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Abstract. Methods of functional analysis are applied to describe
collectively fluctuating default-free pure discount bonds subject
to trading-related noise which generates arbitrage opportu-
nities. Two key elements of the model are: (i) the naturally
incorporated fixed bond price at maturity which is achieved by
making use of only those fluctuating paths of price motion which
terminate at a specified final condition, and (ii) the most attrac-
tive arbitrage opportunities between bonds with close maturi-
ties, with modeled a local linear approximation. The model can
be written in different closed forms as a stochastic partial
differential equation. The functional Black —Scholes equation
for contingent claims is derived, and a connection with the
conventional methods of option valuation is indicated.

1. Introduction. Phenomenon of correlated
fluctuations. A self-consistent description

Close inspection of the daily, monthly, and annual variations
of bond prices reveals different evolving correlations. The
conventional method of presenting this information is the
term structure or the yield curve, and forward interest rates.
Although the collective behavior of (bond) markets is evident,
it is difficult to model, partially due to the large volumes of
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statistical information needed to determine multiple effects of
cross-correlations. Variations of bond prices lead to arbitrage
opportunities. However small these are or are perceived to be,
it is of interest to model them explicitly. The presence of
arbitrage allows analysis of the region of validity of the well-
established no-arbitrage [1, 2] or equilibrium models, and
provides an approach to analyzing markets where arbitrage is
expected.

Equilibrium models of the term structure [3 — 5] admit that
the interest rate may deviate from some prescribed ‘mean’
value, and indicate that efficient markets have mechanisms of
relaxation towards the mean. Since interest rates, in general,
are not more tradeable assets, the connection between the
arbitrage opportunities and the mechanism of relaxation is
implicit. On the other hand, linear relaxation is the natural
way to model the evolution of the moderate changes exhibited
by term structure and bond prices. We intend to use the same
type of linear relaxation below to model arbitrage.

Historically, financial models have incorporated more
and more details of real markets explicitly, representing the
remaining factors as an ‘effective medium’ which provides
driving noise or specified mean values. The seminal model of
Black and Scholes (Black and Scholes, 1973) divides the
market into two sub-systems: a single asset, and the remain-
ing market. The market provides the mean interest rate and
stochastic noise with a specified volatility, while the asset does
not influence the market at all [6]. Two, three, and more assets
are usually considered along the same lines, and their mutual
influence is modeled by pairwise coefficients of cross-
correlation [7]. New quality comes in focus when the number
of assets becomes large or their combined value becomes
comparable with the total trading volumes, as occurs place
for bond markets.

In the Heath-—Jarrow—Morton model [1] the market
provides families of drift functions and volatilities for the
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evolution of the term structure. Here, the ‘effective medium’
approximation is employed at full strength. Indeed, we know
that for an arbitrage-free market the forward rate, f(#, T), is a
complete description, and therefore the mentioned drift
functions and volatilities must somehow depend on f{z, 7).
This self-consistency is replaced in the model by having the
drift and volatility functions measured from real market data.

In this article we study a different model of bond prices
and term structure, which has the advantage of being
complete, i.e. it describes the entire bond market or the
fluctuations of the entire yield curve starting from a specified
initial condition. In the simplest version there are just two
parameters in the model (the volatility, o, and a measure of
the time needed for arbitrage, 7). No ‘external’ interest rates
or mean values are employed. Different terms in the
stochastic dynamics of the bond prices in our model are
related to the ‘Brownian-bridge’ modification [8] of the
Black —Scholes log-normal processt and the linear arbitrage
description of the term structure [4, 5].

For our purposes, it is necessary to review a few
mathematical techniques which will subsequently allow us
to model term structures. This is performed step by step
below. In the next section we continue to discuss the
difference between stochastic and deterministic interactions
of different market prices. In Section 3 we then revisit the
linear relaxation approach to arbitrage and use it in the
simplest possible complete system of two bonds serving as an
illustration of a complete system with arbitrage and market
makers. The mathematical techniques needed are given in
Section 4 which is devoted to the analysis of the ‘Brownian-
bridge’ model, and its connection to conditional probabil-
ities, Fokker—Planck equations, path integrals, and the
generation of steady-state distributions, all exposing the
Ball-Torous drift term from complementary angles. The
Ball—Torous model is known to have divergent behavior at
maturity making it problematic to perform changes of
variables to the equivalent martingale measure [9]. This
issue is discussed at the end of Section 4 where we argue
that in the world with one bond the price of this bond is not a
martingale.

+ On the 14th October 1997 the Nobel laureates in the field of economics
were declared in Stockholm. They were 53 year old Robert C Merton (of
Harvard Business School) and 56 year old Myron Scholes (from Stanford
University). None of the laureates to date have been able to boast that
their discovery in economics has been used in real life, but this year has
seen the first attempt to change economists into physicists. According to a
representative of the Royal Swedish Academy of Sciences, “their method
of pricing financial derivatives is, without exaggeration, the most signifi-
cant contribution to economic science of the last 25 years”. At the
beginning of the 70s they worked out a formula to price derivatives which
subsequently became the basis of the activity of all financial markets. The
main condition for successful activity in this field is the correct evaluation
of the value of a derivative. Merton, Scholes, and late Fischer Black
developed this method of evaluation. Most importantly, Black and
Scholes produced the so-called Black—Scholes equation which, since
1973, has been used daily by thousands of traders and investors for the
evaluation of options on the world’s financial markets. The equation
considers a host of financial-economic factors: interest rates, the level of
share fluctuations, hedging, etc. The Black — Scholes formula is sometimes
used for pricing insurance contracts and guarantees, and to the determina-
tion of the efficiency of investment projects. But Merton’s method, further
developing their theory, allows researchers to penetrate into new areas of
science, even beyond the bounds of financial economics. Unfortunately,
Black did not get to share the triumph of his colleagues — he died in 1995
at the age of 57. (Editor’s note)

Having developed the necessary methods we model the
many-bond dynamics by relaxational arbitrage terms in
Section 5, and derive a stochastic partial differential equa-
tion (SPDE) for the bond market together with its path-
integral counterpart and other related processes. The Black —
Scholes strategy in the presence of arbitrage opportunities is
outlined later in Section 5 where the connection with the
parameters used in conventional models is established, and a
few analytical solutions are presented.

