
Abstract. A review is presented of some recent theoretical
results in the research and development work on artificial
spatially dispersive media and on structures possessing chiral
properties in the microwave range. The results discussed are
mainly obtained for chiral objects taken in the form of long
helices of small radius to wavelength ratio, and of arrays of
such helices. These structures display strong polarization-selec-
tive resonance effects which give rise to a rich variety of their
electrodynamic properties.

1. Introduction. A phenomenological theory

This paper is a review of some recent theoretical results
obtained in a new trend of the theory and the application of
artificial media with spatial dispersion, known as chiral
media. This trend deals with media which exhibit chiral
properties in the radiowave range at the centimetre and
millimetre scales rather than in the optical range (optical
activity). The chiral effects are related to symmetrical proper-
ties of elements, which are used to produce the artificial
medium. The potentialities of the artificial media are wider
than in the optical range, where chirality is determined by the
properties of molecules, since their constituents can possess a
complicated structure. In particular, they may show resonant

characteristics, though their size is small compared to the
wavelength.

Artificial chiral media can be not only `three-dimensional'
but also thin with regard to the wavelength. The new results
discussed in the paper were mainly obtained for chiral objects
such as long helices of small radius, arrays of such helices and
cascades of these arrays. These objects were found to posses a
wide variety of electrodynamic properties.

At present a lot of research groups from Finland, the
USA, Belorussia, Russia, France, Germany and South Africa
are involved in theoretical and experimental studies of
artificial chiral media. International conferences on these
objects have been held since 1993. The latest one took place
in Russia in 1996. The references of the conference proceed-
ings [1] list 109 works devoted to the electrodynamics of
artificial media, carried out during 1995 only. The problem is
considered comprehensively in Ref. [2].

The Introduction outlines the foundations of a phenom-
enological theory and some basic results, in particular, new
data obtained in the framework of the theory (Sections 1.3
and 1.4).

1.1 Spatial dispersion. Constitutive relations
The idea that there is a one-to-one correspondence between
the electric induction D�r; t� and electric field strength E�r; t�
(we use hereafter the Gaussian CGS system of units)

D�r; t� � eE�r; t� ; �1:1�

where the permittivity e (scalar or tensor) depends on the
properties of the medium, requires, as is known, two
refinements. In the general case statement (1.1) that the
electric displacement D�r; t� depends only on E�r; t� deter-
mined at the same point and moment is not correct.

One refinement consists in the fact that the electric
displacement D�r; t� depends not only on E�r; t� but also on
its time derivative. For an arbitrary dependence ofE�r; t� on t,
Eqn (1.1) is not valid. However, when the field follows the
harmonic dependence, i.e. there are time-independent vectors

B Z Katsenelenbaum Institute of Radio Engineering and Electronics,

Russian Academy of Sciences,

ul. Mokhovaya 11, 103907 Moscow, Russia

Tel. (7-095) 203 48 36

Fax (7-095) 203 84 14

E N Korshunova, A N Sivov, A D Shatrov Institute of Radio Engineering

and Electronics, Russian Academy of Sciences,

pl. Vvedenskogo 1, 141120 Fryazino, Moscow Region, Russia

Tel. (7-095) 526 92 66

Fax (7-095) 203 84 14

Received 29 May 1997

Uspekhi Fizicheskikh Nauk 167 (11) 1201 ± 1212 (1997)

Translated by G N Chuev; edited by A Radzig

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 41.20.Jb, 42.25.Ja, 78.90.+t, 84.40.Cb

Chiral electromagnetic objects

B Z Katsenelenbaum, E N Korshunova, A N Sivov, A D Shatrov

Contents

1. Introduction. A phenomenological theory 1149
1.1 Spatial dispersion. Constitutive relations; 1.2 Generalized circular polarization; 1.3 Chirality as a perturbation

removing degeneracy. Waveguides filled with a chiral medium; 1.4 Bodies with an electric and magnetic surface

conductance along one direction. The invariance of circular polarization

2. Thin cylinders with helical surface conductance as chiral elements 1152
2.1 Properties of guided waves; 2.2 Low-frequency resonances in isolated cylinders under diffraction of plane

waves

3. Diffraction at arrays of cylinders with helical surface conductance 1157
3.1 Array of cylinders with electric and magnetic surface conductance; 3.2 Array of hollow cylinders with electric

surface conductance; 3.3 Chirotropic and filtering properties of the two-array cascade

References 1159

Physics ±Uspekhi 40 (11) 1149 ± 1160 (1997) #1997 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



E�r� and D�r� (which are complex amplitudes):

E�r; t� � Re
�
E�r� exp�iot�� ;

D�r; t� � Re
�
D�r� exp�iot�� ; �1:2�

then Eqn (1.1) is correct, but the coefficient e depends on the
frequency, e � e�o�. This frequency dependence may not be
taken into account only when the Fourier (temporal)
spectrum of these quantities is `rather narrow', i.e. the
process is close to the harmonic one. Further we will consider
only the harmonic processes and refer to E�r� andD�r� as the
electric field strength and displacement, respectively. The
complex amplitudes H�r� and B�r�, i.e. the magnetic field
strength and induction, are introduced in a similar manner.

