, annealed — the elements of disorder which take
part in thermal motion and eventually relax to thermody-
namic equilibrium.

Disorder, quenched — the degrees of freedom that are
frozen with the preparation of the system and do not take part
in any further thermal motion.

Freezing transition — the phase transition between two
globular (compact) phases, one of which is similar to
homopolymer globules, comprised of an exponentially large
number of conformations, while the other is dominated by
very few conformations.

Heteropolymer — a polymer with a chemically different
monomer species.

Homopolymer — a polymer of identical monomers.

Independent Interaction Model (IIM) — heteropolymer
model in which the interaction energy for every pair of
monomers is a random value independent of all other
interactions.

Knot — a conformation of a closed ring macromolecule
embedded in three-dimensional space.

Protein folding — self-organization of a unique native
conformation for the protein macromolecule.

Random Energy Model (REM) — a model of disordered
systems in which energy of each microstate is assumed
random and independent of other energies.

1.1 Types of disorder in polymer macromolecules

In Figure 1, we schematically summarize the types of disorder
that can exist in a polymer macromolecule and will be
discussed in the present article. They include disorder of
branches, topological disorder related to knots and links,
and disorder of sequences in heteropolymers. In every case,
the distinction must be made between the regimes of
quenched and annealed disorder.

While this is very well known and a very important
concept of general importance for statistical physics, it is
worth reminding the reader about the main points:

(1) Quenched elements are formed during the system’s
preparation, and cannot be changed by thermal motion;

(2) Annealed elements participate in the thermal motion.

In theoretical jargon, one often says that the difference is
what you average: for a quenched system, one has to average
the free energy (which is difficult and challenging); for an
annealed system, one has to average the partition function
(which is much easier). While this is certainly correct, it is only
a semi-truth (reminiscent of Bulgakov’s ‘salmon of a second
freshness’). The reason why the free energy is averaged for the
quenched system is to do with the principle of self-averaging
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Figure 1. Types of disorder in polymer macromolecule.
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of free energy [4]: free energy is distributed normally over the
realizations of disorder, and its average is dominated by the
‘typical’ realizations; meanwhile, the partition function is
distributed exponentially more broadly, and its average is
dominated by some weird realizations — those that the
system selects if it is allowed to thermally (ergodically) sample
all the realizations.

1.2 Disorder and biopolymers

The view that to average free energy is the only meaningful
thing to do for quenched systems arises from experience with
spin glasses and other ‘normal’ physical systems, where one
can never experimentally control all the details of disorder,
but only some statistical properties, such as the densities of
impurities, etc. Biological systems provide physics with very
different possibilities. For example, the sequence of mono-
mers in a protein can play the role of an element of quenched
disorder, because as long as the protein chain exists in the
solution, its sequence does not change. Using the synthetic
apparatus of a living cell, the experimenter is able to produce
a macroscopic quantity of identical copies of this disordered
system. It is like being able to reproduce, after annealing, the
exact spatial arrangement of paramagnetic centers in a spin
glass sample. While these questions will be only touched in the
present review, and we will mostly average the free energy,
one has to keep in mind that other formulations are also
possible due to these properties of biological systems.

In fact, this goes back to the fact that while biopolymers
are certainly quenched, they are not exactly disordered; their
quenched elements are often the product of evolution, as, for
example, protein sequences. This leads to very interesting and
deep physical questions; some of them will be discussed later
in this article.

The lion’s share of this review is devoted to heteropoly-
mers, as they are considered a model of one of the most
challenging problems of protein folding. It is reasonable to
make here few preliminary comments on this.

1.3 Heteropolymers and the protein folding problem

The phenomenon of protein folding is the ability of protein
chains to renature, that is, a single protein molecule is able to
find its ‘correct’ native 3D conformation. Many proteins
(though not all of them) do not need any assistance and are
able to do this in a dilute solution [5]. This phenomenon is a
deep challenge to statistical physics (and physicists), as is seen
most dramatically from the following statement known as the
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Levinthal paradox. A polymer of N monomers can have as
many as exp(wN) conformations. To sample all of them
would require astronomical time. How can the chain find
the correct conformation, if it is unique, and exhaustive
sampling is impossible?t

In the last decade, there has been remarkable progress in
the theoretical understanding of protein folding. This pro-
gress is mainly due to the concept of heteropolymer freezing,
which is the phase transition of a heteropolymer chain
between two compact globular phases, of which one is
dominated by an exponentially large number of conforma-
tions (O(exp(NV))) while in the other only one or very few of
them (O(1)) are thermodynamically relevant. To describe
heteropolymer freezing, ideas and concepts were borrowed
from the statistical mechanics of spin glasses, such as the
Random Energy Model (REM) first suggested by Derrida [6].

There are two approaches, which can be considered
parallel. One of them, rooted in the seminal work by
Bryngelson and Wolynes [7], employs rather simple mathe-
matics, but unfortunately is vague as regards to the formula-
tion of the model considered. Not surprisingly, it is extremely
difficult, if not altogether impossible, to either generalize this
approach or to find out its conditions of applicability (see also
[8]). Another approach, started from the other seminal
contribution by Shakhnovich and Gutin [9], considers a
model which is very clearly formulated, but unfortunately,
this theory remains overshadowed by the complexity of the
theoretical machinery employed. Not surprisingly, although
this theory is widely considered very important, it remains
hardly known beyond some qualitative conclusions.

In the meantime, both theories are related to REM, which
in turn, is fairly simple both as regards its physical nature and
mathematical treatment. It should therefore be possible to
formulate the theory that combines the simplicity of the
Bryngelson —Wolynes approach with the sophistication of
the Shakhnovich — Gutin theory. Such an approach has been
recently developed [10] and will be discussed below.

The first models of heteropolymers considered just ran-
dom sequences of monomer species. This was consistent with
the fact that real protein sequences statistically look very
much like random sequences [11]. Moreover, simple estimates
of the time and material involved in evolution indicate that
the sequences could not have evolved very far from random-
ness. However, upon a more detailed examination, random
sequences were found to be not sufficiently protein-like. In
particular, while many chains with sequences taken at
random have indeed unique ground states, these ground
states are not sufficiently robust, so that a minor perturbation
of the interaction energies (induced, for example, by a change
in the surrounding solution) leads to a complete change of the
ground state conformation. Furthermore, for most of the
sequences whose ground states are unique, folding to these
states is neither quick nor reliable. This is by no means
surprising, as protein sequences are known to have undergone
evolutionary optimization. It was hypothesized on the
qualitative level [7] that protein evolution has resulted in
sequences which obey the ‘minimal frustration principle.’
Real models of sequence ‘design’ were suggested very
recently: Shakhnovich and Gutin anneal sequences by the

T There are some proteins which need some help to fold, and the cell is able
to provide that assistance. From the physics perspective, however, it is
important that at least some proteins are able to fold spontaneously. The
first task is to explain that.

Monte Carlo method with the criterion that the sequence
minimized the energy of a particular target conformation [12];
another incarnation of the same idea is the so-called Imprint-
ing Model [13]. Interestingly, as soon as these models were
suggested, a prediction was made as to which kind of
correlations should exist in protein sequences, and those
correlations were indeed immediately found [14]. We shall
discuss all these ideas in the present work.

We note that the problem of freezing of heteropolymers is
not confined to biopolymers such as proteins. Indeed, the
freezing of synthetic polymers has attracted great interest, due
to potential industrial and biomedical applications. Thus,
perhaps in the pursuit of understanding proteins, we have
made some progress in the direction of making synthetic
protein-like heteropolymers as well.

1.4 Note about the terminology

Although the terms quenched and annealed disorder are
commonly used in English, the Russian term, especially for
annealed case, does not seem to be commonly accepted...

1.5 What is NOT discussed in this article

There are other important examples of disordered polymer
systems which are not discussed here, including polymer gels
(see the seminal work by S Panyukov and Y Rabin [15]),
block-copolymers, with their ability to form domain struc-
tures (see the works [16 — 18] and references therein), polymers
in disordered external fields, adsorption of heteropolymers on
the surface [19-25] or on the selective interface [26—29],
melting of heteropolymeric DNA [30 - 32], uneven flexibility
of DNA [33, 34], polyampholytes [35—39] and many others.
The collapse of annealed heteropolymers was considered in
[40], and recently the results were re-discovered in [41]. It is
impossible to review everything; this article concentrates on
branched polymers, knots, and mostly, heteropolymers.

2. Disorder of branches

Branched polymers are of significant interest both for
synthetic polymer chemists and for biophysicists. Most of
the synthetic polymers are somewhat branched. Also, RNA
molecules form clover leaf structures that can be viewed as
branched polymers, with elements of secondary structure
forming branches. An even better example of a branched
polymer is super-coiled DNA [42, 43], of which the reader can
get a good idea by twisting a telephone cord (unfortunately,
the interesting behavior begins when it is already pretty
dangerous for the telephone).

2.1 The Zimm - Stockmayer equation

To begin with, let us disregard volume interactions and ask
what is the size of an ideal randomly branched polymer, R;4?
This was answered by B Zimm and W Stockmayer as early as
in 1949 [44]. Their result reads Rjg o< N'/*. There are several
ways to derive it; one of the simplest is given in the book [32].
It is based on the estimate of the ‘chemical diameter’ of the
branched structure, that is, the chemical interval, or contour
distance, between two arbitrary ends of the structure, and it is
done by mapping the branched structure on a Cayley tree
graph (see Fig. 2). By choosing an arbitrary origin point O on
the Cayley tree, the branched structure can be viewed as a one
dimensional random walk with possible steps to and from O.
This yields an estimate that the chemical diameter, L, scales as
the square root of the number of monomers in the macro-
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Figure 2. The branched structure without cycles (a) can be mapped onto
the Cayley tree graph (b). On the graph, the image can be encircled with the
‘ring polymer’ (dashed line), its characteristic distance from the origin O
scales as the chemical diameter of the structure, L.

molecule, N, or more accurately,

Lo<g\/§oc\/j\/‘, (1)

where g is the characteristic number of monomers in the linear
part of the structure, between two neighboring branch points.
As each diameter in the ideal polymer represents a Gaussian
linear chain, we arrive at

R~ aL'’ ~ a(Ng)"*, 2)

where a is a monomer length.

Thus, in three dimensions (d = 3), branched polymers are
very compact and dense, and this is why the excluded volume
effect is very strong.

2.2 Quenched and annealed branches

Speaking of the excluded volume for the branched polymer,
one has to make the distinction between two extremes. To
explain it, let us say that the branched polymer corresponds to
the tree-like graph embedded in real space. In one extreme,
the branched polymer is far from equilibrium such that the
structure of the graph is fixed. The opposite extreme is the
situation where the positions of the branches fluctuate and are
in thermal equilibrium. These two extremes are called
quenched and annealed, respectively. It turns out that
polymers with quenched and annealed branches belong to
different universality classes and are characterized by differ-
ent critical indices.

The physical reason for the difference between quenched
and annealed branches is simple. The excluded volume leads
only to the stretching of subchains in the case of quenched
branches, but it is accompanied by the rearrangement of
branches in the annealed case. This leads to an extra
contribution to the corresponding entropy and changes the
universality class of the problem [45].

2.3 Flory type theory for the quenched branched polymer
Flory theory does not pretend to yield exact results, but it is
very simple and it is also known that its results are reasonably
accurate for linear polymers. In this approach, one says that
the characteristic size of a polymer, R, is balanced so as to
minimize the free energy

F(R) = Felast(R) + Fint(R)7 (3)
where Feos(R) and Fiy stand for the polymeric entropy and

interaction parts of the free energy. As for the interaction
part, it can be written in the usual second virial form

uN?
Finy ~T RI (4)
where v is the excluded volume. For now, let us assume that
d
v al.

In complete analogy with the Flory derivation for a linear
polymer, it is tempting to write the elastic contribution in the
form

RZ

Foast(R) = T =,
eldst( ) R%

(5)

with Ry ~ a(gN)l/ * standing for the unperturbed size of a
polymer. From equations (3) and (4), one automatically
arrives at

R ~ aN"»ghas (6)
with
5 1
u = bl u - . 7
‘T a2y M T ow ) ™

This result was obtained in [46, 47]. Obviously, the derivation
assumes that the structure of branches is not subject to change
in response to swelling, which is correct only for the quenched
case. Interestingly, it was not pointed out in [46, 47].

2.4 Flory type theory for the annealed branched polymerf
In order to take into account the additional rearrangement of
branches one should notice that characteristic diameter L
obeys the Zimm — Stockmayer estimate (1) in an unperturbed
polymer only. For a polymer with excluded volume and an
annealed system of branches, the branches will rearrange,
changing the characteristic number of bonds between ends.

To describe this factor, we can again use Flory theory, this
time applying it to the polymer placed on the Cayley tree (see
Fig. 2). How many configurations are there for the diameter
L? As was already mentioned, these configurations can be
mapped onto a one dimensional random walk (to or from the
origin O on the Cayley tree), and thus the answer is given by
the entropy of a linear polymer stretched out to the end-to-
end distance L, because, on the Cayley tree, L plays the role of
spatial size. Thus, we get

(Lfg) _ I

Foo=T T
N/g Ng

(3)

Thus, our Flory theory is now like a Russian doll (one
inside the next). First, the elastic free energy now has two

T This section is based on the work [45].
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Flory-type contributions of the form:

R? L?

Interestingly, both terms here are of the same type, except that
L plays the role of chain length in the first term and of the
chain spatial size in the second term. Minimization with
respect to L yields [45]

L~ (% B Ng)'/? 10
~(5) () (10)
and
4/3
elast (Ng) 1/3
We now have to minimize the free energy
, N* _(R/a)*’?
F:Ent"‘ SE;NTUF+TW (12)
with respect to R. This gives
R ~ aN " glam (13)
with
7 1
- = 14
Vann 3d+47 :uann 3d+4 ( )

It is also instructive to write down the relationship
between L and N. This involves new critical exponents p and
a:

d+6 d+2
L~ Ng°? =— =—. 15
£ PT3qva "7 3d+4 (15)
Clearly, this can be valid only as long as L < N, or at
g <g* _ N(lfp)/(r ~ N2((]7l)/(d+2) : (16)

if g > g*, the polymer is so weakly branched, that rearrange-
ment of its branches brings it to an essentially linear form with
L ~ N. Not surprisingly, when g = g*, equation (13) yields

R ~ aNV[m ~ aN3/(d+2)
just as equation (6) does for quenched case when g = N.

2.5 Preparation conditions for the quenched case
If one thinks a little deeper about quenched branches, then it
becomes apparent that there could be very different patterns
of branches, ranging from a regular comb with L = N/2 to
regular Cayley type structures with L ~ In N. The result
above, equation (6), is meant to be valid for random branches,
because the majority of branched structures obey equation (1)
and have L ~ N'/2. Nevertheless, one can indeed prepare
different branched structures, and it is reasonable to ask the
question of their sizes. One simple way to address this would
be to say that the preparation of a branched structure involves
its stabilization in the annealed regime in one solvent, then its
freezing and putting in another solvent.

To examine this, let us now say that the excluded volume
depends on the solvent and thus we prepare our polymer in the

solvent where the excluded volume, v = r,,a" , and then, when
the structure is frozen, we observe it in a solvent where v = ta“.
In general, for a quenched structure with arbitrary chemical

diameter L, the Flory free energy (4) and (5) is given by

R>  oN?

L—az + Rd ’ (17)
yielding upon minimization

R ~ a(tLN?)"/+2) (18)

As regards L, it is given roughly by (15), because our polymer
was annealed under the preparation conditions. More pre-
cisely, keeping track of 7, we have

L~ _C]Z)/(311+4)Npng (19)
and thus
R~ Tf)/ (3d+4)(d+2) £1/(d+2) 7y Vann gHam
2\ 2/Cdr4)(d+2)
~ (f) Raon - (20)

As one might have suspected, the critical power describing N
dependence is the same here as in the annealed case, but this is
valid only as long as 7 and 7, are considered N independent.
However, using for example the solution where 7 is very small
one can potentially prepare a branched polymer whose
structure and swelling is very different from both annealed
and random quenched polymers.

The main message of this section is that the annealing of
the structure has to do with the preparation procedure for
quenched systems. We shall consider this point in more detail
later.

2.6 Discussion and comparison to other theoretical

and Monte Carlo data

The dependencies of critical exponents v for both quenched
and annealed branched polymers on the spatial dimension d
can be easily plotted along with a similar dependence for
linear polymers given by the Flory formulav = 3/(d + 2). Itis
known [46], that d = 8 is the upper critical dimension for
branched structures, and thus it is not surprising that Flory
theory yields unperturbed values for v, both for quenched and
annealed cases, in d = 8.

For d = 3, we are fortunate to have an exact result from
the field-theory approach [48] for the annealed case:
Vann = 1/2. Flory theory yields the value 1/2 for the quenched
case vqu =0.5; for the annealed case, it gives
Vann = 7/13 =~ 0.54. This can characterize the accuracy of
the Flory approach. Neither of the works [46, 47] mentioned
that they were dealing with quenched branches, nor did the
work [48] quote that its subject was in the annealed regime,
and their results were thought to be in agreement.

What is really important is that always vqy < Vann. This is
clear physically: an annealed polymer has some additional
freedom, and uses it to escape unfavorable excluded volume
effects. This also agrees with the ¢ = 8 — d-expansion, that
yields to the first order

1 € 1 €
Vannl’z 1+§+ s unﬁz 1+E+

[51, 52].
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The latest computer simulation [52] yielded
Vann = 0.49 £ 0.01 and vq, = 0.45 £ 0.01, which is similar to
the Flory-type theory results as regards the relative difference
between the two exponents.