2. Difference between stochastic correlations
and deterministic interactions

Economical and financial markets are systems with co-
existing stochastic and deterministic (cor)relations between
prices, indices, rates, etc. In general, correlated events, may be
subject to either deterministic or stochastic modeling, the
latter by using observable or phenomenological coefficients
of cross-correlation. This property is shared by financial
models. Consider the case of the Vasicek model of the term
structure:

1
dr=-(b-r)dt+0odZ, (1)
T

where r(7) is the short-term risk-free interest rate at time 7, b is
a constant which models the mean reversion the rate 7, and o
is the interest rate volatility [5]. In this model the tendency of
the interest rate to correlate with the mean value b is modeled
by a linear relaxational term (b —r)/t which is fully
deterministic. The ‘remaining’ market influence is taken into
account as a stochastic (Gaussian) influence, ¢&, with

E = £dt, similar to the noise acting on the asset log-price
in the Black —Scholes equation. The distribution of the noise
term ¢ is assumed to be Gaussian,

P(E) = Nexp ( - %J &2 dz), (2)

where the integration is performed over the entire time
interval, and N is the normalization constant. Alternatively,
first and second order correlators can be specified for the
Gaussian process &(1): (E(7)) =0, (&(1)E(rr)) =d(t — 1),
where 8(x) is the delta-function.

Cross-correlation

In cases where the relations between fluctuating quantities are
complex, the other alternative for modeling statistical
relations is frequently used. The coefficient of cross-correla-
tion, p, is a good description when we do not intend to model
the underlying mechanism of cross-influence of correlated
observables. The classical example of this approach is the
concept of the diversified portfolio by Markowitz [10] where
the correlation, f3, represents the interaction between the
market and a given asset.

Particular examples include Black —Scholes type models
for two or more underlying variables which are significantly
correlated while, again, we do not attempt to model the cause
of this correlation. For example, in the cross-currency futures
and options the foreign index and exchange rate follow two
different stochastic equations with log-normal noise, while
their clearly correlated evolution is modeled by a coefficient
of instantaneous correlation (p) [7]. The same approach is
used for relating the bond underlying a bond option and
another bond expiring simultaneously with the option [6], and
many others.
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3. Arbitrage opportunities — the mechanism
of relaxation

The strategies used by financial institutions are becoming
more and more complicated. The time needed to adopt new
models, the time needed for computation and to react to
exotic market conditions, and the barriers provided by
transaction costs and taxes make the arbitrage observable.
The more difficult it becomes to take advantage of modern
observable arbitrage, the more significant is the contribution
of collected historical data with arbitrage opportunities which
are used in transactions based on accepted financial models.
Many models however are intrinsically arbitrage-free, and the
perspective of combining them with arbitrage containing data
is undesirable.

3.1 Taylor series, linear arbitrage, and arbitrage time

If it were possible to observe the influence of arbitrageurs it
would be found that, once created, arbitrage opportunities
diminish over time and cease to exist. This process is clearly
deterministic, and there is a characteristic time associated
with it. One can model such a process by the ‘first term’ in the
Taylor expansion of some unknown function of current price,
B, and no-arbitrage price, B, namely by —(B — B)/t where tis
a characteristic time. Linear relaxation has been extensively
used in financial models [4, 5, 11, 12].

3.2 Two correlated assets. Relaxational arguments
Suppose that there are only two trading boards in the world,
each engaged in trading identical assets, available at prices,
Bjand B, at each board, respectively. Arbitrageurs willing to
act when By # B, face a finite time, 7, needed to transmit
information, directions, and funds between the boards. Thus,
the appropriate model for the asset prices would be

1
dB, = {,uBl +;(Bz - Bl)] di+01B1dE,,
1
3)
1
dB, = {,uBz +T—(B1 - Bz)] dt +02B,dE,,
2

where p is the common interest rate, g, are the price
volatilities, and the deterministic relaxational terms model
arbitrage opportunities. The logarithms of the prices,
Ay > = In By , satisfy the equations

2
o1

1
dAl = {#— 5 +E[exp(A2—A1)—1}}(12‘4’0’1(131,

(4)
2

o 1

d4, = {'u—?z—l—f— [exp(Al —Az) - 1]}dl+0’2d527
2

which can be linearized for small enough differences

|41 — A3|. The system of two assets is presented here only as

an illustration of arbitrage relaxation. Our subsequent

analysis will be performed with many assets (bonds) at once.

