
Abstract. The interaction of simple, two- and three-level atomic
systems with monochromatic and nonmonochromatic laser ra-
diation near resonance transitions is discussed based on the
SchroÈ dinger equation with radiation decay and no collisional
relaxation, outside the framework of the usual perturbation
theory. The mathematical schemes employed include the reso-
nance approximation, exact methods, the quasi-energy method,
the adiabatic approximation, etc. A large number of physical
phenomena, such as oscillating and inverted populations, self-
induced resonances, processes of first order in the weak field,
Raman scattering, coherent population transfer, etc. are con-
sidered. The review is intended for a broad readership.
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1. Introduction

This review is dedicated to the interaction of simple atomic
systems with laser radiation near resonance transitions. In the
last few years this field of nonlinear optics has made
significant progress thanks to advances and enhancements
in laser facilities. Here individual atomic systems are
considered in laser fields apart from laser radiation propaga-
tion through macroscopic nonlinear media, which until
recently has been the major subject of nonlinear optics.
Thus, current nonlinear optics can be already divided into
two parts: microscopic (the nonlinear optics of individual
atoms and molecules) and macroscopic. In this review we
discuss some issues of microscopic nonlinear optics.

Note that we do not review works, in which phenomen-
ological decay constants are built into relaxation processes.
The radiative decay of atoms in resonant fields is considered
only when it can be introduced correctly. Thus, the results
that are obtained for times shorter than times of radiative
decay can be extended to quasi-stationary systems.
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Unfortunately, I have to omit many interesting results on
`nonclassical light' in this review. On the other hand this
makes it possible to use only the classical description of
electromagnetic fields and the relevant wave function of an
atom in resonant fields (`atom� field'){ in almost all sections
of the review. As a consequence our discussion should be
understandable to a broad circle of readers.

In the present review we consider numerous mathematical
models since in the region close to resonance interactions the
conventional perturbation theory (without summation of an
infinite number of Feynman diagrams) used in quantum
electrodynamics becomes inapplicable.

Advances in experimental laser facilities achieved in
recent years (a new generation of high-yield lasers, the
Doppler-free spectroscopy, atomic `cooling', etc.) have
enabled the required experiments to be conducted.

However, as in all problems of this kind, there are
common physical points and results, the discussion of which
would be very helpful even without going into the mathema-
tical side of the problem. Therefore, prior to the strict
consideration of the problem we shall discuss, on the basis
of perturbation theory, some common issues of the behaviour
of atoms in varying fields using the example of the two-level
system.

The atomic wave function in the presence of a radiation
field can be found from the SchroÈ dinger equation

i�h
qF
qt
� �Ĥ0 � Ĥ 0�F ; �1:1�

where Ĥ0 is an unperturbed atomic Hamiltonian, and in the
dipole approximation the interaction potential Ĥ 0 for the
atom and an external field has the form

Ĥ 0 � ÿd̂ � Ê ; �1:2�

where, in the case of the classical description of the field, it
follows

E�r; t� � ~E exp�ik � rÿ iot� � c:c: ; ~E � Ee ; �1:3�

and d̂ is an Hermitian operator of the dipole moment. The
field E�r; t� describes a monochromatic wave with propaga-
tion vector k, frequency o, and polarization vector e. Since
the field E�r; t� is time-dependent, the atom and field can
constantly exchange energy and, as a consequence, the atom
cannot possess any certain energy. For Ĥ 0 � 0, the solution
of Eqn (1.1) has the form

Cm � Um exp�ÿiEmt� ; �1:4�

where Em are the energies (frequencies) of the relevant levels
(in sÿ1), and Um is the complete system of wave functions of
Hermitian operator Ĥ0.

To integrate Eqn (1.1) with respect to time, we use the
initial condition

Fn � Cn for t � ÿT ; �1:5�

which is physically equivalent to a `sudden switch-on' of the
field E at t � ÿT.

If the conventional procedure of perturbation theory is
applied, then the wave function in the first approximation of
the perturbation theory can be presented in the form (see, for
example, Ref. [1])

F�1�n � Cn �
X
m 6�n

�dmn � ~E ��Cm

�h�Emn � o�
n
exp
�
i�Emn � o�t�

ÿ exp
�ÿi�Emn � o�T�o

�
X
m6�n

�dmn � ~E �Cm

�h�Emn ÿ o�
n
exp
�
i�Emn ÿ o�t�

ÿ exp
�ÿi�Emn ÿ o�T�o ; �1:6�

where the notation

Emn � Em ÿ En �1:6 0�

is used for the difference between the energy levels of an atom.
Formula (1.6) can be considered as an expansion of the wave
function of an atom in the field (1.3) in terms of the complete
set of functions of the operator Ĥ0. This means that the
squared absolute value of the coefficient of a function Um

determines the probability that the atom finds itself in the
state Um. As is seen from (1.6), the coefficients of wave
functions Um depend essentially on time and this automati-
cally leads to oscillations of the electron density (population)
at the atomic levels with time. Functions of this type will be
called nonstationary functions. The dipole moment of the
transition m! n entering (1.6) can be determined by means
of the formula

dnm �
�
U �n d̂Um dV ; d�nm � d �mn : �1:7�

The average dipole moment is zero for the nondegenerate
atomic state, dmm � 0. The last conclusion follows automati-
cally from definition (1.7) and the law of conservation of
parity.

In the further discussion we restrict ourselves to the
consideration of resonance phenomena, for which the
frequency of the electromagnetic field is close to the atomic
transition energy (1.6 0). In this case the condition

jDmnj
o

5 1 �1:8�

is satisfied for a certainmn. HereDmn stands for the resonance
detuning

Dmn � Emn ÿ o : �1:8 0�

In this case the first sum in (1.6) can be neglected and only the
term with the resonance denominator is left in the second
sum. We shall number the energy levels of the resonance
transition by m � 2, n � 1 and omit the indices

d21 ! d ; D21 ! D : �1:7 0�

As is seen from formula (1.6), the admixture of `foreign'
states is given by the squared quantity

a � 2jd � ~E j
�hjDj ; �1:9�{The term `dressed atom' will be used to describe the complete system of

`atom plus quantized field'.
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which is the expansion parameter under resonance condi-
tions. For a2 5 1, the ordinary perturbation theory is
applicable and this admixture is small. Since the relationship

jdj
�hjE21j � jEatomj

ÿ1

holds true, in the region far from resonance, i.e. when
D � E21, the parameter a2 is simply the ratio of the square of
the incident field intensity to the atomic field strength
squared. This parameter is commonly used in problems of
nonlinear (nonresonant) optics. Near the resonance,
jDj5E21, the denominator in (1.9) comes into play and this
leads to a significant rise in a2. The parameter a2 can be
increased in two ways: either by increasing the wave intensity
E or by approaching the exact resonance,o! E21. In the first
case (and in the absence of resonance) the parameter a2 is
about unity when the electric field of the wave is comparable
with atomic fields in its strength. This type of the problem is
hard to be solved because all the wave functions of the atom
and all the energy levels are to be severely distorted in the field
of the wave. In the second case when the resonance occurs, the
perturbing field can be considered as being much less than the
atomic fields in strength and only two levels, which are in
resonance with the external field, will be intensively mixed. In
so doing the increase in the parameter a2 will depend entirely
on the accuracy with which the resonance can be approached.
Table 1 lists some values of the parameter a (1.9) for various
intensities of laser radiation and for various detunings ~Dwhen
d � 5� 10ÿ18 CGSE. Note that the fourth row of the table
presents the value of the quantity

2

����d � ~E�h
���� � 2jVj

in inverse centimetres. In the scientific literature this quantity
is sometimes called the Rabi frequency and represents the
frequency for which an electron jumps from level to level back
and forth under the action of a strong field E (see, for
example, Ref. [1]). For the purpose of comparison with
experimental data it is convenient to express the detuning
~D � D=2pc in inverse centimetres. This quantity ~D � ~n21 ÿ ~n,
where the atomic transition frequency ~n21 � E21=2pc and the
excitation frequency ~n � o=2pc are also expressed in inverse
centimetres. Inside the area enclosed by the bold line a > 1
and the ordinary perturbation theory is inapplicable.

The absolute value squared of the coefficient of Cm gives
the probability of the transitionWmn from the stateCn to the
stateCm in a time t� T. For m � 2, n � 1, we have

W 0 � a2 sin2
�
D�t� T�

2

�
�1:10�

(indices are omitted).

In the derivation of (1.10) only the resonant term has been
taken into account. The probability that the transition will
occur in all the period of time during which the perturbation
Ĥ 0 takes effect is an oscillating function of time. If the time
t� T complies with the condition

t� T4
2

jDj ; �1:11�

the fast-oscillating sinusoidal term can be replaced with its
mean value. Then the probability of transition is

W 0 � a2

2
: �1:12�

If the time interval satisfies the inverse condition to (1.11), the
probability of transition in a time t� T is proportional to the
time squared:

W 0 � a2D2�t� T�2
4

: �1:13�

Upon dividing by t� T!1, expression (1.10) can be
transformed to take the usual form for the probability of
light absorption by an atom in a unit of time

W � W 0

t� T
� jd �

~Ej2
�h2

2pd�E21 ÿ o� ; �1:14�

whence it follows that within the framework of perturbation
theory an atom can absorb an energy proportional to the time
of the perturbative action at the exact resonance only. The
resultant values of W 0 should always be less than unity since
our calculations are based on perturbation theory. However,
the probability of transition in a time t� T can become
greater than unity for a2 > 1. This indicates that perturba-
tion theory is inapplicable here.

In order to find out how switching the electromagnetic
radiation on and off affects the behaviour of an atom, we
should give up the monochromatic wave approximation. In
studying the resonant interaction between light and atom in a
cell, electromagnetic pulses are usually used. The duration of
a pulse and, hence, the time of interaction are varied over a
verywide range from several femtoseconds (i.e. of the order of
10ÿ14 s) to unlimited times pertinent to continuous sources.
Currently another design of the experiment is widely used for
studying interaction of atomic beams when they pass with a
velocity v through a laser radiation field of length l. In this
case the period of interaction t � l=v can also vary over a wide
range. In subsequent sections we present an in-depth
discussion of these issues beyond the scope of perturbation
theory. However, the results of perturbation theory can be
used even in this situation to illustrate the physical nature of
the phenomenon and to calculate the probability of atomic
transition under the action of a pulse field. For this purpose,

Table 1. Values of the parameter a (1.9).

Ioldo, W cmÿ2 1 103 106 109 1012

jEj, W cmÿ1 13.5 4:3� 102 1:35� 104 4:3� 105 1:35� 107

~D � 10ÿ3 cmÿ1 2.25 72.4 2:25� 103 7:24� 104 2:25� 106

~D � 1 cmÿ1 2:25� 10ÿ3 7:24� 10ÿ2 2.25 72.4 2:25� 103

~D � 10 cmÿ1 2:25� 10ÿ4 7:24� 10ÿ3 2:25� 10ÿ1 7.24 2:25� 102

December, 1997 Simple atomic systems in resonant laser éelds 1197



instead of expression (1.3) for a monochromatic field E we
shall use the expression

E � ~E�t� exp�i�k � rÿ ot��� c:c: ; �1:15�

where the quantity ~E�t� defines the pulse shape and varies in
time more slowly than exp�ÿiot�. If the expression
E�t� � E0 exp�ÿz2t 2� �1:16�

is used for E�t�, then the probability of atomic transition from
a stateC1 to a stateC2 in a time t!1 is given as

W 0�t!1� � p

z2

����d � ~E0�h

����2 exp�ÿ D2

2z2

�
: �1:17�

For

2z2 4D2 ; �1:18�

the transition probability is proportional to����d � ~E0�h

���� 1z2 :
The probability of atomic transition is exponentially small
when the inverse inequality is true.

It can be shown that for any continuous (together with
their derivatives) functions E�t� the dependence of the atomic
transition probability will adhere to an exponential law of the
type of (1.17). However, for discontinuous functions the
dependence will have a power-law form. For example, if we
choose E�t� � E0 exp

ÿÿzjtj�, then the transition probability is
to be proportional to jz=Dj2.

If t � 1=z determines the typical time of a pulse change,
then for

jDjt5 1 �1:19�
the atomic transition 1! 2 will actually occur and the upper
level will be populated. For the inverse inequality, the
probability of such processes is exponentially small.

Thus, even a simple analysis based on perturbation theory
brings us to a conclusion that the duration of interaction and
how the electromagnetic field is switched on and off are
extremely important for considering the interaction between
light and an atom near resonance. These issues acquire an
even greater meaning beyond the scope of perturbation
theory (see, for example, Ref. [2]).

2. Two-level atom in the field
of a monochromatic wave

2.1 Resonance approximation and nonstationary wave
functions
After the above illustrative consideration based on ordinary
perturbation theory we shall come to more rigorous treat-
ment of the problem. Let the frequency of the external
electromagnetic field (1.3) be close to the energy difference
between two atomic levels, in our case these are the upper level
m � 2 and the lower level n � 1, viz.

jE21 ÿ oj
o

� jDj
o

5 1 : �2:1�

We shall abstract ourselves for a while from the influence
of other atomic levels on the process we are considering. Then
the problem is reduced to the interaction between an
electromagnetic field and a two-level system. The considera-
tion of such a problemwill help to reveal the major features of
the resonance interaction between light and an atom.

Due to the influence of the resonance interaction the wave
functions of two levels will be mixed. Since in this problem
they form a complete set of functions, the exact solution can
be sought as a superposition of two atomic states, which are
described by the wave functions (1.4):

F � a1�t�C1 � a2�t�C2 ; ja1j2 � ja2j2 � 1 : �2:2�

The functions of the atom, C1 and C2, which are present
in all the subsequent calculations, will match the specific wave
functions of the atom, while indices `1' and `2' will comprise
the full set of indices for the atomic functions.

The solution of the SchroÈ dinger equation (1.1) will be
sought in the form of (2.2). The interaction operator (1.2) is
taken as

Ĥ 0�r; t� � ÿ d̂ � E
�h

: �2:3�

In matrix elements of interaction we shall leave only slow-
oscillating terms

H 021 � ÿ
d21 � ~E

�h
exp�iDt� � H 0 �12 : �2:4�

The time-independent part of the interaction operator will be
denoted as

V � ÿ d21 � ~E
�h
� jVj exp�ij0 � ip� ; j0 � j� j1 ÿ j2 ;

�2:5�

wherej1 andj2 are the arbitrary phases of wave functionsC1

and C2, j is the constant phase of the field E. Note that d21
enters the formula together with E, i.e. the atomic transition
1! 2 is accompanied by photon absorption; the dipole
moment d12 is associated with the amplitude of the field E �,
which describes the photon creation. We recall that in
quantum electrodynamics the classical amplitudes E � and E
of the field are replaced by the creation and annihilation
operators, respectively. In the resonance approximation the
SchroÈ dinger equation (1.1) takes the form

i _a1 � a2V
� exp�ÿiDt� ; i _a2 � a1V exp�iDt� : �2:6�

To derive (2.6), we have neglected the fast-oscillating terms of
the form exp

�
i�E21 � o�t� in the right-hand side of (2.3) since

they vanish upon averaging over the `fast' time
t � 1=o � 1=E21. This procedure can be justified mathemati-
cally [3 ± 5]. The resonance approximation will be used
repeatedly below. Previously it was used in the magnetic
resonance theory [6 ± 9] (the rotating field approximation)
and in calculations for laser amplifiers [10, 11]. For a two-
level system in the optical frequency range the `rotating field
approximation' was first applied in Ref. [12].Monograph [13]
considers how this method can be applied to solve a number
of problems for a two-level atom. In our opinion if the
number of levels exceeds two, then the change to a rotating
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coordinate system is not efficient and it is more appropriate to
use the resonance approximation without such a change (see,
for example, Refs [5, 14]). The solution of Eqn (2.6) will be
sought in the form

a1 � C exp�ÿilt� ; a2 � C
l
V �

exp
�ÿi�lÿ D�t� : �2:7�

For the quantity l we obtain the quadratic equation

l2 ÿ lDÿ jVj2 � 0 ; �2:8�

whose solution will be written in the following way

l1;2 � D
2
�

�������������������
D2

4
� jVj2

s
� D� O

2
: �2:9�

In (2.9) we have introduced a new quantity

O �
����������������������
D2 � 4jVj2

q
; �2:10�

and we will use it repeatedly in the subsequent text. The
quantities a, jVj, D, and l1;2 are related by the expressions

a � 2

����VD
���� ; l1 � l2 � D ; l1l2 � ÿjVj2 : �2:11�

In what follows we shall frequently say that the interac-
tion is `switched off'. This means that the solutions are
considered in the limit of small jVj, or more exactly, for

jVj2 5
����D2
����2 : �2:12�

This procedure should be taken conventionally since the
resultant solutions are valid for constant V. In fact, to
consider the particular behaviour of a solution when the
interaction is switched off, it is required to solve the problem
of the behaviour of a two-level system in a field with a varying
V�t�. Although the subsequent solutions refer to the beha-
viour of an atom in the presence of a wave with a constant
amplitude we shall, however, switch off the field and compare
the resultant solutions with those for an unperturbed system,
i.e. as jVj ! 0. This procedure makes it possible to establish a
correspondence between the functions for an unperturbed
atom and those for an atom in the field of a wave. The exact
resonance should be approached with a special care because
in this case the system `atom plus electromagnetic field' is
degenerate in terms of energy. Figure 1 shows dependences of
l1;2 as functions of D.

The general solution of the SchroÈ dinger equation (1.1) will
be an arbitrary combination of the two aforementioned
solutions to Eqn (2.6):

F � D1 exp�ÿil1t�
�
C1 �C2

l1
V �

exp�iDt�
�

�D2 exp�ÿil2t�
�
C1 �C2

l2
V �

exp�iDt�
�
: �2:13�

Two linearly independent orthonormal functions, which are
particular solutions of Eqn (1.1), can be extracted from
expression (2.13).

Assume that a `monochromatic' pulse with a rectangular
leading edge acts on the atom starting from t � 0.

In fact, as we shall see below, for the case in question the
condition tjDj5 1 should be satisfied (here t is the build-up
time of the pulse). In this case the coefficients D1 and D2 are
determined from the following initial condition

F � C1 for t � 0 : �2:14�

The wave function has the form (see Ref. [1], where,
unfortunately, several errata have crept into the text):

F 01 � C1 exp

�
ÿi D

2
t

��
cos

Ot
2
� iD

O
sin

Ot
2

�
ÿC2 exp

�
i
D
2
t

�
2iV

O
sin

Ot
2
: �2:15�

The second function can be extracted from (2.13) with the
use of the initial condition

F � C2 for t � 0 : �2:16�

Then, one obtains

F 02 � ÿC1 exp

�
ÿi D

2
t

�
2iV �

O
sin

Ot
2

�C2 exp

�
i
D
2
t

��
cos

Ot
2
ÿ iD

O
sin

Ot
2

�
: �2:17�

It is easy to verify that the functions F 01 and F 02 form a
complete orthonormal set of functions for a two-level atom at
each instance of time, i.e. they are subject to the conditions�

F �0i F
0
k dV � dik : �2:18�

Notice that when the interaction is switched off, i.e. for a! 0,
it follows

F 01 ! C1 ; F 02 ! C2 �2:19�

o

E21

E21

l1

D > 0 D < 0

l2

l

0

Figure 1.Quasi-energies l1 and l2 as functions of the electromagnetic field

frequency. The asymptotes l � 0 and l � D represent the unperturbed

states C1 and C2. If for t! ÿ1 the atomic system is in the left lower

branch of l1, then it goes from the stateC1 to the stateC2 as the frequency

is scanned from D > 0 to D < 0 and the resonant field is switched off [see

Eqn (2.9)].
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independently of the sign of detuning D. The arbitrary
constant phase of the wave function F 01 is the same as the
arbitrary phase of C1, while the phase of F 02 matches the
phase of C2. The states of (2.16) are represented by
oscillations of the probability density of the electron between
the two states of an unperturbed atom. For example, the
probabilities of the electron residence at the upper or lower
level in the state described by functions (2.15) are

n2�t� �
��a2�t���2 � a2

1� a2
sin2

Ot
2
;

n1�t� �
��a1�t���2 � 1ÿ n2�t� : �2:20�

It should be emphasized that by interchanging the indices
1! 2 and 2! 1 the same expressions will give the popula-
tions of the lower and upper levels for the second function F 02
(2.17).

Nowwe shall turn our attention to optical experiments on
the observation of population oscillations. In the first optical
experiment, G Hocker and C Tang [15] observed oscillations
of a population with the Rabi frequency 2jVj at the exact
single-photon resonance D � 0. A decade later M Bassini et
al. [16] studied transition processes at the two-photon
resonance for Na in the 3S! 4D transition. These processes
are illustrated in Fig. 2. The interaction was switched on for
t2 � 14 ns which is less than the 4D-level lifetime of about
50 ns. Thus, the principal conditions of a relaxationless
approximation were satisfied. Two-photon absorption
occurred in the presence of two opposing waves with
mutually orthogonal polarizations and in this way the

Doppler effect was suppressed. The two-photon detuning
D � 2oÿ �ED ÿ ES� varied from zero to 30 MHz. Thus,
nonstationary energy functions may justifiably be used even
for the maximal detuning jtDj � 0:42 < 1. The effect was
observed for spontaneously emitted photons of the 4D! 3P
transition. Since for the fields used in the experiment the
quantity a was small, the population of the upper level 4D
would oscillate with the frequency O � D according to
formula (2.20).

2.2 Adiabatic wave functions in the resonance
approximation
Here we shall consider the behaviour of an atom in the
presence of an ideal (i.e. infinite in space and in time) plane
monochromatic wave. In this case we cannot set up the state
of the atom for t � t0 as we wish. The wave function for t � t0
would result by itself from the solution of the SchroÈ dinger
equation without switching the interaction on or off. The last
item should be understood in the sense that any switching of
the interaction would occur slowly (or adiabatically, as is
customary said) so that any stationary state of the atomic
system in the absence of a field could be matched with a
specific quasi-stationary state of the atomic system in the
electromagnetic field. The adiabatic switching lets us exclude
transitions between different nondegenerate levels and to
consider processes at a fixed atomic level perturbed by the
action of a wave.

In problems on the scattering of a monochromatic wave
of light, perturbation theory assumes [17] that the inequality

�Emn � o�T4 1 ; �2:21�
always holds, i.e. all the periods T characterizing the times of
the field switching on and off along with the duration of pulse
should be significantly greater than the inverse value of the
resonance detuning. In fact, for a monochromatic wave it is
required thatT!1 and, hence, inequality (2.21) holds good
automatically. In a real situation T is limited from above due
to various effects (the nonmonochromaticity of the pulse, the
relaxation and decay of atomic levels, collisional and other
relaxation processes). Therefore it is necessary that condition
(2.21) be satisfied for the least possibleT. Only in this case will
the statement of the problem match the scattering of light
from an atom in a specified state. Otherwise the problem
should be solved for a particular pulse but this makes the
consideration less general. Consequently, the fast-oscillating
terms can be omitted in (1.6) when the condition (2.21) is
satisfied. And this formula can be rewritten as

F�1�n � Un exp�ÿiEnt�

� exp�ÿiEnt�
X
m6�n

�
dmn � ~E �

�h�Emn � o� exp�iot�

� dmn � ~E
�h�Emn ÿ o� exp�ÿiot�

�
Um : �2:22�

However, near resonance the first term in the sum (2.22)
can be neglected and only the resonant term is left in the
second one. In this case it follows from (2.22) that the
admixture of the mth state in the nth wave function, which is
represented by the square of the absolute value of the
coefficient of the function Um, is time independent. Conse-
quently, unlike (1.6) oscillations of level populations should
not occur here with time. Kramers and Heisenberg used just
these wave functions in their paper on the scattering of light

1
4

2 5

0 00.1 t, ms t, ms0.1

3 6

Figure 2. Oscillations of the upper level population as a function of time.

The time is measured in microseconds. The population is in relative units.