The difference between the quenched and annealed cases
manifests itself in a variety of physical properties, including
osmotic pressure of the semi-dilute solution, permeability
through thin capillaries, etc. Many of them can be studied
using the standard scaling approach [2] (see [45]).

For the linear polymer, except for swelling, which is
related to the excluded volume problem and self-avoidance,
there is an opposite regime of collapse, or coil-globule
transition. Itis relevant for d > 2, because in d = 2 a Gaussian
polymer would have N-independent density of order unity,
and there would be no room to collapse. Similarly, branched
polymer collapse may exist in d > 4. Flory-type theory can be
generalized to this case, and also a more sophisticated theory
can be developed [53] that follows the lines of the Lifshitz
theory for globules of linear polymer [1].

3. Disorder of topology: knots and entanglements

3.1 Why topology?

The image that comes to mind when one thinks about a
linear polymer is that of a rope or a thread. The analogy
suggests that entanglements and knots may play an impor-
tant role in the behavior of polymers and indeed, their
manifestations are numerous, from the viscoelasticity of
polymer liquids to the disentanglement of DNA molecules
in the living cell by the action of special topological enzymes
(topoisomerases).

As far as the present author knows, the earliest works on
knots in physics were due to W Thomson (later Lord Kelvin)
[54] and J C Maxwell. They were trying to answer the
question: where does the discreteness of chemical elements
come from? The idea was to associate each chemical element
with a certain knot, thus producing discreteness. Although we
know now the quantum explanation of the nature of chemical
elements, the idea remains beautiful. Very recently, various
knot-related concepts have been applied in statistical physics,
field theory, hydrodynamics, astrophysics and magneto-
hydrodynamics, etc [55—58]. In these areas, however, knots
appear in a rather abstract way. By contrast, knots in
polymers are very obvious, they are just common knots, like
ones on a rope. In the biopolymer context, the first discus-
sions on the relevance of knots were due to H Frisch and E
Wasserman [59] and M Delbriick [60].

All of what are called the topological properties of
polymers stem from the simple fact that two piece of polymer
chain cannot pass through one another. Imagine now that we
have a ring polymer: as self-intersections are forbidden, the
motions that remain possible are only those that are con-
tinuous, without breaking the polymer — and this is exactly
what is discussed in mathematics when the term topology is
defined. Thus, a ring polymer can arbitrarily change its
geometrical shape with only the constraint of unchanged
topological class.

The word topology is sometimes overused in physics (for
reasons that the present author does not understand). For
example, overall shape of a protein is sometimes referred to as
protein topology. In the present case, we are speaking about
real topology.

Clearly, topological constraints strongly affect all the
properties of polymers, both static and dynamic. Many
DNA molecules are known to work in the living cell in the
form of closed rings, and some of them are indeed knotted.
Knots have been reported recently in some proteins [61].

In mathematics, the word knot means an arbitrary closed
curve embedded in 3D space. What we would normally call an
unknotted ring is called a trivial knot. Similarly, a link is a
number of closed loops embedded together in 3D space. A
trivial link is one in which rings are not entangled. Obviously,
these concepts are directly and perfectly applicable for ring
polymers.

It is also worth mentioning, that a macroscopic polymer
network, as realized in gels, represents an extreme of very
complex topology.

3.2 Topology and disorder

The topological properties of polymers are similar to those of
disordered systems in the sense that the topology is formed
during the process of polymer preparation and can be then
memorized. As in other cases, the difference between
quenched and annealed regimes should be made very clear:

(1) Quenched topological disorder is realized in regular
polymer rings and/or networks.

(2) The annealed situation can be realized in a DNA
solution when a special enzyme, called topoisomerase I, is
present in abundance (along with ATP molecules that are
required for the functioning of topo-II).

(3) In the system of linear (open) polymers, topology does
not impose strict constraints, but as rearrangements take
rather a long time, temporary topological constraints can be
viewed as similar to annealed disorder.

3.3 General formulation of topological

problems in polymer statistics

Let us formulate now in general terms how one should
approach the topological properties of polymers. Let us
begin with the case of quenched topology. Suppose one
wants to describe the thermodynamic equilibrium of, say, a
ring polymer that has been prepared in a certain state of knot
topology, trivial or non-trivial. To do so, one has to evaluate
the partition function taking into account all the conforma-
tions that belong to a given topology (or, in a more
sophisticated language, to the given homotopy class). For-
mally, this can be written as

E
Z = J exp (— —) dr
given topology T

_ Jexp <_ ?) 5(G(I') — Go) T,

(1)

where integration over dI”’ means summation over conforma-
tions. In the first line, summation is performed over con-
formations of the given topology. In the second line, this is
formally transformed into integration over all conforma-
tions, with a § function which does the job of choosing the
given topology: G(I') is some value which is different for
conformations I' of different topologies, and which does not
change as the long as topology stays the same. This value is
called the topological invariant.

Thus, the entire problem includes two steps: first, one has
to find the topological invariant. In other words, one has to
classify possible topologies. Second, when the topological
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invariant is already known, one has to evaluate the partition
function (21).

In the simplest case when there are no interactions
between polymer pieces (except, of course, hard core repul-
sion that prohibits intersections), the latter problem is
reduced to the question of the phase volume available to a
given knot I, or knot entropy S(K). This question is obviously
equivalent to the one of the probability of obtaining a certain
knot upon random closure of a polymer, p(K) ~ exp[S(K)].

3.4 Briefly on knot invariants

The first attempt to classify knots was due to P G Tait [77].
He drew knots and tried to uncover some regularities.
More recently, considerable efforts were spent on making
tables of knots (see [76,78]). In these tables, knots are
organized according to the minimal number n(K) of cross-
ings that a given knot X can have on a two-dimensional
projection. Unfortunately, the number of possible knots
grows exponentially with n, and thus, not surprisingly,
‘even the most powerful computers quickly run out of
enthusiasm’ [79]. Another stream of development here
goes back to Alexander [80], with the ideas of algebraic
topology. In recent years, there has been remarkable
progress in the mathematical theory of classification of
knots based on the theory of polynomial topological
invariants [81]. A number of new polynomial invariants
were invented in recent years, including Jones, Kauffman,
Vassiliev polynomials and others [57].

Although the new polynomials are much stronger than
Alexander polynomials, they are computationally incompar-
ably less convenient, because to compute the Alexander
polynomial for a knot with » intersections on the projection
requires about n® operations, while for other more sophisti-
cated polynomials this number grows as expn. This was
thought to make a computation virtually intractable. A way
to circumvent this problem has been suggested in the recent
work [72].

One more approach to classify the knots is based on the
following idea. Suppose we have a knotted ring polymer. Let
us make it evenly charged all along the contour length and let
us gradually increase the charge per unit length. Obviously, as
all charges are of one sign, their repulsion will lead to
stretching of the polymer. Finally, when charge is very high,
the polymer will adopt some conformation that is maximally
extended, compatible with the fixed topology. This maxi-
mally charged shape depends on the knot type and is
hypothesized to be a topological invariant. The simplest
invariant is just the minimal Coulomb energy that corre-
sponds to this optimal shape. This later value can be written in
the form

EZ?&{%§§d“whﬂwlrwn‘leJ}’ @)

where sis arc length along the polymer, L isits contour length,
and r(s) gives the polymer shape to be optimized. The second
term in the integral is subtracted to remove the pathological
divergence of Coulomb energy ats — s'; 1/L is introduced to
make the value independent of the linear scale, only on the
topology.

There are several other constructions of ‘knot energy,” but
they lack an obvious physical interpretation compared to
equation (22).

Very recently, another idea was suggested to classify knots
according to their ‘maximally inflated’ [73] or ‘ideal’ [82]

representation. We shall discuss it in more detail below, in
Section 3.7.

3.5 What is known of knot entropy?

Despite the progress in mathematical theory of knot invar-
iants and the better understanding of knot classification,
there are only few rigorous results on the entropic properties
of knots [62, 63], and further attempts in this direction
encounter severe mathematical difficulties [64—66]. In this
situation, one has to appeal to some exactly solvable models
[67—69], computer simulations [70—72], or seek some simpli-
fied Flory-type approach [73]. As to the exactly solvable
models, such as a winding around a point-like obstacle on a
plane or lattice of obstacles, they are reviewed, for example, in
[74, 75]. An excellent review on computer simulations was
published in UFN several years ago [76]. This is why only
recent simulation results are summarized here and then a
simple Flory theory is discussed.

3.5.1 For long chains, the probability of unknotting decreases
exponentially with the number of segments. There are very few
well established results relating to knot entropy. One of them
is due to the works [62, 63]. Consider a broken line of N
segments, each of unit length. This is obviously a model of a
freely-jointed polymer without excluded volume. What is the
probability, Py(N), that it will form a trivial knot (= an
unknot) upon random closure? The result of [62, 63] is that
this probability tends to zero exponentially with N:

(23)

where Ny is the characteristic scale (it is just a number)¥.

While rigorous proof of relation (23) is by no means
simple, it is easy to gain an insight into why probability (23)
varies exponentially. Indeed, let us divide the entire polymer
of N segments into N/g blobs of g segments each. To
guarantee an unknotted conformation of the entire chain,
one has to make all the blobs unknotted, thus yielding

Po(N) < [Po(2)] ",

which leads to exponential behavior in N.

An important consequence of result (23) is that a normal
Gaussian model of a polymer chain, that represents chain as a
trajectory of Brownian motion, is totally inappropriate for
topological problems. Indeed, a Brownian trajectory can be
viewed as the limit of a broken line with the segment length
tending to zero, / — 0, and the number of segments tending to
infinity, N — oo, in such a way that the contour length of the
polymer remains constant: L = NI = const. Naturally, the
knotting probability depends on N, not on L, and this is why it
tends to unity in the Brownian limit. This is exactly the
‘ultraviolet catastrophe’ that is known for simplified models,
this is totally due to indefinite knotting of Brownian trajec-
tories on small scales. Thus, a certain sense of granularity,
either in the segment length, or in the chain width, or in the
lattice character of the underlying space, is necessary for a
meaningful approach to the problem of knot entropy.

What is the value of Ny? There are no methods even to
estimate it other than to resort to computer models and
simulations.

T More precisely, the statement of the works [62, 63] reads: there exists
finite limit limy_. [N~" InPy(N)].
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3.5.2 Some Monte Carlo data. There are a number of works on
Monte Carlo generation of knots, from [70] through [71] to
the most recent [72] (see also the very nice review in [76]). The
general scheme is as follows:

(1) First, one has to generate closed loop. This can be done
on different lattices, or with various off-lattice models, for
instance, consisting of straight segments. To make them
closed loops, there is simple prescription to generate next
step of the walk from the conditional probability distribution,
with the condition imposed that the trajectory as a whole
represents a loop (or Brownian bridge).

(2) Second, when the loop is generated, one has to decide
which type of knot is present. This is the most computation-
ally demanding part, and in most cases it is done using the
Alexander polynomial topological invariant. In the recent
more advanced work [72], sophisticated Vassiliev polynomial
invariants were employed instead of Alexander ones.

Some of the data are summarized in Fig. 3. In earlier
works, these data were presented for the probability
P(N) =1—"Py(N) obtaining a non-trivial knot. This is
because originally people were thinking of knots as rare
events, while theorem (23) shows that they must be typical in
the extreme of long chains. The data presented in Fig. 3 agree
very well with the asymptotic prediction (23), and yield the
estimate Ng ~ 335+ 5.

The characteristic chain length appears rather long! It
remains unknown why it is so long. It is tempting to compare
this number with another, appearing in the reptation theory
[2, 3] as the entanglement number N,, which is usually about
50—-500. The relation between these two numbers, however,
remains a mystery.

Further Monte Carlo studies include the determination of
probabilities for various particular non-trivial knots [72]. Not
surprisingly, when the chain length, or better to say — the
number of segments, becomes larger, the diversity of knots
obtained grows as well. As to the probability of finding any
particular type of knot, say, /I, upon random closure of a loop
of N segments, Py (N), it can be guessed to behave as follows:

(1) For small N, Px(N) ~ 0, unless K = 0 is the trivial
knot, because short loop cannot form any knot but the trivial
one;

(2) For very large N, Px(N) should decay exponentially,
with the same characteristic length N, that was found for the
trivial knot [see (23)]. Indeed, for long enough chains, with
growing N, any knot K becomes finally ‘small’ and ‘local.” For
that large N, the probability Pi(N) can be thought of as the
probability of forming the given knot K on some relatively
small part of the chain N, times the probability Po(N — N;)
that the rest of the chain remains unknotted. In the large N
limit, this later factor dominates, thus yielding exponential
decay on the scale N, independent of the knot K;

(3) Given the two arguments above, we conclude that
Pi(N) should have a maximum at some particular chain
length Ny, which depends on the type of knot. It is reasonable
to assume, that Ng increases when the knot IC gets more
complex.

In the work [72], these statements were beautifully
confirmed. It was found that the following relationship is
valid within the accuracy of the data:

Pic(N) = CxN'® exp (— Nﬁ) : (24)

0

Some numerical data of the work [72] are shown in Table 1.
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Figure 3. Monte Carlo data for the probabilities of forming trivial and
some non-trivial knots upon random closure of the polymer of N segments
of zero width: (a) represents the data of [76] for the trivial knot, along with
the fitting curve exp(—N/335). Figures B (in logarithmic scale) and C (in
linear scale) present data of the work [72]. Fitting curves are shown
according to equation (24). Designations: e - for the trivial knot, x sign for
trefoil 31, o for 4, + for 5;, o for 5,.

It was hypothesized based on numerical data [72], that for
a composite knot K =I#K,, the relationship
Vi = Vi, + vk, is valid. As far as this author knows, nobody
has been able to prove it so far.

3.5.3 The role of polymer width. Although this is not proven
mathematically, there is little doubt that almost all conforma-
tions of the (infinitely) long polymer ring are knotted,
whatever the width of segments. The width, however, can
and does strongly influence the characteristic length at which
knotting becomes most probable.

As to polymers of moderate length, width appears to
suppress dramatically their ability to form non-trivial knots.
It was found in Monte Carlo simulations performed on a
model of freely jointed segments of length / and width d [83].
Obviously, the probability of knotting, P, or the probability
of the trivial knot, Py = 1 — P, depends now onboth N = L/



February, 1997

Disordered polymers 133

Table 1. Numerical data for some knots.

Knot type VK Ck Nmax = Novk Pmax
0 ~0 1.03 £0.03 ~0 1

3 1.11 £0.05 (11+£03)x 1073 372+ 15 0.26
4 1.34 +£0.09 (6.6 £3.0) x 1073 450 + 30 0.06
5 1.354+0.15 (1.94£1.5) x 1073 450 £+ 50 0.02
5, 1.40£0.11 (2241.3)x 1073 470 + 30 0.03
3143 2.3+40.1 (2942.1) x 1077 770 £+ 30 0.13
3#4, 2.5+0.2 (344+42)x 1078 840 + 70 0.06
31#31#3) 3.7+£0.2 (1.54+1.5) x 1071 1240 + 70 0.1

and d/I: Py = Po(N, d/l). It appears that Monte Carlo data fit
reasonably well to the following formula:

P 3) =[]

As we see, the chain width makes the characteristic length
grow dramatically over its already large value of about
Ny =~ 335. For the given number of segments, this means
strong suppression of knotting.

The fact that polymer width suppresses knotting is well
established, but it is not very well understood. There are two
effects of potential importance. One of them is that chain
width is nothing but excluded volume, and it leads to overall
swelling of polymer coil. Another effect is that width affects
the ability of the growing polymer chain to penetrate and go
through the small loops of the already formed part of the
polymer. To separate these two effects, one can examine
computationally a model where the chain does not have
width, but is swollen due to an appropriate external field
(say, of the form ¢(x) ~ —xx?, where one chain link is fixed at
the origin). While some studies in this direction have been
performed, the data are inconclusive.

(25)

3.5.4 Experimental observation of knots. There is a rather long
history of observation of knots in DNA, it goes back to 1976
[84]. The recent achievement of the works [85, 86] is the
possibility to measure probabilities for some particular knots,
such as 3, 4, 51, and 5,. It was decisively important for the
comparison of experimental and Monte Carlo data that the
non-zero width of real polymers is taken into account in the
latter, because in experiments [85, 86], by changing the ionic
strength of the solution, it was possible to control the effective
diameter of DNA double helices. The experimental depen-
dence of the probabilities for the knots 3, 41, 5;, and 5, on the
ionic strength appears to be in a very good agreement with the
Monte Carlo data for the same probabilities as functions of
chain diameter, d (see [78] for the standard designations of
knots).

3.5.5 The role of polymer compression. In normal polymer
physics, the excluded volume effect leads to polymer swelling,
and there is also the opposite situation, where the excluded
volume can be said to be negative (B < 0), and that leads to
chain collapse. As far as the topology is concerned, we cannot
say that the polymer width is zero or negative even when the
solvent is poor and the polymer tends to collapse. Indeed, it is
the second virial coefficient that becomes zero at © tempera-
ture and negative below @, but not the geometrical width of
the polymer. Thus, one has to ask what is the probability of
knotting for a polymer that is maintained in a collapsed
globular state, either due to attractive interactions present on

top of non-zero width, or due to compression in a restricted
geometry or an external field.

Monte Carlo simulations [76, 87] indicate that collapse
strongly enhances the appearance of non-trivial knots. It
appears, that the probability of trivial knots for globular
polymers goes to zero much faster than it does for the free
random coil.