4. Path integrals, action,
and the ‘Brownian-bridge’ model

In this section the ‘Brownian-bridge’ model [8] is revisited,
thus explaining our motivation to incorporate the ‘Brownian-
bridge’ drift term in our subsequent study of collectively
fluctuating bonds. We also indicate a connection to the
method of path integrals [13]; their mathematical counter-

parts and examples of financial applications may be found in
Sections 21, 22 of Ref. [14]. When computing probabilities
and expectation values with stochastic models it is sometimes
convenient to present the answer as an integral or sum taken
over possible ‘trajectories’, B(f), followed by the asset price,
or over trajectories A(?), followed by its logarithm, log-price.
In the method of path integrals [13] one considers all possible
realizations of the asset price dependence on time. The
underlying space is that of (possibly discontinuous) single-
valued functions of time. The probability of each realization
is given by P[A(f)] = Nexp(—S), where S measures the
contribution of a given trajectory, A(z), and N is the normal-
ization prefactor [13]. The functional S[A(¢)] is traditionally
termed the action.
The stochastic differential equation with additive noise

d4 = —v(A4,1)dt + o dE, (5)
considered in the time interval #; < ¢ < t, generates different
realizations, A4(7), of the asset log-price as prescribed by the
drift term, v, and the noise term. The probability of each
realization is given by [15]

P[A(1)] = Nexp(—S)
[~ d4 2 2w

=N —— | dt{ —4v] ——=——.(6
e"p[ 202J,] (dz”) 2@1} (6)
Some results of financial models with Wiener (Brownian)
noise can be rewritten by using path integrals. As an example
we show how to derive the results of the Ball and Torous
model [8]. One of the problems arising with evaluating bonds
is the deterministic final condition for the bond price,
B(T) = By at maturity, 7. In order to modify the Black—
Scholes ansatz in view of this condition, a particular

stochastic process, the so-called ‘Brownian-bridge’ process
was considered by Ball and Torous

B Br -
dB_(T_tlnB>dt+oBdu. (7)
The divergent denominator of the drift term, 7 — ¢, represents
a ‘restoring force’” which guarantees the final price to be a root
of the numerator, B(T) = Br. It is assumed that the interest
rate is given by p = [In By — In By]/T. We shall postpone the
discussion of equivalent martingale measures till the end of
this section.

The path integral approach provides a technically
independent test of the results by Ball and Torous, and
illuminates the meaning of their designated drift term. One
considers all possible trajectories of the price, B(z), which
begin at the point By and terminate at the point By. Examples
of such trajectories are given in Fig. 1.

Consider a log-normal trajectory, B(#) satisfying an
ordinary stochastic differential equation,

02
dd = (“_7) dt + ¢d= 8)

A = In B, which is defined in the time interval #{ < ¢t < ,. The
probability of a particular realization A(7) is given by

P[A(t)] = Nexp [_%ﬂr dz(%—;w%z)z] .9

4]
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Figure 1. Three possible price — time trajectories connecting present bond
log-price Ay and log-price, A7, at maturity, 7. Curves are obtained by
Monte Carlo simulations of Eqn (21). Parameters: ¢ is discretized in
N = 512 points; 10* steps were made along the artificial time, 0; 6> = 10.0;
Ay =0; A7 = 1; T =1 (arbitrary units).

The path integral of expression (9) over properly constrained
trajectories can be computed explicitly, for example, by
dividing the trajectory into a large number of time intervals,
and computing the individual integrals, and later taking the
limit of infinitely many time intervals [13]. With the specified
initial and final conditions, A(#;) = 41, A(t2) = Aa, one
arrives at the Gaussian distribution

Pg(Ay, 11542, 1)

A(t)=42 1 (" dA o2 2
= DAtexp[——J dt(——,u-i——)]
JA(fl):Al ( ) 20'2 n dl 2

1

[21[0’2(12 — 11)} 1/2

X exp{ (A= (p—0?/2)(n - n)]’ },

20’2(1‘2 — l])

(10)

as it should be. This is the usual log-normal distribution for B.
For the constraint conditions of interest, when the initial, B,
intermediate, B, and final, By, conditions are specified, the
calculation of the path integral gives

1
[2no2i(1 — 1/T)]

[4 — Ao — (A7 — 40)(t/ )]
XeXp{_ 2021(1 — /1) } ()

PC(ACHO; A7 t7 AT: T) =

1/2

It can be explicitly verified that the probability Pc satisfies a
partial differential equation,

dPc 0 (Ar—A4
W—a( T—1 PC)*

o O Pc
2 042

(12)

in which one can recognize the Fokker — Planck equation for
the stochastic process (7). Thus, the Ball-Torous drift is
exactly the drift provided by the final constraint (boundary
condition), B(T) = By on any Brownian trajectory, and no
artificial drift is employed. Moreover, as can be immediately
verified by simple algebra, Pc is just the conditional
probability

PG(A070;A7 Z)PG(Av Z;ATa T)

PC(A(]vO;Ay[;ATv T) = PG(A() OAT T)

(13)

Although the path integral may seem excessive at this stage,
we believe it provides a useful insight and is generalizable to
the case of collectively fluctuating assets, while Eqns (7) and
(12) are not.

4.1 Forward and backward Fokker —Planck equations

An alternative method to derive Eqn (12) stems from relation
(13). Given that the relation is valid for any time, ¢, one can
consider the change caused by an infinitesimal increment, dr.
In a slightly more general case that we shall explore [c.f. Eqn
(5)], the unconditional probabilities entering the right-hand
side of Eqn (13) obey forward (subscript f and the plus sign
below) and backward (subscript » and the minus sign)
Fokker —Planck equations,

:tan’b _ 6(1;Pf,b) 0'2 62Pf7b
or 04 2 042

(14)

where v is the drift rate (v = —u + /2 for the Gaussian case
considered above). Forward and backward solutions are
specified by the initial, Pr(A4,0) =8(A4 — Ay), and final,
Py(A4,T) = 8(A — Ar), conditions, respectively. Differentiat-
ing the relation Pc = PyPy with respect to time and using (14)
one obtains an expression

dPc ( oP; an) a2 (aZPf
ofc_,

o \Par e ) ta e

o’ Py
50, 09
to be compared with the expected Fokker —Planck form

dPc _d(VPc)  o* @ Pc
o 04 2 4%

(16)

with an unknown drift rate V. Comparison of the right-hand
sides of Eqns (15) and (16) results in an equation for V-

d 2y 0\ oP¢ oPy
a_A(VPbe+GPfa_A>_U(Pba_A_Pfa_A) (17)

Integrating over the interval (4, A7) for a fixed ¢, and
assuming V(A7) = 0, one gets
OPy

Ar
_GzalnPb_ 1 J <P an—Pf—>U dA,.