Different curves represent various resonance detunings from D � 0 (curve

1) to D � 30MHz (curve 6). The experiment was conducted for small field

intensities such that O � �D, where �D is the effective value of D. The

oscillation amplitude decreases due to the spontaneous decay of the upper

level.
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by an atom [17]. When the interaction is switched off, i.e.
when E! 0, the function in (2.22) goes over to the
unperturbed function of the atom Cn, independently of the
sign of D. Functions with a similar structure as that of (2.22)
will be taken to describe the behaviour of atoms in the
monochromatic radiation field in the resonance approxima-
tion. To determine these functions, we shall consider the
structure of the general solution (2.13). We assume that if the
interaction is adiabatically switched off, i.e. when a! 0 or
E! 0, the desired solution should go over either toC1 orC2.
There are two arbitrary coefficients D1 and D2 at our
disposal, whose choice determines two linearly independent
solutions. We shall choose these coefficients from the
following condition. Assume that one of the functions, F1,
goes intoC1 and the other goes intoC2 for a! 0 and D > 0.
Taking into account the limiting values of l1;2 for a5 1 we
can easily see that there are two pairs of solutions for the
coefficients D1 and D2 as a! 0: D1 � 1, D2 ! 0 (it
approaches zero faster than a), and D 01 � 0,
D 02 � �E� � d�=�hD. This choice implies that we use two
solutions (2.13): one with l1, the other with l2. For D < 0
and a! 0 we have another pattern: F1 ! C2, and F2 ! C1.
Thus, we obtain two functions from (2.13) and they are
orthonormal. As follows from quantum-electrodynamic
considerations these functions are eigenfunctions of the
Hermitian operator Ĥ, which describes the system `atom
plus quantized field'. In this case, the complete system `atom
plus quantized field', which has been called a `dressed atom'
(see, for example, Ref. [18]), will possess a specific energy and
the above functions will describe the stationary state of the
complete system in the resonance approximation. The
coefficients chosen, which we will designate as D1 � C1,
D 02 � C2, must satisfy the normalization requirement. This
gives rise to the following results (valid for arbitrary a and D):

jC1j �
�
1� l21
jVj2

�ÿ1=2
� 1���

2
p
�
1� D

O

�1=2

; �2:23�

jC2j �
�
1� l22
jVj2

�ÿ1=2
� 1���

2
p
�
1ÿ D

O

�1=2

: �2:24�

From (2.13), we obtain two functions F1;2 [4, 5] and in the
subsequent discussion we will call them adiabatic functions

F1 � C1 exp
�ÿi�E1 � l1�t

��
U1 � l1

V �
U2 exp�ÿiot�

�
; �2:25�

F2 � C2 exp
�ÿi�E1 � l2�t

��
U1 � l2

V �
U2 exp�ÿiot�

�
: �2:26�

As all wave functions in quantum mechanics, functions F1

and F2 are accurate to arbitrary phases. Relationships (2.23)
and (2.24) specify the absolute values of coefficients C1 and
C2. Phases ofC1 andC2 remain unknown.Without any loss in
generality C1 can be considered a real quantity. This can be
done because wave functions C1 and C2 are also determined
to within arbitrary phases, which introduce an additional
uncertainty into the process of phase selection for F1;2.
However, expression (2.25) has a specific structure and
arbitrary phases j1;2 enter the coefficient of C2 so that the
phasej1 can be factored out by braces and combined with the
arbitrary phase of the coefficient C1. Therefore, if C1 is
selected to be real, then the arbitrary phase of F1 will be the
same as that of C1 (for D > 0).

The arbitrary phase of the wave function F2 will be
specified by the arbitrary phase of C2 if the arbitrary phase
of the constantC2 is expressed through the arbitrary phasej0

as follows:

C2 � jC2j exp�ÿij0 � ip� : �2:27�

In this case

C2 � ÿ l1
V

C1 ; �2:27 0�

and formula (2.26) can be rewritten in the following form

F2 � C1 exp
�ÿi�E2 ÿ l1�t

��
U2 ÿ l1

V
U1 exp�iot�

�
: �2:26 0�

Using the limiting values of l1;2, when the field is switched off
�E! 0), we obtain from (2.25) and (2.26 0) that

F1 ! C1 ; F2 ! C2 for D > 0 ;

F1 ! C2 exp�ij0� ; F2 ! C1 exp�ÿij0� for D < 0 :

�2:28�
In the limit of perturbation theory condition (2.28)

presents some problems in the `passage' through the point
D � �0 due to the absence of one-to-one correspondence
between subscripts of Fi and Cj. These problems are due to
the fact that the populations are adiabatically inverted in the
passage through the point D � 0 as we have seen in Section
2.3. In this case, the system `atom plus field' is degenerate in
terms of energy and correct basis wave functions are obtained
in the zero-order approximation from (2.25) and (2.26 0) by
setting D � 0:

F1 � exp�ijVjt����
2
p �

C1 ÿC2 exp�ij0�
�
;

F2 � exp�ÿijVjt����
2
p �

C2 �C1 exp�ÿij0�
�
: �2:29�

For E! 0 and j0 � 0, functions (2.29) go over to symmetric
and asymmetric combinations of the functions C1;2. These
functions remain valid upon substitution jVjt! � jVj dt for
arbitrary dependence of V on t.

One can easily verify by direct calculation that functions
F1 andF2 form a complete orthonormal set of functions for a
two-level atom. Functions (2.25) and (2.26 0) are applicable
when the light is essentially monochromatic and the phase j
does not in a typical time for the problem in question. The
states which adiabatic functions (2.25) ± (2.26 0) describe, will
be called quasi-energy states of the atom (see Section 2.3) in
the resonance approximation.

The admixture of functions C1 and C2, which comprise
the state F1 (and, respectively, F2) is determined by the
absolute value of the square of the relevant coefficient in the
expansion of F1 in terms of the functions C1 and C2. For
example, the `populations' of levels C1 and C2 for the
function F1 are given by the expressions

n1 � 1

2

�
1� D

O

�
; n2 � 1ÿ n1 : �2:30�

Clearly, the admixture of the functionC2 to the stateF2 is
given by the expression for n1, and the admixture of the
function C1 to the state F2 is given by the expression for n2.
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D Grishkovsky [19] conducted an experiment to deter-
mine the populations n1 and n2 using the optical double-
resonance technique. Instead of a monochromatic field, a
time-limited pulse was used. With some restrictions, formula
(2.30) is, however, applicable in this case as well. A tube with a
length of 100 cm was filled with a vapor of rubidium and two
pulses with circular polarizations were passed through the
tube. The frequency of the first pulse was off-resonant by
~D � �1 cmÿ1 for the atomic transition 5S1=2 ! 5P1=2

�2pl � 7948A� in rubidium. The second weak field was
either tuned to resonance with the transition 5P1=2 ! 6D3=2

�2pl � 6206 A�, or to the exact two-photon resonance for the
two-photon transition 5S1=2 ! 6D3=2. In the first case, the
probe field aided in measuring the actual population of the
level 5P1=2, which is due to various relaxation processes and to
the absence of monochromatism; in the second case, the
`coherent population', which formulae (2.30) specify, was
measured. Tuning to resonance was performed in two ways:
firstly, the frequencies of two dye lasers were changed and,
secondly, they were finely tuned with the use of a magnetic
field. The intensity of the strong laser field as a function of
time was measured over the course of the passage through the
vapor of rubidium and it reached 500 W cmÿ2 for the time
interval 4 ns and linewidth 0.005 cmÿ1. For the second
continuous probe laser the linewidth was narrower than
0.003 cmÿ1. For the atomic transition 5S1=2 ! 5P1=2, the
linewidth was dictated by the spontaneous lifetime tsp � 28
ns and by the collision time 1=tsp � 0:8� 10ÿ7pN
(N � 6� 1013 for 140 �C). The probe pulse did not affect the
level populations and its intensity was only 15 mW cmÿ2 in
the continuous mode. In experiment [19], the pulse duration
was about t � 4 ns and the amplitude changed slowly with
time. Therefore, all the relevant phenomena can be described
by means of the above formulae, in which the quantity
a2 / E 2�t� is time-dependent. For example, formula (2.30)
gives the number of particles at the upper level for a2 5 1:

n2 � a2

4
: �2:30 0�

This formula defines the coherent excitation of an atom. As is
seen from formula (2.25), the `energy' of such an excitation is
E1 � o. In this case, the change in the atomic polarization (i.e.
the admixture of 5P1=2 state) will strictly follow the pulse and
vanish once the pulse has passed. The number of coherently
excited atoms was determined through the absorption of the
probe laser, the frequency of which was adjusted so that the
exact two-photon resonance occurred. However, besides the
coherent `population' there is a noncoherent population,
which is related to the nonmonochromaticity of the pulse as
well as to relaxation. The probability of absorption due to the
pulse nonmonochromaticity was small. The experiment was
performed for values of a of about 0.1 and, hence, nonlinear
phenomena were not available for observation (these phe-
nomena manifest themselves for a > 1). The necessary
calculations were also performed in Ref. [19] using the
`rotating field' method. The results are equivalent to the
resonance approximation for a < 1, which was employed
previously.

2.3 Quasi-energy, atomic level shifts, and the adiabatic
inversion of populations
Now we shall introduce the notion of the quasi-energy of an
atom in a periodic field [20, 21]. By analogy with Bloch
functions for electrons in a space-periodic field in Refs [20,

21], we shall introduce quasi-energy wave functions of an
atom in a time-dependent periodic field in the form Fm �
exp�ÿiEmt�jm�t; r�, where jm�t; r� is a time-periodic func-
tion, the period of which is the same as that of the external
excitation. By expanding jm�t; r� into a Fourier series and
substituting the series into Fm we have

Fm �
X�1
s�ÿ1

Csm�r� exp�ÿiEmtÿ isot� ; �2:31�

i.e. the same wave function as in Refs [20, 21]. In the scientific
literature abroad these states received the name Floquet's
states. In a periodic field the quasi-momentum of an electron
is specified to within �2p=a�s (where a is the lattice constant,
and s is an integer) and, in the same way, in a varying
electromagnetic field of a frequency o the energy is specified
to within so and is called the quasi-energy. V Ritus [20a]
considered the interaction of radiation and an atom in the
absence of a resonance. The next step was made in Ref. [4],
where resonance interactions were treated. In the resonance
approximation that we use, the quasi-energy wave functions
become extremely simple and the quasi-energy consideration
becomes a very efficient method to solve problems of
nonlinear resonant optics (see, for example, Ref. [22]).

Now we want to call the reader's attention to the time
dependence of the functions in (2.25) and (2.26 0). The
expressions of interest include terms like exp��iot�. If we
digress from factors proportional to exp��iot�, then the
exponential time dependence for these functions is governed
by the factors exp

�ÿi�E1 � l1�t
�
and exp

�ÿi�E2 ÿ l1�t
�
, and

this corresponds to the structure of stationary states in
quantum mechanics. Hence, the quantities E1 � l1 and
E2 ÿ l1 play the role of `energy' in a varying field.

Let us consider the case of a positive detuning, D > 0.
When the field is switched off, the wave functions F1 and F2

go over to the nonperturbed atomic functions C1 and C2,
respectively, and the quasi-energy levels E1 � l1 and E2 ÿ l1
go into unperturbed atomic levels E1 and E2. Hence, we can
introduce the quantities E 01 andE 02, which play the roles of the
`former' energies E1 and E2. In the first function

E 01 � E1 � l1 ; �2:32�
and in the second function

E 02 � E2 ÿ l1 : �2:32 0�
In what follows we shall call E 01 and E 02 the reduced quasi-
energies of the atom in the lower and upper states or, simply,
the `quasi-energies'. The caseD < 0 is considered similarly. In
this case [since F1�a! 0� ! C2, F2�a! 0� ! C1]

E 01 � E1 � l2 ; �2:33�
E 02 � E2 ÿ l2 : �2:330�

Again as in the case ofD > 0,E 02 is the exponent in front of the
functionU2 in the functionF1, andE

0
1 is the exponent in front

of the function U1 in the function F2.
Figure 3 shows energy `levels' of an atom in the field as a

function ofD, and Fig. 4 presents them as a function of a. The
plots show that the system goes away from resonance as a
increases{.

{ Similar plots for quasi-energies when the interaction is suddenly

switched on can be found in many references. According to (3.3) they

present a combination of plots shown in Figs 3, 4.
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For the difference E 02 ÿ E 01 between quasi-energies we
have

E 02 ÿ E 01 � o� O ; D > 0 ;
oÿ O ; D < 0 :

�
�2:34�

It follows from (2.34) and Figs 2 and 3 that, depending on the
sign of D, the atomic system absorbs radiation of various
frequencies, when placed in a resonant field.

The quasi-energies E 01 and E 02 (2.32) ± (2.33 0) become
discontinuous as D! �0. At the exact resonance, D � 0,
two absorption lines and two emission lines, which are
different in frequency, will be observed depending on
whether we approach the resonance in the frequency o from
below �D! �0� or from above �D! ÿ0�. The experimental
results (discussed below) support this statement. Clearly, if we
consider relaxation, then the splitting of the absorption line
into two lines will occur not exactly at D � 0 but within the
relaxation frequency range from the exact resonance. The
cited effect can be interpreted as follows. For example, two
radio circuits initially oscillate at the same frequency and then
are detuned due to their interaction. In this case we have two
close frequencies instead of one. It is well known that two
hydrogen atoms are combined in a hydrogen molecule due to
the splitting of energy levels of two identical atoms as a result
of an exchange interaction. Similar phenomena take place in
the example under consideration as well. A two-level system
with an electromagnetic radiation at the frequency o
(photon) will correspond to two oscillating circuits (or two
hydrogen atoms). In this case we also have a `coupled' system
`atom plus field' and the accompanying phenomena are
similar to those which occur in the process of formation of a
molecule. If one wants to delve into the problem, then the
resonant field should be quantized and the energy levels of the
full system of `atom plus quantized field' (`dressed atom') (see
Fig. 5) should be considered. At this point, there is an analogy
with the problem of how a particle can be tunnelled through a
barrier between two symmetric potential wells. Studies on this
problem can be found in Refs [1, 23] (see also references cited
therein).

Level shifts in the field of a wave (high-frequency Stark
effect) were established experimentally in the radio-frequency
range by French scientists from the group under the super-
vision of A Kastler for the ground state of a mercury atom
[24]. In the optical region level shifts were investigated in
potassium vapor by the group under the direction of A M
Bonch-Bruevich for absorption lines [25, 26], by the group
under the direction of M E Movsesyan for so-called three-
photon scattering lines [27], and by the group under the
direction of S G Rautian [28]. We consider the results of the
second group in Section 2.6.

A M Bonch-Bruevich and his collaborators were the first
to reveal and explain the splitting of the resonance absorption
line into two components, symmetric about E21 for D! �0
in accordance with (2.34). This phenomenon is called some-
times the Autler ±Townes effect [29].

The approach or separation of energy levels depicted in
Figs 3 and 4 occurs while the resonance approximation holds
true, i.e. for l1 5o and l1 5E21. However, the resultant
solutions remain valid and the quasi-energy levels separate
arbitrarily far from one another for D > 0 and approach for
D < 0 (and, consequently, intersect and are even inverted) in
the case of a magnetic dipole interaction when the resonance
approximation is strict. This may occur in the case of a dipole

D � 0 D > 0 DD < 0

E 01;2

E 02 � E2 ÿ l1

E 01 � E1 � l1

Figure 3. Quasi-energy levels E 01;2 of an atom as functions of the detuning

D. The lower curve represents the quasi-energy of the ground atomic state

in the field of awave and the upper curve represents the quasi-energy of the

excited state. The arrows indicate transitions between the atomic `levels'

when absorption or emission occurs. As D! �0, the quasi-energy levels

E 01 and E 02 split into two sublevels, the spacing between which is 2jVj.

a4 1 aa � 1

E 01;2

E2

E1

o

b

D < 0

a4 1

D > 0

aa � 1

E 01;2

E2

E1

o

a

Figure 4.Quasi-energies of the lower E 01 and upper E 02 states of an atom as

functions of the quantity a for positive (a) and negative (b) detunings. (a)

The quasi-energy levels approach each other as the laser field intensity

increases, i.e. the resonance detuning grows and the levels become inverted

for very large a (dashed line). (b) The quasi-energy levels separate as a
increases, i.e. resonance detuning occurs in this case as well.
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interaction of one definite circularly polarized wave (either sÿ

or s�) and a two-level system with m � �1=2 wherein
nonresonance transitions vanish automatically due to the
polarization conditions. In the radio-frequency range this
phenomenon was observed by physicists from Leningrad and
set forth in Refs [25, 26].

Later several papers [30 ± 32] were published inwhich level
shifts were measured in the presence of an intensive resonant
wave with better accuracy. P Liao and J Bjorkholm [32]
measured the 3P3=2-level shift for a sodium atom in the field of
a pulse laser with wavelength 2pl � 569 nm. The pulse had a
duration t � 5 ns, a spectral width dn � 3ÿ50 GHz and was
passed into a cell of length 1 m filled with sodium vapor. The
peak intensity reached 5 ± 10 MW cmÿ2 and the sodium
atomic number density was 2� 1012 cmÿ3 (10ÿ4 Torr). The
laser radiation of 569 nmwas close to the resonance transition
3P3=2 ! 4D5=2 and the detuning comprised D=2p � 15 GHz.
The 3P3=2-level shift was measured by the radiation absorp-
tion in the transition with the use of another continuous dye
laser of wavelength 2pl � 569 nm with an intensity lower
than 0.3 W cmÿ2. The second laser was tuned to the
unperturbed difference between the energy levels
3S1=2 ! 3P3=2 with an accuracy of 11 GHz and 4 GHz. By
changing the detuning the authors recorded the 3P3=2-level
shift dependence on the laser intensity. This dependence is
proportional to the square of the strong field strength for
small intensities and it becomes linear for large intensities in
accordance with the theoretical dependence of l1 on jVj2.

An interesting phenomenon occurs with an atom in a field
when the resonance detuning changes slowly and passes
through the point D � 0. The passage through the resonance
requires a careful consideration. As is seen from formulae
(2.32) ± (2.34) and from Fig. 3, the quasi-energies E 01 and E 02
(`tied' to the relevant atomic levels) become discontinuous as
D! �0, when the field is switched off. On the other hand, ifD
is changed gradually, then the wave functions in (2.25) and
(2.26), as well as all the relevant quantities entering them,
including l1 and l2, would change continuously. The
procedure of switching-off can be traced in Fig. 1 by moving
along continuous curves l1;2 which will approach their
limiting values l � 0 or l � D as E! 0. This means that for
the process to be continuous the atom in the field must transit
from one state to another by absorbing or emitting a photon,
as resonance detuning passes through the point D � 0. This
optical phenomenon is analogous to the well-known `180�

spin direction inversion' at themagnetic resonance [9]. At first
we shall consider an initial state which is characterized by the
wave function C1 for the ground state of an atom when
l1 ! 0 and D > 0. The detuning D will be decreased so that it
passes through the point D � 0 in the direction of negative D.
If the interaction is switched off once the point D � 0 is left
behind, then for negative D < 0 the wave function F1 is the
same as the function C2 for the excited atomic state up to an
arbitrary phase. Hence, if the point is passed adiabatically
and then the field is switched off, the atom can be transferred
from the ground state to an excited state. The associated
experiment was first conducted in the optical region in Refs
[33, 34].

M Loy [34] received clear experimental data on popula-
tion inversion for an NH3 molecule as a result of its
interaction with a resonant light pulse. The wave frequency
remained unchanged, and `the passage through the reso-
nance' was conducted by changing the atomic transition
frequency in the NH3 molecule using the Stark effect [35].
Population inversion can be observed if the upper level decay
time T1 is substantially greater than the time for which the
system passes through the resonance. In addition, yet another
condition should be satisfied for the process to be adiabatic,
i.e.

jd � ~E j2 4 �h2
����dDdt
���� :

At themagnetic resonance this passage through the resonance
is called adiabatic rapid passage (ARP). In Ref. [34], a
10.35 mm CO2-laser line was used. This line differs by
2.98 GHz from that of the rotational band in an NH3

molecule. The electric pulse, which is responsible for the
Stark effect and shifts the atomic transition frequency, was
synchronized with the laser pulse peak. The amplitude of the
electric field producing the Stark effect, matched the atomic
frequency shift of 800 MHz. The tuning to the resonance
started from 500 MHz below the resonance frequency for a
specific rotational transition and its rate of change was
4 MHz nsÿ1. The laser pulse lasted for 5 ms. In the cell, the
laser intensity comprised 300 W cmÿ2, and the transition
matrix element was d � 0:24 D. M Loy [34] clearly observed
an inversion of the state in the course of the passage through
the resonance depending on the Stark shift magnitude. The
laser radiation absorption became negative with time, and
this indicated that the state was inverted, namely, the atom
went into an excited state. He was also able to measure what

E21 � oD < 0 D > 0

�n� 1�o

no

�nÿ 1�o

�nÿ 2�o

E 0

2jVj

6
F2�n�

F1�n� 1�

F2�nÿ 1�

F1�n�

F2�nÿ 2�

F1�nÿ 1�

5

4

3

2

1

E21

Figure 5. Energy levels of a `dressed' atom as functions of E21. The solid

intersecting straight lines 1 ± 6 represent the energies of the interacting

systems E 0
1 �n� � ÿE21=2� no, E 0

2 �n� � E21=2� no. For the straight

lines 1, 3, 5 the atom is `at the bottom', and for the straight lines 2, 4, 6 it

is `at the top'. The curves represent the energy levels of the complete system

with regard for their interaction. The shortest distance between two

adjacent lines is 2jVj. The dashed vertical lines match the following

processes that we consider in Section 2.4 (from right to left): absorption

or emission lineo 00 � E21 ÿ 2l1; three-photon emission or absorption line

o 0 � 2oÿ E21 � 2l1; single-photon emission or absorption at the fre-

quency o. The energy of the atom is marked from the level midpoint:

E21=2 when the atom is in the upper state;ÿE21=2 when the atom is in the

ground state.
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time T1 it takes for the inverted state to decay and how this
time depends on the gas density. The timeT1 was about 1 ms at
pressure up to 40 mTorr. The density-independent part
(T1 � 0:75 ms) was determined by the transit time for
molecules of NH3 passing through the laser beam section.
Hence, T1D4 1 for efficient values of D, and adiabatic wave
functions could be used to a good accuracy.

In Fig. 3, the cited experiment on passage through the
point D � 0 corresponds to the following `motion' along the
plotted curves. Assume that for D < 0 the starting point is on
the left-hand branch of the lower bold curve. As the frequency
increases,D! ÿ0, the point will continuemoving to the right
along this curve. Since E 02��0� ÿ E 01�ÿ0� � �ho, on passage
through D � 0 from left to the right the system rises, by
absorbing a photon of resonance radiation, to the upper
right-hand branch of the quasi-energies (see Fig. 3), along
which it proceeds as o decreases for D > 0. Thus, the system
has jumped from the lower level to the upper level, i.e. a
complete inversion has taken place. Certainly, a nonadiabatic
passage through the resonance is also possible, when in Fig. 3
the motion proceeds only along the lower discontinuous
curve, which represents the lower state of the atom (or along
the upper discontinuous curve, which represents the upper
state of the atom). Nonadiabatic passage through the
resonance can be observed when the laser field frequency (or
the atomic transition frequency) changes nonadiabatically so
that it compensates for the discontinuity of quasi-energies at
the point D � �0.

Adiabatic population inversion is thoroughly studied in
the case of a two-level system in the optical region as well as in
the microwave band. It can be observed in a two-level system
either by scanning the pulse frequency or by changing the
atomic transition frequency. This makes the experimental
design very difficult. As will be shown below, a multilevel
system is subject to the same phenomenon. However, unlike a
two-level system, a three-level system can adjust itself for
specific values of parameters and this leads to a self-induced
population inversion.