Although the strong knotting in the globular state is very
well seen in the data, it is difficult to extract some quantitative
measure or interpolation expression for the knotting prob-
ability. Unfortunately, the problem also appears to be very
difficult for an analytic approach, and there has been only one
attempt to estimate this probability theoretically [88]. As
usual in the mien-field theory of globules, what one does is
determine the change of the polymer properties due to
collapse. In this case, the estimate of the work [88] gives an
additional factor that suppresses the probability of trivial
knot:

NP N3
olob 1/3
PEOP(R) ~ exp |:_ _:| ~ exp [—N / (_> :| ,

where R is the size of the polymer localization, and the latter
estimate is given for a maximally compact polymer with R* of
the order of polymer’s own volume, NId?. It is unclear,
however, whether one can write the estimate for the resulting
probability as simply the product Po(N, d/I)PE°P(R) In any
case, it appears that even for a rather moderate chain length,
almost all of the compact chain conformations are heavily
knotted. This fact has important consequences.

(26)

3.6 Crumpled globules

3.6.1 Collapse of an ‘underknotted’ polymer. Surprisingly, the
abundance of knots in the collapsed state appears to be of
special importance for those polymer systems where forma-
tion of knots, for one reason or another, is suppressed or
prohibited. There are actually many such systems:

(1) subchains of a polymer network;

(2) the solution of untangled polymer rings;

(3) the long (open) linear chain in the initial stages of
collapse, before the ends could penetrate the globule and form
an equilibrium quantity of knots.

Thus the question appears: what is the structure of a
collapsed, but unknotted (or ‘underknotted’) polymer? The
answer was suggested in [89]. According to the estimates of
that work, collapsed unknotted polymers adopt a conforma-
tion that is crumpled in the sense that it does not obey Flory
theorem. If one takes a piece of polymer of, say, k monomers,
then this piece appears to be collapsed, with a size of about
k'/3. This is in a sharp contrast with a regular globule, where
the size of a k-monomer piece of the chain varies as k'/2 as
long as k is less than one chain ‘passage’ through the globule,
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and becomes k-independent at larger k. This is illustrated
schematically in Fig. 4. This is a rather strong statement:
although the absence of knots means some global condition,
it is stated that this global condition leads to selection of
trajectories with very peculiar local fractal properties.
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Figure 4. Schematic Log-Log plot of the size of k-monomers chain pieces
as a function of k in a regular globule (A) and in a crumpled globule (B).
The characteristic scale k* for the regular globule is defined in association
with one Gaussian })assage through the globule core, that is,

a(k*)' 2~ R ~ (N/no)'"?, or k* ~ (N/a no)2/z where ny is the density in
the globule. For the mdx1mdlly compact polymer, ng ~ 1/v.

Since it was suggested in 1987, the concept of a crumpled
globule has been neither confirmed nor rejected. Recently,
some indirect evidence was obtained in favor of this concept
both from computer [90, 91] and from real experiments [92,
93], as well as theoretically [94, 95]. Nevertheless, it remains at
the status of hypothesis.

3.6.2 The crumpled globule as a model of native DNA. Simple
packing considerations tell us that the native spatial structure
of DNA has to be of a dense globular type, rather than that of
an expanded coil. It was also mentioned that spatial 3D
structures of globules, either equilibrium or not quite equili-
brium ones, are controlled by volume interactions between
chain monomers. As to the native DNA globule, these volume
interactions are of tremendous complexity, since they are
mediated by proteins and include phenomena such as the
recognition of particular sequences by proteins, etc. Never-
theless, the conclusion that most of the dense conformations
are heavily knotted holds independently of that, and thus
should be valid for DNA.

On the other hand, it seems that complex knotted
conformations cannot dominate the native state of a func-
tioning biopolymer since entanglements will dramatically
reduce its ability to respond to bio-chemical influences.
Indeed, if the number of entanglements in the globular
structure of a high molecular weight polymer is comparable
to the number of segments, the structure will become glass-
like (i.e., kinetically frozen), with the result that many
monomer units will be out of reach for any biological system
involved in DNA processing. This is why it was assumed in
work [96] that, in a statistical sense, the DNA globule is
practically unknotted. The argument was also given that this
conclusion holds in spite of the existence of topoisomerases
and other proteins which can cut DNA; being small com-
pared to DNA dimensions they cannot even recognize the

global topology of DNA and thus they can not have a
statistically significant effect on the number of entanglements
in the globule.

The crumpled globule model of DNA native structure
explains naturally the observed hierarchy of structural levels
of DNA spatial organization, starting from the double helix,
to nucleosomes, and all the way up to chromatin, as these
levels are associated with self-similar crumples of different
scales.

An alternative view point was presented in the works [97,
98], where a model of phantom DNA was suggested. The idea
was that the topoisomerases could be present in abundance,
along with a practically unlimited supply of ATP. If that were
the case, intersections of DNA would occur easily, and DNA
would indeed behave effectively like an phantom polymer.
Then, in particular, it could have the in vivo conformation of a
usual globule, instead of a crumpled globule.

The dispute remains unresolved, and it is for an experi-
ment to decide which model is closer to reality.

3.6.3 Speculation about proteins. Peculiar fractal properties of
crumpled globules gave rise to various speculations dealing
both with suspected fractal properties of protein chains and
attempts to explain the appearance of secondary structure.
These ideas will not be discussed here in further detail.

3.7 Knot inflationt

3.7.1 The topological invariant: maximally inflated knot
representation. To build up a simple theory, the following
construction was suggested [73, 82]. Consider a polymer chain
in some spatial conformation and denote by L the contour
length of the chain. Let us first construct a tube that contains
the polymer chain and is sufficiently narrow such that the
topology of the tube as a whole is the same as that of the
polymer. We now inflate the tube such that its length L is
preserved, while its cross-section is roughly the same every-
where along the tube (we assume that different tube portions
cannot penetrate each other). This inflation will eventually
end when the inflated tube fills the main part of the volume
within its loops. Let us denote by D the diameter of the
maximally inflated tube. We say that the aspect ratio of the
maximally inflated tube

L

PEE

is a topological invariant, albeit it rather weak (since there
may be many topologically different knots that have the same
value of p)i. Nevertheless, p is a topological invariant, in the
sense that if we take two closed curves in three dimensional
space that are geometrically different but identical with
regard to their topology, then tube inflation, as described
above and as illustrated in Fig. 5, will work independently of
initial geometries and will result in identical (‘maximally
inflated’) geometrical shapes of the corresponding tubes,
and therefore, will yield identical p values. This happens
because the redistribution of the ‘stored’ length among the

(27)

T This section is based on work [73].

1 There are some inherent uncertainties in the definition of p, related to the
definition of the ‘diameter’ of a sharply curved tube, as well as assumptions
made about the flexibility of the central tube axis during inflation. For
example, if one attempts to approximate this axis with a broken line of
some 7 straight segments, the value of p will be (slightly) dependent on n.
This is why p is indeed a rather weak topological invariant. However, in
practical terms, p appears to be jairly good invariant [82].
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Figure 5. Illustration of tube inflation. Two different yet topologically
equivalent loop conformations are shown. The thin tube centered around
the polymer closely resembles the conformation of the polymer itself.
When the tube is inflated, with the contour length of its axis preserved, all
the small scale ‘jigglings’ of the polymer conformation are gradually
eliminated, and finally we arrive at the maximally inflated shape that is
independent of the initial conformation, but only on the knot topology.
Courtesy of G Berritz.

loops is unrestricted in this single linear chain problem, and
thus inflation does not encounter spin-glass-type frustrations
and leads to some well defined optimum. A closely-related
definition of a topological invariant was introduced in
reference [58], in the context of vortex tubes in fluid
mechanics.

If the ring is not knotted in the conventional sense, or if it
forms the trivial knot, its inflation leads to a simple torus with
D ~ L and thus p ~ 1. On the other hand, the more complex
the knot we have, the less is its ‘inflation capability’.
Physically, since real polymers have a finite thickness, there
is a maximal knot complexity that can be achieved which
corresponds to a knot that is so dense that any inflation over
an already existing diameter would be impossible. If we
imagine a polymer chain made of monomers whose length is
equal to their thickness, we conclude that the maximal value
of p = L/D ~ N is of the order the number of monomers per
polymer chain. Thus, our topological invariant can take
values in the interval

I<p<N, (28)

and it provides a rough measure of knot complexity: more
complex knots correspond generally to higher p-values. To
illustrate the later conjecture, it is worth mentioning that the
topological invariant p has the property of additivity: for the
composite knot K = K1#K,, the topological invariant is
given by

P(K1#IC2) = p(Ky) + p(K2) -

We note that the topological invariant p is closely related
to the primitive path of the chain in a lattice of obstacles [65].

(29)

In order to clarify this point we introduce a self-consistent
representation of a complex knot in terms of an ‘effective’
lattice of obstacles. The polymer trajectory on this lattice is
represented by a primitive path which is measured in units of
the lattice constant (this makes the topological invariant
independent of lattice deformation). Maximal inflation is
equivalent to lattice enlargement up to the point when the
polymer chain becomes completely stretched along the
primitive path, and therefore p can be interpreted as the
chain length measured in units of the expanded lattice
constant. The above analogy allows one to estimate the
number of topologically different knots with a given p value.
Since a lattice of obstacles can be mapped onto the Cayley tree
[69], this quantity should grow exponentially with p:

K(p) ~ exp(4p), (30)

where A is some numerical constant.

3.7.2 Flory-type theory for the swelling and collapse of a knot.
We proceed to estimate the polymer chain size dependence on
solvent quality and topology, the latter represented by the
topological invariant p. We begin with the assumption that
the chain conformation can be characterized with a single
length scale R. Our goal is to find the equilibrium value of R
for the given solvent conditions and the given p. Following the
classical Flory approach, the equilibrium polymer size R is
given by the balance of rubber-like elasticity and interactions
between monomers dispersed in the polymer volume. This is
described by the minimization of the free energy

F= Felast + Fimeract . (31)

Let us assume first that all monomers are more or less
evenly distributed over the volume of the system R* (actually,
we shall show later that this assumption is not universally
valid). For the uniformly smeared cloud of monomers, the
interaction term for the ring is identical to that of the linear
chain,

2
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where o = R/ av/N, Band C are the second and the third virial
coefficients, respectively, and a is the monomer size.

The problem is to obtain a plausible estimate for the
entropic part which would account for the frozen topology of
the polymer ring. To this end we suggest the following
approximation based on the construction of the maximally
inflated tube which occupies a volume of order LD?. Let us
deform it affinely so that it occupies the volume of the chain
R3, but preserves the geometrical shape that it has in the
maximally inflated state, and call this deformed tube an ‘R-
size tube’. Let Lg and Dg be the length and the diameter of the
R-size tube, respectively. Since the R-size tube is obtained by
an affine transformation of the maximally inflated tube, we
have Lg/Dg = p, and since it occupies the whole volume of
the polymer, Lz D% = R3. We obtain:

Lr~Rp**, Drp~Rp '3, (33)

Now the central assumption comes: in order to estimate
the entropic (i.e., elastic) free energy, one can consider our
polymer as a phantom chain, but confined within the R-size
tube. The evidence in favor of this assumption was obtained
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by computer simulation [82]. The entropy of a phantom
polymer confined in a tube is independent of the way this
tube is embedded in 3D space; one can estimate the entropy of
a phantom polymer in a simple torus-shaped tube, or even
that of a linear polymer in a straight tube, with polymer ends
attached to the tube ends. This gives

2 2
Felast ~ LR Na
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(34)

where the first and the second term describe the chain
elongation along the tube and the squeezing within the tube
diameter, respectively (see, for example, [32]). We balance the
free energy contributions (32) and (34) and obtain the
following equation for o:
n_B

5 4/3 2
o’p*? —ap — - ==
a3 ad o3

0. (35)
This equation is similar to the equation [see [32], Eqm (13.5)]
for linear or phantom polymers, except for the inclusion of p-
dependent factors. This is a good news: it means that the
‘correspondence principle’ is obeyed, at p = 1 we are back at
the ‘old’ theory. For simplicity, in the following we present
results in terms of polymer chain size R = aav/N and take
B~ @t and C ~ ab, where t denotes the dimensionless
deviation from the @-temperature. Eqn (35) implies the
following regimes:

Good solvent regime is realized when © > (p/ N)l/ % in this
regime entropic elasticity associated with chain elongation
along the tube [first term in eq (35)] competes with two-body-
repulsion (third term), yielding

R~ aN*/3¢1/5p=4/15 (36)
The N and temperature—dependence of polymer size
(R ~ N*7) is identical to the linear or phantom polymer
case, but there is an important prefactor that gets smaller for
complex knots with large p values. Note that the chain size in
this regime can be smaller than the size of a Gaussian
phantom chain, aN'2; this happens in the range
p'PN-12 < 1 < p*3N-1/2 or, in other words, for sufficiently
complex knots with p > (tN'/2)*4. Only a relatively simple
knot in a truly good solvent [p < (rN1/2)3/4] is swollen
compared to the Gaussian phantom size.

At smaller 7 or higher p (more complex knots) the polymer
crosses over to the quasi-Gaussian regime.

The quasi-Gaussian regime arises when
—(p/N)"? <t < (p/N)"*; in this regime the elasticity asso-
ciated with chain elongation along the tube competes with the
three-body repulsion and the chain elasticity across the tube,
the latter two being of the same order of magnitude. This gives

R ~ aN'?p=1/6 (37)

i.e., the N-dependence of the chain size remains of the
Gaussian type, but the coefficient gets smaller for more
complex knots.

At even smaller (more negative) t or for smaller p (simpler
knots) the polymer crosses over to the poor solvent regime.

The poor solvent regime is realized when t < —(p/N)' 2 in
this regime the two-body attractive term in Eqn (35) competes
with the three-body repulsion, yielding

2/3
R~ alt| PN/ [l—}—|r|74/3 (%) } . (38)

The main term here is an obvious result, because in the
presence of strong inter—-monomer attraction the polymer
must collapse into a dense sphere (globule) with N-indepen-
dent density. We included the correction due to the next most
important term, which is chain compression in the tube. This
indicates that a heavily knotted globule is less compact
compared to its phantom counterpart.

The maximally tightened knot regime is realized when
p ~ Nand, interestingly, it does not depend on solvent quality
and interactions. In this regime,

R~ aN'3. (39)
and, thus, a tightly knotted ring is always compact.

Our results for the scaling exponents, (36), (37) agree with
the computational data of reference [99], where ring sizes,
R(K), were studied for several different ring topologies K,
including the unknot, trefoil, figure eight, and double trefoil.
It was found that critical indices v(K) in R(K) ~ N*®) are the
same (within statistical errors) for all tested knots &, namely,
close to 0.6 or to 0.5 for rings with or without excluded
volume, respectively.

The simplest theory presented above does not distinguish
between a trivial knot (p = 1) and a phantom ring. This defect
can be fixed by considering the confinement in the R-size tube
of a non-phantom unknotted polymer instead of a phantom
one. The exclusion of knots for a chain confined within an R-
size tube gives rise to an additional term in the elastic free
energy (34) that scales as o°. Indeed, expression (34) has to
be modified in the case when the chain is compressed both
across and along the tube; in the latter case, the scaling form
of the free energy can be obtained from the fact that the
resulting osmotic pressure must depend on N and the tube
volume LgD% ~ R? only through the polymer density, N/R>.
This leads only to the redefinition of the C/a® coefficient in
equation (35) and does not affect the scaling forms of all our
main results (36)—(39). More subtle corrections may be
needed if one is to incorporate delicate properties of the
collapsed state [100] instead of a simple crumpled globule
scheme.

Let us return now to our assumption of the even
distribution of monomers in the volume R* and discuss once
again the good solvent regime. Suppose that the chain adopts
a conformation in which a part of the length of about p
monomers forms a dense region where all of the knots are
located, and another part of N — p monomers which swells
freely in the good solvent. As long as p < N, our theory gives
for this ‘phase segregated’ state a free energy of about p for the
‘collapsed” knotted part plus about (N — p)l/sx N3 for the
freely swollen loop part, yielding about N'/5 in total (assum-
ing p < N'/%). On the other hand, a state with a uniform
distribution of knots gives, after substitution of Eqn (36) into
Eqns (32) and (34), a much higher free energy, of the order
N'35p*5 (p > 1). Thus, while for N'/° < p < N, thermody-
namics favors a uniform distribution of knots along the chain
contour, our theory predicts that segregation of knots will
take place for less knotted chains, with p < N'/°. Of course, if
the topological state of the polymer represents a composite
knot, then simple knot-components will diffuse indepen-
dently from each other along the chain contour. In this
sense, knot segregation gives rise to a picture that is very
similar to the idea of ‘local knots,” suggested in [101].

It would be interesting to test the prediction of knot
segregation by computer simulations and experiments.
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3.7.3 Probabilities for knots. It is tempting to relate the free
energy Feast (34) to the probability distribution of the knots
that form in the process of formation a ring by random
contacts between the ends of a linear polymer (assuming that
the ends remain glued upon contact). An identical distribu-
tion is obtained from the collection of the instantaneous
configurations of a phantom (freely passing through itself)
ring. Indeed, Fij,g is determined by the volume in configura-
tion space which is available to the non-phantom polymer
with a given quenched knot topology, and this volume is
obviously proportional to the probability of getting this same
knot topology in a phantom system that goes freely from one
topology to another. Thus, the (normalized) probability of
obtaining a knot with a given p value can be written as
-1

Py(R) = 0,(R) UIN WO

(40)

0,(R) = K(p) exp {_ M} |

T

Unfortunately, one cannot directly plug in here expres-
sion (34) for Fes(R), because we are already aware of the
segregation of knots for the swollen polymer. To make a
simple estimate, we can say that for a swollen polymer, knots
will be totally segregated, and thus the length p will not be able
to swell; in other words, the effective length of the polymer
will be reduced to N — p, and thus for the swollen regime
R > aN'/? we have to use

TR?