The other refinement deals with spatial dispersion, i.e.
with the fact that the electric displacement D�r� depends not
only on E�r� but also on its spatial derivatives. In the media
where this effect is substantial, formula (1.1) is not correct for
arbitrary spatial dependences of the fields. Only when the
fields vary in space as in a plane wave (at least locally), this
formula still holds, but e depends on the direction of the
normal N to the wave front:

D�r� � e�N�E�r� : �1:3�

The permittivity e�N� is a tensor and not a scalar even in an
isotropic medium.

For arbitrary dependences of the fields on r, the first
spatial derivatives of E�r� enter the electric displacementD�r�
only through the combination rotE�r� [3]. Since the fields
D�r� and E�r�, as well as B�r� and H�r� for harmonic
oscillations in points with no extraneous currents satisfy the
homogeneous Maxwell equations

rotH � ikD ; rotE � ÿikB
�
k � o

c

�
; �1:4�

the constitutive relations linking these vectors can be written
in the symmetric form excluding their explicit derivatives:

D � eEÿ iKH ; B � mH� iKE : �1:5�

Here e, m, and K are the material constants, which do not
depend on the field structure [cf. (1.3)]. There are some other
forms of these relations in the literature, which are equivalent
in essence.

The cross-terms arising in (1.5) can be explained without
considering the nonlocal dependence of D on E (and
correspondingly B on H). The term proportional to H,
which is included in D, means that a current induced by an
alternating magnetic field in the elements of a chiral medium
causes not only a magnetic dipole moment but also an electric
dipole moment. Due to the reciprocity requirement, the
alternating electric field induces in such elements the current
which in turn gives rise to both the electric and magnetic
dipole moments, i.e. the magnetic flux density is also
proportional to E.

Inmedia with no absorption effects thematerial constants
e, m, and K are real. Notice that the coefficients of the cross-
terms in (1.5) are complex conjugated, since the medium
properties should be otherwise nonreciprocal.

We assume the constants e, m, and K to be scalar, i.e. we
consider isotropic chiral media, which aremost interesting for
radiophysics.

In the next three sections we consider some formal
properties of solutions to the homogeneous Maxwell equa-
tions satisfying constitutive relations (1.5).

1.2 Generalized circular polarization
The electrodynamic behaviour of any homogeneous medium
can be naturally characterized by the field structure pertinent
to eigenwaves, which can propagate in the medium along an
axis z so that all the components of the waves depend on z via
the factor exp�ÿihz�. In an isotropic unbound medium the
axis z can be any straight line.

In an achiral medium �K � 0� the eigenwaves are, for
example, two linearly polarized plane waves:

Ex � exp�ÿihz� ; Hy � 1

Z
exp�ÿihz� ; �1:6a�

Ey � exp�ÿihz� ; Hx � ÿ 1

Z
exp�ÿihz� ; �1:6b�

where

h � kn ; n � �����
em
p

; Z �
���
m
e

r
: �1:7�

These waves have the same propagation constants h and any
linear combination of the waves is the eigenwave too. If the
coefficients of this linear combination are complex, then the
wave need not be linearly polarized.

In a chiral medium �K 6� 0�, the waves corresponding to
(1.6) cannot exist independently, only two of their linear
combinations are eigenwaves

Ex � exp�ÿih�z� ; Ey � ÿi exp�ÿih�z� ;

Hx � i

Z
exp�ÿih�z� ; Hy � 1

Z
exp�ÿih�z� ; �1:8a�

Ex � exp�ÿihÿz� ; Ey � i exp�ÿihÿz� ;

Hx � ÿ i

Z
exp�ÿihÿz� ; Hy � 1

Z
exp�ÿihÿz� : �1:8b�

The propagation constants of these waves are different and

h� � k�n� K� ; �1:9�

the wave corresponding to (1.8a) is left-hand circularly
polarized, while the other wave (1.8b) has right-hand circular
polarization.