2.4 First-order processes in a weak field and radiative
decay of adiabatic wave functions
In all the above considerations we have implicitly assumed
that the energy levels of a separate atom are ideally narrow. In
fact they are broadened due to various natural causes. First of
all is the so-called radiation width, which all excited states of
an atom possess. The radiation width is usually about 108 sÿ1

in the optical region for allowed electric dipole transitions and
increases approximately in proportion to the square of
frequency, up to the X-ray region. This assertion follows
from the formula for the probability of dipole emission of
`atomic oscillators' in the n! l transition

W � 2

3

e2

�hc3Eln
j�xlnj2 � 1

3

e2

c3
E 2
ln

m
; �2:35�

in which the uncertainty relation

xln � �h

pln
�

�������������
�h

2mEln

s
�2:35 0�

is used to evaluate the matrix elements xln of the transition.
Due to the level de-excitation the system `atom plus field' can
no longer be described by a wave function with a specific
quasi-energy. If we restrict ourselves to pure radiative decay,

then besides the photons of the intensive resonance field of
frequency o, which have a specific direction and a specific
polarization, other photons with wave vectors k 0 and
polarization e 0 have to be considered. These photons appear
as a result of the spontaneous decay of excited atomic levels
and their intensity is `weak'. To describe these processes we
should go over to a quantized electromagnetic field and adopt
the apparatus of quantum electrodynamics since the theory in
which the electromagnetic field is described by a classical
vector potential does not have a means, without introducing
special new rules, to calculate spontaneous emission. The
problem which we shall discuss below differs from the
common problem of calculating level widths for separate
atoms. In fact, the quasi-energy level widths of an atom in a
resonance field have to be calculated, i.e. the decay of states
F1 and F2 has to be determined. Up to this point the
assumption has been made that the atom interacts with the
wave for a shorter time lapse than the relaxation times of
atomic levels, i.e. we have neglected the decay of functionsC1

and C2. The mechanisms of relaxation processes are diverse,
but they are as yet imperfectly understood in varying external
fields. We shall restrict ourselves to consideration only of the
radiation width in the presence of an intense field. For gt > 1,
where g is the natural width of an excited level of a separate
atom, the functionsF1 andF2 are no longer eigenstates of the
Hamiltonian since they attenuate with a time, Gÿ1 � gÿ1.
Photons ok 0e 0 , other than photons of the intense resonance
field, can be emitted and absorbed due to various processes
and will cause decay of the quasi-energy functions. For the
purpose of calculation we shall use a common perturbation
theory in terms of a `weak' field (see Fig. 5). First of all is the
process of scattering of a resonance photon ok 0e 0 , in which
only direction of the wave vector k changes. This is the so-
called unshifted-in-frequency or Rayleigh scattering whose
probability can be easily calculated using the standard
technique of perturbation theory and wave functions
(2.25) ± (2.26 0). It is given by the expression [4]

dWR � a2

4�1� a2� dWsp ; �2:36�

where dWsp is the probability of spontaneous emission for a
free atom

dWsp � o3
k 0

2p�hc3
je 0 � � dÿj2 dO 0 : �2:37�

The probability in (2.36) differs from the ordinary quantum-
mechanical expression for the spontaneous emission of a
dipole with moment dÿ in that the negatively-frequency part
of the dipolemomentDÿ11 of a two-level atom in the resonance
field is used in (2.36) instead of the negatively-frequency value
of the dipole moment dÿ of a free atom. It can easily be
calculated using quasi-energy wave functions (2.25) ± (2.26 0):

D11 �
�
F�1erF1 dV

� Dÿ11 exp�ÿiot� �D�11 exp�iot� � ÿD22 ;

Dÿ11 � ÿ
V

O
d � : �2:38�

It follows from expression (2.38) that the probability of
Rayleigh scattering should be the same for the lower and
upper states of the `atom plus field' system.
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J Carlsten et al. [36] measured the Rayleigh scattering
intensity as a function of the pumping intensity for various D.
The authors revealed the saturation effect (for a2 > 1) near
the resonance (D � �0:17 nm, a � 3) in accord with expres-
sion (2.36). Rayleigh radiation was observed at a right angle
to the direction in which the laser beam propagated. The
experiment was conducted in a vapor of atomic strontium
(10ÿ4ÿ10ÿ1 Torr) using a tunable pulse (5 ns) dye laser, the
frequency of which was tuned to the transition
5s2 1S0 ! 5s5p1P1 (460.73 nm). The results of these experi-
ments are presented in Fig. 6.

Formula (2.36) can be rewritten in a more compact form
by integrating over all directions of radiation and by summing
over polarizations:

G11 �
X
e 0

�
dWR � o3jdj2

3�hc3
a2

1� a2
: �2:39�

If we introduce the total probability of the spontaneous
emission of a free atom for theC2 ! C1 transition

g �
X
e 0

�
dWsp � 4

3

o3

�hc3
jdj2 ; �2:40�

then formula (2.39) will take the form

G11 � g
4

a2

1� a2
: �2:41�

It is useful to compare the probability in (2.36), in which
the intense field is taken into account, with the common cross

section of resonance fluorescence (without consideration for
the intense field but considering the decay of the upper level)
[37]

ds0 �
���e 0 � � d ���e � d���2
�E21 ÿ o�2 � g2=4

o4 dO 0

c4h2
: �2:42�

The comparison of both expressions shows that the
approximation we use in this review is valid when the decay
of the upper level g is negligible comparedwith the quantityO.
In other words, multiple oscillations of populations occur
between levels for the lifetime of the atom in the upper state
1=g. For a � 1, o � 1015, and D=o � 10ÿ5, the quantity O is
of order jaDj � 1010 sÿ1, while the spontaneous width g is
usually of the order of 108 sÿ1.

The spontaneous scattering of light by different atoms is a
coherent process because expression (2.38) is independent of
the random phases of wave functions of different atoms.
Therefore, the total number of scattered quanta will be
proportional to the square of the number of atoms located
in a volume of the order of l3. In volumes whose linear
dimensions exceed l, the interference between different
regions in the scattering volume should be taken into
account. As a result the electric fields of waves, which have
been scattered by different regions, are mutually compen-
sated. Therefore, the Rayleigh scattering becomes zero in a
homogeneous medium in volumes much greater than l3 (see,
however, Section 2.5, where we show that the Rayleigh
radiation has noncoherent part when it is suddenly switched
on).

We shall now come to Raman scattering from the two-
level system `atom plus field'. For this purpose we shall
consider the process in which the F1 ! F2 transition occurs.
The 1! 2 transition is defined by the dipole moment

D21 � e

�
F�2rF1 dV : �2:43�

Using the quasi-energy functions we have

D21 � Dÿ21 exp
�ÿi�oÿ O�t��D�21 exp

�
i�o� O�t� : �2:44�

The F2 ! F1 transition is defined by the complex-conjugate
quantity

D12 � D�21 : �2:45�

The quantities D�21 and Dÿ21, which enter (2.44), are equal to

D�21 �
1

2

�
1� D

O

�
d ; �2:46�

Dÿ21 � ÿ
1

2

�
1ÿ D

O

�
d � exp�2ij0� ; �2:47�

where j0 is given by expression (2.5). It follows from
expression (2.44) that the F1 ! F2 transition is accompanied
by the emission of a photon, the frequency of which is

o 0 � oÿ O � 2oÿ E21 � 2l1 : �2:48�

As is seen from (2.48) for D > 0 and a2 5 1, a photon with
frequency o 0 � 2oÿ E21 is emitted. The Raman scattering,
in the process of which emissionwith the frequency defined by

0 0.5 1.0 IL=I
0
L

IR

4

3

2

1

Figure 6. The Rayleigh scattering intensity IR in relative units against the

normalized laser intensity IL=I
0
L. Triangles mark the experimental results

for a high-frequency detuning of 8 cmÿ1 (0.17 nm) from the resonance

transition; circles mark those for a low-frequency detuning by the same

amount. The dashed line is the theoretical curve for the assumption that

the laser radiation has a rectangular space profile; the solid curve is

calculated for the assumption that the space profile has a special shape,

which is better suited to describe the actual distribution of the laser

radiation intensity in a cell filled with atomic strontium vapor. As is clearly

seen, the Rayleigh scattering intensity becomes saturated as a2 increases

[36].
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(2.48) occurs for D > 0, will be called three-photon radiation
process and the relevant frequency will be called the three-
photon frequency for D > 0. The photon with resonance
frequency o 00 � E21 is emitted for D < 0 and a2 5 1 (the
C2 ! C1 transition!). This process is equivalent to the
process F2 ! F1 for D > 0. The F1 ! F2 process is accom-
panied by the absorption of a photon, the frequency of which
is

o 001 � o� O � E21 ÿ 2l1 : �2:49�

This frequency is close to the resonance frequency for D > 0
and a2 ! 0, and to the three-photon frequency for D < 0 and
a2 ! 0.

Unlike coherent Rayleigh scattering, the absorption and
emission processes occur at different frequencies. These
frequencies are symmetric about the frequency o of the
resonant field and, consequently, the stimulated emission
and absorption processes cannot compensate each other.
Therefore, if photons of frequency o 0 are to be found in
space, then in the case of the F1 ! F2 transition, in addition
to spontaneous radiation at this frequency, a stimulated
radiation arises proportional to the intensity of photons
with frequency o 0.

The dependence of D�21 on the `strong' field E should be
given special attention. For a5 1, the term D�21, which is
responsible for the absorption at the frequency o 00, for D > 0
is independent of the external field E, while the term Dÿ21,
which is responsible for the emission at the frequency o 0, for
D > 0 is proportional toE 2. This means that the cited process
appears only in the second-order (conventional) perturbation
theory in terms of the resonant field E (Fig. 7a).

A simple calculation based on the quasi-classical theory of
radiation leads to an expression for the probability of three-

photon emission of a photon of frequency o 0 [4]

dW 0 � o 0 3je 0 � � d�j2
8p�hc3�1� a2� �2� a2 ÿ 2

�������������
1� a2

p
sgnD�

�
�
1� 8p3c2

ho 0 3
I 0
�
dO 0

� dWsp
2� a2 ÿ 2

�������������
1� a2
p

sgnD
4�1� a2� �n k 0e 0 � 1� ; �2:50�

where I 0 � I�k 0; e 0� is the spectral-angular density of the
intensity of the `weak' radiation at the frequency o 0, and
dO 0 is either the solid angle for spontaneously emitted
photons, or the solid angle in the angular distribution I 0 for
the term with n k 0e 0 . Formula (2.50) can very easily be derived
using the apparatus of quantum electrodynamics and the
standard technique of calculations when selecting particular
basis functions (2.24) ± (2.26 0).

For large radiation intensities a4 1, the probability of
emission of a photon for the `weak field' seeks a saturation
and the frequency is given by the expression o 0 � oÿ 2jVj.
For a4 1, the probability of three-photon emission becomes
of the order of dWsp�n 0k 0e 0 � 1�=4, i.e. this quantity is of the
order of the probability of emission for a free atom when
n k 0e 0 � 0.

In the optical region, the stimulated radiation of the
frequency o 0 (2.48) was first observed by the group under
the supervision of M E Movsesyan [38]. This process was
called a three-photon process because three photons take part
in it (in the first nonvanishing order in terms of the strong field
strength): two photons are absorbed from the incident beam
and one photon is emitted at the frequencyo 0. In this process
the atom goes from the lower state to the upper state, or more
exactly, from the stateF1 to the stateF2. The authors [38] also
measured the dependence of the frequency shift of the three-
photon line (2.48) on the radiation intensity (see Fig. 7b). The
experiment was conducted for a � 1 when jtDj > 1, where t is
the pulse duration. Hence, the adiabatic approximation could
be used. The relaxation of levels took about t and therefore
did not perceptibly affect the results.

Now we come to the calculation of the radiation
absorption for an atom in a strong resonant field. In the
F1 ! F2 transition, the probability of absorption of a
quantum k 00, e 00 (2.49) from the external beam is given by
means of the formula [4]

dW 00 � p2je 00 � dj2
c3�h2�1� a2�

ÿ
2� a2 � 2

�������������
1� a2

p
sgnD

�
I 00 dO 00

� dWsp
2� a2 � 2

�������������
1� a2
p

sgnD
4�1� a2� n k 00e 00 ; �2:51�

where I 00 � I�k 00; e 00� is the spectral-angular density of the
probe field intensity. For a! 0 and D > 0, expression (2.51)
goes into the ordinary coefficient of resonant absorption of a
photono 00 � E21, k

00, e 00. This result can easily be understood
if we turn our attention to the fact that in essence expression
(2.51) describes the absorption coefficient of a two-level
system in the intense wave field. Therefore, expression (2.51)
should give the ordinary probability of absorption of a
photon for the weak field in the approximation of the
perturbation theory when the intensity of the wave
approaches zero, a! 0. For a4 1, the absorption frequency
shifts, as in the case of the radiation emission frequency, in
proportion to the field strength. For large a, the system `atom

D

D

E2

E1

o o0 o

a

0 3 6 9 12

I, rel. units

6

dn, cmÿ1

3

b

Figure 7. (a) Scheme of the three-photon Raman scattering in the first

nonvanishing approximation of the perturbation theory with respect to

the field E can be presented as a sequence of three processes: absorption of

two quanta o from the external field, emission at the `three-photon'

frequency o 0, and transition of the system from the initial state E1 to the

excited state E3. (b) The lower figure shows the shift of the three-photon

stimulated scattering line dn � l1=p vs. the exciting radiation intensity.

The quantity dn is plotted against the intensity in relative units. The

experiment was conducted for ~D � 21 cmÿ1, dn � 6 cmÿ1, and a2 � 0:6,
which means that the intensity is I � 30 MW cmÿ2. The curve should go

through the origin as I! 0. It is not quite clear why the experimental

results were different [38].
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plus field' absorbs photons at frequencies o 00 � o� 2jVj,
and for a2 5 1 it absorbs at o 00 � E21.

All the above peculiarities apply to the case of light
scattering from the system `atom plus field' in the F1 ! F2

transition. Similar results can be obtained for scattering of
light by an atom in the state F2. In this case the process is
symmetric, i.e. emission substitutes for absorption and vice
versa. The absorption of a photon with frequency o 0 would
be governed by expression (2.50) with n k 0e 0 in place of the
factor n k 0e 0 � 1. The emission of a photon with frequency o 00

would be governed by expression (2.51) with nk 00e 00 � 1 in
place of n k 00e 00 .

Thus, it follows from (2.50) for D > 0 that the total
probability of emission of a photon with the frequency o 0

given by (2.48) in the F1 ! F2 transition is

G21 �
X
e 0

�
dWsp

4

a2

1� a2

�������������
1� a2
p ÿ 1�������������
1� a2
p � 1

�n k 0e 0 � 1� : �2:52�

The process of absorption of a photon with frequency o 001
(2.49) and with probability dW 00 (2.51) will lead to the
`stimulated' width

G21 �
X
e 0

�
dWsp

4

a2

1� a2

�������������
1� a2
p � 1�������������
1� a2
p ÿ 1

n k 00e 00 : �2:53�

If we restrict ourselves to the case n k 0e 0 � n k 00e 00 � 0, then
the total width of the quasi-level, which the function F1

represents, depends solely on the spontaneous processes:

G1 � G11 � G21 � n2g ; �2:54�
where n2 is the probability that the electron is in the excited
stateC2 for the wave function F1. This is given by the second
formula in (2.30). The width of the quasi-level, which the
function F2 represents, can be obtained in a similar way:

G2 � n 02g ; �2:54 0�
where n 02 is given by the first formula in (2.30). These two
results are very clear. Thewave functionsF1 exp�ÿG1t=2� and
F2 exp�ÿG2t=2� decay as a consequence of the excited C2-
state decay, this state being present in the states F1 and F2

with the probabilities n2 and n 02, respectively. Hence, the
spontaneous lifetime of the state F1;2 is of the order of the
duration of the allowed transition 2! 1.

As a result of the decay of quasi-energy functions, the
quasi-energy wave function, which describes the two-level
atom in an intense resonant field, differ for t > gÿ1 from the
initial quasi-energy wave function. Over times much greater
than the time of spontaneous decay of a separate atom, a
statistical radiative equilibrium will be established between
the functions F1;2, and it will be possible to describe this
system by combined quasi-energy functions. Thus, we can
also use the quasi-energy functions F1;2 over times greater
than times of F1;2 relaxation [39a]. The first-order processes
we have considered here in terms of the `weak' field are
presented in Fig. 5.

The second-order processes in terms of the `weak' field are
considered in Ref. [39b] {. They also cause decay of the quasi-
energy wave functions.

2.5 Processes of light scattering and absorption
when the interaction is suddenly switched on
If we start from the solutions given by (2.15) and (2.17) and
calculate the atomic polarization and then the probabilities of
radiation emission and absorption for an atom in the field
under the same assumptions, we obtain different results.
Physically this fact can easily be explained: populations start
to oscillate when the interaction is suddenly switched on, and
therefore all calculations involve transitions between linear
combinations of functions rather than pure functionsF1;2 (see
Section 3.1).

Simple calculations yield the following expression for the
atomic dipole moment in the state F 01:

D11� d�
�~E � d�

�hO

�
D
O

exp�ÿiot� ÿ 1

2

�
D
O
ÿ 1

�
exp
�ÿi�oÿ O�t�

ÿ 1

2

�
D
O
� 1

�
exp
�ÿi�o� O�t��� c:c: �2:55�

The expressions for the probabilities of spontaneous
emission at frequencies o, oÿ O, and o� O have the form

dWo 0 ; e 0 � o3

8p�hc3
��d � � e 0 ���2 a2

�1� a2�2 dO 0 ; �2:56�

dWoÿO; e 0 � �oÿ O�3
32p�hc3

��d � � e 0 ���2 a2

�1� a2�2

�
h
sgnDÿ

�������������
1� a2

p i2
dO 0 ; �2:57�

dWo�O; e 0 � �o� O�3
32p�hc3

��d � � e 0 ���2 a2

�1� a2�2

�
h
sgnD�

�������������
1� a2

p i2
dO 0 : �2:58�

Formula (2.56) differs from the similar formula (2.36), which
was obtained using quasi-energy functions, by an additional
factor 1� a2 in the denominator. For a5 1, this factor is
responsible for the faster suppression of Rayleigh scattering.

The above probabilities of radiation emission (2.56) ±
(2.58) correspond to coherent processes. In these transitions
the state of the system `atom plus field' does not change and
upon transition it is described by the same nonstationary
wave function F 01. This means that if photons are emitted by
different atoms at a specific frequency (o or o� O), they can
interfere with each other.

Besides the aforementioned coherent processes, photons
can be noncoherently emitted with frequencies o and o� O.
This will occur when in the resonant field the atom goes from
the initial state F 01 to the final state F 02. In so doing the
transition dipole moment arises and in the case of nonsta-
tionary wave functions the moment takes the form

D 021 � 2

�~E � d
�hO

�2�
d � exp�ÿiot� � d � exp�iot��

ÿ
�~E � d

hO

�2n
exp
�ÿi�o� O�t�� exp

�ÿi�oÿ O�t�od �
� d

4

�
1� D

O

�2

exp
�
i�o� O�t�

� d

4

�
1ÿ D

O

�2

exp
�
i�oÿ O�t� : �2:59�

{ It should be noted that although the second-order processes involving a

single atom are much less probable than the above first-order processes,

when propagating in a medium they can be more important due to the

coherent combining (appeared as parametric processes).
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The first two terms in expression (2.59) bring about
spontaneous noncoherent Rayleigh scattering, the probabil-
ity of which is

dWo; e 0 � o3

8p�hc3
��d � � e 0 ���2 a4

�1� a2�2 dO 0: �2:60�

Notice that noncoherent Rayleigh scattering has to be
observed in a homogeneous medium as well [39c]. Adding
the coherent Rayleigh scattering from (2.56) we can see that
the resultant expression is the same as (2.36), which we
obtained using quasi-energy wave functions.

The emission and absorption of photons with frequencies
o� O are governed by the subsequent terms in expression
(2.59). For example, the fourth term is responsible for
radiation emission, while the sixth term is responsible for the
absorption of a photon with the frequencyoÿ O. Upon their
summation the radiation emitted in the 1! 2 transition at
the frequency oÿ O will be given by the expression

dWoÿO; e 0 � �oÿ O�3
32p�hc3

��d � � e 0 ���2
�1� a2�2

�
h
a4�n k 0e 0 � 1� ÿ ÿsgnDÿ �������������

1� a2
p �4

n k 0e 0
i
dO 0:

�2:61�

The term in the square brackets with n k 0e 0 � 1 allows for the
stimulated and spontaneous emission and that with the factor
n k 0e 0 determines the stimulated absorption. Similarly the
expression for noncoherent emission of photons in the
1! 2 transition at the frequency o� O is

dWo�O; e 0 � �o� O�3
32p�hc3

��d � � e 0 ���2
�1� a2�2

�
h
a4�n k 0e 0 � 1� ÿ ÿsgnD� �������������

1� a2
p �4

n k 0e 0
i
dO 0:

�2:62�

The total probability of emission of a photon with the
frequency oÿ O can be obtained by adding the coherent
and noncoherent parts, i.e. by summing formulae (2.57) and
(2.61):

dWoÿO; e 0 � �oÿ O�3
8p�hc3

��d � � e 0 ���2
�1� a2�3=2

�
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2
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p
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�o
dO 0: �2:63�

In a similar manner, the total emission of photons with the
frequency o� O is determined as

dWo�O; e 0 � �o� O�3
8p�hc3
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�o
dO 0: �2:64�

Note that for a2 5 1 the probability of stimulated emission of
a photonwith the frequencyoÿ O forD < 0 and, which is the
same, with o� O for D > 0 becomes negative. This means
that absorption occurs at the atomic frequency. At the exact
resonance, D! �0, the absorption line splits into two
absorption lines at o� 2jVj (see Fig. 3). The probability of
absorption for a5 1 is the same as the probability of
absorption calculated for a free atom in the weak field. It is
important to note that the probabilities of stimulated
processes of emission are of different signs for the frequen-
cies oÿ O and o� O. This means, for example, that for
D > 0 and a2 5 1 the stimulated emission of a photon occurs
at the frequency oÿ O � 2oÿ E21 and the absorption of a
photon occurs at the frequency o� O � E21. For D < 0, the
pattern changes symmetrically. The third terms in formulae
(2.63) and (2.64) are responsible for spontaneous emission of
quanta with the frequencies o� O. Naturally both terms are
positive.

We shall see in Section 2.6 that numerous experiments
conducted by different authors generally support the above
results of calculations in the case when the interaction is
suddenly switched on. Firstly, there is a three-spike structure
for spontaneous emission at frequencies o and o� O
(resonance fluorescence) with the equal probabilities of
emission at the frequencies o� O. Secondly, the probe field
is absorbed by the system `atom plus field' at the frequencies
which are symmetric about o, and at the exact resonance,
D! �0, the absorption and emission lines split into two lines
each (see Fig. 8 and Appendix).

2.6 Examination of first-order processes with regard for
radiation decay in the steady-state mode
Over the last decade numerous theoretical and experimental
works have been conducted on the measurement of the weak
field gain by atoms in the resonant field and on the
examination of light scattering near the resonance in a two-
level system (resonance fluorescence). These two, at first
sight, different phenomena are, as we have seen in Sections
2.4 and 2.5, closely related to each other. To elucidate their
relationship we want to call the reader's attention to the fact
that the formulae for the probabilities of emission of photons
with the frequencies o and o� O [see, for instance, Eqns
(2.63), (2.64)], presented in the previous sections, include
terms whose physical meaning is different. Some terms are
proportional to the intensities of created or absorbed photons
(stimulated processes), while other terms are independent of
the intensities of emitted or absorbed photons (spontaneous
processes). The first type of experiments should be designed
to measure the characteristics of stimulated processes for an
atom in the resonant field or, more exactly, to measure the
amplification and decay of the probe signal. The second type
of experiments should be designed to study spontaneous
processes of atomic decay in the resonant field, i.e. to study
resonance fluorescence.

All the experiments we know were generally conducted in
conditions where the influence of the radiative decay of the
upper level could not be neglected [except the experiments
cited in Section (2.4)]. In this situation the expressions we
have derived in the previous sections cannot be directly apply
to the experimental data.

Resonance fluorescence and absorption of a probe field
by an atom in the resonant field under a stationary behaviour,
i.e. in the case of the interaction, the duration of which is
much longer that the lifetime of the upper level, were studied
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in numerous theoretical and experimental works [39 ± 58] and
their results are incorporated to reviews and textbooks.
Therefore, we shall not discuss these issues in detail here.

However, from the methodological standpoint it is useful
to examine whether the quasi-energy adiabatic functions can
be applied as a simple way to describe resonance fluorescence

and accompanying processes in the stationary regime.
Relaxation processes are one of the factors restricting the
use of quasi-energy states for t > 1=g. If we consider only one
separate atom in a strong field, then the atom would drop
back, due to spontaneous emission, from the initial quasi-
energy state to the ground state in a time of the order of the
natural lifetime 1=g of a free atom, as described in Section 2.4.
Clearly, reverse transitions up to the initial quasi-energy state
are also possible and they are accompanied by absorption of a
photon with the relevant frequency. One may expect that the
system `atom plus classical strong field' will ultimately go into
a state of dynamic radiative equilibrium, which is described
by a noncoherent mixture of quasi-energy states. There is
sense in talking of quasi-energy features pertinent to this
equilibrium state only when the levels do not overlap
(remember that they are broadened due to radiative pro-
cesses). In other words, typical gaps between quasi-energy
levels must be significantly wider than the level widths. In this
case the quasi-energy approach can still be used. This project
was realized in Ref. [39a], in which the familiar results of
BMollow [40] were obtained in a simple way and the problem
of scattering for the nonmonochromatic pulse was also
considered.

Here we shall cite several experiments on the interaction
of a strong field with a two-level system in the steady-state
mode. Interesting results in this line were obtained by a group
of physicists from Leningrad in Ref. [41], where the authors
measured the shape of the absorption line for a two-level
system in a strong radio-frequency field. They checked their
results against the calculations in Ref. [42]. The results of
these experiments are in good accord with the positions and
shifts of lines of three-photon emission and of the absorption
line. The authors of Ref. [41] clearly observed how absorption
lines split for D � 0.