Vid) = 04 PPy ®o4 04

(18)

This is a general formula connecting the drift rate of the
conditional probability Pc with the Green function of
the unconstrained Fokker—Planck equation [Py and Py
are just two different representations of the Green
function, (10)]. It demonstrates the existence of the
closed Fokker—Planck equation (16) and corresponding
stochastic equation,
dAc

=L _V4oE,

& (19)

for the underlying process (5).

4.2 Distribution (6) as a steady-state distribution

We shall make use of one more equation related to Eqn (5).
Consider a function of two variables, 4(, ), satisfying the
equation
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A=—— )
d 54 40+ d=(0.1)
1[3%4 v v o2 % B
—p W+E*UM ?@ dl+dd(0,t>, (20)

with a d-correlated two-dimensional Gaussian noise Z(0, ¢)
having variance unity; 6/34 stands for a functional deriva-
tive. Unlike (5) Eqn (20) is second-order in time 7. [t does not
discriminate between forward and backward evolutions.
These advantages are partially balanced by the extra dimen-
sion, 0, and extra terms on the right-hand side. Evolving this
SPDE in artificial time, 6, one arrives at a steady-state
distribution P[A(c0,7)] = Nexp(—S), which is exactly the
distribution characterizing the related stochastic equation (5).
Equation (20) allows us to impose explicitly different
constraints and conditions on the trajectories described by
the action S(z), [see Eqn (6)]. For the log-normal process (8)
Eqn (20) becomes

18%*4

d4d = ——
o2 0r?

dr + d3(0,1). 1)

This equation is defined on the strip, 0 < ¢ < 7, with the
boundary conditions A(0,0) = Ay, A(0,T)= Ar. The
steady-state distribution P(A) at large 0 is given by Eqn
(11). It can be obtained by the Fourier transform (see also
Section 5). Equation (21) was used to produce Fig. 1.

4.3 Divergent drift of the Ball—Torous model

and the equivalent martingale measure

According to Eqn (7) the fixed final bond price, B(T) = Br,
orlog-price, A(T) = Ar, are enforced by divergent drift for all
other values of B or A. At the final point, r = T, the equation
is, in some sense, no longer stochastic: the solution is known
in advance. To explore this issue in detail Cheng has shown [9]
that the Ball—Torous drift is not square-integrable

([ 552T)> [ormrn-

and the Radon—Nikodym derivative corresponding to
eliminating drift in Eqn (7) diverges at ¢t = T. Then, the
weakest known sufficient conditions of Girsanov’s theorem
are not met. Correspondingly, at t = T'it is no longer possible
to eliminate the drift by changing variables, and there is no
guarantee that the random processes B(f) or A(t) are
martingales.

To focus on this issue further let us discuss a world with
only one bond [that is Eqn (7)]. In this world there is no
knowledge of the interest rates except for what can be
extracted from B and By (that is [1/(T — 1)]In(Br/B)).
There is only one constraint to be met — the final bond
price. In this world one cannot form ‘expectations’ of the
present bond price and discount the final price, since there is
no additional information available. It is difficult to reduce
the question further, since at the next stage one faces a
problem to ‘solve the equation in such a way as if the solution
was already known’. In the world with many bonds one may
use neighboring bonds to get a feeling for the pricing of a
given bond. However, no-arbitrage models do not impose any
constraint on the slope of the yield curve. It is namely the
arbitrage considerations of the bonds with close maturities
which we now address.

5. Term structure — probabilistic description
of the forward rate curve and collective
fluctuations

We are now in a position to model collectively fluctuating
assets. We would like to focus on a particular example of
collective behavior provided by the bond market. Bonds
maturing at the same time are easy to compare at any instant
by computing the forward interest rates. Arbitrage opportu-
nities provided by such bonds relax quickly and vanish from
our description of slow arbitrage applicable to a fluctuating
term structure.

Let us denote by B(z,7) the current price of a
discount bond maturing at time 7. This is a synthetic
value, in reality it is represented by an averaged price of
bonds with identical maturities. The curve, B(z, T) versus
T, is related to the forward rate R(t,Ty,7T2) =
—[InB(1,T5) —In B(1, T)] /(T> — T) as seen at time ¢ for
the period from T to T», and to the instantaneous forward
rate, R(t, T), as seen at time 7 for a bond maturing at time 7.
By definition, R(z,T) = R(t, T, T) = —0[ln B(¢, T)]/0T. The
function B(¢, T) can be retrieved from R(z, T) by integration,
B(1,T) = Brexp [ — [ dr/R(1,7')]. In the Heath - Jarrow
Morton model any realization of the function R(¢,T) is
possible, and it does not imply arbitrage opportunities [1].

At the same time a number of financial models
incorporate the so-called mean reversion: interest rates
appear over time to be pulled back to some long-term
average level (see Ref. [7]). Imagine that as a result of
intensive trading (possibly attempted by speculators) the
prices of bonds with maturities around time 7, are
noticeably increased. The instantancous forward rate, R,
being the log-derivative, acquires an N-shaped profile in the
vicinity of the point 7j. One can argue that such a ‘kink’
could not continue to exist for a long time in view of the
above-mentioned mean reversal. However, the bond market
in a complete model is itself the source of our knowledge of
the interest rates, and there is no such a thing as a
prescribed ‘mean interest rate’ to which the function R
must relax unless the role of market makers, the laws of
supply and demand, the role of the Treasury, etc, are taken
into account. The time evolution of the term structure
suggests high correlations between bond prices with differ-
ent close maturities rather than global relaxation to a
specified mean value.