In these waves the electric and magnetic fields are coupled
by the relations

H� � � i

Z
E� : �1:10�

In a chiral medium any fields E�, H�, and Eÿ, Hÿ
satisfying relations (1.10) can exist independently. These
fields are naturally referred to as the fields with generalized
circular polarization [4] (see, also Ref. [5]). The upper sign in
(1.10) corresponds to the left-hand circular polarization, the
lower sign to the right-hand one.

Any field E,H can be written as the sum of two fields with
generalized circular polarization:

E � E� � Eÿ ; H � H� �Hÿ ; �1:11�
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where

E� � 1

2
�E� iZH� ; H� � 1

2

�
H� i

Z
E

�
: �1:12�

Substituting (1.10) into (1.5), we arrive at

D� � e�E� ; B� � m�H� ; �1:13�

where

e� � e
�
1� K

n

�
; m� � m

�
1� K

n

�
: �1:14�

Thus, in a chiral medium for fields with generalized circular
polarization theMaxwell equations and constitutive relations
have the same form as in an achiral medium, but the
equivalent material parameters differ for the fields with
different circular polarizations (see, for example, Ref. [6]).

Notice that according to (1.10) theMaxwell equations are
reduced to the single first-order equation

rotE� � �kn�E� ; �1:15�
where

n� � n� K : �1:16�
The first equation in (1.13) has the same meaning as

relation (1.3), but it applies not to locally plane waves but to
the fields following (1.10), and the quantities e� for these
fields depend only on the point considered, in contrast to
e�N�.

1.3 Chirality as a perturbation removing degeneracy.
Waveguides filled with a chiral medium
Filling a waveguide with a chiral medium reveals some new
properties of eigenwaves (see Refs [1, p. 227], [7]). Here we
consider only one of the most essential such properties,
namely, the chiral effect in the case when the system of
waves in the guide at K � 0 is degenerate.

According to (1.8) and (1.9), in an unbound medium the
chiral effect removes the degeneracy of plane waves with
different directions of linear polarizations. This well-known
result could also be found by perturbation theory, supposing
the coefficient K to be a small perturbation parameter. It
makes no sense to use this approximate method for the above
problem, since the latter has a simple exact solution.
However, accurate methods for the problem considered
below require cumbersome numerical procedures and they
differ for waveguides with different cross-sections, while
calculations by the approximate method assume an elemen-
tary character and can be applied to a wide class of
waveguides. We present here only the statement of the
problem and the final result [8].

We consider a circular or square dielectric waveguide or
closed waveguides with the same cross-section, which are
filled with dielectric material (perhaps not completely). In
such waveguides and in many other waveguides of more
complicated cross-sections filled with an achiral substance
there occur two waves with mutually perpendicular polariza-
tions and equal propagation constants. In this case, the
change from an achiral filling substance to a chiral one
results in a drastic effect, i.e. removal of the degeneracy. The
eigenwaves in the chiral waveguide acquire different propaga-
tion constants and well-defined polarizations.

We write the propagation constants of the eigenwaves in
an unbound chiral medium (1.9) as

h � h0 � Dh ; �1:17�

where h0 � kn is the propagation constant in the achiral
medium, Dh � kK.

The perturbation theory yields the following result. The
propagation constants in the waveguides also occur symme-
trically split and the relations for the constants pertinent to
both the propagating waves are the same as (1.17), where h0 is
the propagation constant of degenerate waves in the achiral
waveguide, while Dh is determined by the formula

Dh � akK ; �1:18�
where the coefficient a is expressed through the unperturbed
fields:

a �
�ÿ
H�1�;E�2�

�
dS : �1:19�

Here H�1� and E�2� are the fields of both degenerate waves in
the achiral waveguide, which have mutually perpendicular
polarizations; these fields are normalized so that the power
transferred by them is equal to unity. In (1.19) we should
integrate the scalar product over the cross-section filled with a
dielectric substance. In the zero approximation with respect
to the small parameter K, the fields of the eigenwaves have a
structure similar to that of plane waves with circular
polarization in an unbound medium (1.8).

For a circular closed waveguide and Hn1-waves we have
a � 2n=�n2 ÿ n2�, where J 0n�n� � 0. For a square waveguide
andHn0-waves the degeneracy is eliminated only at odd n and
a � 8=�pn�2. For example, the coefficient a is equal to 0.84 for
the H11-wave and to 0.81 for the H10-wave. In a waveguide
filled with a chiral substance the rotation of the polarization
plane is approximately 0.2 less than in an unbound medium.

The influence of a small probe on the resonator frequency
and the phase velocity in a waveguide was considered in Refs
[9, 10]. According to these papers, if degenerate oscillations or
waves existed in a rectangular resonator or a cylindrical
waveguide before the insertion of a probe, then measuring
the change in the resonance frequency or phase velocity,
respectively, we can determine the parameter K.