Optical experiments on the measurement of the absorp-
tion coefficient for an `atom in field' and on resonance
fluorescence were conducted by the group under the super-
vision of S Ezekiel [43 ± 45] for beams of sodium atoms in the
optical region. Figure 9 shows experimental results from
Ref. [43a]. These results fit well with the calculations in Ref.
[40]. The experiment was conducted using beams of sodium
atoms; the 3 2S1=2�F � 2� ! 3 2P1=2�F 0 � 3� transition was
studied. The two-level system was specially `prepared' by
pumping over atoms of sodium to a given sublevel (F � 2,
mF � 2) by means of circularly polarized light. Then the
sodium atoms got into the region of interaction with a strong
circularly polarized field, which affected only two specific
levels F � 2, mF � 2 and F � 3, mF � 3. Simultaneously, the
attenuation or amplification of the weak probe field was
recorded. Note that the frequency of this field was scanned,
and thus the contours of absorption and emission lines were
obtained. The light beams of the probe and intense resonant
fields were mutually orthogonal and, in addition, they were
orthogonal to the direction of the atomic beam. Typical
values of the parameters were 3 mW for the probe beam
intensity, up to 560 mW for the resonant radiation intensity,
g=2p � 11MHz for the width of the resonance transition line,
and 0 to ÿD=2p � 80 MHz for the probe field detuning. For
the peak detuning, D4 g, the Rabi frequency was
OR � 2p � 60 MHz. Hence, the parameter a2 may be much
greater than unity. The velocity of sodium atoms was
105 cm sÿ1, and the interaction length was about a milli-
metre. As a result, the interaction time (i.e. the time it takes to
transit through the region of intense radiation) was of order
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Figure 8. The probabilities of resonance fluorescence in the units of the

probability of spontaneous emission of a free atom when the interaction is

switched on suddently (a) or adiabatically (b, c). Plot (a) presents also the

results from Ref. [40], which have been integrated with respect to the

fluorescence line widths. The probabilities of absorption of the `probe'

field (the lines below the abscissa axis) and that of stimulated emission of

the `probe' field (the lines above the abscissa axis) for D > 0 (d) and D < 0

(e) are given at a2 4 1, when the interaction between a strong resonant

field and an atom is suddenly switched on. On the abscissa, the probe field

frequency is plotted while on the ordinate emission and absorption

probabilities W 0 are plotted in units of dWspn k 0e 0=4a. The results from

Ref. [43a] in Fig. 9 have been integratedwith respect to the spectrum and in

this form they are qualitatively agree with the patterns in Fig. 8. The

ordinate values in two lower plots should be multiplied by a when the

interaction is switched on adiabatically.
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10ÿ6 s. This means that the condition tg5 1 of stationary
behaviour was satisfied in the experiments with beams.

Research of the resonance fluorescence of the system
`atom plus strong field' was initiated by F Shuda et al. [46].
Since then many experiments have been conducted to
measure the spectrum of resonance fluorescence. In Ref.
[44], sodium atoms were excited by radiation resonant to the
2S3=2�F � 2� ! 2P3=2�F 0 � 3� transition. The typical values
of a met the requirement a2 4 1. Therefore, as we noted
earlier, the resonance fluorescence spectrum is to be sym-
metric about the central frequency and the areas under the
curves for photon emission at the frequency o� O must be
about one-half the intensity of the Rayleigh scattering
without frequency shift. The width of the nonshifted
Rayleigh scattering is one-half the width of the scattering
with frequency shift, as follows from the relevant theory [40,
39]. HWalther et al. [47] presented a number of experimental
curves for the dependence of the resonance fluorescence
spectrum on the power in the case when the intense field is
near the 2S1=2�F � 2� ! 2P3=2�F 0 � 3� transition line in
sodium. They also presented the dependence of the fluores-
cence spectrum on D. The resonant field intensity reached
1.8 W cmÿ2 at a power of 35 mW and for a beam diameter of
3 mm. The curves for the resonance fluorescence in Ref. [47]
indicate that the side lines o� O appear and disappear
symmetrically when a changes.

There has been a long series of theoretical works on these
issues [48 ± 61]. In Refs [51, 52, 60b, c], the correlation
between the first-order processes in terms of the `weak field'
was considered. In Refs [56 ± 59], the existence of bunching

and antibunching of photons, and also of sub-Poissonian
statistics was revealed for resonance fluorescence.

Absorption of radiation by the system `atom plus field' is
usually measured by a so-called `pumping and probe field'
method. However, A Bonch-Bruevich et al. [62] have already
obtained the first results on the absorption of probe field
radiation by the system `atom plus field' when the probe field
intensity was of the order of the pumping intensity.NManson
et al. [63a] obtained new results on light absorption and
dispersion in the case of two strong fields. These last results
differ radically from the results ofmeasurements in the case of
a weak probe field. Finally, EManykin et al. [63b] studied the
interaction of a two-level atomwith three coherent pulses and
examined the parametric amplification process.

3. Behaviour of a two-level atom in the pulse
light field

3.1 Relation between adiabatic and nonstationary
functions
In the previous sections we have considered wave functions of
a two-level atom in the field of an ideal monochromatic wave
and also in the field of a `monochromatic' wave with an
extremely sharp leading edge. A monochromatic wave
provides a mathematical idealization of an actual field.
Actual fields are, as a rule, nonmonochromatic to some
extent. In nonlinear optics the degree of nonmonochromati-
city varies over the very wide range from do=o � 10ÿ2

(femtosecond pulses) to do=o � 10ÿ12ÿ10ÿ14 (highly-stabi-
lized gas lasers). Nonmonochromaticity of a light pulse
occurs when the electromagnetic field is `switched on' one
way or another for a time of order 1=G or the light pulse in use
lasts for a time t, because it is related to G and t as follows

do � G ; do � 1

t
: �3:1�

To this end it is useful to consider the behaviour of a two-level
system in the field of a nonmonochromatic wave

E � ~E�t� exp�i�k0 � rÿ o0t�
	� c:c: �3:2�

Clearly, the nonmonochromatic nature of the wave brings
about mixing of the two states F1 and F2, which expressions
(2.25) ± (2.26 0) define. The degree of such mixing will depend
on how `smooth' the pulse (3.2) is. In the limiting case of an
extremely fast switching-on (a rectangular pulse) the wave
functions will be specified by the nonstationary wave
functions (2.15) and (2.17).

Now we shall determine the degree of mixing for the wave
functions F1 andF2, which enter the nonstationary functions
F 01 and F 02. For this purpose the nonstationary functions,
which formulae (2.15) and (2.17) define, should be expanded
into a series in terms of the adiabatic functions F1 and F2.
One can easily verify that these series are defined by the
expressions

F 01 � C1F1 � C �2F2 ; F 02 � ÿC2F1 � C1F2 ; �3:3�

where C1;2 are given by formulae (2.23) and (2.24). It follows
from relations (3.3), (2.23), and (2.24) that for a5 1 the
nonstationary and quasi-energy functions differ only slightly
from each other. For a4 1, the use of nonstationary
functions will lead to strong mixing of the quasi-energy
functions F1 and F2.

I � 47mW cmÿ2
c

I � 130mW cmÿ2

d

I � 560mW cmÿ2

e

do0

I � 0

a

I � 26mW cmÿ2

b

Figure 9. Absorption line contours for a weak signal with frequency o 0 in
an `atom plus resonant field' system depending on do 0 � o 0 ÿ E21 � ÿD
(the plots are taken from Ref. [43a]). The curves represent the exact

resonance, D � 0, and different pumping intensities from I � 0 to I � 560

mW cmÿ2. The left graphs pertain to the experiment, while the right ones

are concerned with the theory.
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3.2 Exact solutions for particular pulse shapes
Exact methods of solution to the problems on the behaviour
of an atom in the field of a nonmonochromatic wave and the
related issues of a correct description of how the interaction is
switched on and off are of great importance in physics since
they can help to understand how radiation interacts with
matter. Unfortunately, this program was a success for rather
limited class of concrete light pulses. The pulse we consider in
this section closelymatches, in our opinion, a real pulse and in
this case the problem of the behaviour of an atom in the field
of a wave is amenable to a strict analysis. By investigating
these problems we shall find conditions in which adiabatic
and nonstationary functions are applicable.

Equations (2.6) specify coefficients a1;2 for the wave
functions of an atom in the field of a wave and they retain
their form in the case when the amplitude of the wave (1.3) is
time-dependent and has the form of (3.2). Using the same
method as that to derive Eqn (2.6) we obtain

i _a1 � a2V
��t� exp�ÿiDt� ;

i _a2 � a1V�t� exp�iDt� ; �3:4�

where

V�t� � ÿ d � ~E�t�
�h

: �3:4 0�

We shall illustrate the influence of the way in which the
interaction is switched on using an example for which an exact
solution exists. This example was first proposed in Ref. [64]
(see also Ref. [65]). Let the amplitude ~E�t� vary slowly with
time compared with the exponent:

~E�t� �
~E0

exp�ÿGt� � 1
: �3:5�

If we introduce

b � a2 exp�ÿiDt� ; �3:6�

instead of a2, then the equations for the coefficients a1�t� and
b�t� of the desired function F take the form

i _a1 � V0

exp�ÿGt� � 1
b ; i _b � Da1 � V0

exp�ÿGt� � 1
a1 ;

�3:7�

where

V0 � ÿ d � ~E0
�h

: �3:8�

For G! 0 we have the limiting case of adiabatic field
activation and for G!1 the field is suddenly switched on
when t � 0. The calculation shows that in fact the width G
should be compared to the resonance detuning so that the
inequalities G5 jDj and G4D correspond to the cited
limiting cases. To solve Eqn (3.7), we introduce a new
quantity

w � ÿ exp�Gt� : �3:9�

Eliminating the amplitude b from the system of equations we
obtain an equation for a1 which can be solved exactly. Under

the initial conditions

a1 � 1 ; a2 � 0 for t! ÿ1 �3:10�

the solution takes the form

a1 � �1ÿ w�ÿiV0=GF�a; b; g; w� ; �3:11�

where F�a; b; g; w� is a hypergeometric function. Arguments of
the hypergeometric function are expressed via constants G, D,
and V0 as follows:

a � i

2G

�
D� 2V0 ÿ

������������������������
D2 � 4jV0j2

q �
;

b � i

2G

�
D� 2V0 �

������������������������
D2 � 4jV0j2

q �
; �3:12�

g � iD
G
: �3:13�

The formula

F�a; b; g; w�

� G�g�G�bÿ a�
G�b�G�gÿ b� �ÿw�

ÿaF�a; 1ÿ g� a; 1ÿ b� a; wÿ1�

� G�g�G�aÿ b�
G�a�G�gÿ b� �ÿw�

ÿbF�b; 1ÿ g� b; 1ÿ a� b; wÿ1� ;
�3:14�

whereG�x� is a gamma function, is very useful for the analysis
of limiting transitions.

At first we shall consider the case of adiabatic field
activation. Here it is quite natural to consider a steady-state
behaviour for t4Gÿ1. Then

a1 � G�g�G�bÿ a�
G�b�G�gÿ a� exp�ÿil1t� �

G�g�G�aÿ b�
G�a�G�gÿ b� exp�ÿil2t� ;

�3:15�

where

l1;2 � 1

2

�
D�

������������������������
D2 � 4jV0j2

q �
�3:16�

is given by formula (2.16) with jV0j in place of jVj.
For the sake of simplicity we shall assume that D > 0. For

G5D, all indices a, b, and g become large, except, maybe, a in
the case when jV0j5 jDj. But even in the last case the
arguments of all gamma functions in front of the first
exponent in (3.15) are large and the familiar formula��G�iz���2 � G�iz�G�ÿiz� � p

z sin�pz� !
2p
jzj exp

ÿÿpjzj� �3:17�

from the theory of gamma functions can be used to evaluate
the absolute value of the pre-exponential factor. After simple
manipulations we can see that the factor in front of the
exponent exp�ÿil1t� in (3.15) is precisely equal to the
absolute value of the coefficient of C1 in the wave function
F1 (2.25) whereas the factor in front of exp�ÿil2t� is
exponentially small. Thus, if the atom was in the ground
state until the field is switched on, then for G5D a quasi-
energy state with the wave function F1 is established.
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In another limiting case,G4D, the indices of the function
F�a; b; g; w� become small and again we come to the formula-
tion (3.15). Now the arguments of the gamma functions are
small and we should use the relation

G�z� � G�1� z�
z

: �3:17 0�

As a result, the amplitude a1 is precisely the same as the
coefficient of C 01 in the wave function (2.15). This last
function is the solution of the SchroÈ dinger equation when
the interaction is suddenly switched on.

Equation (3.4) can be solved by several mathematical
methods. In the case of real V�t�, upon elimination of a2, the
system is reduced to one second-order equation

�a1 �
�
iDÿ

_V

V

�
_a1 � V 2a1 � 0 : �3:18�

The first solution of (3.18) for D 6� 0 and V 6� const has
been yet found in Ref. [66] for a bell-shaped pulse
V � sech�Gt=2�. A Bambini and P Berman [67] presented a
solution in terms of hypergeometric functions for the two-
parametric family of envelopes

V�z� �
�����������������
z�1ÿ z�p
lz� m

;

where the variable z is related to t by means of the formula

exp�t� � zm

�1ÿ z�l�m �3:19�

(here l and m are real parameters). This family of solutions
includes the previous result for m � 1=2, l � 0.

The second two-parametric class V�t�, for which Eqn
(3.18) can also be solved in terms of hypergeometric
functions, was found in Ref. [68]:

V�z� � 1

1� z2
dz

dt
; t � l arctan z� m ln�1� z2� �3:20�

(l and m are arbitrary).
The above integrable system (3.4), when E�t� has the form

as in (3.5), corresponds to the dependence V�t� �
l
�
1� tanh�mt�� for arbitrary l and m.
All the above integrable solutions are obtained when the

transformation of dependent and independent variables is
simultaneously applied to (3.18):

a�z� � U�z�
j�z� ;

dz

dt
� r�z� ; �3:21�

where j and r are some functions [68]. This transformation is
the most general procedure by which a second-order equation
can be transformed into another second-order equation.

If we require that the resultant equation be coincident
with some common equation with a well-studied solution (for
example, with a hypergeometric solution) upon application of
transformation (3.21) to Eqn (3.18):

Uzz � f �z�Uz � g�z�U � 0 �3:22�

(the subscript z means differentiation with respect to z), then
we arrive at a system of equations for the functionsj�z�, r�z�,
and U�z�, which depend on f �z� and g�z�. This system allows
about twenty explicit solutions [68] resulting in twenty two-
and three-parametric classes of envelopes V�t�, in which
(3.18) can be integrated in terms of special functions, and
one two-parametric class, in which (3.20) can be solved in
quadratures. However, these mathematical methods have not
been applied to solve any particular problems.

In Ref. [69a], R Unanyan used the method of quantum
supersymmetry to find relations between the coefficients in
the asymptotic expansion for wave functions as x! �1,
when V�t� is arbitrary. In Ref. [69b], this method was
employed to obtain the analytic solution for
V � V0�cosh t�ÿ1 �W0 tanh t, where V0 and W0 are arbi-
trary constants.

A series of works on the mathematical methods of
resonant interaction was conducted in relation to problems
of multiphoton ionization and the results were set forth in
monograph [70].

There is a wide circle of problems on the behaviour of a
two-level atom in the presence of two monochromatic fields
with arbitrary amplitudes and near-resonance frequencies
[71 ± 77].

Though simple analytic solutions of this problem are
lacking. The system of equations has an exact solution only
when the two pulses are symmetric about the resonance, i.e.
when D2 � ÿD1. In this case, for V1 � V2 � V, the solution
can be written in the form (for t � 0, F1 � C1, F2 � C2):

F1 � cos

�
V

D
sin

Dt
2

�
U1

� i sin

�
V

D
sin

Dt
2

�
U2 exp

�ÿi�E2 ÿ E1�t
�
; �3:23�

F2 � ÿi sin
�
V

D
sin

Dt
2

�
U1

� cos

�
V

D
sin

Dt
2

�
U2 exp

�ÿi�E2 ÿ E1�t
�
: �3:24�

The solutions for a bichromatic field are closely related to the
solutions for the behaviour of an electron and atoms in the
field of a standing wave. This issue was studied in two reviews
[78].

The case of two fields provides the simplest example of an
interaction of atomic systems with a nonmonochromatic
field. Note that the interaction will depend on the statistics
of the radiation by which the atom is perturbed. These issues
have been studied in a variety of papers (see, for example,
Refs [79, 80]).

Another wide circle of problems deals with behaviour of a
two-level atom in the field of a monochromatic wave without
the use of a resonance approximation. A Melikyan [81]
considered the well-known linear Hill equation with periodic
coefficients. The frequency of the incident wave is arbitrary.
In the case of the one-photon resonance, for a4 1 and as
D! ÿ0, the quantities l1 and l2 in formulae (2.7) and (2.9)
are given by the expression

l1;2 � � 2o
p

arcsin

�
p
2

����
r1
p �

; �3:25�
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where r1 is calculated from the convergent series in terms of
the variable aD=o:

r1 �
�
aD
2o

�2�
1ÿ

�
aD
4o

�2�p2
3
� 1

�
� . . .

�
: �3:26�

If only the first term in the series (3.26) is inserted to (3.25),
then the latter expression coincides with expression (2.9)
which we have used. In the case of a multiphoton resonance,
i.e. when o � E21=n, where n � 3; 5; 7, formula (3.25) retains
its form. Only the quantity r1 in (3.26) should be replaced with
the quantity rn equal to

rn �
�
aD
2o

�4
n2

n2 ÿ 1

�
1ÿ

�
aD
o

�2
3n2 � 1

2�n2 ÿ 1� � . . .

�
: �3:27�

Further results can be obtained by differentiating the quasi-
energy with respect to the parameters on which it depends [81,
82a]. V Krainov and Z Mulyukov [82b] considered the
problem of harmonic generation in a two-level system
without the use of the resonance approximation.

3.3 `Quasi-classical' approximation in temporal space
The equations of interaction (3.4) between a nonmonochro-
matic electromagnetic pulse and an atom can be examined in
detail near resonance. To this end we shall use a widely-
known quasi-classical approximation of quantum mechanics
to study problems in the space of time rather than in x; y; z
space. The field amplitude that enters the expression for the
nonmonochromatic field (3.4) has the form

~E�x; t� � ��~E�x; t��� exp�ij�x; t�� : �3:28�

A solution of the SchroÈ dinger equation (1.1) will be sought as
an expansion in terms of the complete set of functions of an
unperturbed atom (2.2). Equations (3.4) for the a1 and a2
expansion coefficients of the desired wave function F for a
two-level system can be rewritten in the form

i _a1 �W �a2 ; i _a2 �Wa1 ; �3:29�

where

W � V exp�iDt� �
���� d � ~E�h

���� exp�iDt� ij� ij1 ÿ ij2 � ip�

�
���� d � ~E�h

���� exp�ij0�x; t�
�
; �3:30�

here j1 and j2 are random phases of wave functions of the
atom in the lower and upper states, and in addition

j0�x; t� � Dt� j� j1 ÿ j2 � p : �3:31�

Equation (3.29) is followed by the equation for a1:

�a1 ÿ _a1
d

dt
lnW � � jWj2a1 � 0 : �3:32�

With W in place of W �, Eqn (3.22) gives the equation for a2.
The orthonormality of functions F1;2 yields the condition

ja1j2 � ja2j2 � 1 : �3:33�

A solution of Eqn (3.32) will be sought in the form

a1 � exp

�
i

�h
S

�
� exp

�
i

�h
�S0 � �hS1 � �h2S2 � . . .�

�
: �3:34�

Substituting (3.34) into (3.32) we have

_S0 � ��hjWj ; �3:35�

_S1 � ÿ _j0

2
: �3:36�

The general solution of the SchroÈ dinger equation can be
presented in the following form [83] (under the condition that
j _j0j5 2jWj):

F � C1 exp

(
i

�t
ÿ1

�
jWj � 1

2
_j0�t�

�
dt

)�
C1 ÿ exp�ij0�C2

�
� C2 exp

(
ÿi
�t
ÿ1

�
jWj ÿ 1

2
_j0�t�

�
dt

)�
C1 � exp�ij0�C2

�
:

�3:37�

We shall select two functions F1;2 from the general solution
such that the initial conditions F1 ! C1 and F2 ! C2 as
t! ÿ1 are satisfied. The result for j0�ÿ1� � 0 can be
represented as

F1 � exp

�
ÿi j0

2

�
C1 cos

��t
ÿ1
jWj dt

�
ÿ i exp

�
i
j0

2

�
C2 sin

��t
ÿ1
jWj dt

�
;

F2 � ÿi exp
�
ÿi j0

2

�
C1 sin

��t
ÿ1
jWj dt

�
� exp

�
i
j0

2

�
C2 cos

��t
ÿ1
jWj dt

�
: �3:38�

One can easily verify that functions (3.38) are orthonorma-
lized. Thus, the applicability condition �hS1 5S0 for the
quasi-classical approach is reduced to the condition�����tÿ1 _j0

2
dt

����5 �t
ÿ1
jWj dt : �3:39�

With the use of (3.31) it follows from the latter inequality that
if the pulse lasts forÿteff < t < teff, then (3.39) takes the form���� 12

�teff
ÿteff

�
D� qj

qt

�
dt

����5 �teff
ÿteff
jWj dt : �3:40�

Consequently, the quantity�teff
ÿteff
jWj dt ;

which is proportional to the effective Rabi frequency, will be
much greater, whenmultiplied by the pulse duration 2teff � t,
than the total phase change due to the field amplitude phasej
as well as due to the detuning D.

In addition to condition (3.40) it is necessary to require
that the `accumulation' effect due toS1 over the time the pulse
lasts is unessential:

S1�t� ÿ S1�ÿteff�5 p : �3:41�
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Condition (3.41) limits the applicability of solutions (3.37)
and generally it depends on the specific behaviour of the pulse
amplitude phase with time. For example, in the case of
j � const the condition (3.41) will imply that `accumula-
tion' effects can be neglected provided that t5 p=D. In
addition, since D5o, functions (3.38) can be used to
consider processes, which last longer than several periods of
the laser wave, i.e. for much greater lengths than atomic and
even interatomic distances. In the case when the exact
resonance occurs and the amplitude of the wave possesses a
time-independent phase (D � 0, j � const), the wave func-
tions (3.38) give exact solutions to Eqn (3.29) and can be used
in any time intervals.

In the case whenW�t� is suddenly switched on at t � t0 (in
so doing the lower limit of integration should be replaced with
t0 and the following quantities can be taken as being constant
for t > t0: jWj � const and _j0 � D� _j � const), functions
(3.37) and (3.38) go over to expressions (2.15) and (2.17)
provided that jDj < jVj and _j � 0. As this takes place
corrections of the order of S1 should also be retained in the
pre-exponential factors in expressions (3.37) and (3.38);
however, when jWj and _j0 depend on time, pre-exponential
corrections must be omitted for the normalization condition
to be satisfied.

It is useful to compare Eqn (3.32) with the SchroÈ dinger
equation for which the quasi-classical method of solution is
thoroughly developed [1, 84, 85]. To this end we shall
introduce the variable b1:

b1�t� � a1�t� exp
��t

f�t� dt
�
� a1�t�W �; f�t� � d

dt
lnW �

�3:42�

instead of a1. Then Eqn (3.32) takes the form

_b� b

�
ÿ

_f

2
ÿ f 2

4
� jWj2

�
� 0 : �3:43�

Functions (3.37) and (3.38), especially when the field
phase depends linearly on time, can find application in
various problems on the interaction between light pulses and
simple atomic systems near resonance transitions.

It should be emphasized that functions (3.38) require
further investigation at `turning points' [1, 84, 85].

We shall now come to a consideration of the opposite case
when the pulse nonmonochromaticity and resonance detun-
ing are such that the characteristic quantities of the problem
are slow-varying time-dependent functions.