Let us return to the example of two assets considered
above (see Section 3.2). Such an extreme situation shows that
there is no ‘mean’ or preferred asset price other than the price
specified by another asset. Bonds are organized here by their
maturity dates, regardless of the duration (the same approach
was used by Heath et al. [1] (see also Ref. [7]). We assume that
bonds with maturities close to T from above and below will
be considered first by arbitrageurs. This arbitrage has a
probabilistic component. Nothing would tell us that a kink
on the yield curve should vanish if it were not for historical
evidence. It is more related to the fact that the kink is
generated by the trading itself, not by the expectation of
quick changes of the economy in the future, at time 7}, and
the bond market has mechanisms to ‘heal’ kinks in the
forward rates.

We expect that the bonds with maturities 7y + AT, where
AT is the smallest existing increment of maturities, will be
considered for arbitrage [16], since the change in B(t, Ty)
results in severe changes in the forward rates between
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To — AT, Ty, and To+ AT. This leads to relaxational
arbitrage-related  terms  like  (1/7){B(¢, Ty + AT)x
exp[—R(t, T)AT] - B(t,Ty)}  and (1/z)§3(z, Ty — AT)x
exp[R(1, T)AT] — B(t,Ty)} or, in the continuous limit,
v[0*B/OT? — 2ROB/OT + R*B|, where v = AT?/t. We now
complete the derivation of the stochastic equation for the
term structure. Additional arguments in favor of linear local
arbitrage are given at the end of this section.

Combining the collective contribution to the drift term
given above with the usual log-normal noise term reflecting
independent sources of fluctuations (such as trading itself)
one obtains

o’B 0B, ~
dB = {uB+v{W72Ra—T+R B} }dt+aBd~. (23)

Equation (23) is a SPDE. It is defined on a strip {z >0,
T>=t T<t+Tn} where T, is the maximal existing
maturity. This equation is supplied by initial and boundary
conditions. The initial condition B(0, T) is provided by the
currently available bond prices. The boundary condition at
T = t is the fixed bond price at maturity: B(7, T) = Br. The
boundary condition at 7' = ¢ + Ty, is the original bond price
when the bond is offered for sale. This price can be obtained
by extrapolating the instantaneous forward rate from the
interval prior to R(¢,t+ Ty — AT). Then, 0(InB)/0T =
(In B)/Tw. The log-derivative of Eqn (23) gives a (non-
closed) SPDE for the term structure. The latter equation is
related to the Burgers equation which has been addressed in
the statistical physics of turbulence [17 — 19] for a different
class of initial and boundary conditions. The Burgers
equation has been used previously in financial literature in
a different context [20].

Note, that we are able to meet the final condition
B(T,T) = By without a designated drift term. This is the
consequence of the second-order T7-derivative. However
attractive this capability of the second order SPDE may
seem, one still needs to supply the correct drift term reflecting
specifically the Brownian character of the collectively inter-
acting assets (see the previous section).

The diffusive-like term 9°B/dT? implies additional
assumptions. Firstly, it suggests that the arbitrage-related
increase (decrease) of a given bond price is accompanied by a
compensating decrease (increase) of the prices of bonds with
close maturities. This is essentially equivalent to the assump-
tion that the amount of money involved in the bond market
remains approximately unaffected by such arbitrage, ascrib-
ing all other changes to the noise term.

Secondly, effective arbitrage is assumed to be ‘short-
ranged’ or local over the maturity time, 7. There certainly
exists a ‘long-range’ or non-local arbitrage, when the
comparison of prices of bonds with different distant matu-
rities is involved [16]. Such arbitrage is assumed to have a
lower rate, or that the average squared time difference
between maturities of sold and bought bonds converges
quickly if averaged over the transaction rates and volumes.
The ‘range’ of arbitrage can be short or long depending on the
other time intervals involved. For example, arbitrage between
bonds with a one-year difference in maturities is non-local
regarding the annual structure of the forward rates, and can
be approximated as local in comparison to the entire yield
curve.

Thirdly, we neglect higher derivatives in 7. The validity of
this diffusion approximation is based on the assumption that

the term structure is a smooth curve. If the corresponding
temporal scale of change is T, the small parameter is
AT/T, < 1. If the minimal possible difference in bond
maturities is one day, AT = 1, and the time t needed for
arbitrage with computer trading is a second, then v ~ 10°
days. The so-called diffusion length in one year, Az = 300 is
VvAr = 5500 days, i.c. about fifteen years. Thus, it takes less
than a year with local arbitrage to completely forget about the
given initial conditions.

Fourthly, it is assumed that a linear axis, T, and arbitrage
between bond prices, B, is preferable to, say, a logarithmic
axis, In T, and arbitrage between different log-prices, A. These
are ‘adjustable’ assumptions.