Felasl(R) =~ m .

This yields

RZ
exp{ipfm}, R>Cl\/ﬁ,

a72p2/3] , R<aVN,
where we have used estimate (30) for the number K(p) of
different knots with a given p.

Inspection of equation (41) indicates first of all that for
each polymer size R, there is an optimal quantity of knots,

Op(R) ~ (41)

exp[ip — o?p*® —

where the probability distribution (40) peaks (if
2> 4v2/3 =~ 1.9):
N-R  RsaV¥,
av/a.
Popt(R) ~ N\ 2 (42)

Thus, most likely degree of knotting grows with chain
compression and reaches its maximal value p ~ N for a
maximally compact globule with R ~ aN'/3.

If we now resort to the saddle point approximation to
evaluate the normalization integral in equation (40) (which
yields, of course, simply Q,, . (R)), then we obtain the leading
terms in the form

exp[A(p — N)], R> aVN,
Py(R) x N2 3\ 2 (43)
! exp[—me—i—/lN(AI;—Z) }, R < aVN.

This result agrees very well with equation (23), as it yields an
exponential decay of the trivial knot probability with N.
Moreover, this sheds light on a possible relation between
Ny =~ 335 and . Furthermore, our result agrees with the data
of numerical analysis (24) in the large N region (we could not
conceivably pretend to get power law corrections to the main
exponential term). Finally, we have also reproduced exactly
estimate (26).

3.8 Tight knots

Knots formed by usual ropes or threads are easily tighten.
This can be unpleasant when you are fishing, or can be
helpful for your shoes. It was hypothesized by P G de
Gennes in [102] that the same can potentially happen in
polymers: if stored length is pulled out of the knot region on
the polymer chain, then the reptation relaxation of this knot
is completely suppressed, and relaxation takes very long
time. It was also suggested that tight knots could potentially
be of importance for some condensed polymer systems, such
as crystals.

How small can a completely tightened polymeric knot be?
It depends, of course, on local chemistry. The stereo model
[102] shows that the minimal number of monomers necessary
to make a tight knot in a typical flexible polymer is about 33.
Interestingly, this number is very close to the length of
shortest walk that can be knotted on a three dimensional
cubic lattice; this latter number was first found by M Delbriick
[60] to be 27.

In the recent work [103], the possibility was suggested to
realize tight knots in the course of the decollapse of polymer
globules. Indeed, if we begin with a globular polymer and let it
settle for a while, it will adopt a conformation with an
abundance of knots. If we now quench the polymer in a
good solvent condition, the knots will not have time to diffuse
from the polymer through its ends and will appear tightened
and effectively frozen in the chain. It would be interesting to
test this prediction experimentally.

4. Freezing transition of globular heteropolymers
with random sequencef

4.1 Globular heteropolymers

From now on, we switch to heteropolymers, that is, to the
polymers where disorder is present in the form of a
sequence of chemically different monomers connected into
a single chain. We shall concentrate on the single chain
problem. While considering various simplified models, we
shall keep in mind the protein folding problem as a sort of
super-goal.

In this section, we consider heteropolymer chains which
are in the maximally compact, globular state. This means, in
particular, that the density of the globule cannot fluctuate and
is evenly distributed in space. Thus, the volume approxima-
tion [1] is applicable. In the simplest lattice model case, a
polymer of N monomers occupies a region with exactly N
lattice sites and therefore, visits every site once and only once
(for instance, a polymer of 27 monomers occupies the
3 x 3 x 3 region in the cubic lattice). The Hamiltonian that
envelops all three important ingredients of the problem,
namely, the sequence of the certain set of monomer species,

T The material of this section, as well as Sections 5.1.5 and 5.2 is based on
the work [10].
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arbitrary interactions between them, and conformations, has
the following form:

N

H(seq,conf) = ZBS,SJ Ar;—ry),

1J

(44)

where capital Latin indices count the monomers along the
chain, s; € {1,...,q} is the species of monomer I along the
chain (and, thus {s;} represent ‘sequence’), ¢ is the number of
species, and r; is the position of monomer 7 ({r;} represent
‘conformations’). A(r) is a function concentrated on the
nearest neighboring points in space; on the lattice, A(a) =1
and A(r > a) = 0, where « is the lattice spacing. Thus, our
model simply says that the energy of a polymer conformation
is determined by the matrix of species-species energies B;; for
the monomers in contact. In writing the energy in the form
(44), we implicitly assume that the conditions of chain
connectivity (points r; and r;;; are always next to each
other in space for all 7), excluded volume (r; # r, for I # J),
and dense packing are all met.

Clearly equation (44), however general, is still an approx-
imation. For example, one could also consider heteropoly-
meric three body interactions, which depend on the species of
the three monomers in contact, etc. Nevertheless, it does
include many essential components of the problem and we
shall restrict ourselves to this model. Also, one has to keep in
mind that the ‘monomers’ of the Hamiltonian (44) are really
renormalized ‘quasi-monomers’ [32]. This means, in particu-
lar, that many small scale details of reality are coarse grained
out in our model. For example, we cannot even attempt with
this model to approach the low temperature properties of
proteins, where another glass type transition is known to
occur due to the freezing of small vibrations around the native
conformations [104, 105].

Nevertheless, we believe that our model is sufficient to
understand the large scale properties of protein globules,
including the particular phenomenon of unique folding. We
shall restrict our discussion to this model.

As to the interaction matrix B;;, natural proteins include
g = 20 species of monomers, and thus, the B;; matrix should

be 20 x 20. Neither the values of its matrix elements nor of
models with smaller number of species are agreed on among
experts. The so-called 20 x 20 MJ matrix is extracted from the
statistics of proteins database [109]. There have also been
other attempts to derive realistic amino acid interaction
energies [110]. Actually, even the very procedure of extraction
of the energies from the statistics of protein structure is
conceptually neither simple nor reliable (see, e.g. [106—
108]). Clearly, these energies cannot be perfect, as the very
idea of a ‘contact’ is somewhat approximate or semi-
qualitative for such bulky molecules as amino acids. On the
opposite extreme, as hydrophobicity is believed to be the
main driving force of protein collapse, various models are
used with just two monomeric species, hydrophobic and
polar. Somewhat special is Independent Interaction Model
(IIM) [9], where the number of monomer species is as large as
the total number of monomers, such that each matrix element
B;; enters in the energy of any conformation never more than
once; matrix elements are then taken independently from a
Gaussian distribution. This model is convenient for theorists
(as we will see in later sections). The most natural and often
used interaction matrices along with some comments are
given in Table 2.

4.2 The random energy model (REM)

In this section, we digress from the polymer problem and
discuss the properties of REM. The reader who is interested in
getting straight to polymer freezing can skip to Section 4.2.5,
where all the necessary properties of REM are briefly
summarized.

4.2.1 What is REM? Formally, to compute the partition
function of an arbitrary system, one only needs the list of all
microstates (conformations), 1,2,..., M with their respec-
tive energies E, Ey, ... Erq. Generally, M is huge, as it scales
exponentially with the number of particles (monomers), N:

M =~ exp(wN), (45)

where w ~ 1 depends on the conformations available, i.e. on
chain flexibility, packing conditions, lattice geometry in the

Table 2. Commonly employed models of heteropolymer interactions. For studies of folding and design, 2 x 2 matrices can be parametrized in terms of a

single parameter 0 without loss of generality (see Section 5.2.3).

Name Number of letters Matrix Ref.
MJ 20 Realistic energies for [109]
MHB N Independent random energies [9]
Potts q B,'/': 1 *25,‘,‘ [111]
_ —V2cosf —sinf in 0
BWM ) B, =B+ B \/—cos. sin sin ' Sec. 5.2.3
2 sin 0 V2 cos 0 — sin 0
2 N -10
HP 2 0= arccos<\/;> ~353°, B;= ( 0 0> [112]
. T 1 —1
ISlIlg 2 9=—=9007 B,']‘=—(T,'(T/‘= [113]
2 ’ —1 1
2 0=0, B,,:aiJrq,:(Jr(l) 7?) [114]
-23 -1
NEC 2 0~ 0.092 ~ 5.27°, B = | 0 [115]
. 0.762  0.479
Electroweak 2 0~0485~278°, Bj= <0.479 _ 1'72()) [116]

mixing
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case of lattice models, etc. As the system is disordered, all of
its energies Ey, E,, ..., Ex depend in general on the realiza-
tion of disorder, that is, on the sequence. In the REM, one
says that the energy of each conformation, say, Ej, is
distributed over the realizations of disorder in the same way
as the energies of all other conformations and is statistically
independent of them. If we call P(E) the probability distribu-
tion of the energy of some particular conformation over

disorder, then REM implies that
P(E\,Ey) = P(E\)P(Ey). (46)

It is also usually supposed that the P(E) distribution is
Gaussian:

P(E) = (2nNE>) ™ exp {— (47)

2
2N82] ’

where £ is the characteristic width of the distribution.

It should be stressed that the Gaussian character of a
single-energy distribution (47) is far less important than the
statistical independence of states expressed in (46), which is
the hallmark property of REM.

4.2.2 The density of states for REM. In order to discuss latter
the REM freezing phase transition, let us look at the energy
spectrum of a typical realization of disorder. It is easy to
generate realizations of this spectrum computationally, and
two of them are shown as examples in Fig. 6. The figure shows
that typical spectra consist of a very dense region, with many
states at high and relatively modest energies, and a low energy
part of the spectrum, which is discrete and comprised of only
a few levels. Furthermore, the continuous part looks identical
for all realizations of the disorder, while the discrete part is
very individual and looks completely different for different
realizations.

E bottom

~ EVN

Figure 6. Two typical energy spectra for REM. Each consists of contin-
uous and discrete parts. The two realizations demonstrate the property
that the continuous part does not depend on realization, while the discrete
part depends strongly.

We can get an insight into these properties of the REM
energy spectrum by examining the density of states, n(E). We
remember that n(E) is defined such that n( E)AE is the number
of states with energies between E and E + AE. Itis very easy to
write the expectation value for n(E):

(n(E)) = MP(E

~

. (48)

This value is huge (due to M) whenever FE is not far from the
central part of the spectrum; in other words, an astronomi-
cally large set of states form an almost continuous spectrum at
all energies where probability (47) is not very small. When the
density of states is so large, it is about the same in all
particular realizations, such that n(E) ~ (n(E)). This argu-
ment, however, works only as long as MP(E) > 1, or
E > Ebotom \where

MP(EbolLom) ~l — Eboltom ~ 7N5\/Zj)v. (49)
If we go to low energies E < EP°"™ where this breaks down,
then the expectation number of the energy levels in an interval
AFE becomes less than unity. This means, that sometimes, for
some realizations, there is one energy level, while for others
there is not even a single one. Thus, we come to the important
conclusion that REM in a typical realization has a practically
continuous spectrum of states above a certain energy, and a
discrete spectrum below it:

MP(E),
n(E)_{ (E)

random peaks,

bott
when E > E %™ |

(50)
when E < Ebetom
It is important that the continuous part of the spectrum is
practically independent of the particular realization of dis-
order, while the discrete part (comprised of very few energy
levels) is absolutely individual for each new realization.

4.2.3 Typical and atypical realizations in REM. To gain a
deeper insight into the properties of REM, let us look at the
energy differences between low energy states. First of all, one
can easily write the probability distribution for the ground
state energy. Indeed, for some state with energy E to be the
ground state, all other states must be of higher energy; for
each state, the corresponding probability is

Jm P(E)dE,

E

and most importantly, as all other M — 1 states are indepen-
dent, we get

00 M1
Paans(E) = MPE)| [ PE aE| (s1)
E
Given that M is astronomically large, this amounts tot
MP(E), when E < EPoUtom
Parouna (E) = 0, when E > Ebetom 52

Thus, for the overwhelming majority of the realizations, the
ground state energy is about EN'/? below the boundary of
the continuous spectrum, E°Um AJl discrete levels are in
this interval; they are, therefore, very close to each other.
Note that the differences between them, that scale as N'/2,
are negligible in the thermodynamic limit: the discrete
energy levels correspond to states that are almost identical
energetically and the system can be kinetically trapped in

T As long as N> 1, we can use saddle point approximation to get
oo P(E)AE =~ 1 — kexp [—(EP™)?/2NEY] ~ 1 — kexp(—Now) (k is
a numerical constant). This value is very close to unity, but its (negative)
deviation from unity is about 1/M. Therefore, immediately above Ebotom,
the value f;ﬁf“ P(E) dE becomes small enough such that its M-th power
practically vanishes.
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any of them. Note that the boundary of the continuous
spectrum is about EN below the mean energy [see Eqn (49)
above].

It is vitally important for what follows that besides the
typical realizations of disorder, there are some rare atypical
realizations of disorder for which the spectrum looks quite
different. In particular, there are some realizations, albeit
exponentially rare, for which the ground state energy is an
order N below the threshold EP'™; they will be of
importance below.

4.2.4 Thermodynamics of REM. Consider now the thermo-
dynamics of REM. While, in principle, one may wish to
compute the partition function and the free energy for each
particular realization of disorder, this is clearly impractical
for most of the applications, and what one does instead is note
that the averaged free energy is dominated by the typical
realizations of disorder. Thus, we are first of all interested in
an average of the form

F(T) = (Fey(T)) = ~T{In Zueg(T)) . (53)
To average the logarithmic function is a tedious mathematical
task, and this is precisely why disordered systems are so
difficult for theoretical examination. This is the place where
the famous replica trick [117] enters. The main good news
about REM is that one does not need to resort to these big
theoretical guns.

Indeed, Zyq(7T), the partition function for the given
realization of disorder, is just the sum over all states
i=1,2,..., Mand it can be always rewritten in terms of the
density of states:

Zoeo(T) = i‘exp (f ET) — ro n(E) exp (f % dE. (54)

—00

At high enough temperatures, this sum is dominated by the
states of high entropy (large n(E)), where the spectrum is
continuous and independent of sequence. This means that all
the complications connected with the difference between
individual realizations of disorder do not arise in this
temperature region and the disorder is, in a way, irrelevant.
Indeed, as long as the saddle point of the integral

Z= Jw MP(E) exp <f % dE

—00

(55)

E
=~ MP(Esaddle) exp <_ %)

belongs to the continuous spectrum region E > EPUM  the
first line of the equation (50) is valid, and thus we get a
partition function that is independent of the disorder. For the
Gaussian distribution (47), Egddie = —NE? /T, we get that
Equaaie > EPUOM is valid at T > Tyuss = E(20) /%, Thus, at
T > Tgass We can safely average the partition function over
the disorder (as it does not depend on disorder!) and arrive at
the free energy which is also independent of the disorder.
This is not valid at lower temperatures. What happens
there is that one or a few low energy states dominate the
partition function. In principle, one could expect that at this
low temperature, the thermodynamics of a particular sample
will strongly depend on the disorder. Note, however, that
typical differences between low energy states are only about
N'/2 and they are negligible in the thermodynamic limit.

As the free energy is a continuous function of tempera-
ture, we arrive at the following powerful conclusion for REM
(see also [118]):

i Tln (Zeo(T)),
( ) - — Lglass In <Zseq(Tglass)> y

We shall comment in more detail later, that to take the
average of the partition function means to take the ‘annealed
average.” Thus, equation (56) shows that for REM, the real
quenched average of the free energy coincides, above the
temperature T,jass, With the annealed average (see Section
4.4.2 below). This powerful conclusion is valid for every REM
type model and it will provide us with a tool for further
consideration.

T> Tglass )

T< Tglass .

(56)

4.2.5 Summary of REM properties. We summarize here the
main properties of REM:

(1) The defining property of REM is the statistical
independence of states (46).

(2) The REM energy spectrum consists of a continuous
part which is independent of disorder and a few discrete
energy levels that are placed very individually for each
realization of disorder.

(3) The REM ground state for typical realizations is of the
order v/N below the edge of the continuous spectrum, which
in turn, is of the order N below the mean energy. Also, for
typical realizations, the discrete levels are of the order v N
from each other.

(4) There is certain temperature for REM, Ty, such that
at T > Ty, the system explores the high entropy continuous
part of its spectrum, while at T < Ty it is locked into
discrete individual states.

(5) The free energy of the REM is given by the equation
(56).

Note, that these properties are independent of the
Gaussian form of the single energy distribution (47).

4.3 Is REM valid for heteropolymer freezing?

The question posed in the title of this section has been
addressed in more detail in the work [119]. The reader who
ready to trust REM can skip this section and go straight to the
next one.

4.3.1 REM cannot be exact for heteropolymers. In the work
[7], Bryngelson and Wolynes postulated the applicability of
REM for protein globules. In the work [9], Shakhnovich and
Gutin showed that REM is applicable for compact hetero-
polymers with independent interactions (see below).

In the meantime, the statement of REM applicability is
often met with understandable distrust. Indeed, REM
obviously cannot be exact for heteropolymers. To understand
that, let us imagine two conformations, say « and f, each of
which represents some small local rearrangement of the other.
As energies E, and Eg are given as sums over all pairs of
contacting monomers (we are speaking now about short-
range interactions), they are dominated by identical contribu-
tions and differ only due to the small region of difference
between o and f5. Clearly, these two energies are strongly
dependent.