3.4 Adiabatic interaction of light pulse with a two-level
system
The method of adiabatic perturbations [86] was used in a
variety of papers [5, 87, 88] to study wave functions of an
atom in an arbitrary nonmonochromatic field. We shall
assume that the amplitude ~E�t� in expression (3.2) is a slowly
varying (as compared with the exponent) function of time.
Then the expansion of ~E�t� in terms of Fourier integrals taken
over frequencies

~E�t� �
�1
ÿ1

~E�o� exp�ÿiot� do �3:44�

would not contain the Fourier components E�o 0� for
frequencies comparable to oeff or higher. Consequently, one

obtains

~E�o 0� � 0 for o 0 > oeff ;

~E�o 0� 6� 0 for o 0 < oeff ; �3:45�

where oeff � 1=teff 5o0, and teff is the pulse duration. In
particular, if there is a set of monochromatic oscillations with
frequencies o0 � oi and phases ji, then the expression for
~E�o 0� has the form

~E�o 0� �
X
i

~Ei exp�iji�d�o 0 ÿ oi� ; �3:46�

where all frequencies oi 5oeff. The phases ji can be either
random or related (with each other) numbers. In the first case
we shall deal with independent monochromatic oscillations;
in the second case they will be correlated. Thus, the function
E�t� defines the characteristics of nonmonochromatic light.
Given E�t�, all the statistical properties of the light are
defined, including the polarization properties described by
the density matrix, i.e. the `fast'-time-averaged quantity

Rij � Ei�t�E �j �t� �3:47�

(the mean is taken over time of the order of the oscillation
period 1=o0). The behaviour of an atom in the field of a quasi-
monochromatic wave, when the wave vectors are almost
parallel, can be considered similarly. To this end E�t� should
be also a slowly varying function of r, where r are the
coordinates in the plane perpendicular to the x axis.

We shall consider now the adiabatic interaction of a plane
nonmonochromatic electromagnetic wave travelling along
the x axis, with simple atoms. We shall select the two-level
model of an atom as an example. The wave functions of the
lower and upper states of an unperturbed atom are given by
formulae (1.4). The field E is described by the expression

E�x; t� � ~E�x; t� exp�ik0xÿ io0t� � c:c: ; �3:48�

where

k0 � o0

c
; ~E�x; t� � eE�x; t� : �3:48 0�

The slowly varying amplitude ~E�x; t� possesses polarization
components in the plane perpendicular to the x axis. If the
envelope of the pulse ~E�x; t� depends also on the coordinate
r�y; z�, then in (3.48) ~E�x; t� should be replaced with ~E�r; x; t�.
If the pulse has a transverse structure, then on the integral
expansion in terms of r some components with kr will appear,
for which the condition kr 5 k0 is to be satisfied. In this case
we are concerned with a set of plane waves travelling at a
small `angle' to the x axis. These waves depend on the
transverse structure of ~E�r; x; t�, and this result was used in
Ref. [88] to explain the conical radiation.

The simplest way to effect a two-level system is to select
levels with different parity since they interact differently with
circularly polarized waves. Then the interaction potential in
the SchroÈ dinger equation can be replaced with the expression

d � E � d�E� � dÿEÿ

� �d�E� � dÿEÿ� exp�ik0xÿ io0t� � c:c: ; �3:49�
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where d� � dy � idz. With expansion (3.44) in place of the
amplitude ~E�x; t�, expression (3.48) can be rewritten in the
form

E�x; t� �
�1
ÿ1

~Eo exp
�
ik0xÿ i�o0 � o�t�do� c:c: �3:50�

Since E�x; t� varies slowly compared to exp�io0t�, the
frequency range ÿoeff < o < oeff makes a major contribu-
tion to the integral over o. When joeffj < o0, expression
(3.50) can be considered, by analogy with quantum electro-
dynamics, as the expansion of the electromagnetic pulse field
in terms of positive frequencies �o0 � o�, at which photons
are absorbed, and in terms of negative frequencies
�ÿo0 � o�, at which emission occurs.

The solutions of the equation can be presented as an
expansion in terms of the complete orthonormal set of
functions of the unperturbed atom. The equations for the
desired coefficients a1;2 have the form of (3.4).

When deriving Eqn (3.4) we have omitted the so-called
nonresonance terms on the right-hand side. These terms
include exponents of the form exp�E21 � o0� and, therefore,
the condition

jDj5E21 � o0 �3:51�

should be satisfied.
We shall seek the solution in the form

a1 � C�t� exp
�
ÿi
�t
l dt
�
: �3:52�

It follows from the first equation in (3.4) that

a2 � l
V �

exp�iDt�a1 : �3:53�

In deriving (3.53) we have neglected terms with _C. The
relevant error will be estimated below. Substituting (3.52) and
(3.53) into (3.4) gives the stationary SchroÈ dinger equation

la1 � V � exp�ÿiDt�a2 ;

�lÿ D�a2 � V exp�iDt�a1 : �3:54�

When obtaining (3.54) we have neglected the slow
dependence of l=V � on t (see error estimates below).

The existence condition for nonzero solutions of
Eqn (3.54) yields the roots

�l1;2 � D
2

ÿ
1�

�������������
1� a2

p �
: �3:55�

The roots �l1;2 in the form (3.55) are very handy to
expound the issues we consider in this section. This selection
does not violate the one-to-one correspondence between the
functions F1;2 and unperturbed wave functions of an atom.
Actually, when the field is switched off, F1;2 ! C1;2 indepen-
dently of the sign of D. The fact that the roots �l1;2 are
discontinuous as D! �0, is unessential since all the media
we consider are transparent and an exact resonance cannot
occur. In linear optics the medium transparency means that
two conditions must be satisfied:

jDj4 g ; �3:56�

where g is the upper level width, and

do5 jDj ; �3:57�

where do is the bandwidth of radiation traversing the
medium.

Condition (3.56) changes somewhat when nonlinear
effects are taken into account. This is because D should be
replaced by D0 � E 021 ÿ o, where E 021 is the energy level
difference with regard for the Stark shifts. In the adiabatic
approximation jD0j > jDj, i.e. the system `goes away' from the
resonance. With regard for the nonlinear scattering effects,
we considered in Section 2.4, condition (3.57) also changes
due to spectral line broadening when the radiation passes
through the medium. This circumstance will restrict the linear
dimensions of the system.

In a nonlinear medium the true absorption should be
considered in addition to the coherent processes like Rayleigh
scattering, we considered in Section 2.4. This absorption is
related to the transition of the atom to the excited stateF2 and
to the emission of radiation of a three-photon frequency
o 0 � oÿ D

�������������
1� a2
p

.
This process is incoherent in nature and brings about the

real absorption of radiation when it passes through the
nonlinear medium. As this takes place, absorption is accom-
panied by the F1 ! F2 transition and the three-photon
emission at the frequency o. For arbitrary a2, the probability
of the process is given by the formula

dW � dWsp

4

�
1ÿ 1�������������

1� a2
p

�2

; �3:58�

where dWsp is the probability of the spontaneous emission of
a free atom.

Since condition (3.56) is satisfied, this absorption can be
neglected even for large a2 as

g �
�
dWsp :

In solving Eqn (3.4) we have neglected terms proportional
to _C. They can be omitted provided that

j _Cj5 j�lCj : �3:59�

It can easily be rewritten in the form���� 1jEj qjEjqt
� qj

qt

����5D�1� a2� : �3:60�

The last condition follows from (3.57).
Consideration of the line broadening as a result of the

phase self-modulation when radiation propagates through
the medium, sets the restriction for the linear dimensions of
the medium [88]:

l5 lcoh � 1

qk0

1� a2

a2
jDj
do0

; �3:61�

where

q � 2pNjdj2
�hD�1� a2�1=2

; �3:610�
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do0 is the spectral width of the radiation on entry into the
medium.

Using (3.52), (3.53), and (3.55) we obtain the complete
orthonormal set of wave functions in the ground and excited
states in the framework of adiabatic approximation [88]:

F1 � C exp

�
ÿi
�t

�l1 dtÿ iE1t

�
�
�
U1 �

�l1
V �

exp�ik0xÿ io0t�U2

�
; �3:62�

F2 � C exp

�
i

�t
�l1 dtÿ iE2t

�
�
�
U2 ÿ

�l1
V �

exp�ÿik0x� io0t�U1

�
; �3:63�

where the coefficient C is defined by the normalization
condition

C � 1���
2
p
�
1� 1�������������

1� a2
p

�1=2

: �3:64�

The adiabatic functions (3.62) and (3.63) were used to
consider many issues on propagation of radiation through a
medium of two-level atoms (see, for example, Ref. [88]). In
conclusion of our presentation on the subject of the interac-
tion of a resonant interaction with a two-level system we want
to note that numerous problems are left beyond the scope of
our review. They are set forth in monographs [89 ± 98].

4. Interaction of intense radiation with an atom
in the presence of two adjacent resonance
transitions

4.1 Classification of different interaction schemes
and the adiabatic wave functions of three-level atoms
in the resonance approximation
In this section we shall consider two resonance transitions
connected to each other through one common level. We shall
call them adjacent resonances. The exciting radiation may
consist of one or two monochromatic waves depending on
whether adjacent resonances are closely located (quasi-
equidistant levels) or widely separated in frequency. In the
first case pumping is referred to as degenerate, in the second it
is nondegenerate. The systems that Fig. 10 presents schema-
tically are usually referred to as three-level systems. In the
theory of paramagnetic amplification, the three-level system
was considered by N Basov and A Prokhorov [99]. In the
optical region in the stationary case (with regard for
relaxation) it was considered by A Javan [100a] (the scheme
is presented in Fig. 10b) in calculating the combination-type
laser and some other authors as well [100b, c]. After that the
three-level system was considered in a variety of original
papers, reviews, and monographs, the results of many of
which were set forth in Refs [5, 89 ± 98, 101 ± 161]. In recent
years interest in the three-level system has been rekindled
because new experimental opportunities have opened (see
Section 5). However, the study of adjacent resonances is far
from being complete. The physical processes which occur in
the course of the interaction between the two resonant fields
and a three-level system are much more diverse and
complicated than the similar processes we studied in the
previous systems using the example of a two-level system.

Our concern is with the behaviour of a three-level system
when exact resonances do not necessarily occur and actual
step transitions may be lacking. In this case with addition of a
fourth level the schemes in Fig. 10 transform to four-level
schemes. They can be considered using techniques we set
forth below (see, for example, Ref. [117]). Here again, as in
Section 2, the level population is understood to be the
admixture of excited states to the ground state in the presence
of resonant fields.

In optics, electric dipole transitions play a predominant
role and we shall usually cite results of calculations just for
these transitions. With a simple substitution we can go
directly to the proper formulae for higher multipolarity. The
following propositions and formulae are applied to molecules
and atoms alike but in the last case the prohibitions that the
law of conservation of parity introduces are to be considered.

Let two adjacent resonances occur in the system.We shall
consider scheme in Fig. 10a as an example. With a simple
renaming of variables the same expressions can be applied to
schemes in Figs 10b and 10c:

jE21 ÿ o1j5E21 ; jE32 ÿ o2j5E32 : �4:1�

Notice that the occurrence of two adjacent resonances
automatically brings about the third two-photon resonance:

jE31 ÿ o1 ÿ o2j5E31 : �4:2�

The wave function of a three-level atom in the resonant field
(`atom plus field') can be thought as an expansion in terms of
three mutually orthogonal normalized atomic functions of an
unperturbed atom:

F � a1C1 � a2C2 � a3C3 : �4:3�

The interaction operator for the field E�r; t� has the form

V̂ � ÿ d � E�r; t�
�h

� V̂ �ÿ� exp�ÿio1t� � V̂ ��� exp�ÿio1t�
� Ŵ �ÿ� exp�ÿio2t� � Ŵ ��� exp�io2t� ; �4:4�

a

1

o2

D21

D31

o1

b

3

o2

D21

D31

o1

1

c

o2

o1

D21

D31

1

3

2
2 3

2

Figure 10. Three-level systems in the field of two resonance waves with

adjacent transitions: (a) forE31 � o1 � o2, the scheme represents the two-

photon absorption process; (b) at the exact resonance, D31 � 0, this

scheme describes the electron Raman scattering process, which is con-

sidered in detail in the next section; (c) simultaneous excitation of the

ground level by two electromagnetic waves with resonance transitions to

two different levels. In modern literature the first scheme is called a ladder-

type scheme (theX-type), the second scheme is called aL-type scheme, and

the third scheme as the V-type scheme.
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where

E�r; t� � ~E1 exp�ik1 � rÿ io1t�

� ~E2 exp�ik2 � rÿ io2t� � c:c: �4:5�

The negatively-frequency V̂ �ÿ�, Ŵ �ÿ� and positively-
frequency V̂ ���, Ŵ ��� components of the interaction opera-
tor V̂ describe, respectively, photon absorption and photon
emission at the frequencies o1 and o2. Substituting (4.3) into
the SchroÈ dinger equation (1.1) and assuming that the field ~E1
interacts only with the 1$ 2 transition and that the field ~E2
interacts solely with the 2$ 3 transition, we arrive at three
equations for the coefficients ai�t�. In the resonance approx-
imation, the equations take the form

i _a1 � a2V
���
12 exp�ÿiD21t� ;

i _a2 � a1V
�ÿ�
21 exp�iD21t� � a3W

���
23 exp�ÿiD32t� ; �4:6�

i _a3 � a2W
�ÿ�
32 exp�iD32t� ;

where

D21 � E21 ÿ o1 ; D32 � E32 ÿ o2 �4:7�

are the resonance detunings, and V
���
ik , W

���
ik stand for the

matrix elements of the interaction operator. In the dipole
approximation we have

V
�ÿ�
21 � ÿ

d21 � ~E1
�h

; W
�ÿ�
32 � ÿ

d32 � ~E2
�h

: �4:8�

The operators V̂, Ŵ are Hermitian and, hence, it follows

V ���nm �
�
V �ÿ�mn

��
; W ���

nm �
�
W �ÿ�

mn

��
: �4:9�

To simplify the notation we denote

V
�ÿ�
21 � V21 ; V

���
12 � V �12 ;

W
�ÿ�
32 � V32 ; W

���
23 � V �23 : �4:10�

Note that the matrix elements of the V̂ operator and those of
the V̂ �ÿ� operator with negatively-frequency component are
denoted by the same symbol Vnm. This fact should not cause
misunderstanding since either matrix elements of the nega-
tively-frequency component of the V̂ operator or those of the
positively-frequency component of the same operator are
involved in all subsequent calculations. In addition, in this
particular scheme from Fig. 10a the 1! 2! 3 transitions
are always related to the o1 and o2 photon absorption, i.e. to
matrix elements V21 andW32 with the �ÿ� superscript. Using
the notation of (4.10), the superscripts ��� can be thereafter
omitted andW32 can be renamed as V32. A solution is sought
in the form

a1 � b1 exp�ÿilt� ;
a2 � b2 exp

�ÿi�lÿ D21�t
�
; �4:11�

a3 � b3 exp
�ÿi�lÿ D31�t

�
and for slowly varying amplitudes bi we have the system of
algebraic equations

ÿ lb1 � V �21b2 � 0 ;

V21b1 ÿ �lÿ D21�b2 � V �32b3 � 0 ; �4:12�
V32b2 ÿ �lÿ D31�b3 � 0 ;

where

D31 � D21 � D32 � E31 ÿ o1 ÿ o2 5E31 �4:13�

is the two-photon resonance detuning.
The determinant of Eqn (4.12) must be zero for nonzero

solutions to exist. The equation meeting this condition is
written as

l�lÿ D21��lÿ D31� ÿ �lÿ D31�jV21j2 ÿ ljV32j2 � 0 : �4:14�

Equation (4.12) has an Hermitian matrix and, hence, Eqn
(4.14) defines three real roots l1, l2, and l3. Substituting the
desired solutions b

�s�
1 , b

�s�
2 , b

�s�
3 for each ls into (4.3) we obtain

three mutually orthogonal quasi-energy wave functions Fs,
s � 1; 2; 3. These functions can readily be written out [5, 101,
102]:

Fs � Cs exp
�ÿi�E1 � ls�t

��
U1 � ls

V �21
U2 exp�ÿio1t�

� V32ls
V �21�ls ÿ D31� U3 exp

�ÿi�o1 � o2�t
��
: �4:15�

The coefficient Cs is determined from the normalization
condition up to an arbitrary phase:

Cs �
(
1� l2s
jV21j2

� l2s
�ls ÿ D31�2

jV32j2
jV21j2

)ÿ1=2
: �4:16�

The choice of functions (4.15) can be substantiated by
replacing the classical field E�r; t� with a quantized field and
by considering the quantum-electrodynamic problem on the
eigenvalues of energy and on eigenfunctions of a `three-level
atom plus quantized electromagnetic field' system, which is
typically called a `dressed' atom [118].

Apart from the time-dependent factors in braces, func-
tions (4.15) are similar to stationary wave functions, where
the quantity E 0s � E1 � ls plays the role of energy. However,
because of the factors, which depend exponentially ono1 and
o2, the quasi-energies become ambiguous and are determined
up to an integer multiple of o1 ando2. This ambiguity can be
used to establish the relationship between the quasi-energies
and the energies of atomic states. We shall require the `quasi-
energies' to be the same as the relevant energies of atomic
levels when the field E�r; t� is switched on and each function
Fs goes into one of the atomic functionsCi. For this purpose,
the quasi-energies must be redefined by adding an integer
multiple of o1 and o2.

Clearly the quasi-energies can be rewritten in the form

E 01 � E1 � l1 ; E 02 � E1 � l2 � o1 ;

E 03 � E1 � l3 � o2 � o1 : �4:17�

Whence it follows that if l1 ! 0, l2 ! D21, and l3 ! D31,
then E 0s approaches, respectively, E1, E2, and E3. But if
l1 ! D21, l2 ! 0, and l3 ! D31, then E 01 ! E2, E

0
2 ! E1,
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and E 03 ! E3. In three-level systems, as well as in multilevel
systems it is convenient to operate directly with ls, which we
shall also call quasi-energies. Since li 6� lj for i 6� j, as in the
case of a two-level system, crossing of `quasi-energies' is
impossible in a three-level system.

Given

jV21j5 jD21j ; jV32j5 jD32j ; �4:18�

the ls roots of the cubic equation (4.14) in the perturbation
theory limit and in the resonance approximation have the
form

l1 � d1 ;

l3 � D21 ÿ d1 � d2 ; �4:19�
l2 � D31 ÿ d2 ;

where

d1 � ÿ jV21j2
D21

; d2 � ÿ jV32j2
D32

: �4:19 0�

In the framework of approximation described by (4.18) the
wave functions (4.15) go over to wave functions for second-
order perturbation theory, with regard only for resonant
terms, and the `quasi-energy' levels E 0s (4.17) and (4.19) are
identical to the ordinary expressions for energy levels in
second-order perturbation theory.

In the opposite limiting case of strong resonances all
detunings can be set equal to zero. Then it follows from
Eqn (4.14) (the numeration is taken according to the rule
l1 < l2 < l3):

l1 � ÿ
������������������������������
jV21j2 � jV32j2

q
; l2 � 0 ; l3 �

�����������������������������
jV21j2� jV32j2

q
:

�4:20�
The roots of Eqn (4.14) are continuous and single-valued

functions of the frequencies o1 and o2 and of the resonant
field strengths. Since the roots do not intersect anywhere, the
condition l1 < l2 < l3 is satisfied over the whole range of
their values. The numeration of roots (4.20) must be
consistent with the numeration of roots (4.19). In this case
roots (4.19) must be arranged in increasing order of
magnitude. This arrangement depends on the signs of Dik as
well as on the ratios of quantities Dik and each case should be
examined separately.

Analysis of the roots of the cubic equation can easily be
made using graphical methods. We shall consider the scheme
in Fig. 10a with degenerate pumping, o1 � o2 and E1 � E2.
In this case the ls roots of Eqn (4.14) are functions of two
variables only: the frequency and amplitude of the wave field
strength, i.e. they represent surfaces in three-dimensional
space. At first we consider the dependence of quasi-energies
on the electromagnetic field frequency at a certain field
strength E 6� 0. Figures 11a and 11b show these dependences
in two possible cases: E21 < E32 �E31 < 2E32� and E21 > E32

�E31 > 2E32�. It follows from the plot in Fig. 11a that the
roots l1;2;3 are bounded by three asymptotes, one of which
coincides with the horizontal axis, the two other straight lines
intersecting the horizontal axis at the points o � E31 and
o � E21. The roots ls approach the asymptotes at the points
of two-photon and one-photon resonances when the field is
switched off, E! 0, i.e. when condition (4.18) is satisfied.

The equations for the asymptotes are given by the following
expressions

li � 0 ; lj � D21 ; lk � D31 : �4:20 0�

For definiteness we shall use l1 to denote the smallest root
of Eqn (4.14), i.e. the lower branch; l3 to denote the largest
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Figure 11. Roots of the cubic equation (4.14) as functions of the

electromagnetic field frequency, when (a) E21 < E32 and (b) E21 > E32.

The quantities are numbered according to the inequality l1 < l2 < l3. The
values of the li root are limited by the asymptotes, described by equation

(4.20 0). Two asymptotes are shown by dashed lines, and the third

asymptote is the horizontal axis. The asymptotes intersect the l axis at

the points l � 0, l � E21, and l � E31=2. The asymptotes (i.e. quasi-

energies) l1, l2, and l3 intersect at the resonance points D21 � 0 and

D31 � 0; l2 intersects l3 at the point D32. The crosspoints are eliminated

when the interaction Vik is switched on. Figure 11c plots the roots of the

cubic equation against o for the system from Fig. 10c, when this system

interacts with a single field.
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root, i.e. the upper branch; and, hence, l2 to denote the
intermediate branch{.

Assume that the system finds itself in a specific quasi-
energy state Fs, for example, when ls � l1. The plot in
Fig. 11a shows that when the field is switched off the atomic
system can be found in any state Ci depending on the field
frequency. If o < E21, then F1�l1� ! C1; F1�l1� ! C2 for
E21 < o < E32; and F1�l1� ! C3 for o > E32. Similarly,
F2�l2�!C2 for o < E21; F2�l2�! C1 for E21< o < E31=2;
F2�l2� ! C3 for E31=2 < o < E32; and again F2�l2� ! C2

for o > E32. For the state F3�l3� we have F3�l3� ! C3 for
o < E31=2 and F3�l3� ! C1 for o > E31=2. In a similar
manner the correspondence can be established between the
unperturbed states Ci and quasi-energy states Fs for the
system, for which the order of levels is such that E32 < E21

�E31=2 < E21�. In this case the plot in Fig. 11b should be used.
With adiabatic changes in parameters the system develops

over the specific quasi-energy surface, on which it lands from
the initial state when the field is switched on. However, the
system does not necessary return to the initial state when the
field is switched off. This can occur if one detuning reverses its
sign under the frequency change. Thus, with an adiabatic
passage of resonance and subsequent deactivation of the field,
a transition to another state takes place. In particular, if the
system is initially in the ground state, it can be fully inverted in
this way to the excited states C2 and C3. A similar effect was
discussed in Section 2.3 in the case of a two-level system.

A three-level system, which interacts with resonant fields,
exhibits a number of new effects, which are absent in the two-
level case. In particular, the above analysis of the plots in
Fig. 11a, b yields an interesting conclusion: in its consecutive
passage through all the resonances from left to right, i.e. with
motion along one of the curves l1 in Fig. 11a, the system is
excited to the stateC3 when the field is switched off. Certainly
we have assumed that the system was in the unperturbed
ground stateC1 prior to activation of the field.

Similar plots can also be drawn for the other three-level
systems in Fig. 10, when they interact with one field. For
example, such plots are presented in Fig. 11c for the system
from Fig. 10c. The figure shows that in its passage through all
the resonances from left to right (or from right to left) the
system is excited upon deactivation of the field to the state,
whose resonance was passed first. The required equation for
the roots is obtained from (4.14) by re-indexing.

The above features can be used for selective excitation of
atoms and molecules [5, 103a]. The selectiveness of the
adiabatic inversion method exceeds that of other methods.

The plots in Fig. 11 correspond to the intersections of
quasi-energy surfaces with a plane parallel to lo. The sections
of quasi-energy surfaces in the plane which is parallel to lE
and intersects the o axis at the point o � o1 can be obtained
similarly (see Figs 12 and 13). The resultant curves will
describe the dependence of quasi-energies on the field
strength for a specific frequency of the field or, which is the
same, at specific initial detunings from the resonances.

In the case of a three-level system there are many plots due
to a large number of parameters and their combinations, and
consideration of them is of great interest for the purpose of
interpreting laser experiments with pulse fields, the strength
of which can vary. In the subsequent sections we shall dwell
on some examples in greater detail.