In the case of an open dielectric waveguide, one of the
magnitudes of the h constant in (1.17) may be less than the
wave number in the external medium. Then the correspond-
ing wave will be leaky, while the waveguide will operate in a
unique mode.

1.4 Bodies with an electric and magnetic surface
conductance along one direction. The invariance of
circular polarization
A circularly polarized wave scattered by the interface between
two chiral media generally produces waves with both circular
polarizations. It is known that a wave with left-hand circular
polarization normally incident on a plane metallic mirror,
reflects from the mirror as a right-hand circularly polarized
wave. For an ideally reflective plane interface we will find the
condition at which such transformation is not the case. Let
the left-hand circularly polarized wave (1.8a) be incident on
the plane boundary z � 0. Then, in the reflected wave the
component Ex at the boundary should be equal to exp�ia�,
while the componentEy should differ fromEy for the incident
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wave not only by a phase multiply but a sign as well. Hence,
the total field at the boundary is equal to Ex � 1� exp�ia�,
Ey � ÿi

ÿ
1ÿ exp�ia��. The ratio of these components is a real

value, and therefore the total field at the boundary is linearly
polarized and has angle a=2 with respect to the x axis. Hence,
the component of the electric field perpendicular to this
direction of the total field is equal to zero. According to
(1.10) the component H should also be zero in the total field
direction. Thus, to avoid depolarization at the boundary, a
direction t should exist at which

Et � Ht � 0 : �1:20�
This result is easily extended to the case of waves with
generalized circular polarization (1.10), scattered by obsta-
cles of arbitrary shape.

The boundary conditions (1.20) describe, for example, a
thickly corrugated metal sheet whose grooves are filled with a
substance with high permittivity and are a quarter of a
wavelength in `electric' depth. Note that the boundary
conditions (1.20) taken at an obstacle surface of an arbitrary
shape are sufficient to prove the theorem of the uniqueness of
the solution to the Maxwell equations. It is assumed in the
proof that the normal component of vector �E;H�� is zero,
which means that a power flux through the surface is absent.
This also takes place under the boundary conditions (1.20).

Let us prove that these boundary conditions result in the
conservation of any one of the generalized circular polariza-
tions (1.10) on scattering by an obstacle of arbitrary shape in
the chiral medium.

Let the obstacle be restricted by the surface S, where
the boundary conditions (1.20) apply, meaning the local
electric and magnetic conductances are ideal in some
tangential direction t. The obstacle is held in a field with
left-hand circular polarization E0

�, H0
�. We denote the

scattered field as Es, Hs. In the far region, the scattered
field is a divergent spherical wave. For example, the
electric field is written as Es ' F�j; y� exp�ÿikR�=R,
where F�j; y� � �Fj�j; y�;Fy�j; y�

	
is the scattering vec-

tor diagram. The boundary conditions (1.20) are written asÿ
E0
� � Es

�
t
� ÿH0

� �Hs
�
t
� 0
���
S
: �1:21�

Using (1.12), we extract the right-hand circularly polarized
component of the scattered field

Es
ÿ �

1

2

ÿ
Es � iZHs

�
: �1:22�

Relation (1.21) results inÿ
Es
ÿ
�
t
� 0
���
S
: �1:23�

Using relation (1.15) corresponding to the lower sign, we can
easily find for any point:

div
�
Es
ÿ;E

s�
ÿ
� � 0 : �1:24�

Integrating (1.24) over the volume restricted by an infinitely
far surface S1 and by the obstacle surface S, we have�

S1

�
Es
ÿ;E

s�
ÿ
�
R
ds�

�
S

�
Es
ÿ;E

s�
ÿ
�
N
ds � 0 : �1:25�

The second term in (1.25) is zero, according to (1.23). As a
result, the first term is also zero. The components of the

scattering vector diagram for fields with right-hand circular
polarization are coupled by F ÿy �j; y� � ÿiF ÿj �j; y�, there-
fore the nullifying first term in (1.25) leads to F ÿy � F ÿj � 0.
As is known, this means that Es

ÿ is identically zero, and hence
Es � Es

�, i.e. the scattering does not change the polarization
of the incident field. The case when E0 � E0

ÿ can be
considered similarly.

Clearly, the separation of any field, according to (1.11),
takes place in an achiral medium too. This separation remains
even if the achiral medium includes scatterers satisfying the
boundary conditions (1.20). Thus an artificial chiral medium
can be produced by small scatterers frequently and randomly
distributed in the achiral medium, which satisfy the boundary
conditions (1.20).