The simplest quantitative measure of statistical interde-
pendence between the energies of two given conformations o
and f over the set of sequences can be obtained by taking
correlation
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(EyEp) — (Ey)(Ep) =

(OE,0Eg) ,
where (...) denotes averaging over sequences. REM invalid-
ity can be demonstrated by the non-vanishing of this
correlator. To average, we take the probability for each
sequence in the form of the product

Pg(e)()q H p?[ I

(57)

which corresponds to the monomer species, {i}, occurring
independently with probabilities {p;}, (see also equation (62)
below)t. We also define the mean and variance of the
interaction matrix, B and 8B2, as

B= ZpiBijpjv
ij
Zpl 1/ (ZPkBk1P1>
-~ ZP:‘(BU' - B)’p;.
ij

Then, for the Hamiltonian (44), a straightforward calculation
yields

(58)

(SE,SEp) = (3B%)Qup + Kup ) _ pidBipdBupi,  (59)
ijk
where
Qup =D A(} —r)A(r] —1f) (60)
I£J

is the conventionally defined overlap between conformations;
it is proportional to the number of bonds that the conforma-
tions o and f have in common, and

K= Z A(r (rg — r/,i)

TATEK

(61)

In fact, as the polymer is maximally compact, so that each
monomer has z space neighbors, the value of K,z in the
volume approximation does not depend on the conforma-
tions and is equal simply to Nz>. For some other cases, the
value of K plays the role of an important order parameter.

Thus, there are indeed correlations between states, and
Eqn (59) shows that the correlations depend on the interac-
tions (B;;), the space of available conformations (Q,g), and
the sequences (p;). The first (conformation dependent) term of
the energy correlator, Eqn (59), corresponds precisely to our
qualitative arguments, as it is proportional to the number of
bonds in common.

Interactions enter into the conformational dependent
term of Eqn (59) through the variance 6B of the elements of
the interaction matrix, and thus this term is present for all
types of interactions. However, interactions play a more
dramatic role in the conformational independent term in
Eqn (59), as it vanishes for many models, but not, for
example, if there is one monomer species that interacts
particularly strongly with all others; then a correlated
contribution comes to the energies even when there is no
common pair, but just one common monomer of this peculiar

T If the polymer is synthesized in some preparation bath, then p; are
proportional to exp(y;/T), where u; are the corresponding chemical
potentials of the monomers in the bath.

species that interacts with anything else. The appearance of
the conformation independent term signals a departure from
REM, as even states with vanishing Q are statistically
dependent. One notable example is the HP model (see
Table 2).

For even overall composition (p; = 1/¢) and a symmetric
contribution from monomer species, such as Potts or
Independent Interaction Model (IIM) [9], the conformation
independent term in Eqn (61) vanishes and the only statistical
dependence comes from conformational overlap.

4.3.2 Why REM can be a good approximation. While REM
cannot be exact, it appears the very good approximation in
many cases (though not always). Its validity is due to the
geometry of conformation space, which allows only relatively
few local rearrangements. Typically, this happens because of
severe constraints imposed on the conformations when a
polymer is maximally compact; this is especially obvious if
one thinks of the compact polymer on the lattice. Formally, to
establish REM validity or invalidity for a particular model,
one has to compute how many pairs of states (conforma-
tions), o and f, there are with the given value of the overlap
Q,p; as this is usually done using Monte Carlo technique, this
number is associated with the probability distribution for
Q,5- REM is valid if this probability distribution is bimodal,
with the peaks at small and maximal @ with the minimum in
between. REM is invalid otherwise.

Moreover, as the heteropolymer freezing transition
occurs between a phase consisting of exponentially many,
unrelated conformations to a phase consisting of one con-
formation, any corrections to REM due to statistical depen-
dence of states will have no effect on the thermodynamics.
Such corrections are important for describing protein folding
kinetics.

4.3.3 Examples of REM and non-REM logic. The REM-like
assumption of statistical independence of states is implicit in
the motivation of several experimental works; for example, de
novo protein design [120] makes an REM-like assumption
that the selection of sequences which lower the energy of a
desired conformation will not also lower the energies of other
conformations.

An opposite intuition is also prevalent in many works,
such as the computational generation for a given sequence of
a low, but not the lowest, energy conformation [121]; if REM
were valid, then a low but not the lowest energy conformation
would tell us nothing about the ground state.

Throughout this paper, we assume that REM is applic-
able. We discuss REM violations elsewhere [119]. We also
explore non-REM generalizations of the theory presented
here [122], but in this work we concentrate on the situations
where REM is doing well.

4.4 Annealed Heteropolymers

4.4.1 What is an annealed heteropolymer? The result (56) of
Section 4.2.4 involves the average value of the partition
function over all possible sequences. Let us look at this
value more closely:

< seq N Z Zseq

seq

(62)

where A is the total number of sequences. As Zq(7) itself
represents the sum over conformations, the bigger sum
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Y seq Zseq(T) has the physical meaning of the partition
function of the system in which both conformation and
sequence take part in thermal motion on an equal footing.
This hypothetical system is called an annealed heteropolymer.
Although there are some systems more or less resembling
annealed heteropolymers [40], the interest of this system is
deeper.

Note, that the Hamiltonian of annealed heteropolymers is
given by the same equation (44) as for their quenched
counterparts. The difference between the two is not in the
form of the Hamiltonian, but rather in the way we compute
the partition function. For the quenched system, we sum over
all conformations. For the annealed system we sum over both
conformations and sequences.

An annealed heteropolymer is in principle by far simpler
compared to the real quenched counterpart. This is why the
relationship (56) is so powerful, as it allows one to express
directly all properties of a real quenched heteropolymer in
terms of the much simpler annealed free energy. Although
there is no universal exact solution even for the annealed free
energy in terms of B;;, relationship (56) allows the use of a
variety of approximations or heuristic phenomenological
formulae for the annealed free energy. This is similar to the
approach of standard polymer theory. Indeed, a polymer
fluid is a priori more difficult to study compared to its
counterpart of regular small molecules. Given that there is
not (and cannot be) a simple and satisfactory theory for the
latter, one does not try to create such a theory for the former.
Instead, one typically expresses the properties of polymeric
liquid in terms of the macroscopic statistical properties of the
appropriate low-molecular-weight fluid (which is usually the
system of disconnected quasi-monomers [1, 32]). This was
the program suggested by I M Lifshitz for polymers [1].
Similarly, our program here is to employ some qualitatively
plausible interpolation for the annealed free energy to gain
insight into the freezing behavior of quenched heteropoly-
mers. We stress that the power of the results obtained is not
undermined by the approximate character of the annealed
free energy that we shall use. By contrast, as long as REM is
valid, our method allows for the easy incorporation of any
potential improvement of the impression for annealed free
energy, whether taken from computer simulations, or
numerical computations for further terms of high tempera-
ture expansion, etc.

Accordingly, before proceeding to the quenched case, we
first examine the annealed free energy.

4.4.2 The annealed averaged free energy of IIM. The only
model that allows for an exact solution for the annealed free
energy is the Independent Interaction Model (IIM), as it is
mappable onto the ideal gas problem. In IIM, we assume that
there are at least as many monomer species as monomers
¢ = N such that the interaction energies between the mono-
mers are chosen independently from a Gaussian distribution

1 B, — B)

where B and 8B? are the mean and the variance, respectively.
In this case, the annealed problem is solved by the following
simple argument. To take the partition function over both
conformations and sequences, let us first fix some arbitrary
conformation and consider the summation (or averaging)
over sequences. This is illustrated schematically in Fig. 7. In

e & ¢ o
ov ¢ ¢
oot o
.--.‘.

Figure 7. In this two dimensional figure, we illustrate that a fixed
conformation means a fixed set of bonds between monomers.

IIM, we do not assign species to every monomer, but rather
we assign energy to every bond that exists in a given
conformation; as we take these energies independently from
each other, averaging over sequences is reduced to indepen-
dent averaging over all interaction energies, and this trans-
forms a heteropolymer with a variety of monomers (‘colorful
pattern’) into a homopolymer (‘grey background’) with even
interaction energy given by

B B
exp (7 Tff) = Jexp (f ?> P(B)dB; (64)
given Gaussian distribution (63), we arrive at
— B
B =B ——.
it 37 (65)

As long as we consider only maximally compact conforma-
tions, the total number of bonds, each with energy Begy, is the
same for all M conformations, and thus we end up with the
annealed average free energy of the form

Fon _T<Zseq(T)> =—-Tln {M exp (_QB;T‘)]

_ Q[I_BSBZ] TN, (66)

2T

where Q = Z,#A(m —ry) = Q,, is the (independent of the
conformation o) number of bonds (or contacts) between
monomers in any particular compact conformation, and
® = —In M/N is the polymer entropy per monomer. Alter-
natively, we can arrive at the same answer formally, by
calculating the Gaussian integral over B;; in

N
(Zua1) = P(B) S exp| - 32 )| (67

confs LJ

4.4.3 The annealed averaged free energy in terms of high
temperature expansion. Unfortunately, for all other models
there is no exact solution. Instead, one commonly employs a
high temperature expansion to perturbatively calculate the
annealed partition function. It may seem unjustified a priori
to use a high temperature expansion to study freezing, which
seems to be a ‘low temperature’ effect. However, we have to
consider that freezing is caused by frustrations which prohibit
the system to reach lower energy microstates of the unfru-
strated system. In the polymeric case, the monomers may
wish to rearrange themselves into a lower energy configura-
tion, but the polymeric bonds prohibit this. Thus, the system
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is ‘frozen’ at some temperature Tyja. The validity of the high
temperature expansion to describe freezing resides on the
value of Ty, compared with the annealed phase transition
temperature 7.

As we did for the IIM above, we begin with the averaging
over sequences for some given compact conformation and the
performing of a high temperature expansion keeping terms of
order O(1/T?) in the annealed average:

o] )

—T'In Weol(T) =

= () - 5|0 - ()
- {E - z—ﬂ (68)

To average is straightforward because, as in the IIM case
above, the result does not depend on a particular conforma-
tion, as the number of contacts Q is the same in all compact
conformations. When we finally sum (the partition function)
over all M compact conformations, we arrive at

5B

(69)
which is much the same as for the IIM (66), except for the
more general definitions (58) for Band 8B. Thus, to this order,
we are essentially approximating P(B;;) by a Gaussian and
thus reforming the model into the IIM. Deviations from this
behavior will be seen by examining terms in the expansion to
higher order. We also note the difference between the free
energy of the annealed system and the ‘annealed average.” In
the annealed average, the realizations of disorder behave like
states, but we average, not sum over them. Thus, the entropy
T'ln M is present in the annealed system, but not the annealed
average.

There are several general properties which derive from
aspects of this free energy, which have been previously
worked out [123] and we simply repeat here:

(1) Heteropolymeric effects are independent of the mean
of B,‘j.

(2) Changing the variance of Bj; is equivalent to changing
the temperature; the characteristic temperature scale in the
heteropolymer problem is set by the variance 3B.

(3) Reduction theorems: There are matrices which are
formally different, but physically identical. For example,
one can create a new ‘clone’ of species, but as the long as the
interactions are identical nothing should happen physically.
It was indeed shown that this requirement is obeyed.

4.5 Freezing transition

We are now equipped to describe the phase behavior of real
quenched heteropolymers with random sequences. Our tools
are equation (56) that expresses the quenched free energy in
terms of the annealed average and expression (69) for the
annealed averaged free energy. For further reference, we
collect here these two to obtain the free energy of a real
quenched system (averaged over sequences, as in (53)):

T> Tglass )

— OB
0 {B - _} TNw, N

2T
5B’
2Tglass

F(T) ~

Q |:E - :| - Tglasst ) T< Tglass .

4.5.1 Glass-like freezing in REM. Our discussion of REM
suggests that something important happens when, due to
temperature decrease, the average energy becomes lower
than the boundary of the continuous spectrum. Above the
corresponding temperature Tyj,s, the REM-represented sys-
tem explores many (of order O(exp N)) states and behaves
practically independently of the particular realization of
disorder. Below this temperature, on the other hand, the
equilibrium is dominated by a very few discrete states of low
energy, and they are extremely individual for every realization
of disorder. At T > Ty, the entropy of mixing over the
continuous spectrum wins; at 7 < Ty, the energy of
fluctuational low lying energy levels wins. The temperature
Tlass 18 called the glass temperature, and the transition is
called freezing. While it is very easy to find that
Tolass = 5(20))_1/2 for the example of a Gaussian single energy
distribution (47), we are now more interested to apply the idea
of freezing to heteropolymers. To this end, we note that the
freezing transition is marked by the temperature at which
entropy becomes O(1). In the thermodynamic limit, we can
therefore calculate the freezing transition temperature by
looking at the point where the entropy vanishes. Thus, to find
the freezing temperature, we can simply examine the relation
OF
S(T, =—— 71
( glaSS) oT - ( )

=0.

ass

4.5.2 The freezing of random heteropolymers. We use our main
relationship (70) and find the entropy of the quenched
heteropolymer

dF 5B?
S(T):—ﬁ’l N(D—Qﬁ,T> Tg]ass- (72)
Thus, S(T) = 0 at the temperature a5 such that
B2
nglass = X ) (73)

where s = Ina®/v is the conformational entropy per bond
(and is therefore related to the entropy per monomer w by the
relation s = Nw/Q). This result, as well as higher order
corrections agrees perfectly with the previous results of the
(much more difficult) replica calculations [9, 123, 124].
Equation (73) also has a perfectly clear physical meaning:
freezing is generally due to frustrated interplay between the
energy gained by arranging favorable contacts, which
amounts to about 6B per monomer, and entropy loss due to
polymer linear memory, which is governed by s.

It is instructive to rewrite expression (70) for the free
energy of the globule in terms of Tyas instead of w or s; using

(73), we get
_ 3B’ 7°
Q{Biﬁ(ldFTZ—)]’ T>Tg1assv
F(T) ~ . glass (74)
Ql:E_Tl :|, T<Tglass~
glass

4.5.3 The order parameter for the freezing transition. The more
delicate characteristic of freezing is the parameter x(7) that
can be defined for each sequence as

M
Xeeg(T) =1=)_P7, (75)
r=1
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where P, is the Boltzmann probability for the state (con-
formation) y; for the given sequence, P, ~ exp(—H,/T). One
can also define the sequence average (x(7)).,= x(7). On the
one hand, this value has a simple physical meaning in the
replica approach (describing a grouping of replicas due to
spontaneous replica symmetry breaking; out of n replicas,
there are n/x groups with x replicas in each group). On the
other hand, this value is known to be related to the number of
thermodynamically relevant states, Mq(7): Xseq(T) =
[(1- Mseq(T)]fl. This value plays the role of order parameter
for the freezing transition [117]. For REM one can show that

1 ) T> Tglass ;
(T ={ T (76)
’ T< Tglass .
Tglass

4.5.4 Is freezing typical for only some particular types of
interactions? To conclude, let us stress that a polymer is
considered a heteropolymer if it is composed of differing
monomeric species, mathematically expressed by AB # 0,
where A;; = p;p; — p;6;;. All interaction matrices of this form
lead to a finite freezing temperature for random sequences.
Thus, the particular details of the interaction matrix are vital
neither to the existence of the freezing transition nor to the
qualitative aspects of its properties. Needless to say, they are
very important in what concerns the choice of a particular
conformation to be the ground state. As to the freezing itself,
it is the robust property of virtually any heteropolymer,
provided the interaction energies are sufficiently diverse to
bring the transition into a reasonable temperature interval.

4.6 Computational tests of freezing
4.6.1 Why computer simulations are needed. There are several
reasons why analytic results of the previous sections should be
complemented by computational studies:

(1) Real proteins are relatively small, and analytic models
never allow anything but the thermodynamic limit;

(2) REM applicability is not very solidly argued;

(3) More complicated models are also of interest.

4.6.2 Enumeration of Hamiltonian walks and other conforma-
tionst. To perform computational studies of the freezing
transition necessarily requires an exhaustive list of conforma-
tions. Indeed, as the system is going to freeze to one
conformation, which gives the overwhelming contribution
to the partition function, Monte Carlo sampling over con-
formational space can easily miss this particular conforma-
tion. For a maximally compact globule, this leads to the
problem of the enumeration of Hamiltonian walks on parts of
a (cubic) lattice.

A Hamiltonian walk is defined to be a walk over some
graph such that each vertex is visited once and only once. This
was first performed by Shakhnovich and Gutin [125] when
enumerating all the 103346 (unrelated by symmetry) Hamil-
tonian walks on a 3 x 3 x 3 cubic sub-lattice. One of them is
shown in Fig. 8. The use of a massively parallel computer (128
node Thinking Machines CM-5) yielded sufficient computa-
tional power to enumerate the Hamiltonian walks on
3x3 x4 and 3 x 4 x 4 sub-lattices [125]. The results are
summarized in Table 3.

In Figure 9, the natural logarithm of the number of
Hamiltonian walks M is plotted versus N and the data are

T This section is based on the work [126].

Figure 8. One of the compact conformations of the 27-merona 3 x 3 x 3
piece of the cubic lattice. Due to its computational tractability, 27-mer has
become one of the most popular models for protein folding studies. The
27-mer shown here consists of two types of monomers (black and white)
and the conformation shown here is a ground state conformation for Ising
interactions.