4.2 Self-induced resonance and self-induced adiabatic
inversion of a population
One of the interesting limiting cases when relatively simple
expressions can be derived for quasi-energies is the two-
photon resonance

jD31j5 jD21j ; D21 � ÿD32 : �4:21�

If in addition to (4.21) we require

jV21j5 jD21j ; jV32j5 jD21j ; �4:22�

which means that the perturbation theory can be applied to
consideration of one-photon resonances, then the roots of the
cubic equation (4.14) take the form

l1;2 � 1

2

�
D31 � d1 ÿ d2 �

����������������������
d2 ÿ 4d1d2

q �
; �4:23�

l3 � D21 � d2 ÿ d1 ; �4:24�

where we have introduced the notation

d � D31 ÿ d1 ÿ d2 : �4:24 0�

{This method of numbering may be occasionally inconvenient. In general

the numbering of roots should be selected so that the index of the quasi-

energy function is the same as that of the atomic function Ci, when the

fields are switched off. To this end �li have to be numbered so that �l1 ! 0,
�l2 ! D21, and �l3 ! D31 as E! 0. In this case, upon comparison with

(4.19) we have l1 � �l1, l3 � �l2, and l2 � �l3 for D21 > 0, and D32 > 0.

However, as frequency-dependent functions, the roots �li are discontin-

uous at the points D21 � 0 and D32 � 0.

j~E j

j~E jmin

l

l3

l2

l1

D21

D31

0

b

j~E j

l
l3

l2

l1

D21

D31

0

a

Figure 12. Quasi-energies ls as functions of the field intensity amplitude

j~E j under conditions (4.21) and (4.22) in the case of a single field, when

jd21j4 jd32j and D21 > 0. The quasi-levels approach each other when

D21D31 < 0. The symbol j~E jmin stands for the intensity value, for which the

quasi-levels approach to the shortest distance [see formula (4.30)]. Note

that l1 � ÿd2 for small j~E j in the conditions analyzed in Fig. 12a, while

l1 ! D31 in Fig. 12b.
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The roots l1;2 are numbered in increasing order of
magnitude for positive D21 and for positive D31. When
D31 < 0, the roots l1;2 change places.

The dependences of quasi-energies on the field strength
are plotted in Fig. 12 in the case of degenerate pumping both
for positive and negative D31, when jd21j > jd32j.

If the last term under the radical sign can be neglected,
expressions (4.23) go over to the appropriate formulae (4.19)
for the perturbation theory, when we take into account
condition (4.21).

It is useful to write down the quasi-energies (4.23), when
the additional condition

jD31j5 jd1 � d2j �4:25�
is satisfied.

Physically this condition means that the difference of
Stark shifts for the first and third atomic levels exceeds the
two-photon detuning. With the appropriate expansion of the
square root we have, to within the terms proportional to D31:

l1 � d1 ÿ d2 � d2
d2 ÿ d1

D31 ; �4:26�

l2 � d1
d1 ÿ d2

D31 : �4:27�

Comparison of expressions (4.26) and (4.27) with the plots
in Fig. 12 shows that for D31 > 0 (when D21 > 0 and
jd21j > jd32j) the quasi-energy l1 corresponds to the ground
quasi-energy state, i.e. to the state, to which the system goes
from the unperturbed state C1 when the field is switched on
adiabatically, whereas l2 corresponds to the state C3, i.e.
F2 ! C3. But if D31 < 0 (for jd21j > jd32j and D21 > 0), then
F1 ! C3 and F2 ! C1. Thus, depending on the sign of the
two-photon detuning the wave function of the quasi-energy
stateF1 goes over to eitherC1 orC3 when the field is switched
off, E�r; t� ! 0.

As noted earlier, in a three-level system the quasi-energy
levels cannot cross. However, unlike a two-level system, in
which the levels always `go away' from resonance, in a three-
level system the levels can approach the resonance with an
appropriate choice of the signs of detunings D21 and D31, as
well as the ratios of dipole moments d21, d32, and the field
strengths (Fig. 12b). This phenomenon will be called self-
induced resonance. In fact, using, for example, expression
(4.23) we have

jl1 ÿ l2j �
�������������������������������������������������������������������������������������������
D31 � jd21j

2 ÿ jd32j2
D21

jEj2
�2
� 4jd21d32j2

D2
21

jEj4
s

�4:28�

in the case of one exciting field, where d21 and d32 are
projections of the dipole moments onto the directions of the
corresponding fields. For jEj � 0, the spacing between quasi-
energy levels is equal to the initial detuning jD31j. With an
increase in intensity, the levels can approach as well as
separate. Here we shall establish in which conditions self-
induced resonance is possible for the 1! 3 transition. It
follows from the condition

d

djEj2 jl1 ÿ l2j � 0 �4:29�

that

jl1 ÿ l2jmin �
2jd21d32j

jd21j2 � jd32j2
jD31j �4:30�

for the field intensity

jEj2min �
jd32j2 ÿ jd21j2�jd21j2 � jd32j2�2 D21D31 : �4:31�

As is seen from (4.30), the minimum spacing between
quasi-levels is proportional to D31 and depends on the
projections of the matrix elements of transitions onto the
direction of field polarization. The condition for which `self-
induced resonance' becomes possible, has the form�jd32j2 ÿ jd21j2�D21D31 > 0 : �4:310�

If jd21j > jd32j, then a `self-induced resonance' occurs for
D21D31 < 0; but if jd21j < jd32j, then it is required that
D21D31 > 0. As is seen from (4.30), if the matrix elements d21
and d32 are of the same order, then the system levels cannot
approach very close and jl1 ÿ l2jmin � jD31j. If the matrix
elements differ radically from one another, then the quasi-
levels can approach each other to a much smaller separation
than the initial two-photon detuning jD31j.

l3
l

l1

D21

jV32j

jV21j

j2i

j3i

l2
D31

j1i
0

a

b

jV32j

jV21j

l2

l1

l3
l

D21

D31

j1i

j3i

j2i

0

Figure 13. Quasi-energies as functions of jV21j and jV32j in the case of two

fields E1 and E2. They are projected onto the planes jV32j � 0 and jV21j � 0

for D21 > 0 and jD21j4 jD31j. (a) Quasi-energies in the case of a two-

photon resonance for D31 > 0. The intersection of the l2 and l1 quasi-

levels (the dashed line) at the point jV32jcr is replaced by their repulsion.

The quasi-levels start to approach when jV32j4 jV21j. The limiting values

of the quasi-energies 0, D21, and D31, when both fields are switched on,

match the unperturbed atomic states 0! j1i, D21 ! j2i, and D31 ! j3i.
(b) Quasi-energies under the conditionD31 < 0. They approach each other

when jV21j4 jV32j [cf. (4.31)].
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In the case of nondegenerate pumping the results change
somewhat. Based upon a minimization of roots (4.23), the
two conditions

q

qjE1j2
jl1 ÿ l2j � 0 ; �4:32�

q

qjE2j2
jl1 ÿ l2j � 0 �4:33�

have to be satisfied. They yield

D31 ÿ d1 � d2 � 0 �D31D21 > 0� ; �4:34�
D31 � d1 ÿ d2 � 0 �D31D21 < 0� : �4:35�

In this case the spacing between quasi-levels is

jl1 ÿ l2j �
�������������������������
4d2�d2 ÿ d1�

p
�4:34 0�

or

jl1 ÿ l2j �
�������������������������
4d1�d1 ÿ d2�

p
: �4:35 0�

The above expressions determine two different conditions
linking jE1j2 with jE2j2 (with other variables fixed), for which
expressions of the type of (4.28) reach their conditional
minima in the case of two fields. Note that conditions (4.34)
and (4.35) go over to each other with a change either in the
sign of D21 or in the sign of D31. In the case of two fields, the
expression jl1 ÿ l2j does not have an absolute minimum since
equalities (4.34) and (4.35) cannot be satisfied simulta-
neously. The quasi-levels get nearer to each other when one
of these conditions is met.

It is easily seen from expression (4.30) that the minimum
spacing between quasi-levels can be much smaller than the
initial detuning jD31j and be comparable with the level widths
or the exciting radiation bandwidth. In this region, i.e. for

jl1 ÿ l2jmin 4G1;3 ; jl1 ÿ l2jmin 4
1

t
; �4:36�

an actual crossing of quasi-levels takes place, i.e. the exact
resonance occurs and the statesF1 andF2 aremixed. This can
result in the atom remaining in the excited state C3 when the
pulse has passed through. This situation requires special
consideration.

Figure 13 show the dependences of the quasi-energies ls
on the external field intensities and on the electrical dipole
moments of the 1! 2 and 2! 3 transitions, i.e. on jV21j and
jV32j. The projections onto the planes jV21j � 0 and jV32j � 0
are presented. Let us consider the curve in Fig. 13a. In the
plane jV21j � 0 only the atomic transition 3! 2 interacts
with the resonant field, and the energy of the first level does
not change.We shall change the interaction between the atom
and field, i.e. the quantity jV32j. Then for a critical value
jV32jcr the curve l2 can intersect the straight line l1 or, which
is the same, the E 02 ÿ E 01 difference of quasi-energies becomes
equal to an integer multiple of o. This means that the `atom
plus field' system becomes degenerate in terms of energy. In
this case for very small jV21j the atomic levels 1 and 3 begin to
interact intensely and the functions C3 and C1 intermix
ultimately. Because of this interaction the crossing levels
`repulse' and, instead of an actual crossing, the levels
approach each other (i.e. anti-crossing occurs). Physically
this means that if the system was in the state C1 ahead of the

critical point (when the resonant field is switched off), then,
behind the point, it goes to the branch which the state C3

represents. Here the situation is the same as in the case of a
rapid adiabatic inversion of levels which we considered in
detail in Section 2.3, where at the exact resonance the energy
levels of the `atom plus field' system split apart and the `atom
plus field' system goes from the initial stateC1 to the stateC2,
absorbing a resonant photon upon passage through the
resonance point. The difference is that in the two-level case
the `passage' through resonance can be achieved by changing
(scanning) the external field frequency or atomic transition
frequency in the course of the interaction, whereas in the
three-level case the `passage' through resonance can be
achieved by changing the laser field intensity. This phenom-
enon will be referred to as `self-induced passage through
resonance'. In addition, if in the three-level case the system
goes continuously into the initial state C1 when the external
field is switched off, as is seen from Fig. 13a, then in the two-
level case it stays in the state C2. A similar situation can also
take place in the plane jV32j � 0, when the levelE 03 gets into an
exact double resonance with the level E 01. In both cases the
wave function of the third atomic level mixes intensely with
the ground-level wave function.

In the region of maximal proximity of quasi-levels the
interaction ceases to be adiabatic and in general the system
does not develop along a specific branch (surface). The
adiabaticity criterion for interaction between a laser pulse
and a three-level system under the self-induced resonance
passage can be obtained by calculating the probability of
transition from one branch (surface) of quasi-energy to
another branch (surface).

We shall consider the wave function of the quasi-energy
stateF1 near the two-photon resonance. The admixture of the
second and third atomic functions to the wave function F1

will result in the following `populations' of atomic levels

n1 � C 2
1 ;

n2 �
��a�1�2

��2 � C 2
1

l21
jV21j2

; �4:37�

n3 �
��a�1�3

��2 � C 2
1

l21
jl1 ÿ D31j2

����V32

V21

����2 :
When the field is switched off, l1 ! 0 (for D31 > 0) and,

therefore, F1 goes over to the ground state of the atom [see
(4.23) and Fig. 12a]. If l1 remains finite for finite jEj as
D31 ! �0, then the ratio of the population of the third atomic
level to that of the first level is

n3
n1
�
����V32

V21

����2 when D31 ! �0 : �4:38�

As D31 ! ÿ0 (for D21 > 0 and jd21j > jd32j), according to the
above analysis and to Fig. 12b, the wave function F2 will
correspond to the ground atomic state. Consequently, the
quasi-energy of the ground state is l2 and, according to (4.27),
it also vanishes as D31 ! ÿ0. In the state F1, the populations
are given by the expression (4.32) with the quasi-energy l2 of
the ground state in place of the l1. Using (4.27) we have

n3
n1
�
����V21

V32

����2 when D31 ! ÿ0 : �4:39�
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Thus, with any ratio of interaction parameters V21 and
V32, except when they are equal, the populations can be
inverted between the first and third atomic levels, n3 > n1,
by appropriate choices of the sign of the D21D31 product and
the ratio of the dipole moments, provided that condition
(4.31 0) is satisfied.

Close results are also obtained for self-induced inversion
of levels in the case of a nondegenerate pumping.

Conditions for level populations (4.37) retain their forms
in the case of nondegenerate pumping. However, the analysis
is much more complicated than in the case of degenerate
pumping, because there are two free parameters E1�r; t� and
E2�r; t�. However, a condition can be derived such that
n3 5 n1, i.e. self-induced overpopulation takes place.

It follows from Eqn (4.37) that self-induced overpopula-
tion, n3 5 n1, occurs when

l21 5 �l1 ÿ D31�2
����V21

V32

����2 : �4:40�

Condition (4.40) is necessary and sufficient for self-
induced overpopulation to occur.

Figure 14 shows the populations of the levels for the
system in the state F1 in the case of degenerate pumping.

M Ter-Mikaelyan [5] was the first to indicate that the
populations of a three-level system can be inverted with an
adiabatic pulse. He presented expressions for the relative
overpopulations n3=n1 in the case of a strong field as
D31 ! �0. The case of a two-photon resonance inversion
was also considered in Refs [101, 104, 105]. M Grishkovsky
and M Loy [104] used the term `self-induced adiabatic rapid
passage' by analogy with the adiabatic inversion at the
magnetic resonance. In subsequent papers N Kroll, K Wat-
son, and A Lau [106 ± 108] studied whether self-induced
inversion is possible depending on the pulse shape and on
the time delay between two pulses [103a].

In Ref. [121a], self-induced resonance was first used to
investigate nonstationary phenomena. M Loy observed
optical nutation for molecules NH3, i.e. population oscilla-
tion and free-polarization damping in the
�0ÿ; 4; 4� ! �2ÿ; 4; 4� transition, the energy difference of
which is close to the total energy of two laser photons for
the P34 and P18 lines of a CO2-generator.Whenmeasuring the
absorption coefficient for weak radiation o1 passing through
vapors, sharp oscillations of the absorption coefficient were
observed, depending on the time it takes for the power pulse
of the second laser to pass through. This phenomenon can be
explained as follows. When the leading edge of a power pulse
passes through the system, the two-photon resonance sets in
and, as a result, the interaction loses its adiabatic nature and
the oscillations of the level populations manifest themselves
under weak field absorption Ð optical nutation goes
continuously (smoothly) into free polarization damping. A
similar signal also appears at the trailing edge of the pulse.
This experiment is analogous to the experiment on the
observation of population oscillations that we mentioned in
Section 2. However, self-induced adiabatic inversion has not
yet been observed.

The influence of self-induced resonance on the excitation
and ionization of a three-level system was considered in Refs
[109 ± 112]. In Refs [113 ± 115], the influence of self-induced
resonance was discussed in relation to the possibility of
selective excitation of atoms. In Ref. [116], self-induced
resonance was used to calculate the magnetization of alkali-
metal atoms and in Refs [117, 118] it was used to study a four-
level atom and to generate the third harmonic. Self-induced
resonance plays an important role in studying the dielectric
constant of the three-level system [119]. Most of the
aforementioned papers were conducted either for monochro-
matic pumping fields or for laser pulses with a given
activation law.

jV21 j2�jV32 j2
D2
21

jV21 j2
D2
21

E31

jb�1�2 j2

2o

c

jV21 j2�jV32 j2
D2
21

jV21 j2
D2
21

2oE31

jb�1�2 j2 d

jV21 j2
jV21 j2�jV32 j2
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jV21 j2�jV32 j2
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bjb�1�1;3j2
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Figure 14. Populations of atomic levels for the system in the state F1 as functions of 2o (degenerate pumping) in the case when jV12j > jV23j. The curves
represent the populations for the first (solid lines) and third (dashed lines) levels in the case when D21 > 0 (a) and D21 < 0 (b). The curves represent the

populations for the second level in the case when D21 > 0 (c) and D21 < 0 (d).
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M Sarkisyan and M Ter-Mikaelyan [103a] showed that
the interaction between two time-separated laser pulses and a
three-level ladder X-type system brings about a selective
excitation under the conditions of the self-induced resonance.

Currently a great interest was created to these problems
(see, for example, [103b] and Section 5). In Ref. [103c], the
selective population transfer was first observed in the
adiabatic passage of two chirped laser pulses used to tune to
the resonance. The work was conducted with Rb vapors by
the scheme shown in Fig. 10a.

4.3 Nonstationary wave functions and two-photon
absorption
The wave functionsFs in (4.15) form a complete orthonormal
set of functions for a three-level atom in resonant monochro-
matic fields. Functions (4.15) are not the stationary solutions
of the SchroÈ dinger equation for an atom in a classical field
since an atom in a varying field does not have a particular
energy. However, in the case of a more general system with
regard for a quantized electromagnetic field functions of the
type (4.15) become, upon electromagnetic field quantization,
stationary functions of a more complete quantum-mechan-
ical `atom plus quantized field' system (`dressed' atom) [18].

The wave functions (4.15) can be used when the interac-
tion is switched on slowly. If the pulse duration is designated
as t (we shall use the quantity t to describe the time it takes for
the pulse to rise and decay), then it is necessary (but not
always sufficient) for the interaction to be switched on
adiabatically that the inequality

tÿ1 < Dij �4:41�

holds.
In the case when the field is switched on abruptly, i.e.

when conditions (4.41) are not satisfied, the wave function of
the system can generally be represented as a superposition of
the basis wave functions (4.15):

F 0l �
X

R�l�s Fs ; �4:42�

where the coefficients R
�l�
s are determined from the initial

conditions. Let the atom be in the ground state prior to
switching on the field, i.e.

F 0l �t � 0� � C1 : �4:42 0�

Then the coefficients R
�1�
s can be determined from (4.15) and

(4.42 0) by means of the formulaeX
R�1�s � 1 ;

X
R�1�s ls � 0 ;

X ls
ls ÿ D31

R�1�s � 0 :

�4:43�

The Cs coefficients of functions (4.15) enter the definition of
Rs. Similarly, the coefficients R

�2;3�
s can be obtained for the

wave functions F 02;3, which go over to C2 andC3 at t � 0.
A solution of the type of (4.42) corresponds to the

following statement of the problem: find the wave function
of an atom in the field of travelling `monochromatic' pulses
with a steep leading edge perturbing the atom starting from
t � 0. The fast switching-on also means that all the frequen-
cies o4tÿ1, where t is the time interval in which the
amplitudes of `rectangular' pulses build up and decay to a
finite value, are present in the radiation spectrum. The

presence of frequencies of the order of o1 � D21 and
o2 � D32 in the pulse spectrum causes actual transitions and
oscillations of level population density to occur.

If condition (4.18) is satisfied, then the three-level system
in question can be reduced to a generalized two-level system
with one intermediate level provided that condition (4.2) is
satisfied as well. Therefore, all the results set forth in the
preceding sections can be carried over to a three-level system
when the one-photon resonance-related effects can be
considered within the scope of perturbation theory. Simple
solutions can be obtained in other limiting cases as well.

We shall consider, for example, the exact two-photon
resonance, whenD31 � 0.Using expansion (4.42) for thewave
function of an atom, which resides in the ground state C1 till
the interaction is switched on, we have (private communica-
tion, M Sarkisyan, 1984)
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�
(
jqj2 �
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where

O1 � 2

����������������������������������������
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� jV21j2 � jV32j2

s
;

D � D21 ; q � V �32
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It follows from (4.44) for populations of atomic levels

n1�t� � 1ÿ
1� jqj2�2

(
jqj4 � cos2

O1t

2
� D2

O2
1

sin2
O1t

2

� 2jqj2
�
cos

O1t

2
cos

Dt
2
� D2

O2
1

sin
O1t

2
sin

Dt
2

�)
;

n2�t� � 4jV21j2
O2

1

sin2
O1t

2
; �4:46�

n3�t� � jqj2ÿ
1� jqj2�2

(
1� cos2

O1t

2
� D2

O2
1

sin2
O1t

2

ÿ 2

�
cos

O1t

2
cos

Dt
2
� D2

O2
1

sin
O1t

2
sin

Dt
2

�)
:

At the exact one-photon resonance when D21 � 0 as well, the
expressions for populations of levels are greatly simplified:

n1�t� �
ÿ
1� jqj2�ÿ2�jqj2 � cos

O0t

2

�2

;

n2�t� �
ÿ
1� jqj2�ÿ1 sin2 O0t

2
; �4:47�

n3�t� � jqj2
ÿ
1� jqj2�ÿ2�1ÿ cos

O0t

2

�2

;
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where

O0 � 2

������������������������������
jV21j2 � jV32j2

q
: �4:48�

This case corresponds to the cascade excitation of levels.
In the opposite limiting case when the intermediate

detuning is large, i.e. when the intensity parameter
O0=jDj5 1, we have for the population of the third level
from (4.44):

n3�t� � 4jqj2ÿ
1� jqj2�2 sin

O2
0t

4D
: �4:49�

Here we have a pure two-photon excitation, which was first
considered in Refs [121b ± d]. In this case the population n2�t�
of the second level is low and the valent electron oscillates
primarily between the first and third levels at a relatively low
frequency O0=D. It should be noted that the amplification
phenomena which E Manykin and A Afanas'ev [121b]
considered near two-photon resonances, have recently
drawn much attention from researchers and they are now
checked in experiments (see, for example, Ref. [121d]). We
propose to set forth these issues in the review being in works
for the Progress in Optics.

An examination of the expressions for populations (4.46)
readily yields the conditions in which the three-level system is
not excited during its interaction with a finite laser pulse, i.e.
the atom remains in the ground state when the pulse has
passed. These are so-called self-induced transparency pulses,
or SIT-pulses (see, for example, Ref. [120]). The conditions in
which atomic levels are maximally excited can also be easily
obtained.

In the case of cascade excitation when both the 1! 2 and
2! 3 transitions are in exact resonance with the field, the
problem is solved for an arbitrary shape of the envelope E�t�
of both the pulses (E�t� is the projection of ~E�t� onto d)
(private communication by M Sarkisyan, 1984).

It follows from Eqn (4.6) for D21 � D31 � 0 and for the
initial condition a1 ! 1, a2 ! 0, a3 ! 0 as t0 ! ÿ1 that the
probability of the system's being in a particular level at an
arbitrary instant of time t is

n1�t� �
ÿ
1� jqj2�ÿ2�jqj2 � cos y�t�	2 ;

n2�t� �
ÿ
1� jqj2�ÿ1 sin2 y�t� ; �4:50�

n3�t� �
ÿ
1� jqj2�ÿ2�1ÿ cos y�t��2 ;

where

y�t� � jd21j
ÿ
1� jqj2�1=2 �t

ÿ1
E�t 0� dt 0 : �4:51�

These expressions generalize formulae (4.47). As is seen from
formulae (4.50), once the pulse has passed �t!1�, the
system remains in the initial state provided that
y�1� � 2pn. Therefore, in particular, the peak population
of the second level is

ÿ
1� jqj2�ÿ1 and tends to unity as jqj ! 0

(a two-level system). The population of the third level peaks at
a given jqj when y�1� � �2n� 1�p and is equal to
4jqj2ÿ1� jqj2�ÿ2; moreover, the third level is fully populated
when jqj � 1.

With a nonzero intermediate detuning D21, the system of
equations (4.6) does not have analytical solutions for
arbitrary E�t�. However, the basic behaviour can be estab-

lished by choosing a particular function E�t�, for which the
system of equations (4.6) allows an exact solution. The
benefits of this approach in the event of a two-level system
are shown in Section 3.2.

Population oscillations in the case of a two-photon
excitation were studied in Ref. [121].

Paper [122a] gave impetus to a large number of experi-
mental works on the Doppler-free two-photon absorption.
Even in the first experiments [123 ± 125] with a sodium vapor,
an extremely high resolutionwas achieved. These experiments
can be treated on the basis of a generalized two-level system.
Two-photon absorption was also studied in Refs [126 ± 128].
As opposed to the aforementioned works, in the latter
experiments exact intermediate resonance occurred and,
thus, the processes proceeded with a much more probability
and the three-level model with adjacent resonances had to be
invoked for their interpretation. In the first work [126], the
experiment was conducted with the use of two lasers, the
frequencies of which were tuned to the 3S1=2 ! 3P1=2

�2pn � 5895;9 A� and 3P1=2 ! 4D3=2 �2pn � 5682 A� transi-
tions. The authors used the approximate formulae of
perturbation theory notwithstanding the fact that the inter-
mediate level gets at the exact resonance. The comparison of
the experimental data with the results of calculation from
perturbation theory made it possible to determine the
hyperfine structure of levels. In the second work [127], the
3S! 4F transition through the intermediate resonance level
3P1=2 was studied. The electrical dipole transition 3P1=2 ! 4F
is prohibited by the parity law. Therefore, the ratio of the
probability of two-photon absorption for the transition
3S! 4F to the relevant probability in the allowed electrical
dipole transition 3S! 4D was 10ÿ7. The authors measured
the hyperfine structure of the 4F state.