5.1 Functional-integral representation

and the Fokker — Planck equation

We now reproduce some results of the previous section with
respect to the stochastic equation (23). By substituting
A = In B, one finds

a2 A 04\ > N
dA:{u—7+v{ﬁ+4(ﬁ)]}dl+ada, (24)

The action becomes,

15} t+Tm 1
S = J dzJ dr

A 262
X a_A_ +O-_2_vaz_A_4v a_A 1
o o T e or ) |

and the corresponding Green function(al) [c.f. Eqn (10)] is

(25)

A(12,T)=A4(T)
DAexp(-S).
A(11,T)=A,(T)

P(AI(T)all§A27l2):J (26)

When the number of integrations in (25) is larger than one, the
realizations A(t, T) are called fields, not paths, while the path
integral is termed a functional integral [15]. At this stage a few
comments are in order. Unfortunately, the solution of Eqn
(24) is unknown, and the integral entering Eqn (26) cannot be
computed. Problems of this sort are well-known in statistical
physics, and various techniques for analyzing correlation
functions emerging from SPDEs and their functional inte-
gral counterparts have been proposed [15, 21]. In most cases
only the so-called critical indices or exponents become the
major objective of research. From a financial viewpoint this
would correspond to the observation that, say, the logarithm
of an asset price following the Black—Scholes equation
fluctuates as the square root of time, ¢'/2. The exponent 1/2
would be the corresponding answer.

The benefits of describing a market with a single number
are limited. On the other hand, the problem encountered
here is the consequence of our attempts to derive a closed
SPDE which correctly accounts for the specified final
boundary condition B(T,T) = By, similar to the Ball-
Torous equation (7).

Equation (24) corresponds to the log-normal process of
Black and Scholes, and the proper drift rate remains to be
determined. The (functional) Fokker—Planck equation for
the Green functional (26) can be derived by varying the upper,
ty, or the lower, ¢, limits of integration in the action S (25)
(c.f. Ref. [13]). The time-dependent limits ¢ and ¢+ Ty,
bounding the T-integration do not contribute to the infinite-



December, 1997

Collectively fluctuating assets in the presence of arbitrage opportunities, and option pricing

1245

simal variation of the double integral. One finds

anb t+Tm S 02 62
+— = va — P
ot Jt 0A(t, T)U+ 2 A"

02+ 0’4 4 04\
v=H oT? oT ) |

where 8/84 stands for a functional derivative. Equation (27)
is the analog of Eqn (14). We know that the functional
integral (26) represents the required solution of Eqn (27)
which we cannot compute. Nevertheless, the analog of

formula (18),
dln Pb 1 Ar
V(A,T) = —c° — J
( TV) BA Pbe A(X‘T)
S P SPy
P — Py

% ( bSA(LT) A, T))’
represents the required drift rate in terms of the functional

integral (26). In the stochastic equation for the bond prices
G} 0B

—2R—+ R*B
arr ot

(27)

dA(t, T)v

(28)

dB = <BV+ )dz+aBd57 (29)

the drift rate, V(A4), remains unknown in its explicit form,
although the analysis presented above guarantees its exis-
tence. The next section is based on the observation that the
evolution of the Black — Scholes portfolio is not influenced by
the detailed structure of the drift term. We then return to the
problem of the final boundary condition.

5.2 Black —Scholes strategy with linear arbitrage. Bond
option pricing

The Black—Scholes strategy assumes perfect markets, and
allows one to price contingent claims by arbitrage. Suppose, a
portfolio, I1, is formed consisting of « assets H, b bonds B
(expiring simultaneously with the option), and the European
call option itself, F [6]. It is assumed that it is possible to
maintain a zero-investment position regarding this portfolio
II = aH + bB — F = 0. The differential condition 0I1/0t = 0
together with the stochastic processes defined for H and B,

dH:/llHdl-l-O'lHdEl, (30)

(31)

leads to an expression where one can cancel stochastic
contributions by choosing proper expressions for ¢ and b
(see below), and obtain a deterministic Black —Scholes
equation.

In what follows we would like to analyse the consequences
of relaxing the condition IT = aH + bB — F = 0 together with
0I1 /0t = 0, and replacing them by a linear arbitrage relation
0I1/0t = —(1/7)II, which implies that it takes a time of the
order 7 to enforce the desired changes in the portfolio. By
using Eqns (30, 31) one finds

dB = ,uzBdt + 0,BdE,,

o o 1 o COf

{““1H+b“23 o o't R0 g~ apteB
1o 8 af2 bt

— 682 palazHBaHaBJr H+ B—f dr

E
of
a61H——O’1H dz, + bGzB—aBJQB dz,=0,
(32)

where p is the coefficient of cross-correlation of the random
processes =) and Z,. The strategies a, b required to cancel
stochastic terms are the same as in the no-arbitrage case:
a = df/0H, b = 0f/3B. Note, that even if the values of ¢ and b
are computed with a delay, a financial institution still has a
time interval of order 7 to complete the adjustment of the
portfolio. One is left with a deterministic partial differential
equation

of 12262f L o0 O o
~o 20 g 0B g~ poi B ey
oOf H OfB f
+ﬁ?+@? . =0. (33)

This equation is subject to the initial and final conditions
fIH=0,B= By, t=0)=0,

fIH,B=Br,t =T) =max(0,H — X), (34)

where X is the strike price [6]. Following Merton [6] one
considers a similarity solution

Ny H
AS.B.1) = XBh(XB )

(35)
which offers a reduction of arguments to the similarity
variable x = H/XB. By substituting (35) into Eqn (33) one
finds that the similarity ansatz is exact and leads to the closed
equation for A(x, )

oh 1,0
a_z SD¥5=0, D=dl+a-2pm0,  (36)
subject to the conditions
f(x=0,1=0)=0,
1
f(x,t:T):max(O x—B—T> (37)