The microscopic theory resulting in the constitutive
relations (1.5) is fully developed in optics (see, for example,
Ref. [11]). But in the radio wave range the problem of
determining the material constants e, m, K is formulated
differently and implies the calculation of the polarizability
for small scatterers of a complicated shape, i.e. the solution of
the diffraction problem. The latter is solved only for several
chiral elements such as small metal helices [12], open rings
with salient ends [13], and spheres with helical electric
conductivity [14]. The MoÈ bius strip is also reported to be a
chiral element [15]; note that in this case the general method
for solving diffraction problems at unoriented surfaces may
be appropriate [16].

The calculation of constituent constants in (1.5) for three-
dimensional media as well as the general statement of the
problem could be a subject of a separate paper and are not
considered here. In the next two sections we solve the
diffraction problems for the chiral elements such as thin
elongated helices and arrays of these helices.

2. Thin cylinders with helical surface
conductance as chiral elements

We describe here the physical properties of electromagnetic
fields arising due to the diffraction of plane waves at thin
elongated anisotropic cylinders with helical conductivity.
Such cylinders show resonant properties closely related to
the guided waves.

We consider cylinders having combined electric and
magnetic helical conductivity or only electric conductivity of
the same type.

The latter model well describes (one- or multiturn) coils
when the distance between axes of neighbouring wire loops is
far less than the wavelength, while the gaps fall in the certain
range. The wire is assumed to be thin compared to the helix
radius. The good approximation of real coils by the model is
experimentally confirmed in Ref. [18], and, in particular, by
results from the theoretical consideration made in Ref. [17].
Notice that under certain conditions such objects do not
change the direction of circular polarization of incident waves
scattered by the objects.

The model of a scatterer in the form of a cylinder with
helical electric and magnetic conductivity has ideal chiral
properties, i.e. the circular polarization of the incident field
remains the same at all conditions in accordance with the
results of Section 1.4. As this takes place, the scattered fields
differ significantly for waves with different directions of
circular polarization. Notice that the model with combined
electric and magnetic conductivity is simpler for the mathe-
matical treatment.
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2.1 Properties of guided waves
2.1.1 Waves scattered by a cylinder with combined helical
conductivity. Let a cylindrical surface of radius a (Fig. 1)
satisfy the boundary conditions (1.20) corresponding to ideal
electric and magnetic conductivity along the circular helix:

Ez cosc� Ej sinc � 0 ; Hz cosc�Hj sinc � 0 ; �2:1�

where c is the twist angle. For definiteness, we consider right-
hand circular helixes �04c4 p=2�. The conditions (2.1) are
one-sided, therefore the inner and outer cylindrical regions
can be treated independently.

We consider the waves propagating outside the cylinder
�r > a� and depending on the coordinates j and z as
exp�ÿimjÿ ihz�, where h is the longitudinal wavenumber.
Not restricting ourselves, we suppose the azimuthal index to
be positive (m5 0) as the simultaneous change in sign of m
and h corresponds to the same wave propagated in a
coordinate system with the opposite direction of the z-axis.

Under the boundary conditions (2.1) the homogeneous
Maxwell equations have two types of independent solutions
corresponding to circularly polarized waves (in accordance
with (1.10) at e � m � 1)

H � �iE : �2:2�
The upper sign in (2.2) and further denotes right-hand
circular polarization, while the lower sign implies left-hand
circular polarization. The dispersion equations for transverse
wavenumber g � g 0 � ig 00 �

���������������
k2 ÿ h2
p

used for symmetrical
�m � 0� and asymmetrical �m5 1� waves take the form [19]

gaH
�2�
0 �ga�

H
�2�
1 �ga�

� �nka ; �2:3�

h � �kÿ mn=a

1� nka
�
H
�2�
mÿ1�ga�=gaH �2�m �ga�

� ; �2:4�

where n � tanc.

For left-hand circular polarization equation (2.3) has a
solution at any twist angle, corresponding to a slow wave
�g 0 � 0, g 00 < 0�. The symmetrical wave with the right-hand
circular polarization is leaky �g 00 > 0�. For a cylinder of small
radius �ka5 1� the radiative losses of the wave are small
�g 005 g 0, 0 < g 0 < k�.