In the next paper [128] these authors used a similar
calculation technique to that we described above. The accord
with the experimental data was remarkable. In the cited paper
a limiting case was realized when the energy shift of levels
greatly exceeded the hyperfine structure splitting of the
intermediate energy level at the one-photon resonance in the
field of a wave. Note that the presence of an intermediate
resonance level, according to Ref. [128], increases the
probability of two-photon absorption by a factor of 10 in
comparison with the probability of two-photon absorption in
the absence of an intermediate resonant level. The unique
capabilities of Doppler-free spectroscopy were used to
observe the two-photon transition 1! 2 in hydrogen and
deuterium [129, 130]. The authors were able to measure the
isotopic shift of the transition and the Lamb shift of the
ground 1S-state with an accuracy of 10ÿ4; they established
that the former was 670:933� 0:056 GHz, and the latter was
8:20� 0:010 GHz for H and 8:25� 0:11 GHz for D. These
results are in good accord with current theoretical values.

4.4 Permittivity of a three-level atomic gas
In this section we consider only the real part of the dielectric
constant. As to the imaginary part this issue has not yet been
resolved. If we neglect the influence of collisional widths and
the motion of atoms, then the imaginary part of the dielectric
constant related to radiative processes requires the probabil-
ities of all noncoherent processes Fi ! Fj �i 6� j� to be
calculated since these processes affect the decay of the initial
wave function (cf. Sections 2.4 and 4.5).

Notice that although the energy levels are degenerate in
the direction of the total moment in an actual atom, the three-
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level system can be realized by an appropriate choice of light
polarization.

To calculate the real part of the permittivity of a rarefied
gas involving three-level atoms it is necessary to determine the
polarization of an atom in the quasi-energy state Fs, i.e. to
determine the quantity

Dss �


F�s jdjFs

�
: �4:52�

At the two-photon resonance, the function Fs is given by
formula (4.15). With regard for

Dss�o1;o2� � w�s�1 �o1�E1 � w�s�2 �o2�E2 ; �4:53�

the expressions w�s�1 �o � o1� and w�s�2 �o � o2� for the non-
linear polarization in the s state follow from (4.52).

The expressions for the nonlinear polarizations include
quasi-energies which are the roots of a cubic equation. The
use of the Cardano formulae renders these expressions too
cumbersome, therefore in the general case it is simpler to use
numerical calculations. However, in the above cases when the
quasi-energies ls are given by simple analytical expressions,
the polarizations w�s�1;2 can be expressed by means of relatively
simple formulae.

Assume that the two-photon resonance condition (4.21) is
satisfied for the system in question and that the one-photon
resonances are weak. Then, using the results of Section 4.3 we
have [119]

w�1;3�1 � ÿ jd12j
2

2�hD21

(
1� sgn�D31D21�

�
D21D31� jV12j2� jV32j2

�������������������������������������������
�D21d�2 � j2V21V32j2

q )
;

�4:54�

w�1;3�2 � ÿ jd23j
2

2�hD21

(
1� sgn�D31D21�

�
D21D31ÿ jV12j2ÿ jV32j2

�������������������������������������������
�D21d�2 � j2V21V32j2

q )
:

�4:55�
In the event of degenerate pumping the atomic polariz-

ability w�o� is equal to the sum w1 � w2 (in which it is required
to set E1 � E2 � E, and o1 � o2 � o) and it is the same as
the relevant expression in Ref. [131].

If all the atoms in a medium are in a particular quasi-
energy state, then under degenerate pumping the dielectric
constant for the medium is e � 1� 4pNw�s�, where N is the
number of atoms in the state s.

In the event of nondegenerate pumping the medium is
characterized by two dielectric constants e1�o � o1� �
1� 4pNw�s�1 and e2�o � o2� � 1� 4pNw�s�2 .

Note that inmonochromatic fields when conditions (4.34)
and (4.35) are satisfied, w1�o1� or w2�o2� (depending on the
sign of the product D21D31) become linear with respect to the
field and the relevant dielectric constants for the frequencyo1

or o2 are independent of the field intensity.
Thus, by changing the field intensity in one of the

transitions, the medium can be made transparent in the
adjacent transition.

Figure 15 shows the dielectric constants e1 and e2 as
functions of o1 � o2 in the vicinity of the point
o1 � o2 � E31. In this frequency range the one-photon
detuning D21 changes only slightly and can be considered to
be constant. For both quantities e1 and e2, an anomalous
dispersion takes place over a certain frequency range. This
range is limited by the points jD21D31j � jV12j2 � jV32j2 (the
points of conditional minima (4.34) and (4.35) for the spacing

between quasi-energies) on one side and by the two-photon
resonance point on the other side.

An explanation for the anomalous dispersion in this
frequency range can be offered by analyzing the dynamics of
atomic level populations [119]. In a weak field, the population
of the first level decreases with an increase in E1, i.e. the
system rises to an excited state (becomes polarized) by
virtually absorbing photons from the external field. How-
ever, with a further increase in the field intensity the reverse
process is triggered once jV12j2 � jD21D31j ÿ jV32j2, i.e. the
system drops back to the lower level. Thus, the populations of
atomic levels depend nonmonotonically on the field intensity
and there is a region where an increase in the field intensity
results in a decrease in the polarization of the medium. This
nontrivial behaviour of atomic level populations is inherent
solely to multilevel systems and has no analogy in the case of
an ordinary two-level system. Another limiting case of strong
resonances, when jD31j5 jVikj and D21 can take arbitrary
values, was also considered in Ref. [119].
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Figure 15. Dielectric constant of a three-level atomic gas as a function of

the dimensionless parameter D31=D21 for the following values of para-

meters: D21 > 0, jV12j2=D2
21 � jV32j2=D2

21 � 0:05. On the vertical axes

�a� e�o1� ÿ 1

2p
�hD21

jd32j2
; �b� e�o2� ÿ 1

2p
�hD21

jd32j2
; �c� e�o� ÿ 1

2p
�hD21

jd12j2 � jd32j2

are plotted.
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4.5 Interaction of resonance radiation with a three-level
system with regard for radiative relaxation processes
(degenerate pumping)
Up to this point we have considered the interaction between
an atom and a laser field over times smaller than the
relaxation time. It is interesting to find out how the level
populations of a three-level atom change when radiative
relaxation processes are taken into account [132].

The wave function of a three-level system in the field of a
resonant wave with regard for the spontaneous transitions
Fi $ Fj can be expanded into a series in terms of the complete
set of wave functions of a three-level atom:

C�t� �
X3
m�1

Am�t�Fm ; �4:56�

where Am�t� are the population amplitudes for the adiabatic
`atom plus field' functions. We shall consider the case when
the resonance detunings jD21j, jD31j, and jD32j are much
greater than the radiative widths of the atomic levels g2 and
g3 (the g1 width of the ground state is zero). In this event the
direct absorption of photons from the external pumping
field can be neglected and the changes in populations Am�t�
for quasi-energy states will depend solely on the incoherent
processes of spontaneous emission in the transitions
Fi $ Fj.

For the three-level system under discussion the equations
for level populations take the form

_N1 � ÿ�W21 �W31�N1 �W12N2 �W13N3 ;

_N2 �W21N1 ÿ �W12 �W32�N2 �W23N3 ; �4:57�

_N3 �W31N1 �W32N2 ÿ �W13 �W32�N3 ;

where Wij are the time-averaged probabilities of the Fi ! Fj

spontaneous transitions. The i � j transitions do not change
populations and they have not been taken into consideration
to write down the balance equations.

Nowwe shall find the physicalmeaning of the populations
Nm when the field is switched off adiabatically fast. Since the
typical time of Nm change is of the order of gÿ12;3, the wave
functions Fm go over to their unperturbed functions
Um exp�ÿiEmt� when the field is fast (dt5 gÿ12;3) but adiabati-
cally switched off. In this caseNm give the level populations of
a free atom.

In the resonance approximation �i; j � 1; 2; 3�

Wji � g2
��b�i�2 b

�� j �
1

��2 � g3
��b�i�3 b

�� j �
2

��2 ; �4:58�

where b
�m�
i are the amplitudes of the atomic wave functionsUi

in the quasi-energy state Fm [see (4.15)]. The transitions
Fi ! Fj are accompanied by photon emission at the
frequencies o 0 � o� li ÿ lj. The scattering patterns are
presented in Fig. 16 in the lowest order of the perturbation
theory.

The mean populations of atomic levels in the field of a
wave can be easily calculated using the expressions for
populations and the values of b

�m�
i .

To this end functions (4.58) should be substituted into
(4.57) and the squares of the absolute values of the coefficients
of the functions Ui should be averaged over the time interval
t4 �lm ÿ lm 0 �ÿ1. For themean values of the populations �ni of

atomic levels we have

�ni �
X3
m�1

Nm

��b�m�i

��2 : �4:59�

The quantity �ni describes the probability that the free atom
resides in a state with the wave function Ui exp�ÿiEit�, when
the field is nonadiabatically fast (suddenly) switched off.

The expression for the total probability of emission per
unit time for the `three-level atom plus pumping field' system
is

W � g2
X3
m�1

Nm

��b�m�2

��2 � g3
X3
m�1

Nm

��b�m�3

�� ; �4:60�

in which the first term represents the probability of emission
for the 2! 1 transition, and the second term represents the
same quantity for the 3! 2 transition. In other words, W is
the total probability of a spontaneous emission by the
pumping field incident upon a three-level atom.

Now we shall consider the stationary solutions of Eqn
(4.57). Clearly they are generally cumbersome and non-
informative since the dependences on the interaction para-
meters (detunings, field strength and matrix elements) are
expressed through quasi-energies, which are roots of the cubic
equation (4.14). Therefore, we shall consider two particular
cases when the expressions for Wij and, hence, for Nm can be
greatly simplified.
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Figure 16. Scattering processes are shown diagramatically as they occur in

transitions between different quasi-energy states. These processes cause

the adiabatic functions to decay. Wavy lines represent photons of the

scattered field.
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(a) Consider firstly the case of a strong field (or the
case of small detunings) when the conditions
jV21j; jV32j4 jD21j; jD31j are satisfied. Using the appropriate
values of b

�m�
i for the probabilities of theFi ! Fj spontaneous

transitions for D21D31 > 0 we arrive at

W21 �W12 � g22 � g23
4�g2 � g3�

;

W32 �W23 �W31 �W13 � g2g3
2�g2 � g3�

: �4:61�

Solving Eqn (4.41) together with the normalization
condition, we obtain the expressions for the stationary
populations in the quasi-energy states (the result is the same
when D21D31 < 0):

N1 � N2 � N3 � 1

3
; �4:62�

that is in the event of a strong interaction the atoms are
equiprobably distributed over all the three quasi-energy
states. Notice that the mean populations �ni of atomic levels
are equal to each other. Then the total probability of
scattering is

W � g2 � g3
3

: �4:63�

(b) Now consider the more interesting example of two-
photon resonance, when jD31j; jV21j; jV32j5 jD21j. In the
resonance approximation the field mixes the first and third
levels and the probabilities of transitions Wji have the form
(the corresponding patterns are marked by asterisks in
Fig. 16)

W21 � g3
��b�1�3

��2 ; W32 � g2
��b�3�1

��2 ;
W12 � g2

��b�1�1

��2 ; W23 � g3
��b�3�3

��2 ;
W31 �W13 � 0 ; �4:64�

where
��b�1�1

��2 � ��b�3�3

��2 � n1 and
��b�1�3

��2 � ��b�3�1

��2 � n3 are given
by expressions (4.37).

In the steady-state mode it follows from (4.57) that

N1 � n21
1� �q� 2�n1n2 ; N2 � qn1n2

1� �q� 2�n1n3 ;

N3 � n23
1� �q� 2�n1n3 ; �4:65�

where

q � g3
g2
: �4:66�

It can readily be shown that the inversion can be realized
by the appropriate choice of the interaction parameters for
any transition between quasi-energy states and even for the
2! 1 or 3! 2 transitions when the field is switched off.

Using expressions (4.65) we shall calculate the mean
values of the populations of atomic levels in the field of a
wave. From (4.59) we have

�n1 � 1ÿ 3n1n3
1� �q� 2�n1n3 ; �n2 � qn1n3

1� �q� 2�n1n3 ;

�n3 � n1n3
1� �q� 2�n1n3 : �4:67�

For arbitrary relationships between the interaction para-
meters the populations Nm and �ni can be determined by
numerical methods.

We shall calculate the total probability of scattering per
unit time using the expressions for �ni from (4.67) and the
values of n1;3 from (4.37) [132]. The computation yields

W � 2g3d
2jEj4ÿ

1� gjEj2�2 � �q� 2�d 2jEj4
; �4:68�

where

g � d 2
21 ÿ d 2

32

�h2D21D31

; d � d21d32
h2D21D31

: �4:69�

Note at once that the probability of scattering depends
essentially on the sign of g. The probability of scattering peaks
at a critical point for g < 0; it is determined from the equation
1�gjE0j2 � 0 and equal to

Wmax � 2g2g3
2g2 � g3

; �4:70�

i.e.Wmax is limited by the least rate of decay.With an increase
in the field intensity the probability of scattering decreases
and approaches saturation when jgjjE0j2 4 1:

Wsat � 2g2g
2
3

g22 � 2g23
: �4:71�

Figure 17 shows the probability of scattering as a function of
the pumping intensity. The probability of scattering for g > 0
is always lower than that for g < 0. The asymmetry with
respect to the sign of g (or the sign of D31) can be defined
through the radiation selectivity [132]:

S �W�g < 0�
W�g > 0� � 1� 4jgjjEj2ÿ

1ÿ jgjjEj2�2 � �q� 2�d 2jEj4
: �4:72�

The abrupt increase in the probability of scattering at the
critical point is directly related to the nontrivial behaviour of
populations of a three-level system in the presence of a
resonance radiation, namely, to the self-induced resonance

g > 0

g < 0

Wsat

Wmax

W

jE0j2
jEj2

Figure 17. Total probability of scattering as a function of the pumping

intensity, when g < 0 and g > 0.
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phenomenon. At the critical point jE0j2, the quasi-energies
approach to a minimal spacing and the populations n1 and n3
level off with one another for g < 0.

The phenomenon considered can be used for selective
action on atoms. The asymmetry with respect to the sign of g
or, which is the same, to the sign of the two-photon detuning
D31 makes it possible to act selectively upon atoms, for which
g < 0, when the pumping frequency is chosen so that the
frequency 2o falls into the isotope shift interval. These results
can readily be extended to three-level systems (see Fig. 10)
which interact with two different resonance fields.

5. Electron Raman scattering with resonant
amplification

5.1 Illustrative consideration of the theory of electron
Raman scattering
With the advent of the first lasers, Raman scattering of light
became the subject of intense experimental research. A new
area of interest, so-called `stimulated Raman scattering'
(SRS), appeared and was set forth in a number of mono-
graphs and reviews [94 ± 96, 98]. Here we shall not touch these
traditional issues. Instead we shall dwell on a new subject in
Raman scattering, namely, on Raman scattering involving
electronic transitions. The impetus to the exploration of this
area was given by the first works which Soviet and American
scientists conducted independently of each other [134 ± 136].
Here they revealed stimulated Raman scattering involving
electronic transitions (SERS) in atoms.

This discovery necessitated the revision of the basic
theoretical principles in this area, which had remained
practically intact since the famous paper by Kramers and
Heisenberg [17]. Starting from simple illustrative concepts we
shall examine what changes should be introduced into the
theory of Raman scattering of light [17]. Within the scope of
perturbation theory, the wave functions of a three-level
system in a resonant field, which acts over the 1! 2
transition with the detuning D21 � D, have the form (see
Section 4.1 and Fig. 10b):

F1 � U1 exp�ÿiE1t� ÿ C �2U2 exp
�ÿi�E1 � o�t� ;

F2 � U2 exp�ÿiE2t� � C2U1 exp
�ÿi�E2 ÿ o�t� ; �5:1�

F3 � C3 � U3 exp�ÿiE3t� :

For

jC2j �
���� d � ~E�hD

����5 1

functions (5.1) lead to the familiar expression for the
probability of Raman scattering of light from Ref. [17], in
which only the main resonant term is left. However, the
parameter C2 can be of the order of unity or higher when
the system is close to the resonance or the fields are strong.
This means that perturbation theory is herein inapplicable. In
addition, the high-frequency Stark effect has to be taken into
account in laser fields. Consequently, the ERS theory has to
be extended to this case as well [5].

The second change which the Kramers ±Heisenberg
theory needs is that the interaction with a monochromatic
wave has to be replaced by the interaction with a quasi-
monochromatic pulse of finite extent. As noted in Section 4.1,

it is difficult to consider beyond the scope of perturbation
theory how the ERS is affected when the interaction between
an atom and an electromagnetic wave is switched on.
Functions (5.1) are the same as in Ref. [17] and they are
equivalent to the adiabatic wave functions for a5 1, which
we examined in detail in Section 4.1.

However, in all experiments on ERS the interaction is
switched on at a time t � t0, i.e. when the laser pulse with
finite duration reaches the atom or when the travelling atomic
beam enters the region of influence of the laser field. To
consider this effect, the wave functions of an atom in the field
of a laser pulse should be written down under initial
conditions. For example, in the perturbation theory limit for
t > t0 the desired wave functions have the form

F1 � C1 ÿ C �2C2

�
exp�itD� ÿ exp�it0D�

�
;

F2 � C2 � C2C1

�
exp�ÿitD� ÿ exp�ÿit0D�

�
; �5:2�

F3 � C3 ;

when the field is switched on infinitely fast at t � t0. For
t4 t0, the wave functions Fi are specified by the unperturbed
atomic functions Ci and by the initial conditions. As
�tÿ t0�jDj ! 1, the fast-oscillating terms can be omitted
and the system of functions (5.2) goes over to functions (5.1).
Expressions (5.2) show that the quantity

���t0 ÿ t�D�� is the
characteristic parameter through which the wave functions
depend on initial conditions. In the case of a pulse of finite
duration the interaction lasts for a time t and this time
interval represents the pulse width. Thus, the quantity jDtj is
the parameter by which adiabatic (5.1) and nonstationary
(5.2) functions are differentiated. Consequently, the Kra-
mers ±Heisenberg theory has to be extended to consider the
initial activation of the interaction and the pulse shape (see,
for example, Refs [5, 137 ± 141]). This problem is closely
related to the system relaxation since if the effective time
intervals are much longer than the relaxation times then the
system `forgets' the initial conditions.

Given tjDj4 1, we can use functions (5.1) and calculate
the electric dipole moment of an atom in the electromagnetic
field for the 1! 3 transition:

D31 �
�
C �3 erF1 dV � ÿC �2 d32 exp

�ÿi�E3 ÿ E1 ÿ o�t� :
�5:3�

It follows from (5.3) that the atom in the field has a varying
moment and emits photons at the frequency

os � oÿ E31 : �5:4�

Similar discussions for functions (5.2) show that for
jtDj < 1 the atom will also emit photons, the frequency of
which is

op � E2 ÿ E3 �5:5�

in addition to photons at the frequency given by (5.4), i.e. the
Raman scattering spectrum should have the resonance line
relevant to the 2! 3 transition. AsD! 0, these two different
lines merge. The resonance line appears because the upper
level is actually occupied when the interaction is switched on.

In addition to the above changes, the ERS theory has to be
improved in the case when a second strong field acts over the
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2! 3 transition and the atom is in the fields of two resonant
waves [142]. Even more important from the practical point of
view is the case when both pulses are separated in time [103a,
143].

5.2 Theory of resonance ERS in the monochromatic
pumping approximation with regard for saturation effects
and Stark shifts
An atom becomes polarized under the action of a pumping
field. The dipolemoment of an atom in the field is given by the
expression

D3k � e

�
C �3 rFk dV �k � 1; 2� : �5:6�

With d31 � 0 and using the adiabatic wave functions of an
atom in the laser field exerted on the 1! 2 transition we
calculate the dipole moment as

Dÿ31 �
���� �������������1� a2
p ÿ 1

2
�������������
1� a2
p

����1=2 exp�ÿi�oÿ E31 � l1�t
�
d32 ; �5:7�

where a and l1 are determined by means of the formulae from
Section 2.3. In what follows for the sake of simplicity, we shall
use functions such that the functions F1;2 map onto the wave
functions of an atom C1;2 when the field is switched off,
F1;2 ! C1;2, i.e. the discontinuous li (li � li for D > 0 and
l1;2 ! l2;1 for D < 0) are used.

The dipole moment Dÿ31 brings about emission at the
combined frequency os:

os � oÿ E31 � l1 : �5:8�

The quantities a and l1 in expression (5.7) for a
monochromatic wave are time independent. In experiments,
time-limited pulses are usually used. We shall assume that the
pulse width is smaller than all relaxation times Gÿ1:

tG5 1 : �5:8 0�
The time-limited pulse results in the wave actually being

quasi-monochromatic. If the spectral width of a pulse
do � 1=t is essentially smaller than the resonance detuning
D, then expression (5.7) can be used for a time-limited `table-
shaped' light pulse. The only difference from an ideal
monochromatic wave is that the pulse width t should be
considered to calculate the scattered energy, i.e. to allow for a
nonzero polarization amplitude in (5.7) over the time interval
t. Here we neglect any effects associated with the leading and
tailing edges of the pulse, i.e. we assume that these effects
make a negligible contribution to the scattered radiation
intensity. The justification of these assumptions was given in
the aforementioned papers. In particular, how the pulse shape
affects the ERS processes is considered in Refs [138 ± 141].
The calculations show [138 ± 141] that consideration of the
pulse shape brings about a number of interesting phenomena,
which have not yet been experimentally verified.

The probability of dipole emission of a photon at
frequency os with polarization es is usually calculated by
means of the regular formula for the dipole moment D31 of
emission and given by the expression [5]

dWs �
o3

s

ÿ �������������
1� a2
p ÿ 1

�
4p�hc3

�������������
1� a2
p ��e�s � d23j2�1� ns� dO : �5:9�

The amplification factor

1� ns � 1� 8p3c2

�ho3
s

Is�os;Os�

considers the spontaneous and stimulated Raman scattering.
Depending on the type of scattering dOs is understood to be
either the solid angle of a spontaneously scattered photon or
the solid angle of the angular distribution of the driving
radiation. In (5.9), the quantity Is�os;Os� is the spectral-
angular intensity density in the direction of the solid angle dO.
When a5 1, expression (5.9) goes over to the expression that
Kramers and Heisenberg [17] obtained for the three-level
atom.

When a4 1, the probability of Raman scattering (5.9)
takes the form

dWs � o3
s

4p�hc3
je�s � d23j2�ns � 1� dOs ; a4 1 : �5:9 0�

On integrating with respect to the solid angle and summing
over polarizations, expression (5.9 0) can be easily presented in
the formWs � g23jC2j2 for ns � 0. Here g23 is the probability
of a spontaneous transition 2! 3 (for a � 0), and C2 is the
coefficient of the wave function F1 for D > 0. Hence,
Ws � g23=2 when the 1! 2 transition is saturated and
jC2j2 � 1=2. Unfortunately, expression (5.9 0) has not been
verified experimentally so far.

Formula (5.9 0) describes the saturation effect in Raman
scattering. In this limiting case the second level has the same
population as the first level and the number of scattered
quanta does not grow upon a further increase in the intensity
of radiation incident on the atom.

If the intensity of the scattered radiation becomes
comparable with that of the exciting radiation, then perturba-
tion theory becomes inapplicable with respect to the scattered
field. Therefore, it is interesting to study the behaviour of an
atom in two intense resonant fields without the use of the
perturbation theory with respect to both fields [142] (see also
the review [137]).

5.3 ERS in two intense fields
In the previous section we have assumed that Raman
scattering is caused by the `pumping' field which is in
resonance with the 1! 2 transition. We have neglected the
influence of the electromagnetic field of combined-frequency
photons on the atomic system. This section is dedicated to the
consideration of this effect. The point is that the `atom plus
pumping field plus field of combined-frequency photons'
system is degenerate in terms of energy since the electron
residing at the ground level moves by absorbing a `pumping'
photon o1 and emitting a combined-frequency photon os to
the steady-state third level. This process is governed by the
following law of conservation:

E1 � o1 ÿ os � E3 ; D31 � 0 ; D21 � ÿD32 � D : �5:10�
These states are described by two wave functions of the

complete `atom plus pumping field plus field of combined-
frequency photons' system with the same energy. Strictly
speaking the wave functions are incorrect if they do not
account for the degeneracy. In the zero-order approximation
the correct functions must be linear combinations of the
expressions we wrote out for F1;2 and F3 [142].