At this stage the problem no longer depends on t. The
solution (in the case of constant D) reads

h(x,t) = L {xBTerfc { _InxBr+ (1/2)D(T'= Z)]
2Br D(T —1)
InxBr — (1/2)D(T —
—erfc[— nxBr — (1/2)D( l)}}, (38)
D(T—1)
and, according to Eqn (35), the option value is
Hy

f= XBOh(XB 0) (39)

where Hy, and B are the present values of the asset and bond,
correspondingly. Thus, the linear arbitrage relaxation does
not lead to the modification of the Black —Scholes strategy,
but rather implies that it has a larger region of validity than is
assumed within the no-arbitrage framework. In the deriva-
tion presented above the mechanism of arbitrage leading to
linear relaxation, or the agent performing it has not been
specified. The position of the financial institution does not
depend on 7. Let it be required to price a bond option now in
view of the collective nature of fluctuating bonds which was
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given above. Consider a European call option contingent on
B(t,Tx),i.e. F[B(t, Tx), t] expiring at the time ¢ = ¢y with the
strike price X. One has to focus on the fields B corresponding
to the specified bond expiring at Ty and all other bonds.
These fields should originate on a curve By(0,7) at 1 =0,
t < T < t+ Ty, pass through any of the points B(ty, Tx) = X
at time ¢ = ty, the other components remaining uncon-
strained (otherwise the call will not be exercised), and
terminate on the curve B(7,7) = Br at t = T for all 7. In
the absence of trading, the call price, F is estimated to be the
expectation value of max[(B(tx, Ty) — X), 0] with probability
distribution (26). The trading strategy based on the Black —
Scholes portfolio, and applied to Eqn (24), corresponds to a
portfolio, I, consisting of a written derivative security and
b(t, T) bonds having values B(¢, T) and maturing at different
T. The value of the portfolio is

t+Tm

Mm=-F+ J b(1, T)B(t, T)dT. (40)

1

As before, to ensure that the noise terms explicitly cancel, one
chooses the Black —Scholes hedge, b = 8F/3B(t, T). Equa-
tion (33) becomes a functional equation

a_f+J’+Tma2B(z,T)2 8 F JT
or ), 2 dB2(1,T)

Foo1(" SF

——— —— B(t,T)dT =0 41

1| srmaenar=o. @y
supplied by the final condition F(t=Ty)=
max[(B(tx, Tx) — X),0] and the initial condition

F(B(0,Ty) =0,t=0) =0 (while all the other bonds exist-
ing at t = 0 have known values). For the logarithm of the
bond price, 4 =1In B, Eqn (41) is a linear infinitely-dimen-
sional diffusion equation which can be solved as it is. It is
more convenient, however, to follow the similarity approach
of Merton, which we reproduced above, and consider the
substitution

(42)

f:XP’h<B(”TX),z>7

XP’

t+ T
InP = J dTn B(1, T),

t

where prime denotes the fact that the contribution of the bond
of interest, B(¢,Ty) is dismissed in the infinite product.
Equation (41) acquires the following form

oh 1
a"ﬁ‘EDX

14T
D= J 62dT,

t

v
ox2~ 1

(44)

where N is the number of bonds considered. Equation (43)
together with the infinite product P require special care since
the limit N — oo is understood in all other expressions. The
solution of this equation 1is the product of
exp[—(N — 1)(T' —¢)/7] and the right-hand side of (38).
Relation (42) then leads to a pricing formula.

Although it is possible to manage the entire portfolio IT (in
frictionless ideal markets), it is preferable to restrict oneself to
just two bonds, B(t, tx) and B(t, Tx), as was done in the cited
papers [6, 8]. This is possible due to the fact that the initial

condition on the presently known bond prices can be used
partially, i.e. only for the bonds in the portfolio. Then, Eqn
(41) is reducible to Eqn (33). The analysis given at the
beginning of this subsection is applicable, and formula (39)
represents the desired answer (with p =0). As stated by
Merton, the validity of Eqn (39) is not based on the
participants’ opinion regarding the term structure drift.
However, the question of cross-correlation and the relevant
value of p requires additional study. We shall postpone this
issue to the end of the paper.

5.3 Equation with artificial time

Although Eqn (41) allows the pricing of claims contingent on
many bonds simultaneously, and demonstrates that pricing in
the presence of arbitrage is reducible to that without
arbitrage, at first sight it may seem somewhat discouraging
that no novel pricing formulae are immediately obtained.
Equation (41) corresponds to what one can write down
without the preceding analysis; it is based solely on the
insensitivity of the pricing with Brownian processes to the
detailed form of the drift rate. However, the underlying
process (23) modifies the procedure of parameter acquisi-
tion, such as a(¢, T), needed to perform pricing.

To perform parameter acquisition from historical market
data one needs to establish the explicit form of the drift term
V. An alternative approach is to use the last method
demonstrated in the previous section. Varying the action S
given by Eqn (25) one finds

de[d o? 04\ d
d/‘:ﬂa“ﬁ*”(ﬁ)ﬁ]
{614

04 @4 (04
ot 0T?

aTﬂ +dE(0,1,T)  (45)

from the required conditions: 4(0,0,T) = Ay(T) (this is the
initial profile of term structure), A(0, ¢,7) = Ar(T) (this is the
profile of bond log-prices at different maturities),
0A4(0,t,t+ Tn) /0T = 0. Performing multiple Monte Carlo
simulations of Eqn (45) one can obtain the distribution of 4 at
different 7, T and compare it with historical data. An example
of solution to Eqn (45) is shown in Fig. 2

The parameters v, ¢ may, in principle, depend on time and
maturity. The positive average slope, s(T), of the yield curve is
not preserved in the present model. In order to incorporate,
for example, the so-called liquidity preference theory (see Ref.
[7]), one can add a term —y[s(T) + 04/07] to the action (25),
with y being the rate of relaxation. SPDEs offer a broad
spectrum of phenomena and the analysis of distinct cases is
useful. The solution of the linear version of Eqn (45) will be
published elsewhere.