If the twist angle is zero (and n � 0) the asymmetrical
waves are TEM-modes �Ez � Hz � 0, h � �k�. In this case
the electric field is written as

Ej �
�
a

r

�m�1
exp�ÿimj� ikz� ;

Er � �iEj ; m5 1 : �2:5�
It follows that the right-hand wave at m5 1 propagates only
along the positive direction of the z axis, while the left-hand
wave propagates in the opposite direction. At small angles of
twist �n5 1�, the terms in (2.4) which are of the highest order
with respect to n yield the expression for the longitudinal
wavenumber

h � �kÿm
n
a
: �2:6�

As is seen from (2.6), the right-hand circularly polarized
waves are fast

ÿjhj < k
�
, while the left-hand waves are slowÿjhj > k

�
. Formula (2.6) for the fast waves only yields the

approximate value of the real part of h � h 0 � ih 00. To
calculate h 00, we should take into account higher-order terms
in n in (2.4). At small ka, using the perturbation theory, by
(2.4) we can find an explicit expression for the radiative losses
of a leaky wave. For instance, at m � 1 we have

h 0 � kÿ n
a
; h 00 � ÿ pkn2

2
: �2:7�

A significant peculiarity of the waveguide at hand is the
existence of forward and backward waves, i.e. the waves
whose phase and group velocities are the same or opposite in
sign, respectively. Varying the waveguide parameters, we can
transform waves of a certain type into ones of the other type.
According to (2.7), for a wave with azimuthal index m � 1
this transition occurs at ka � n.

2.1.2 Waves of a hollow cylinder with electric surface helical
conductivity [20]. We describe here properties of waves
scattered by an anisotropic cylinder whose surface satisfies
the Vladimirski|̄ two-side boundary conditions

E�z � Eÿz ; E�j � Eÿj ; Ez cosc� Ej sinc � 0 ;ÿ
H�z ÿHÿz

�
cosc� ÿH�j ÿHÿj

�
sinc � 0 : �2:8�

The superscripts `�' and `ÿ' correspond to the different sides
of the cylindrical surface. The dispersion equation for a wave
at the cylinder can be written as�

h� k�m
n
a

��
hÿ k�m

n
a

�
� n2k2

Jmÿ1�ga�H �2�mÿ1�ga� � Jm�1�ga�H �2�m�1�ga�
2Jm�ga�H �2�m �ga�

: �2:9�

The relevant slowwaves are carefully investigated inRef. [21].
We discuss the properties of leaky and slow waves under the

c

y

j

y

x

r

z

2a

R

Figure 1. Cylinder with surface helical conductance.
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conditions

n5 1 ; ka5 1 : �2:10�

These properties are rather close to those considered in
Section 2.1.1.

In contrast to (2.3), dispersion equation (2.9) does not
have a solution corresponding to a weakly leaking wave at
m � 0. For asymmetrical waves �m5 1� under conditions
(2.10) the right-hand side of (2.9) is small and formula (2.6) is
valid for the longitudinal wavenumber.

At n � 0, the asymmetrical waves are TEM-modes whose
fields outside the cylinder are described by the same formulae
(2.5), while inside the cylinder the fields are given by

Ej �
�
r

a

�mÿ1
exp�ÿimj� ikz� ; Er � �iEj : �2:11�

Notice that according to (2.5) and (2.11) the direction of
polarization rotation differ inside and outside the cylinder for
each wave. Inside the cylinder the fundamental mode �m � 1�
is a plane wave.

If n 6� 0, then under conditions (2.10) the waves retain
circular polarization with good accuracy.

Using the perturbation method, the formulae for the real
and complex parts of the propagation constant can be derived
from (2.9). They differ from (2.7) only in that the damping is
twice as small in the case of a hollow cylinder, since the
longitudinal flux of power is twice as large due to the presence
of the inner cylindrical region.

2.1.3 Waves scattered by a cylinder with electric conducting
surface, which is filled with a magnetodielectric substance [22].
We consider the properties of waves guided by a cylinder
under the conditions ka

�����
em
p

5 1 and n5 1, where e and m are
the permittivity and permeability of the cylinder, respectively.
Without writing the cumbersome dispersion equation [22]
resulting from the boundary conditions (2.8), we present here
only its solution

h � �k
�����������������
m�e� 1�
m� 1

s
ÿm

n
a

�m5 1� : �2:12�

Notice that taking into account only the terms which have
the highest order with respect to ka, the lowest modes �m � 1�
inside the cylinder are homogeneous plane circularly polar-
ized waves:

Ej � exp�ÿijÿ ihz� ; Hj � � i

Z
Ej ;