If we know the wave functions (4.15) for the scheme in
Fig. 10a, then wave functions can also be found to describe

1230 M L Ter-Mikaelyan Physics ±Uspekhi 40 (12)



the Raman scattering process in the field of two waves for the
scheme in Fig. 10b. To this end E2 should be replaced by E�2 in
the expression for V32 in formulae (4.15) since absorption by
scheme in Fig. 10a corresponds to emission by scheme in
Fig. 10b; and the sign of o2 should be changed for the
opposite one. In this section it is convenient to use another
numbering rather than that we adopted in Eqn (4.15). To this
end the change 2$ 3 is to be made in all subscripts for quasi-
energies and wave functions in Section (4.2). In this case
F1 ! C1, F2 ! C2, F3 ! C3 when the field is switched off
�D > 0�, and Eqn (4.14) has the solutions

l3 � 0 ;

l2;1 � D
2
�

����������������������������������������
D2

4
� jV21j2 � jV32j2

s
�5:11�

for D31 � 0. In the quasi-energy function F3 in (4.15), the
coefficient of the C3 function is indefinite as l3 ! 0 and
D31 ! 0. To eliminate the ambiguity, the cubic equation
(4.14) has to be invoked. As is seen, Eqn (4.14) is followed
by the equation

l
lÿ D31

� l�lÿ D21� ÿ jV21j2
jV32j2

:

In turn, this last equation leads to the following equality

l3
l3 ÿ D31

� ÿ
����V12

V23

����2 �5:12�

for D31 � 0 and l � l3 � 0. Consequently, the adiabatic
functions in scheme in Fig. 10b have the form [142]

F1;2 � a1��������������������
2p�p� 1�p �

C1 � d32 � ~E�2
d12 � ~E�1

C3

� �hD�1� p�
2�d12 � ~E�1 �

C2 exp�iDt�
�
exp

�
i
D
2
��pÿ 1�t

�
; �5:13�

F3 � a2���������������
a21 � a22

q �
C1 ÿ d21 � ~E1

d23 � ~E2
C3

�
; �5:14�

where the notation

a1 � 2

�h

���� d21 � ~E1D

���� ; a2 � 2

�h

���� d23 � ~E2D

���� ; �5:15�

p � �1� a21 � a22�1=2 : �5:16�
is used.

Thewave functions (5.13) and (5.14) are chosen so that the
functions F1;2;3 should go over to the functions C1;2;3,
respectively, when the fields are switched off (first ~E2 and
then ~E1) and when D > 0. For negative detunings, the
passages to the limits F1;2 ! C2;1, F3 ! C3 take place when
the fields are switched off. An in-depth analysis of solutions to
the cubic equation shows that the correspondence between
the wave functions F1, F2, F3 and the three states 1, 2, 3 of a
free atom depends on the order in which the fields are
switched off. For example, if first field is switched off,
~E1 ! 0, and next ~E2 ! 0, then F1 ! C3, F2 ! C2,
F3 ! C1 for D > 0.

Note that the wave functions (5.13) and (5.14) are written
out in the event when the electromagnetic fields E1 and E2 are
defined as classical and, therefore, different summands in the

braces in these expressions correspond to various energies of
the atom. However, if we rewrite these functions for the
quantized fields ~E1 and ~E2, then the expression

C1 ÿ d21 � ~E1
d23 � ~E�2

C3 �5:17�

goes over to the expression

C1jn1; n2; . . .i ÿ d21 � ~E1
d23 � ~E2

C3jn1 ÿ 1; n2 � 1; . . .i �5:17 0�

with the same energy in both summands.
The fact that the two states are degenerate in terms of

energy means that in any calculations both states should be
considered in the wave functions F1;2 and F3 as super-
positions, and this can be readily seen from the structure of
formulae (5.13) and (5.14). Hence, the form of these functions
makes it possible to ascertain that the total wave function of
the `atom plus field' system has a particular energy once the
wave fields ~E1 and ~E2 were quantized, and from the start we
are dealing with the states F1;2 and F3, in which the
degeneration in terms of the total energy is taken into
account.

Note that the wave functions (5.13) ± (5.15) are obtained
under the assumption that the atom interacts with the
external field adiabatically. Therefore, these functions are
correctly applicable only when the external field has a rather
large intensity and thus the spacing between any quasi-energy
terms is sufficiently larger than any width, which is due to the
widths of atomic levels as well as to the nonmonochromatic
nature of the fields. In particular, the conditions

jli ÿ ljj4 do1;2 for i 6� j ; �5:18�
where do1;2 are the relevant widths, have to be satisfied. Only
in this case can the interaction be considered adiabatic and the
nonadiabatic transitions between the i and j states be
neglected. When one of the fields is switched on (off), the
other field should be intense enough for condition (5.18) to be
fulfilled and, hence, for the interaction to be adiabatic at this
stage. In this event the functions Fj, which describe the state
of the `atom in the field of two waves' system, are uniquely
mapped to the wave functions of the `atom in the field of a
wave' system.

Currently functions (5.13) and (5.14) are widely used.
However, they are usually obtained with the aid of the so-
called `rotating wave approximation' (RWA) in other
notation. To compare the results of works [137, 142] with
those ofRefs [144 ± 147], let us introduce the angular variables
y and j. Using formulae

sin y � a1���������������
a21 � a22

q ; sinj �
�����������
p� 1

2p

s
; �5:15 0�

(5.13) and (5.14) in the new notation can be written in a
simpler form

F1 � exp�ÿil1t�
h
sinj

ÿ
C1 sin y�C3 cos y exp�ij00�

�
ÿC2 cosj exp

�
i�j000 � Dt��i ;

F2 � exp�ÿil1t�
h
cosj

ÿ
C1 sin yÿC3 cos y exp�ij00�

�
�C2 sinj exp

�
i�j000 � Dt��sgnDi ; �5:13 0�

F3 � C1 cos yÿC3 sin y exp�ij00� ; �5:14 0�
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where

j00 � j1 ÿ j3 � j0 ÿ j00 ; j000 � j1 ÿ j2 � j0 ; �5:14 00�

here j0 and j00 are the constant phases of the fields E1 and E2,
j1;2;3 are the random phases of the atomic wave functions
C1;2;3 (2.3). They must be retained when considering coherent
effects. Adiabatic functions (5.13) agree with functions (2.25),
(2.26) for E2 ! 0 and D! 0, i.e. they are represent the
symmetric and antisymmetric combinations of C1 and C2.
It should be emphasized that the functions C1 and C3 enter
the formulae (5.13) and (5.14) in certain combinations, being
the consequence of the `three-level atom plus radiation'-
system degeneration in energy.

Currently the states (5.14 0� introduced in Refs [142, 146,
147] and called the `trapping states' are being intensively
studied and widely used in various physical processes{. For
example, they are employed for inversion-free{ lasers [148,
149], laser cooling of atoms [150 ± 152] and coherent transfer
of atomic populations [143 ± 145, 152 ± 156a] and atomic
interferometry [156b, c]. The cited problems are set forth in
reviews [157, 158] and in the special issue of JOSA 36 (1989).
Therefore, we shall not dwell on them any more and come to
issues which have inadequate presentation in the scientific
literature.

5.4 Radiative processes in Fi $ Fj transitions
Now we shall consider the emission and absorption processes
in the atomic system in transitions between the different states
F1, F2, and F3. Using wave functions (5.13) and (5.14), the
spontaneous dipole moment in theF1 ! F3 transition can be
represented as

D31 � C1C
�
2 exp�ÿil1t�

�
d12

l1
V12

exp�ÿio1t�

ÿ l1d31
V�23

exp
�
i�E31 ÿ o1�t

��
: �5:19�

As is seen from formula (5.19), the system emits photons with
frequencies

o01 � o1 � l ; �5:20�

o02 � o2 � l �5:21�
in the course of F1 ! F3 transition.

The probabilities that photons are emitted at the
frequencies o01 and o02, are determined by the expressions
[142]

dW
0
1 �

o031 a
2
2�pÿ 1�

4p�hc3�a21 � a22�p
je0�1 � d12j2�n01 � 1� dO01 ; �5:22�

dW
0
2 �

o032 a
2
1�pÿ 1�

4p�hc3�a21 � a22�p
je0�2 � d32j2�n02 � 1� dO02 : �5:23�

The radiation with the frequency o02, emitted with a
probability defined by (5.23), corresponds to the Stokes
components of Raman scattering in the strong fields E1 and
E2, when the o1 photon is absorbed from the field E1, the o02
photon is emitted by the atomic system, and the system goes
to the stateF3.When a22 5 1, the probability defined by (5.23)
goes over to expression (5.9) from the previous section and
describes the ERS accounting for the saturation effect.

The emission of photons with the frequency o01 (5.20) and
a probability defined by (5.22) is somewhat unusual and
interrupts as jE2j ! 0. As a result of the interaction with the
fields E1 and E2 (the photon absorption at the frequency o1

and the photon emission at the frequency o02) the atomic
functions C1 and C3 get highly mixed and form new
stationary states F1;2 and F3. Therefore, in the F1 ! F3

transition the system absorbs a photon o2 from the field E2
and emits a photon o01 since the third level is actually
populated (due to the above process).

In the 3! 1 transition, the photons are emitted and
absorbed at frequencies shifted by the quantity �pÿ 1�D
relative to (5.20) and (5.21). As a consequence, the emission
and absorption processes occur at different frequencies and
do not compensate for one another.

The other transition probabilities we considered in the
previous section are generalized in a similar manner. How-
ever, in the case of two intense fields scattering can develop
through other new channels. In particular, the wave functions
(5.13) and (5.14) bring about the coherent scattering of
photons with the frequencies o1 and o2. First it is necessary
to calculate the polarization in the state F1. As is easily seen,
the dipole moment in the state F1 is

D11 � C 2
1

�
l1
V12

d12 exp�ÿio1t� � l1V32

jV12j2
d32 exp�ÿio2t� � c:c

�
;

�5:24�

where

C 2
1 �

jV12j2
jV12j2 � l21 � jV32j2

: �5:25�

The first term in the dipole moment D11 is responsible for
photon emission at the frequency o1, while the second is
responsible for photon emission at the frequency o2. The
complex conjugate terms in the expression are answerable for
the absorption of just the same photons with the same
probability. Therefore, only the spontaneous processes of
photon emission at o1 and o2 occur and they match the
Rayleigh-type photon scattering at o1 and o2. The above
coherent light scattering by a three-level system in the field of
two waves with the frequencies o1 and o2 have not been
examined in detail and have not been investigated experimen-
tally.

It should be emphasized in conclusion that, depending on
the relationships between the field intensities E1 and E2 and

{ The physical nature of the `trapping' states can be easily interpreted with

the use of Eqn (4.6) in the case of an exact resonance, D31 � 0

(D21 � ÿD32). Assuming for simplicity that V21 �W32 � V and introdu-

cing the combinations b1;3 � �a1 � a3�=
���
2
p

intstead of the amplitudes a1
and b3, Eqn (4.6) can be rewritten in the form: i _b1 �

���
2
p

V �a2, i _b3 � 0,

i _a2 �
���
2
p

Vb1. It follows from the equations that the state of the system,

which the amplitude b3 represents, does not change during the atom-field

interaction. The pertinent wave functions of the system can also be easily

found using, for example, the technique developed in Section 3.3.

{ The issue of light amplification without level population inversion has a

long history [5, 27, 43b, 48, 50b, 51]. In Ref. [27], amplification of the so-

called three-photon radiation was experimentally investigated when the

radiation propagates through the two-level atomic gas in a strong resonant

field. GKryuchkov et al. [39b] showed that the cause of light amplification

in the absence of level population inversion is a two-photon emission,

induced by one photon field and spontaneous with respect to the other

field. Recently this issue was again discussed by P Sellin et al. [161]. It

seems likely that the authors were unacquainted with the aforementioned

references since they put forward a similar interpretation of the amplifica-

tion processes in the absence of inversion.
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the matrix elements d21 and d23, the mapping between the
indices of the quasi-energy functions Fi and those of the
atomic wave functions Ci is different for various detunings.
This means that the atomic wave functions develop along
various reaction channels but they can be easily classified for
all the transitions Fi ! Fj, i � 1; 2, j � 1; 2.

5.5 Coherent population transfer
in the field of two pulses with a time delay
Currently the populations of levels in a three-level system in
the wave fields is attracting considerable attention of many
researchers. Earlier we mentioned the papers on the ladder-
type schemesX. In this sectionwe consider theL-systemwhen
the exact one-photon resonance, D! 0, occurs. Then the
wave functions (5.13 0) and (5.14 0) can be written in the
following form

F1�t� � 1���
2
p �C1 sin y�C2 �C3 cos y� exp�ÿil1t� ;

�5:26�

F2�t� � 1���
2
p �C1 sin yÿC2 �C3 cos y� exp�ÿil2t� ; �5:27�

F3�t� � C1 cos yÿC3 sin y : �5:28�

As noted above, the states described by (5.28) have
remarkable properties and are known in the literature as
`trapping states'. Using these states, the atomic populations
can be transferred coherently and efficiently from the atomic
stateC1 toC3. In fact, if the atom resides in the stateC1 up to
the instant when the laser fields are switched on and if the
interaction with the Stokes field E2 � Es is switched on and off
prior to the pumping field E1 � Ep, then, as is seen from
(5.15 0), y varies from 0 to p=2. Clearly, in this case the atom
goes from the state C1 to the state C3. For this process to
occur it is required that the atom be in this `trapping state'
over the entire course of the interaction. This is possible when
the following condition

_y5
���������������
a21 � a21

q
�5:29�

is satisfied.
This phenomenon is known as stimulated Raman adia-

batic passage (STIRAP). It was first predicted in Ref. [143]
and experimentally revealed in Ref. [144a]. Figure 18, taken
from Ref. [153], shows the results of experiments on the
population transfer from the ground state of an Na2
molecule to the excited state. As is seen from Fig. 18a,
efficient population transfer for D � 0 occurs only if the
Stokes component is switched on and off prior to the others.
In Fig. 18b, the experiment was conducted for a large
intermediate detuning D, i.e. when a1a2=D4 1. In this case
theL-system in question corresponds to a two-level system in
which the Stark shifts are allowed for [103a, 104]. Therefore,
the order in which the fields are switched on and off is not
critical since the process is adiabatic when there is a detuning
D. It can be seen from Fig. 18b that there appears a second
peak with respect to the excitation of Na2 molecules even if
the field is switched on earlier.

Therefore, it is interesting to consider the opposite
situation when the atomic system is exposed first to the
pumping Ep and then to the Es field under the adiabaticity

condition (5.29). Condition (5.29) can be written in the
explicit form as����������������������������

E2pd 2
21 � E2sd 2

32

q
T4 1 ; �5:29 0�

where T is the duration of the interaction between the light
pulses and the atom, and the time delay is t4T.

P
o
p
u
la
ti
o
n
tr
an

sf
er

P
o
p
u
la
ti
o
n
tr
an

sf
er

Es Ep Es Ep Es Ep Ep Es

A B C

Na2

D

t, ns

D21 � 0

0.2

0.4

0.6

0.8

1.0

0
ÿ8 ÿ6 ÿ4 ÿ2 0 2 4

A

C

D

B

a

ÿ8 ÿ6 0 2 4 6ÿ4

0.4

0.2

0

0.6

0.8

t, ns

D21=2p � 400MHz

D

C

1.0

ÿ2

A

B

b

Figure 18. Results of experiments on the population transfer from the

ground level to the excited level depending on the time delay between the

fields Es and Ep [153]. As is seen fromFig. 18a, efficient population transfer

occurs only when Es is switched on and off prior to Ep. The experiment was

conducted with molecular beams of Na2, which interacted with spatially

separated continuous laser pulses at the exact resonance D21 � 0. Figure

18b shows the results of the experiment in the case of a large intermediate

detuning.
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In Ref. [159], the exact solutions were obtained for the
interaction between two laser pulses with a time delay 2t and
the three-level L-system when the pulses are at the exact
resonances with the 1! 2 and 2! 3 transitions. For t > 0,
where t is the time delay between pulses (see Fig. 19), i.e. when
the field Es is switched on prior to Ep, the results are the same
as those in Ref. [144a]. In the case when t < 0, a simple
analytical solution was obtained such that the excited level
populations broke into oscillations. The oscillation frequency
depended on the effective areas of two pulses and on the time
delay t between them. After the interaction, i.e. as t!1, the
atomic populations are

n1 � 0 ; n2 � sin2 b ; n3 � cos2 b ; �5:30�

where

b � 1

2

�1
ÿ1

�
a21 � a22

�1=2
dt : �5:31�

The quantity b depends on the pulse intensity and the time
delay between them. For b � 2pn, the atom goes to the state
C3, and for b � p�n� 1=2� it goes to the stateC2, i.e. we shall
observe oscillations of populations for the second and third
states depending on t. Since spontaneous decay was not
considered, solution (5.30) is valid only for T5 tsp. There-
fore, in addition to (5.29) the condition T5 tsp has to be
satisfied for this effect to be examined experimentally. For
instance, if T4 10ÿ9 s, then E5 103 W cmÿ1. Oscillations of
populations in the state C3 were experimentally revealed in
Ref. [145a]. However, thorough measurements are required
to check expression (5.30).

5.6 Scheme V
The scheme in Fig. 10c (the V-system) does not require a
separate consideration. The wave functions for the `atom of
theV-type in two fields which are close to resonances with the
1! 2 and 1! 3 transitions' system are obtained from the
expression forFs (4.15) by reindexing 1$ 2 and by replacing
o1 ! ÿo1. Then, instead of (4.15) we have [160]

Fs � C 0s exp
�ÿ i�E1 � ls � D21�t

�
�
�
U1 � V21

ls
exp�ÿio1t�U2 � V31

ls ÿ D32
exp�ÿio2t�U3

�
�5:32�

with the normalization factor C 0s being as

C 0s �
�
1� jV21j2

l2s
� jV31j2
�ls ÿ D2

32�

�ÿ1=2
: �5:33�

The quantities ls obey Eqn (4.14) in which all the above
replacements are made. Then (4.14) takes the form

l�l�D21��lÿ D32�ÿ�lÿ D32�jV21j2ÿ ljV31j2� 0 ; �5:34�

where D32 � E3 ÿ E2 � o1 ÿ o2, and D21 � E2 ÿ E1 � o1.
In the case of the exact resonances, D21 � D32 � 0,

functions (5.32) can be written in the following form

F3 � C2 cos yÿC3 sin y ; �5:35�

F1;2 � exp��ilt����
2
p �C2 sin y�C1 �C3 cos y� ; �5:36�

where

l � 2

�h

�������������������������������������������
jd12 � ~E1j2 � jd13 � ~E2j2

q
; �5:37�

tg y �
���� d12 � ~E1
d13 � ~E2

���� : �5:38�

Thus,most of the results obtained for theL-systems can easily
be extended to the V-systems. However, the coherence is
violated due to the radiative decay because for V-systems the
`trapping' state (5.35) is represented by a combination of two
atomic functions, which are at upper levels. As a consequence,
the so-called Zeno's paradox can be explained through this
violation of coherence [162, 163].

6. Conclusions

This review is written for the attention of physicists who work
actively on the problem of the interaction between radiation
and an atom as well as those who are just now entering this
interesting and promising field. Over the whole review I have
striven to show that the study of `pure' phenomena
(neglecting collisions, atomic motions, and other relaxation
phenomena) near the resonance transitions can be of
paramount importance for fundamental and applied pro-
blems. The recent advances in atomic `cooling', and experi-
ments with a `gas' of impurity atoms in solids at ultralow
temperatures open up possibilities for experiments, in which
the influence of relaxation processes can be neglected, and
thus to advance further on the path to new physical results.
The only relaxation which cannot be eliminated is the
radiative decay itself which will always be present in
experiments on the interaction between radiation and
matter. Because of this we have given considerable attention
to so-called `first-order processes with respect to a weak field'
since these processes govern decay and relaxation of wave
functions for `atoms in resonant intense fields'.

I also want to note that with the enormous growth of
information each year and with the high degree of specializa-
tion of scientists it is hard to keep track of all the relevant
publications. To write this review I, for example, have had to
associate a series of recent publications with results which
were obtained 15 ± 20 years ago. In this connection I want to
thank all the participants of the traditional meeting in
Ashtarak on the subject of `The Resonance Interaction
between Laser Radiation and Matter', who at different

0 t

TT

EpEs

Es; p

tÿt

Figure 19. Temporal distributions and time delays for Ep and Es.
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times since the 70th have taken part in discussions of the
issues I set forth in this review.

Unfortunately, many issues have not been covered in this
review. First of all, these are the issues in which a quantized
electromagnetic field must be used. As to the issues in which
the classical representation of a field can be used, we have not
considered: four-level systems in resonant fields; the `atom
plus field' system in external constant fields; polarization
phenomena; transitions involving continuous spectra, ioniza-
tion processes, etc. I hope to cover this gap in a subsequent
paper.

A reach variety of new results have been obtained during
the past year in themicroscopic nonlinear optics. I want to list
below the most essential achievements which can be a help for
readers in orienting themselves to the tendency toward the
advancement of this field of science.

(1) Experiments on resonance fluorescence are conducted
with participation of separate ions trapped and cooled down
to ultralow temperatures. In Ref. [164], the measurement
accuracy of order a few hertz was achieved by using
heterodyne spectral method. Classical and quantum (anti-
grouping) characteristics of resonance fluorescence were
separated and studied.

(2) Works on creation of one-atom laser have gained wide
acceptance. In a series of publications (see, for instance, Ref.
[165] and references cited therein) the results of experimental
and theoretical investigations in this field have been pre-
sented.

(3) The study along a fresh direction which came into
being at the interface between quantum optics and informa-
tion theory (quantum computers) is proceeding vigorously. A
particularly great amount of works was published recently
(see, for example, Ref. [166] and references cited therein).
Practically important results, which seem now to be illusive,
may be achieved in this field of research.

This review could not have been written without the help
of G Grigoryan and R Unayan, nor of V Nikogosyan and
E Pashayn whom I want to thank here.

This work was partially supported by the Board of
Education and Science of the Republic of Armenia within
the scope of the project N 96-772 and by the International
Soros Science and Education Program (Grant No. 170 e.p.).

7. Appendix

When considering the first-order processes in Sections 2.5, 2.6
we have neglected the upper-level decay, i.e. we have assumed
that the condition 2jd � ~E j4 �hG is satisfied. Therefore, the
results from Refs [40, 43a] should be considered in the limit
G! 0 and a2 4 1 before they can be compared with the
results from Sections 2.5, 2.6. At first we compare the
expressions for resonance fluorescence.

Using the formula

lim
G

�o0 ÿ o�2 ÿ G2
� pd�o0 ÿ o� ;

we obtain the expression for the spectral distribution of
resonance fluorescence from Ref. [40] for a2 4 1:

g�o0� � p
2a2

d�o0 ÿ o� � p
2
d�o0 ÿ o�

� p
4
d�o0 ÿ o� O� � p

4
d�o0 ÿ oÿ O� : �A:1�

The first two terms in the above expression correspond to the
coherent and incoherent parts of the unshifted-in-frequency
(Rayleigh) scattering. In this limit the relevant emission
probabilities from [40] are exactly the same as those in
(2.56), (2.60) for the sudden activation of interaction. The
unshifted-in-frequency, common scattering is fully coherent
when the interaction is switched on adiabatically, as opposed
to the case of a sudden activation when it is fully incoherent
for a2 4 1 and its probability is equal to the sum of
probabilities from expressions (2.56), (2.60). This can be
understood from the fact that D11 � ÿD22 and

F 0 � 1���
2
p �C1 �C2�

for a4 1. The next two terms in the expression (A.1) for the
spectral distribution over the side frequencies o� O and the
relevant expressions from Ref. [40] are exactly the same as
(2.61) and (2.62) for G! 0 and a2 > 1 (provided that the
spontaneous components are extracted, i.e. nk0e0 � 0 is set). In
the resonance fluorescence a single side line appears on the left
or on the right from the strong resonant-field frequency
(o0 � oÿ O for D > 0, and o0 � o� O for D < 0), when
the interaction is switched on adiabatically.

In a similar manner the results from Ref. [43a] can be
compared against expressions for the stimulated absorption
and emission processes for the system `atom plus resonance
field' in Sections 2.4 and 2.5. For a2 4 1, (2.61) and (2.62) are
followed by the expressions for the stimulated emission
( dW > 0) and stimulated absorption ( dW < 0) at frequen-
cies o� O, respectively:

dWo�O � ��o� O�2
8p�hc3a

jd � e0�jnk0e0 sgnD dO0 : �A:2�

The expression (A.2) should be divided by a when the
interaction is switched on adiabatically.
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