Table 3. Summary of enumeration data. N is the number of sites, M is the
number of Hamiltonian walks (maximally compact conformations un-
related by symmetry), Mo, is the total number of conformations.

N Comment M Miot
18 1,085 5,577,317,124
27 103, 346
36 84,731,192
48 64 hours of CPU 134,131,827,745
time on SM-5
26 empty site 564,368
64 crumpled 261,496,832
25 +
20
15
3
R
10
5 -
0 &l 1 1 1 1
10 20 30 40 50

Figure 9. Log-Log plot of the number of Hamiltonian walks M vs. chain
length N. Interestingly, the point for N = 27 is somewhat below the line. It
is possibly due to the right cubic shape; if this is the case, then the point for
N = 64 should also be below the line.
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seen to fit well to a straight line, or

M =~ ab" ~0.02 - (1.86)" (77)
(more accurately, Ina = —4.3 £ 1.2 and Inb = 0.62 £ 0.04).
This fit works well for the region of small N < 48.

On the other hand, Flory mean field calculation of the
entropy of polymer melts [127] is known to be applicable to
the estimation of the number of compact globular conforma-
tions in the N — oo limit. Indeed, the conceptual foundation
of the Flory treatment is the restriction imposed on the
addition of new monomers within the constraints of the
avoidance of occupied sites and chain connectivity. This
kind of argument is equally applicable to both a macroscopic
melt of different long chains, and a large globule of one single
chain, as two systems differ only in the contributions of
independent chains mixing entropy, which is negligible in
the long-chains melt, and of surface effects, which are
negligible in the thermodynamic limit. Therefore, in the
N — oo limit we have the estimate

z—1 N N
M~ ~ (1.84)"

exp 1

(78)

where z is the coordination number of the lattice, and we take
z = 6 for the simple cubic lattice.

We see that equations (77) and (78) agree well; we suggest,
therefore, that equation (77) may be used to derive the
number of walks for arbitrary N to logarithmic accuracy.

In the recent work [128], the claim was made that the
Flory result (78) should be improved and the correct one
looks like M ~ (z/exp1)"; the enumeration results [126]
do fit the Flory formula (78), but do not fit this improved
formula.

For N = 64, equation (77) yields M ~ 2 x 1013, The
enumeration of the 4 x 4 x 4 sub-lattice is, therefore, several
orders of magnitude out of reach using our current computer
power. Also, the case N = 48, while possible to enumerate, is
still extremely consuming of CPU time and therefore cannot
be used routinely in any current polymer modeling scheme.
However, enumeration of N = 36 is not very consuming of
CPU time. Furthermore, there are fundamental differences
between the cases of N = 27 and N = 36, such as the presence
of pseudo-knots in the later.

As to the other examples where conformations can be
exhaustively enumerated, we mention here the enumeration
of the conformation of 26-mer on the 3 x 3 x 3 sub-lattice
with one forbidden site [13], the recently performed enumera-
tion of all conformations for N < 18, and the enumeration of
all crumpled conformations on a cubic sub-lattice of size
2k x 2% x 2%+, For the later case, a very good approximation
is given by the k — oo asymptotic

M;rumpled ~ '))AN, (79)

where 7= 0.87300, A4 ~ 1.3565; for example, it yields
MEMPI 2 605 % 108 as compared to the exact answer
2.61496832 x 108.

1 Crumpled conformations (see Section 3.6 above) on the lattice can be
defined in the following way: as the 2F x 2% x 2% cube can be viewed as 8
smaller cubes 25! x 2k=1 % 2k=1 each, and each smaller-subcube can be
further divided in a similar way, etc, down to the smallest 2 x 2 x 2 cubes,
we define the trajectory to be crumpled if it visits all the vertices within
given subcube before entering next subcube of the same level.

Note, that according to (78), the fraction of crumpling
among all compact trajectories decreases exponentially with
N:

Mcrumplcd A exp 1 N
e ( — ) ~ exp(—0.3N).

4.6.3 The freezing transition is indeed observed computation-
ally. The first computational test of freezing was performed in
the work [125] for the Independent Interaction Model. The
value x(T) (75) was employed to monitor freezing. The type of
behavior predicted by equation (76) was indeed found in [125]
and later in several other works for N = 18, 27, and 36. Of
course, as the system is finite, there could not be a breaking
point on the x(7); but the curves are really sharp. The fact
that x(7) becomes less than unity tells us directly that the
entropy of the system vanishes, and that means precisely
freezing.

4.6.4 Computational tests of REM validity. One of the most
obvious questions that can be addressed by computer
experiment is to test the applicability of REM. It was first
done in [125] by looking at the thermal probability distribu-
tion of the overlap order parameter Q,4:

P(Q) = PyPps(Q— Q).

ofp

(80)

If REM is valid, this distribution must be bimodal, with peaks
at zero or complete overlap. Indeed, probability distribution
(80) is dominated by the low energy states which in REM do
not overlap. Therefore, all pairs with o # f have Q,3 = 0 and
contribute to the Q = 0 peak of the probability distribution
P(Q). On the other hand, all pairs with « = f obviously give
Q = Qnmax, thus yielding

P(Q) = x5(Q) + (1 = x)0(2 — Qmax) ;

where parameter x depends on the temperature and tells us
how deeply the system is frozen; this is, of course, exactly the
x(T) parameter defined above (75).

The bimodal distribution P(Q) was indeed found in [125].
Of course, the peaks were not exactly at @ = 0 and Qy.x, and
this was interpreted as the manifestation of final size effects.
Thus, the conclusion of the work [125] was that REM appears
valid for heteropolymer freezing.

In the recent work [119], we returned to this question and
have scrutinized REM applicability. We found that REM is
valid in many cases, but is far from being applicable
universally. It is well justified for maximally compact con-
formations and the Independent Interaction Model (for
which it was originally tested in [125]), but not for other
cases. The conformation dependent aspect is illustrated by
Fig. 10. As we see, P(Q) for all conformational spaces studied
are peaked at small Q. As Q increases, P(Q) decreases
exponentially, and above a particular Qg, there are at most
O(1) conformations available. Thus, for a space with small
Qq, there are few states with large overlap and REM is
favored. Crumpled conformations have the greatest Qg4 as
they allow a greater possibility of rearrangement on small
scales (large Q). Unfortunately, there is no known way to
even estimate Q4 analytically.

There are other aspects to the problem of REM applic-
ability, besides the geometry of conformations and conforma-
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AS(Q)/N

Q/ Qumax

Figure 10. AS(Q) = In[P(Q)/P(Q = Qmax)] for compact 27-mers (o),
compact 36-mers (), and compact & crumpled 64-mers (o). The discrete
region boundary varies greatly: Q;/OQmax ~ 0.6,0.4,0.7 for 27-mers, 36-
mers, and crumpled 64-mers respectively. When considered from right to
left, this figure can be viewed as the dependence of the ‘sphere surface area’
on the sphere radius in conformational space. Indeed, 1 — Q/calQ,, .«
measures the distance from a given conformation, and we may see how
many conformations there are at a given distance from a given conforma-
tion. At zero distance, there is always one conformation - the given one,
thus P(Qmax) = 1 for all examples. When the distance is small Q > Q,,
there are typically no conformations at all, only some discrete events for
some particular centers. This is why AS < 0 in this region. Only after that,
the ‘surface area’ starts to grow with the radius.

tional spaces. For example, degenerate ground states (as is
common in models with ‘discrete’ interactions [129]) do not
violate REM if they do not overlap. This holds for 27-mers
and 36-mers with Potts interactions (see Table 2), whose
ground states (i.e. T = 0) yield a P(Q) which is indistinguish-
able from that of conformations taken at random [125, 129].
In the light of our previous discussion, REM appears to be
valid for these cases because Qq is sufficiently small. The
situation is different for crumpled 64-mers: upon enumerat-
ing [119] the energies of all conformations for 1000 sequences
with Ising interactions and comparing the ground states, we
have shown that the increase in Q4 for crumpled 64-mers is
sufficient such that REM fails for this conformational space.

Although we have thus demonstrated that REM validity
is clearly not an a priori property of conformation spaces in
general, even in three dimensions, and in particular, that
REM breaks for crumpled 64-mers, we shall keep considering
the REM approximation as it is still valid in many cases.

5. Designed heteropolymers

5.1 Design of sequence using canonical ensembles

5.1.1 Why sequences should be selected. When the freezing
transition for random heteropolymers was first discovered
[9], it was believed by many that this was already a good
model for protein folding, as it yields a unique ground state
with reasonable (N independent) probability. It was later
realized, that this ground state, although formally unique, is
not sufficiently robust. As the typical energy difference

between low energy states scales as N'/2, and in REM they
are structurally very different and even unrelated, every slight
change of parameters (about N~'/2) or solvent conditions
leads to a complete alteration of the ground state conforma-
tion [130]. Obviously, this is not what happens in nature,
where protein native states are remarkably stable.

Another aspect of the problem is that the choice of ground
state for the random sequence cannot be controlled, and thus
it is problematic to obtain any desirable properties of the
native state out of random choice of sequences.

One can draw the following analogy, which is actually
quite deep. Protein folding phenomena can be viewed
similarly to the reading of a message; or better, to reading
with understanding. When we read a message and understand
it, an image appears in the mind, which is in a sense ‘induced’
by the meaning of the message, but its physical nature is, of
course, completely different from, say, the string of ink letters.
Similarly, folding of the protein chain means the appearance
of a three dimensional structure, that is, of a structure that is
very different in nature from a one dimensional string of
chemical ‘letters.” The important point about reading is that
one has to know the language. In other words, one cannot just
read an arbitrary (random) string of letters. For the message
to be readable it must have been written in the first place by
somebody who knows the same language. Similarly, for a
heteropolymer chain to fold reasonably its sequence should
be first ‘written,” or designed. From the analogy we conclude
that the same language should be used for design as is used for
‘reading = folding.’

This discussion suggests that the design of sequences
should employ interactions between monomers (‘language’)
and be directed at choosing atypical realizations from the
REM ensemble, such that the ground state energy is suffi-
ciently below the REM bottom of the continuous spectrum.
This was realized in procedures called sequence annealing [12]
and imprinting [13]; they were suggested independently, and
later realized to be identical to the mean field approximation.
Both can be said to be the realization of the ‘minimal
frustration’ principle [7] (see also [131]). While they can be
formulated in a rather abstract wayj, it is easier to begin with a
simple representation.

5.1.2 Imprinting. The idea of imprinting is illustrated in
Fig. 11. The process includes a few stages. There are two
independent inputs for the process. Firstly, we take a mixture
of disconnected monomers, mix them, and let them reach
equilibrium at some preparation temperature 7,. We have to
mix as many different monomers as we want to have later in
our polymer chain. We also assume that these disconnected
monomers are confined in a small cavity, such that the density
of the ‘monomer fluid’ is close to maximally dense packing.
Finally, the monomers interact in the preparation mixture
through the interactions B;;. Secondly, we choose one
conformation from the list of all compact conformations of
the given length and size. We want this conformation to be the
renaturable ground state. This is why we call it the target
conformation .

When both of the mentioned ingredients are ready, we
start cooking the dish: we instantly apply the chosen con-
formation to the equilibrium configuration of monomers and
we instantly and irreversibly connect monomers along the
path prescribed by the target conformation . Thus, the chain
appears, and we consider that its sequence of monomers is
quenched and does not change any more.
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Figure 11. Schematic two-dimensional representation of imprinting. We
begin with chemical constituencies, in this case with four distinct chemical
species (1) and a target molecule (2). It is meant that rectangles attract
other rectangles, circles attract circles, black attracts black, and white
attracts white. We then prepare mixture of monomers and a taget molecule
(3), keep it in a close volume, and allow to equilibrate there at the
temperature Tyes. Independently, we choose target conformation (4).
When both components are done, we instantly connect them together
(5). Now we have a polymer. The polymer can expand (6), but its sequence
remains quenched, and it is able to renature back to the globular
conformation where it has a pocket complementary to the target molecule.

The hope is that the conformation * will be the ground
state conformation. Why can we hope so? Because while the
monomers were disconnected they optimized their configura-
tion in space, forming preferably low energy contacts, or, as
we call it in our theoretical jargon, forming lots of ‘good
bonds.” Clearly, some of those bonds are removed for
polymerization. However, the fraction of these bonds is
relatively small. Indeed, even on a cubic lattice, each particle
has 6 bonds, of which 2 are utilized for polymerization; thus,
2/3 remain unchanged. For off-lattice models with bulky

monomers this fraction maybe even higher. In general, the
fraction of two along-the-chain connections among all
monomer neighbors in the condensed state is the parameter
v/a’, well known in polymer theory [32]. The mean-filed
approximation corresponds to the lowest order in v/a’, and
thus at least in the mean filed approximation we hope that the
* conformation is indeed well optimized for the polymer, not
only for the set of disconnected monomers.

The name of this approach is such because the target
molecule gets ‘imprinted’ on the sequence.

5.1.3 Sequence annealing. Although it is unclear how to realize
the idea of imprinting chemically, it is at least formulated in
such a way that ignoring chemistry one can think it possible.
This author thinks that this problem is difficult, but not
hopeless. An alternative scheme of design has been suggested
in the work [12] and it is formulated in a more abstract (or
honest) way, as a prescription for computer simulation. It
begins with the polymer whose conformation is frozen at
and then monomers are allowed to move arbitrarily, with
only the condition of excluded volume: each monomer
occupies one and only one place on the chain. In other
words, conformation is considered quenched here, while
sequence is annealed. This sounds, of course, somewhat
counterintuitive, and indeed, it is unclear how this process
can be realized other than in computer simulation. Never-
theless, it is obvious that the only difference between the two
design schemes is that imprinting works with disconnected
monomers, while the sequence annealing scheme works with
annealed sequences. Hence the difficulties of the both: in one
case, how to anneal the sequence; in the other, how to perform
polymerization such that monomer low energy configuration
is not totally destroyed. In any case, computationally the two
schemes are much the same.

5.1.4 Microcanonical and canonical design. In principle, one
can try to select sequences directly based on their lowest
native state (NS) energy, Ens. The corresponding ensemble of
sequences is similar to the microcanonical ensemble in regular
statistical mechanics.

In statistical mechanics, it is technically more convenient
to use the canonical ensemble, where the temperature is fixed
instead of the energy. A similar idea is also valid for the
sequence design. We use an analog of the canonical ensemble
where the native state energy Eys is not fixed, but rather
controlled through an artificial temperature Tges. Equiva-
lently, we choose some ‘target’ conformation x that we want
to be the native state of the designed sequence and constrain
its energy E, = H(seq, ) with a Lagrange multiplier 1/ Tjyes.
In this canonical ensemble, each sequence appears with Gibbs
distributed probability:

H(seq, *) H(seq,*)]) "
* 0 ) 0
Pseq - Pge& €xp l:_ Tites E :Pgea eXp|— Taes )

(81)

where ng?l is the probability for the sequences made randomly
from independent monomer species, with occurrence prob-
abilities p;; we have already used these probabilities earlier,
see (57). Obviously, both imprinting and sequence annealing
are the realizations of the general idea of canonical design.
Thus, we characterize a given canonical ensemble of
designed sequences by the value of Tges: for lower Tgyes, wWe
model sequences whose native states are better optimized
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energetically, while for higher T4 we are left with an
unaltered ensemble of random sequences.

There is an interesting question as to whether all possible
target conformations x are equally suitable for design. This
question was addressed in the works [106— 108, 132], where it
was formulated in the following way: why many proteins, that
are very different both as regards their evolutionary origin
and their function, still have somewhat similar ternary
structures, albeit similar only in a coarse grained sense. The
authors argued that nature has selected those structures for
which it is easier to design the sequences. More recently, this
view was elaborated in the work [115] by means of the
following tremendous computational effort. For one parti-
cular interaction matrix (marked as NEC in the Table 2), the
authors computed the energies of all the 103346 conforma-
tions for all 227 possible sequences. They showed that the
conformations are indeed very different as regards the
number of sequences for which they serve as ground states.
Theoretical analysis of this question indicates, however, that
this effect is either due to the final size of the system [115], or
to the crumpled character of the conformations [132]. In any
case, it is beyond what we shall consider analytically; we shall
consider all compact x conformations ‘democratically,” on an
equal basis.

5.1.5 Energy of the target conformation. In this section, we
shall compute the energy of the target conformation, aver-
aged over sequences. Using the probability distribution for
the designed sequences (81), we write:

(E.(seq)) = ZP;qE*(seq)

seq
Sy P exp [~ H(seq, %)/ Taes H(seq, )
Zseq ng()l exXp [ - H(Seq7 *)/Tdes]

(82)

The very structure of this equation suggests the following
simple trick (similar to what is done regularly on the first
several pages of any statistical mechanics text book). Let us
return to definition (68) of the annealed average partition
function as a function of temperature:

(o 25

H(seq, x

(83)
seq T

Then, in terms of this partition function, we can immediately
write:

1 owr

w+ 3(1/T)

T—Tyes

761n w*

(E.(seq))=— 3/T)

. (84)

T—Tyes

Up to this point, we have made no approximations. To
obtain some concrete result, however, we use our lowest order
high temperature expansion for the annealed averaged free
energy (68) and find that in this approximation In W*(T) does
not depend on % and is

9B QB

—In W*(T) T~ o

(85)

Therefore (E,) is given by

Oln W*
E) =51

(86)

- Q[E 532]

T— Tes Tdes
This is a very important result. We see directly here how the
design temperature affects the target state energy. Note, that
the ‘susceptibility’ of the target state energy to design is
proportional to the variance 6B of the interaction matrix: it
is natural that it is purely a heteropolymeric effect, as it is
based on the energy optimization for the target conformation.