Er � iEj ; Hr � � i

Z
Er ; �2:13�

where the quantity Z, which plays the role of the wave
resistance, is equal to

Z �
������������������
m�m� 1�
e� 1

r
: �2:14�

The upper and lower sings in (2.12) and (2.13) are respective.
In doing so, the lower signs always correspond to the slow
wave, the upper signs to the leaky wave when the value of

n=ka, characterizing twisting, lies within the interval�����������������
m�e� 1�
m� 1

s
ÿ 1 <

n
ka

<

�����������������
m�e� 1�
m� 1

s
� 1 : �2:15�

External radiation fields are elliptically polarized in contrast
to the internal fields. The coefficient of ellipticity varies from
ÿ1 to�1 when n=ka lies in the range (2.15). At the twist equal
to

n
ka
� emÿ 1��������������������������������

m�e� 1��m� 1�p ; �2:16�

the radiation field is linearly polarized and is emitted at an
angle y with respect to the z-axis, which is given by

y � arccos

�����������������
m� 1

m�e� 1�

s
: �2:17�

The main property of the two lowest modes �m � 1� is
that they are homogeneous circularly polarized plane waves
with opposite directions of rotation and different propaga-
tion constants inside the cylinder. Such property is known to
be exhibited by waves in homogeneous unbound chiral
media, described by constitutive relations (1.5). The equiva-
lent constituent parameters ~e, ~m, and ~K (permittivity, perme-
ability, and chiral coefficient) are obtained by comparison of
formulae (2.12) ± (2.14) with relations (1.7) ± (1.9) for the
fields in an unbound chiral medium:

~e � e� 1

m� 1
; ~m � m ; ~K � ÿ n

ka
: �2:18�

Thus, the considered waveguide structures show strong
chiral effects, i.e. the guided-by-them waves with circular
polarization and opposite signs of polarization rotation are
principally different. In contrast to the waveguides filled with
a chiral medium (see Section 1.3), this difference results from
the helical conductivity of the surface.

2.2 Low-frequency resonances in isolated cylinders under
diffraction of plane waves
Resonance effects occur at low frequencies �ka5 1�, when a
plane wave is diffracted by isolated cylinders with helical
surface conductivity. These effects are manifested, in parti-
cular, by a sharp increase in the scattering cross-section and
tightly related to the weakly leaking waves described in
Section 2.1. The peculiarity of the scatterers is that the
resonances arise only for a certain sign of polarization
rotation of the incident wave. Below we discuss the resonant
effects for cylinders of the three types considered above.

2.2.1 Scattering by a cylinder with combined electric and
magnetic helical surface conductivity [23]. The plane circu-
larly polarized wave

E 0
z � �iH 0

z � exp�ÿihzÿ igx� ; �2:19�

where h � k cos y and g � k sin y, is incident on a cylinder at
angle y with respect to its axis �0 < y < p=2�. The scattering
problem reduces to calculation of the two-dimensional scalar
function u�r;j�, which is related to the component Ez by the
dependence

Ez � u exp�ÿihz� : �2:20�
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This function u satisfies the Helmholtz equation and can be
presented as the sum of two terms corresponding to the
incident and scattered fields:

u � exp�ÿigr cosj� � u s�r;j� ;
here the asymptotic of u s is determined by the scattering
pattern F�j�:

u s ' F�j� exp�ÿigr������
gr
p : �2:21�

In the whole region the scattered field is given by

u s �
X1

m�ÿ1
AmH

�2�
m �gr� exp�ÿimj� : �2:22�

Taking into account the boundary conditions (2.1) for the
combined conductivity, we find explicit expressions for the
coefficients Am. At ka5 1, these coefficients are small almost
without exception, and they increase sharply in resonance
only on excitation with the wave of right-hand circular
polarization and reach

Am � ÿ�ÿi�m : �2:23�
For the zero harmonic �m � 0�, the resonance frequency is
determined by the equation�

ln
gka sin y

2

�
ka sin2 y� n � 0 ; g � 1:781 : �2:24�

For other harmonics, the explicit expressions for resonance
frequencies are written as

ka � mn
1ÿ cos y

; m > 0 ; �2:25�

ka � ÿ mn
1� cos y

; m < 0 : �2:26�

At frequencies far from the resonance, the scattered field is
weak

ÿ��F�j���5 1
�
. At the resonance frequency, the scatter-

ing pattern determined by the dominant term in (2.22) is given
by

F�j� � ÿ
���
2

p

r
exp

�
ip
4
ÿ imj

�
: �2:27�

Notice that the resonances in the scattering problem are
related to leaky waves guided by the cylinder. The expressions
for the expansion coefficients Am have resonant denomina-
tors depending on the incident angle y. Equating these
denominators to zero and allowing for complex angles y, we
arrive at the dispersion equations (2.3) and (2.4) for guided
waves. In doing so, the resonance frequencies (2.25) corre-
spond to the forward waves, while the frequencies (2.26)
correspond to the backward waves. Note also that at certain
angles y the resonances for harmonics with different azi-
muthal indices coincide. For example, at normal incidence
�y � p=2�, following (2.25) and (2.26) the resonance occurs at
frequencies

ka � jmjn �2:28�
for the harmonics with different signs of azimuthal index. The
scattering pattern is written then as

F�j� � ÿ2
���
2

p

r
exp

ip
4
cosmj : �2:29�

But if y � arccos�1=3�, the harmonics with m � 1 and
m � ÿ2 are resonant at the frequency

ka � 3n
2
: �2:30�

The corresponding scattering pattern is determined by

F�j� � ÿ2
���
2

p

r
exp

�
ip
4
� ij

2

�
cos

3j
2
: �2:31�

In this case there is no backscattering
ÿ
F�p� � 0

�
.