We now return to the question of option pricing [6, 8],
namely to the analysis which makes use of the empirical
coefficient of cross-correlation, p, between the prices of bonds
maturing at 7y and Ty. It is this cross-correlation coefficient
that we compute in Section 5.4 on the basis of Eqn (23) to
demonstrate the relation of our model to those previously
used.

5.4 Coefficient of cross-correlation between two bonds.
The case of a short-term option

In order to investigate the difference between the results of
Section 5.2 and the previous work we explicitly compute here
the value of p. In addition to the basic assumptions of
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Figure 2. Shaded surface of a possible field, A(z, T), evolving from the
present log-prices of bonds with different maturities, 4o(7), and satisfying
boundary conditions of fixed bond log-price, A(T, T) = 0 at maturity, and
(04/0T) = A/ T, for the bonds with largest time to maturity, 7= ¢ + T},.
Surface is obtained by a Monte Carlo simulation of (linearized in A)
Eqn (45): d4 = ¢ 2[0*4/012 — v?0*4/0T* dr + dE(1, T, ). The follow-
ing numerical values and parameters were used: 7 and T are discretized on a
grid of 256 x 256 points, 3 x 10° steps is performed along the artificial time
0; 6> = 10, v = 100, Ty, = 1 (arbitrary units), 4(T) = T'/2. Anisotropic
folds on the A(z, T) surface are due to the large value of v (despite the slow
4™ order diffusion process along the T axis).

frictionless markets with no transaction costs, continuous
trading, and no restrictions on contract terms [7] used above,
we confine ourselves to the case when a short-term option is
written on a bond far from maturity and first sale. We also
assume that the fluctuations of the bond market are
moderate, so that the noise amplitude ¢B can be approxi-
mated by a constant %, reducing the log-normal noise to the
normal one. This is the so-called absolute diffusion model (see
Ref. [7]); a different but related approximation is to dismiss
the nonlinear term in the corresponding equation for the log-
price A = In B.
In the case of normal noise linearized Eqn (23) becomes

2

0°B _
dB = (,uB—&—vﬁ) +xd=.

(46)
It is supplied by the initial condition, B(0, T) = By(T), and
analyzed over an infinite domain —oo < 7' < oo, since we
plan to focus on the evolution in the region (z, T), such that
t < T< Ty. This linear equation describes a Gaussian
process, and can be solved analytically using a Fourier
transform in 7 for the case u(7) = const. The evolution of
Fourier modes,

b(t,Q) = %j AT exp(—iQT)B(1, T)

—0Q

{1,Q) = ijoo dTexp(—iQT)E(1, T),

o (47)

—0Q

is decoupled and follows an Ornstein — Ulenbeck process (c.f.
Ref. [22]),
db = (ub — vQ@?b) dt + x d¢ = b dt + xd¢, (48)

with the mode-dependent rate i = u — vQ>.

The corresponding Gaussian Green function is
2 -1/2
X _
P(bi,t1; by, 1) = <7{6XP [26(t2 — 11)] — 1})

2
X exp <_'a{b2 ~brexp [p(tz B tl)]} ) . (49)
%2{ exp [i(, — 1)) — 1}

The probability of arriving at a specified profile
B(1;,T) = By(T) beginning from the specified profile
B(t;,T) = By(T) is given by

o

P[B\(T), t1; Bo(T), 1] = exp H danP(bl,tl;bz,zz)}.

—00

(50)

This allows various correlators to be computed. For example
the mean value and single-time pair correlation function can
be shown to be

1 *© ! !
<Bz(T)> = _[2nv(t2 _ t1)} 12 J_m d7T'B\(T")
(r-17)’
X eXp |:_ 2V(12 — 2‘1):| ’

(B2(T1)Bo(T2)) = (Ba(T))(BaA(T))

BN
(51)

In the local models without 0/07 derivatives Eqn (51) is
replaced by two stochastic ordinary differential equations
for bonds maturing at ty and T’y [6]. These are equivalent to
Eqns (30), (31) with the convention that H represents the 7y
bond, and B represents the Ty bond. Comparing Eqns (30),
(31) with Eqn (51) one identifies the terms ¢;Sdz; and
02Bdz, with the term (3°B/dT?)dt + xdZ taken at times
ty and Ty, respectively. The coefficient of cross-correlation
is given by

x exp [IQ(T) + T)] .

v o

= (By(ty)By(Ty)),
6107 aera2TX< 2(1) Ba(Tx)

p([, I, TX) = (Ed5ﬁ>c
(52)

which can be computed with the help of Eqn (51). Here we
denote the bond maturing at ¢y as B; and the bond maturing
at Ty as B,. One obtains

V2 { o [4ve = (ix + Tx)’] [_ (tx + TX)Z]

- sios 213/2(qvr)*/2 8vt

o

4

0
+W <B2(tX)><Bz(TX)>} .

(53)
Thus, the ‘effective’ stochastic processes governing the
evolution of both bonds display cross-correlation, and
instead of using the pricing formula with p = 0 and para-
meters appropriate for the model of collectively fluctuating
assets (Section 5.2) one can use the usual pricing approach [8].
This flexibility is limited to the case of Gaussian statistics.
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6. Conclusions

We have indicated several methods of functional analysis
which allow a generalization of financial models to the level of
describing the probabilities of different realizations of yield
curves and forward rate structures. The adaptation of our
model of collectively fluctuating assets in the presence of
linear arbitrage to realistic yield curves is in progress. Our
model also allows us to study the influence of arbitrage
occuring at different rates. We hope that the underlying
principles will be useful for modeling other collectively
fluctuating systems.
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