REM implies a very peculiar spectrum of energies for a
heteropolymer with a designed sequence. Note that design
affects only the energy of the target conformation, while the
statistics of all other energies remain unaffected. In this sense,
one should understand the common jargon of design
described as the ‘pulling down’ of just one energy level. This
idea is illustrated by Fig. 12. Thus, design means selection of
very atypical realizations out of the REM ensemble (see
Section 4.2.3).

We note that more general analysis beyond the REM
framework indicates that design in fact affects many con-
formations, especially ones with Q@ > Q4; this is very impor-
tant for kinetics.

5.1.6 Folded (native) phase and folding temperature. This
peculiar energy spectrum implies very special freezing beha-
vior for designed sequences. Indeed, when we design at
infinite temperature (T4, = 00), we are not selective as to
the energy of the sequence in the target conformation * at all
and the sequences we obtain are random. As we lower Tges, We
choose sequences in which x has lower energy. At the point
where Ty is sufficiently low such that the energy of « is less
than that of the REM typical ground state, then * is the
ground state and we expect freezing to x. This occurs for
Tdes < Tglass, as the REM ground state is stable at Tgjags.
Furthermore, freezing of the sequences designed with
Tges < Talass OCcurs at a temperature above Tyjag, because
the ground state for those sequences is more stable and of
lower energy compared to a typical REM ground state.

Also, for Tyes < Tylass, the target conformation will be
better optimized than the REM ground state and will freeze
at some folding temperature 7Tp,q which is greater than the
glass temperature Tyja. We can find Tpq by comparing
which is lower: the target energy or the random globule free
energy.

Thus, we compare the target state energy (E,) (86) to the
random globule free energy expressed most conveniently by
the first line of equation (74). We find for the folding
transition temperature Toq:

1 1 2
= (87)
szold nglass Told Tges

Note that this relation is independent of the specific aspects of
B = B;;, although the variance 8B? enters through T, elass- T his
is an approximation inferred by truncation of the high
temperature series, and it is valid for the case in which the
number of monomer species is large and the matrix elements
of B are uncorrelated. For other cases, higher order terms of
the high temperature expansion must be used [133, 134].

The results of this section are summarized in the phase
diagram, Fig. 13. All phase boundaries are determined
directly from the annealed average partition function. This
allows quick calculation of even exotic heteropolymer inter-
action models, within the validity of REM.
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Figure 12. Sample energy spectra for sequences imprinted at different polymerization temperatures (7ges). The energy of the target conformation (E,) vs
polymerization temperature (7ges) is plotted. As Ty, is increased to 7y, E, increases. In the region Tqes ~ T, (magnified section), we see that E, is equal to
EPotom ' the average ground state energy of a random chain. This is related to the phase transition between the folded and glassy phases (see phase
diagram, Fig. 13 below). It is instructive to see a realistic representation of the very bottom part of the energy spectrum, as is shown here in the magnified

section.

We stress that REM is important not just in the aid of
calculations, but in enabling this simple design scheme (i.e.
selecting sequences which minimize the energy in a desired
conformation) to work at all. Due to the statistical indepen-
dence of states, we can alter the energy of a particular state
without influencing the others.

The phase diagram in Fig. 13 allows the formulation of
the principle of sequence optimization in a new form: one
can say that the optimized sequences are those that have the
maximal possible ratio of the two characteristic tempera-
tures, Toid/ Telass- This formulation is becoming increasingly
popular. Nevertheless, in the present author’s opinion, it is
not very useful: there is no way to determine Tyoiq OF 7glass
by looking at the sequence. To determine them, one has to
go to 3D, but in this case one can directly determine
renaturability or any equivalent property, without resorting
to any indirect criteria.

5.1.7 Where are the replicas? Although we intentionally avoid
in this paper the use of the replica trick, some readers may be
familiar with it and may be interested in the connections
between our approach and the more standard, albeit more
heavy, replica treatment. If the reader is not interested in this

question, he/she should skip this section and go directly to the
next Sections 5.2 and 6.

To uncover the parallelism with the replicas, let us
consider the annealed average partition function W*(T) at
the special temperature defined as

1 1 n
=t 88
Teff Tdes T ( )

and rewrite equation (84) in the form:

< E*(;eq)> _ 0 W;(nTeff) (89)

n—0

As one would expect, W has the analogous form to the
replicated partition function Z” in the replica trick. Indeed,
we have an annealed average and n replicated Hamiltonians.
Here, we have no need to interpret # as replicas, but merely as
some ‘external source field’ which we eventually set to zero.
Therefore, not surprisingly, the results of the non-replica
method agree well with those of the previous replica calcula-
tion for design in the matrix formalism [134].

Of course, to avoid difficulties is never without cost. In
this case, we avoid the difficult replica calculation at the
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Tglass

Tglass Tdes

Figure 13. For the freezing of globular heteropolymers, there are three
phases: A) Random: an exponential number of globular conformations
dominate the equilibrium (similar to a homopolymer globular state);
B) Glassy: for sequences which are not well optimized (sufficiently high
T4es), only order one conformations dominate below the glass temperature
Tlass» but these conformations are not the target conformation; one can
consider random sequence ground states to be optimized at Tges = Tiglass:
C) Folded: the target conformation x dominates the equilibrium; for
Tdes < Tglass,» * is better optimized than the ground state of random
sequences. Note that regions Tqes > T, and Ty < Ty correspond to
random and designed sequences, respectively. The phase boundary
between phases B (glassy) and C (folded) is vertical because both are
characterized by vanishing entropy and thus the transition between them
cannot be caused by a temperature change.

expense of the use of REM. Also, we do not derive expression
(76). In the full replica formalism, one can, at least in
principle, try to go beyond the REM framework. Some
attempts to apply more general models, such as GREM, are
discussed in [136, 137]. In the meantime, the approach we
suggest here also allows for some generalizations, as we show
in the work [122].

5.1.8 Computational tests of design. There are at least two
reasons to test the conclusions above with computer simula-
tions:

1. All our results rely heavily on REM, while the validity
of REM itself may be questionable.

2. As in every statistical mechanics approach, our con-
sideration uses the thermodynamic limit. Real polymers are
long, but the typical number of monomers, often as small as
hundreds, is far less than in conventional applications of
thermodynamics. Thus, it is desirable to test our conclusions
for relatively small systems.

Extensive computational tests of both design schemes
have been performed [12, 13, 138]. Computational tests
indicate that design works very well indeed. What specifically
should be tested computationally? If one has a prepared
sequence, then the questions are as follows:

1. Is the x conformation the ground state, i.e. is it of lowest
energy among all the conformations?

2. If x is the ground state, is it also a non-degenerate
ground state?

3. Finally, if x is a non-degenerate ground state, is it
kinetically accessible?

Not surprisingly, the situation depends significantly on
the type of interactions B;;. In the works [13, 138], we have

systematically examined g¢-Potts interactions of the type
B;;j = J(1 — 26;;) (similar monomers attract with energy —J,
dissimilar monomers repel with energy +J). Note, that both
the ¢ = 1 and ¢ = N cases correspond to homopolymers (the
latter because all monomers repel evenly)f. Therefore, one
expects an optimum at some intermediate ¢. It was found that
the optimal ¢ is 7 for 27-mers and 9 for 36-mers. For optimal
¢, the yield of the chains that have * as their non-degenerate
ground state was of order unity (above 50%).

If one believes that optimal ¢ varies linearly with the chain
length N, and extrapolates our results for typical protein
domain length of about 100, then one arrives at the encoura-
ging result ¢ =~ 20, which is exactly the number of amino acids
employed by nature. This could, of course, be just a
coincidence.

As to kinetics, extensive Monte Carlo simulations have
been performed. Generally, designed sequences demonstrate
good ability to kinetically fold to the conformation x. Of
course, an appropriate temperature has to be chosen.

An impressive result was achieved in the work [135]. The
author worked there with rather long chains, of up to 100
monomers. For these, there is no way to know exactly what is
the ground state conformation, as enumeration of the
conformations is impossible (see Section 4.6.2). Nevertheless,
sequences could be designed, and Monte Carlo kinetics,
starting from the expanded coil state, could be performed.
The chains were indeed found to more in quite short Monte
Carlo times to the conformation *.

Another interesting result was as follows. It has already
been mentioned, that 36-mer can have conformations with a
knot (or, better to say, with a quasi-knot, as the chain does
have free ends). Just for fun, we designed the sequence for
which the knotted conformation was the ground state (for 36-
mer, as it is enumerable, we knew the ground state exactly). It
was interesting to see whether the chain would be able to fold
into the knotted ground state conformation. And it did!
Furthermore, the relaxation time remained moderate, only
about twice as long as that for regular unknotted conforma-
tions.

In this paper, we shall not go into the simulation details
and only present Fig. 14, which shows the successful compar-
ison between the theoretical and computational phase dia-
grams. Note, that there are no free parameters involved in this
comparison: the 7 letters Potts model was chosen for this
figure because ¢ = 7 is the most ‘heteropolymeric’ for 27-mer
[13]. (Remember that both ¢ =1 and ¢ = 27 correspond to
homopolymers for Potts interactions: an optimum must be
somewhere in between.) For other models, the behavior is
similar overall, but, for example, for the Ising model (¢ = 2)
more terms of the high temperature expansion are needed for
qualitative results.

5.2 Designing and folding with different interactions

5.2.1 Why interactions can be different. Consider, for example,
a computer simulation of protein folding or design. We
understand now that folding is very sensitive to how well the
native state energy is optimized, or how the sequence in
question has been designed. On the other hand, one must
make some approximations as to the nature of the interaction
potentials involved. This directly leads to a problem: we

T To simplify matters, we do not speak of the general mean attraction
effect that is always present and maintains polymers in the dense collapsed
globular shape.
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Figure 14. Phase Diagram for designed 7-Potts model heteropolymers: a
computer simulation of compact 27-mers on the 3 x 3 x 3 cubic lattice
and an analytic prediction with no free parameters. The computer
simulations generate chains using Monte Carlo annealing at a given Tes.
Next, the partition function for maximally compact conformations was
calculated exactly. The folding temperature was determined by the
temperature at which the REM order parameter x(7) = 0.9. Due to finite
system effects, one sees that the folding temperature becomes constant for
T4es < 0.5, as we have reached the maximum degree of optimization for
27-mers. Also, near Tges/Tglass ~ 1, there are large fluctuations due to
small size effects which lead to small quantitative deviations from our
theory. To join the computer simulations with the analytic predictions, we
measured the freezing temperature Tgjaes for random sequences directly
from the simulation data at high Tyes. With the measured value of Tijas
and the calculated value of the variance of the interaction matrix, we
plotted the theoretical curves using only the lowest order term O(1/T?).
Phases A, B, C are the same as in the previous Fig. 13.

believe that the sequence has been designed by nature, and
this natural design was governed, obviously, by natural
interactions, and we are now trying to fold this same polymer
using somewhat distorted or ‘noisy’ interactions; or equiva-
lently we wish to design using our approximated potentials
proteins which we want to fold experimentally. If we make a
good approximation for the potentials, then the results will be
good, but if the potentials are sufficiently different, one would
expect to arrive at spurious results. To this end, there are
several questions we can ask:

(1) How different can these two sets of potentials be while
still roughlyaccurately modeling protein folding?

(2) In what way do we define ‘how similar’ are sets of
interactions?

(3) What is the phase behavior of this system?

These questions are also relevant for some other situa-
tions. For example, we can imagine that the polymer is
folding under somewhat different solvent conditions com-
pared to where it was designed.

To examine this problem explicitly, we use two different
Hamiltonians: one for design

N
HI (seq, conf) = Z Bffssj A(r; —1y)
1J

(90)

and another for folding

N
H™M(seq, conf) = ZBfOld A(r;—ry).

SISy
1.J

©n

We consider that (canonical) design is performed toward the
target state + according to equation (81) where H% is taken
for the Gibbs statistical weight.

5.2.2 Target state energy. In complete analogy with what we
did in the Section 5.1.5, we can calculate the target state
energy, averaged over sequences, by

(E.(seq)) = ZP;qE*(seq)

seq
g P exp[—HO(seq, %)/ Taes H™ (seq, %)
Zseq ng()] exp[_Hdes(Secb *)/TdeS}

(92)

The only difference from equation (82) is that two different
Hamiltonians are involved, H? and H/. Nevertheless, we can
still use our approach: we define the annealed average
partition function [similar to equation (83)] for the effective
Hamiltonian Heg

— <exp {_ Heff(s;fqv*)]>

Hegr(seq, x)
= 37 PG exp| - T, (93)
seq
where
des fold
Hepr(seq, x) _ HOS (seq, *) N nH (seq, %) . (94)

T Tides T

Then, it is easy to check explicitly that the following relation is
valid:

(Ei(seq)) 1 ow~ _ Olwr (95)
T a Wx on n~>0_ on n—0
[compare with (89)].

This represents the complete REM solution for the
problem. Although in principle we can use a variety of
approximations for the annealed average partition function
W*, to be specific, we use as usual the high temperature
expansion. We proceed as we did in equation (68) except with
a new interaction matrix

B/\e o Bdes pBfold

= +n .
T Tdes T

(96)

To lowest order in 1/7T and 1/ T4, the annealed average free
energy is independent of x (again, because all compact
conformations have the same number of monomer contacts,
Q) and is given by

QBar Q8B

W == T

where

B.w Bdes
eff _ +n
T Tdes T

Bfold

: (98)
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and thus,
(E,) = {Bfold Zp’ Bél_eSSB[f?ldpl_:|
dcs ij
_o {W - _SBeff} , (100)
Tdes
where
el‘rfzpl BdeSSBfold (101)

In this form, we draw an obvious analogy with equation (86).
Moreover, we see that a particular correlator of the matrix
elements is important. We next investigate a geometrical
interpretation of this correlator.

5.2.3 Geometrical interpretation. The very form of our results
suggests the following interpretation. Let us treat B matrices
as vectors, albeit with the components B;; numbered with pair
of indices. Subtracting the mean interaction, 8B;; = B;; — B
geometrically means that the 3B;; vector has zero projection
along the ‘main diagonal’ (vector (1,1,...,1)) in this vector
space. For any two vectors in this space, say A and B, we can
define the scalar product as

A-B= ZpiAijBijpj-

ij

Note that this has nothing to do with the matrix product of
the corresponding matrices.

From this point of view, both the glass transition
temperature T (73) and the ‘susceptibility’ of the target
state energy for design (86) are defined by the (squared) length
of the 6B vector.

Now, what we found in equation (100) means that in the
general case of two different matrices for folding and design,
Bfld and B the situation depends on the angle between
5B and §B9s. Indeed, this angle is given by cos0 = g,
where

S pdes < pfold
g= 08 08 . (102)
\/ (S/Edes ggdes) (S/Efold S/Efold)

‘Parallel’ (completely correlated) interactions yield g = 1 and
‘orthogonal’ (completely uncorrelated) yield g = 0.

This geometrical view explains why we wrote the generic
BWM interaction matrix in the form shown in Table 2.
Indeed, in the 2 x 2 symmetric matrix, there are three
independent elements. By setting the mean to 0 and the
variance (length of the vector) to 1, we are left with only one
variable, and this has a natural interpretation as an angle ()
in the vector space. In terms of this angle 6, matrices with zero
mean, unit variance, and even composition (equal fraction of
all monomers, p; = 1/2) have the form

—V2cos0 —sin 0

2

_ dB
Bull) =8+ ( sin 0

sin 0
V2cos0 — sin 0
(103)

which satisfies the following convenient condition

5B(01)5B(0>) = 6B8B cos(0; — 0,). (104)
Thus the angle 6 indeed defines the metrics in this space of
matrices. These results can be generalized for arbitrary p;, but
they are then cumbersome.

We can now address the following question: how good
and reasonable are the models with two types of monomers,
and which of them is better? We can answer this question
quantitatively. Indeed, as the similarity between matrices is
measured by the angle between them, we have to compute the
angle o(6) between the BWM matrix that corresponds to 6
and the realistic MJ matrix. To do that, we first have to resort
to the reduction theorem (in the ‘wrong’ direction). We have
to write a 20 x 20 matrix where the upper 10 lines are
identical, and the lower ten lines are identical, and similarly
for the columns. It can be shown by computation, that o(0)
reaches a minimum when 0 ~ 0, and thus the best of the
BWM is HP. However, even the minimal « is as large as about
60°. It is hard to imagine the approximation which considers
vectors at the angle 60° parallel, is very good.

5.2.4 Phase diagram. To find out if a polymer designed with
BY%s interactions will still fold correctly under B™ interac-
tions, we now compare the target state energy (100) with the
free energy of the random globule (74). They are equal at the
folding phase transition temperature Tf,q Which is given by

B/Ef(’ldggf(’ld N 1 S/Efoldgg,des ( 105)
Ti Toass Troi Taes

Thus, the original phase diagram (Fig. 13) is modified simply
by rescaling of Tiyes.

5.2.5 How accurate must potentials be for successful modeling
of protein folding? An article under this title was recently
published [139] . (An alternative title could ‘How different can
the languages used by the writer and reader be?’) Now we can
derive the results in much simpler way. The result is that the
folding remains correct (‘the reader understands’) as long as
T4es and T remain in the native state phase below the
transition (105). When the error angle increases, this condi-
tion eventually breaks down. Thus, the maximal acceptable
error value depends on both T4 and 7, but does not depend
on N. Thisis a fundamental advantage of designed sequences.
For random sequences, the ground state changes when
parameters are shifted by a tiny amount, about N~'/2 [130].

Let us characterize the degree of optimization of a protein
with the value Tt/ Tglass = X, and the conditions at which
this protein is supposed to function with 7/Tyjass = y. Then
the necessary value of g is given by

2
>1—|—y x_
y 142

(106)

Forinstance, if x = 1.1 and y = 1.05 (which is plausible), then
g>0.997. Even if x =12 and y = 1.1, then g > 0.988. The
corresponding angles are not to exceed 1° or 9°, respectively.
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Of course, the message here is not in numbers (which are
somewhat arbitrary), but in physics: the necessary accuracy is
controlled, on the one hand, by how far the functioning
protein is from its freezing (y), and on the other, by how good
the sequence is (x).

6. Statistics of real protein sequences

6.1 Individual vs. statistical approach

6.1.1 The statistical approach does not mean that sequences are
generated letter by letter. Chemical synthetic procedures
imply that the sequences of chemical units in copolymers
follow simple Markovian statistics [127]. Clearly, Markovian
processes produce a variety of different sequences; they have
identical mean compositions and local correlations, but in
detail they are different. On the other hand, it is the 2 and w of
molecular biology that the sequence of each type of biopoly-
mer, be it protein, DNA, or RNA, is completely specified and
is under strict genetic control. Apart from some relatively rare
mistakes of genetic apparatus, all, say, human hemoglobin
chains are of the same sequence. They are specified to the
same extent and in the same sense as the sequences of letters in
novels, such as War and Peace, or Crime and Punishment. This
gives rise to the approach that is universally adopted among
biologists — to study each particular biopolymer individu-
ally. Many people also believe that as biological function is
extremely sensitive to complex molecular details, simple
physical models based on universal considerations cannot
provide useful guidelines for biologists.

In the meantime, when we consider the physical proper-
ties of biopolymers, it is tempting to resort to methods and
approaches that proved fruitful in the physics of disordered
systems such as spin glasses. The central idea there is just the
opposite to what was just said about biopolymers. As
individual structure of a piece of glass is totally out of
control, and can never be reproduced, the only sensible
questions are those about appropriate average values. We
are not interested in individual properties of a given sample,
but in those properties that will be reproduced in virtually
every sample of the material prepared under similar condi-
tions.

We have demonstrated in the previous sections that the
‘averaging’ approach indeed appears fruitful. Although its
possibilities should not be overestimated, it can answer
general questions, like why unique native state can exist and
which sequences should be selected for them.

6.1.2 The design of sequences does not work on the level of local
correlations along the sequence. The statistical approach does
imply that the sequences are thought of as randomly fished
out of a pool. If the pool consists of all possible sequences,
then random fishing from this pool is obviously equivalent to
random symbol-by-symbol generation, as in the famous
example of the typing monkeyt. We have demonstrated that
the overwhelming majority of these sequences do not mimic
proteins reasonably. Moreover, we have suggested other
statistical ensembles of designed sequences (81) — those
obtained by canonical design at the temperature Tges. Note
that design schemes employ the three dimensional properties

T By the way, nobody seems to have carried out the experiment with a real
monkey. Meanwhile, there are grounds to expect that the monkey, once
given an opportunity, will produce fractal, not random sequences.

of polymers, and thus cannot be reduced to any Markovian
model that implies local correlations along the chain. Never-
theless, the ensemble of designed sequences differs, of course,
from the ensemble of all (random) sequences even when
viewed purely sequentially, without thinking of a three
dimensional folding.

The theory of sequence design presented above yields
certain predictions as to what type of non-randomness we
should look for, and this prediction can be tested using data
banks of DNA and protein sequences. What is the predic-
tion? Qualitatively, it is very simple. First of all, the
prediction is that the properties of amino acids that exhibit
correlations should be related to the various ‘charges’
defining physical interactions between protein chain links.
Secondly, if we remember the way, say, imprinting works, we
see that those monomers that attract each other in volume
interactions have a good chance of becoming close along the
chain, and vice versa, those repelling each other have a good
chance of not becoming chemical neighbors. These predic-
tions seem to be trivial, as they correspond to normal physical
intuition. We stress that they are not trivial at all. Indeed, the
sequences are the product of evolution, which seems to have
nothing to do with any physical interactions between chain
monomers. Nevertheless, we predict that the chain correla-
tions should look like the sequence is formed by simple
physics. In the next section, we describe the way to test this
prediction.

6.1.3 Protein sequences: are they random? This question has a
long history. It was first believed that the proteins with their
sequences represent a unique best fit to their respective
functions. It was later realized, that neither the time nor the
material was sufficient for evolution to make this optimiza-
tion. It is so clear that it was explained even in the popular
book [140]. Thus the opposite conclusion has been formu-
lated: proteins were said to be ‘slightly edited random
copolymers,’f with the ‘editing’ done in the vicinity of the
active site [11] (see also [141]). This conclusion was in
agreement with simple statistical tests that portray protein
sequences as almost random. However, it is not at all easy to
formulate a priori a statistical test that will be able to
differentiate random and non-random sequences [142, 143].

One may ask if real protein sequences look random, or if
they bear some fingerprint of the evolutionary design they
have undergone.

6.2 The random walk technique to study

the statistics of sequences

A good and powerful technique to examine the statistics of
sequences is to map the sequence onto the trajectory of an
appropriate random walk. As far as this author knows, this
idea was suggested for the first time by I M Lifshitz in the
context of his study of the helix-coil transition in DNA [144].
Statistical analysis of DNA sequences is simpler than for
proteins (because the alphabet is of 4 letters only, and because
the sequences are longer), and this is why we first explain the
technique for this example.

6.2.1 The random walk technique for DNA sequences. The
following procedure can be used to map a DNA sequence
onto a trajectory of a 1D random walk. Suppose that a walker

1 “A Poet wants to give the reader clean water from the spring of Poetry,
but cannot do it before the editor washes there’ (M Svetlov).
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steps down at the ‘time’ ¢ if the monomer number 7 in DNA is
purine, and it steps up otherwise; &, = —1 if 7 is purine (Pu),
i.e. adenine (A) or guanine (G), and &, = +1 if ¢ is pyrimidine
(Py), i.e. cytosine (C) or thymine (T). The value of the end-to-
end distance for the walker trajectory between points s and s’
on the DNA is then defined ast

s
x(s,s") = Z i
1=s

where ¢, = +£1 are ‘monomer contributions’ defined as
explained above. A useful function to be defined in terms of
the DNA walk is

(107)

1/2
F() = sz(s,s +1)), — (x(s,5 + l)>ﬂ ! ) (108)
where (...), means the average over the entire length of DNA,
1 < s < L (the so-called ‘sliding window’ average). Of course,
F(/) is simply the root mean square purine-pyrimidine
difference in the /-length part of the sequence.

A lot of different DNA four-letter texts can be imagined
with the same Pu-Py sequence. Generally, a DNA text can be
one-to-one mapped onto a 2D plane, or onto the complex
plane: for example, steps right, down, left and up, or
& =+41,—1,—1,+i correspond to T, G, A, C, respectively.
In this case, the 1D map is simply the projection of our plane
on the main diagonal.

The claim of the work [145] was that

F(l) ~ 1%, (109)

and two distinct sets of sequences were found, with « = 0.5
(which is trivially expected) and 0.6—0.7. If this is true, it
brings the entire problem of the DNA structure, function, and
evolution in the realm of fractal science.

6.2.2 Tne Brownian bridge technique for protein sequencesi. As
there are 20 types of monomer species in protein sequences,
there is considerable freedom in how to map a sequence onto
the walk. In other words, the question is how to choose
monomer contributions &; depending on the chemical entity
of the monomer i. Another aspect of the problem is that
proteins are rather short, and the sliding window average
technique, which is employed for DNA, is inapplicable.
Instead, it was suggested in the work [14] to carry out an
averaging over the different proteins in the data base. More
specifically, it was done in the following manner.

Three distinct mappings were tested, related to major
physical interactions between monomers in proteins. For
each of the amino-acid sequences obtained from the Data
Bank [146], were the trajectories of three different artificial
walkers, each related to a kind of physical interactions
between residues — hydrophobic (A), hydrogen bonds (B),
and Coulomb (C). The subsequent steps of each walker are
given by the numbers {&;} defined as

A. & = +1 if monomer number i in the given sequence is
highly hydrophilic (Lys, Arg, His, Asp, Glu) or & = —1
otherwise;

B. & may be +1 or —1 for monomers capable (Asn, Gln,
Ser, Thr, Trp, Tyr) or not capable (all others) of hydrogen
bonding;

T Note that the values &, for complementary bases differ in sign only, and
thus the F(/) are the same for complementary threads.
1 This section is based on the work [14].

C. ¢ may be +1, —1 or 0 for positively (Lys, Arg, His) or
negatively charged (Asp, Glu) and neutral (all others)
monomers i, respectively.

In order to look for correlations by comparing the
trajectories, one has to exclude the dependencies on protein
length, overall composition and the step size of the walker.
This is done by the following definition of trajectories. We
start with a given ensemble of protein sequences. The decoded
sequence {1, &, ..., &, s mapped onto the trajectory as

/
x(l) = Z ¢
t=1

The walker defined by equation (110) may have a strong drift,
so that the leading term in x(/) might be linear in /; this is
simply related to the mean composition of the chain
considered. Since the overall composition is beyond our
interest here, we define the reduced trajectory:

/

¥(l) = x() — 7 x(L),

L being the total number of links in the entire polymer chain.
Obviously, the y-walker returns to the origin after the entire
‘trip.” The corresponding trajectory y(/) is called a ‘Brownian
bridge.’

In order to collect all the data in a comparable form, it is
necessary to rescale all the Brownian bridges compensating
for different proteins with different lengths and variances of &
distribution, by

(110)

(111)

2 =—X—, (112)

where (...) means averaging over a given protein sequence
e. g

1

&= (113)

ol

L
Zéia
i=1

and to exclude L-dependence, we rescale the number of steps
taken (/)as A = //L, where 0 < 2 < 1.

With the rescaled trajectories z?(1), averaging can be
performed over the ensemble of proteins:

r(/l) = <22(i)>ensemble : (1 14)
Combining equations (110) through (114), yields
L) A 200\ 2
) Ag;
F(A):<<Z a(p)> > , (115)
=0 »

where p denotes a given protein, (. . .), means average over the
set of proteins, [...] means take the next highest integer, and
L, is the total number of amino acids in p.

Looking at the walk representations of the sequences, how
can one judge about their randomness or non-randomness? A
purely random walker, which corresponds to a random
sequence, is expected to travel about o+/L from the origin
on mean-square-average and it is easy to find

-1

Frand(2) = [+ (1= 2)7"] (116)

As it must come back in the end, to reach farther, it must go
mainly in one direction for the first half-time (i < L/2) and
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mainly back in the second half-time (i > L/2) thus approach-
ing the maximal distance of 6L /2. On the other hand, to keep
as close to the origin as possible, it must compensate each step
to one direction by a subsequent opposite step. Therefore,
persistent types of correlations in protein sequences would be
manifested in trajectories which go beyond the random one,
while alternating correlations would lead to trajectories which
do not travel as far.

The trajectories ra(4), rg(4), rc(4), along with the
theoretically found trajectory (116) for the purely random
case, are shown in the Fig. 15 for a set of globular proteins
(those coded as catalysts in the Data Bank). The ra(4) and
rg(A) bridges are clearly over rp,,q (4) manifesting pronounced
persistent correlations in the distribution of hydrophobicity.
Alternating correlations are found between electrical charges
on protein chains because rc(4) is definitely below reang(4).

The general qualitative behavior is seen in Fig. 15,
showing persistent correlations for hydrophobic and hydro-
gen bond-related mappings, and anti-correlations for Cou-
lomb mapping, and is in perfect agreement with the predic-
tions drawn from the design of sequences model. The data for
ra, s, and rc are shown to fit very well to the phenomen-
ological interpolation

20—1
LO

ey

(117)

where we chose Ly = 110 and obtained as = 0.520 + 0.05,
oag = 0.520 + 0.05, ac = 0.470 £+ 0.05. The corridors shown
demonstrate that the fit does indeed yield this small error for
o. Formally, o in Eqn (117) is similar to the power in equation
(109). However, fractal interpretation seems fruitless, as we
are speaking of the average over many different proteins.
Nevertheless, the fact that o appears close to 0.5 reflects the
fact that the sequences are not very far from random; they are
edited only slightly. It is thus not a surprise that these
deviations from randomness were difficult to find. It is
therefore even more important that the character of the
correlations does follow theoretical prediction.

Further interesting data are given in the work [14] on
Brownian bridges for different groups of proteins. Further
development in this direction is reported also in [148].

Figure 15. Brownian bridges for hydrophilic (x), hydrogen bonding (e),
and coulomb (+) mappings of sequences of prokaryote proteins with
catalytic activity, and therefore globular structure. The thick curve
corresponds to complete randomness ryang (116).

6.3 The design of sequences and models of evolution

One intriguing application of the design of sequences is to try
to model possible scenarios of early prebiotic evolution. Tt
was clear a long time ago, that the problem of protein folding
is deeply connected to the problem of early prebiotic
evolution and the formation of the first ‘biopolymers’ in the
primordial soup [11, 149, 150]. It was discussed in [151] that
this development could be governed by conflicting require-
ments, such as those of compactness at the same time as
solubility. These two requirements are indeed conflicting: if
the polymer is compact, we expect that its monomers should
attract, but then the polymer chains tend to aggregate; if the
polymers are easily dissolved, we think that the monomers
repel, but then each chain swells. Until now, we have not been
able to materialize this idea. The first step in this direction was
attempted very recently in the works [152]. The idea of
implementing two conflicting requirements was realized in
the following way: a polymer was considered with two types
of monomers, hydrophobic and polar (HP model), and the
sequences were designed such that the percentage of hydro-
phobic monomers was given an upper boundary, mimicking
solubility, while the sequence was required to yield relatively
fast contraction. It was implemented in a computer evolution-
like experiment: starting from a random sequence, the
authors made random mutations, with the condition of
preservation of the overall composition, and looked at the
Monte Carlo compaction kinetics: if the kinetics improved,
the mutation was accepted, and it was rejected otherwise. An
interesting finding is that this procedure led to the sequences
with unique ground states and well pronounced energy
minima in that state.

Finally, let us also mention another impressive way to
look at the evolution data using the idea of design. Suppose
we design the sequence for the ground state conformation .
Clearly, we can prepare many sequences for that same
conformation. We can then look at which monomer units
are preserved throughout those sequences, and which mono-
mers are variable. We can then compare this with what
biologists see about variability in real protein sequences
taken from similar proteins in different species. A very
promising similarity between the two patterns was found in
the recent work [153].

7. Conclusions

To conclude, let us return to the question of the relation
between the models considered and real biopolymers. First,
let us repeat that all the small scale details, however important
[104, 105], are renormalized out of the simple models.
Furthermore, if one uses lattice models of proteins, typically
one considers that the lattice polymer is some sort of
‘renormalized’ protein, with secondary structure coarse
grained out; indeed, the lattice polymer conformation there-
fore describes purely tertiary structure, i.e. an arrangement of
secondary structural elements. This is why 27-mer [154] and
perhaps even 18-mer can adequately model short protein
folding behavior. This is despite the fact that these domains
are typically comprised of about 70 to 100 residues. More-
over, de novo designed 4-helix bundles [120] look somewhat
similar to lattice 12-mers (2 x 2 x 3). In the meantime, lattice
36- and 48-mers can possibly model multi-domain proteins
[155]. This may be associated with the fact that 36-mer is the
shortest for which pseudo-knots are possible. Not surpris-
ingly, 36-mer is also the shortest (of lattice polymers) for
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which the globule can have a domain structure, with two 18-
mers filling the 2 x 3 x 3 domains. Thus, the thermodynamic
limit is by no means the most interesting regime here.

Clearly, simple models cannot pretend to explain all the
properties of biopolymers. As an important example we
mention that proteins are known to function in a machine-
like fashion [156], as systems that have their own construc-
tions [157]. Is it sufficient to design sequences in the way
described earlier in the paper to get molecules capable of this
machine-style functioning, or does one need to do something
more? This important question remains an unanswered
challenge. In the meantime, the models described do seem to
capture at least some of the exciting properties of biopoly-
mers. For example, it is an experimental fact (albeit a fact of
computer experiment) that lattice 100-mer is able to renature
if its sequence is properly designed [135] — just like natural
proteins do. Therefore, the Levinthal paradox exists for
lattice model polymers to the same extent and in the same
form, as for natural proteins, and it is equally challenging. It is
hard to believe that the solution of the Levinthal paradox
would be different for proteins and for lattice polymers. Thus,
the models we were speaking about are at least interesting.

Has the Levinthal paradox been resolved at least at the
level of models? In the present author’s opinion — no, not yet.
Even though we believe that the idea of sequence design with
the optimization of the ground state energy moves us in the
right direction, and the discovery of correlations in protein
sequences favors this optimism, sequence design so far
optimizes only the thermodynamic properties of model
chains. We do not have sufficient understanding of folding
kinetics. In principle, one might expect that another optimiza-
tion would be needed to overcome the kinetic barrier. An
alternative scenario, however, is that thermodynamic optimi-
zation somehow allows for kinetic optimization as well. The
resolution of this problem seems to be one of the most
interesting questions. The present author believes that
topological constraints and secondary structures could be
two closely related keys to open this lock.
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