2.2.2 Scattering by a hollow cylinder with electric helical
conductivity [24, 25]. The problem of circularly polarized
plane waves scattered by a hollow cylinder under the
boundary conditions (2.8) is not reduced to the calculation
of a scalar function as in Section 2.2.1, since depolarization
takes place, i.e. the scattered field includes waves of both
circular polarizations. The problem is solved by expanding
the longitudinal components of electric and magnetic field
strengths Ez and Hz inside and outside the cylinder in
cylindrical functions with an azimuthal factor of
exp�ÿimj�. In doing so, the expansion coefficients for the
scattered field are found in an explicit form.

Similar features of waves leaking from the cylinder with
combined conductivity and the hollow cylinder with electric
conductivity lead to analogous resonance effects in the
relevant diffraction problems. Figure 2 shows the frequency
dependence of the total scattering cross-section ss for
circularly polarized waves at normal incidence �y � p=2� on
a cylinder with twist angle c � 18�. The solid line has
resonances and corresponds to excitation with the wave of
right-hand circular polarization. The smooth dashed line
corresponds to excitation with the left-hand wave. The
positions of peaks are well described by formulae (2.28) for
the resonance frequencies of the cylinder with combined
conductivity.

Notice that even at ka! 0 [following (2.28) c! 0] the
finite disturbance of the total scattered power is observed at
resonance and ss ! 4l=p.

At the main resonance �m � 1� the magnetic and electric
fields are uniform and parallel inside the cylinder, being
perpendicular to the cylinder axis and to the direction of

0 0.2 0.4 0.6 0.8
ka

1.0

10

5

kss

Figure 2. Frequency dependence of the total scattering cross-section.
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incident wave propagation. On the excitation with a right-
hand circularly polarized plane wave of unit amplitude and
accounting only for highest-order terms, these fields are

E�y � ÿiH�y �
4

p�ka�2 : �2:32�

Outside the cylinder in the statical proximity to it, the fields
are described by the expressions

Eÿx � iHÿx � ÿ
4 sin 2j

p�kr�2 ; Eÿy � iHÿy �
4 cos 2j

p�kr�2 : �2:33�

Following (2.32) and (2.33) under the resonance conditions,
the stored reactive power is the same for the inner and outer
cylinder regions. Figure 3 plots electric and magnetic force
lines pertinent to fields (2.32), (2.33). The fields outside the
cylinder can be considered as fields induced by an infinite set
of electric and magnetic dipoles located at the z axis and
oriented in the y direction. The above-sketched low-fre-
quency resonance differs in principle from the widely-known
Helmholtz resonance (see, for example, Ref. [26]) by the
unusual field distribution and high quality.

2.2.3 Scattering by a cylinder with electric helical surface
conductivity, which is filled with a magnetodielectric substance
[27]. Filling the cylinder with a magnetodielectric substance
makes the scattered field elliptically polarized even at
resonance on exposure to incident circularly polarized
waves. Additionally, thermal losses arise in a nonideal
dielectric. For example, we consider elliptically polarized
unit plane waves, which are normally incident on the
cylinder. For materials with low dielectric losses
(e � e 0 ÿ ie 00, e 005 e 0), formula (2.12) leads to the expression
for resonance frequencies

ka � jmj
�������������������
m� 1

m�e 0 � 1�

s
n : �2:34�

Under conditions ka
�������
e 0m
p

5 1 and n5 1, the expression for
the quality of the main resonance takes the form

Q � 2�e 0 � 1�
pn2�2� e 0 � 1=m� � 2e 00�e 0 � 1� : �2:35�

The influence of the polarization of the incident wave on the
scattered and absorbed powers is as follows. The scattering
and absorption have maxima at the resonance frequency
(2.34), when the incident wave is right-hand polarized and
the coefficient of ellipticity is

K �
�������������������
m� 1

m�e 0 � 1�

s ÿ �������
e 0m

p
> 1
�
: �2:36�

In this case the major axis of polarization ellipse is directed
along the z axis. The left-hand wave with the same coefficient
of ellipticity and the axes of polarization ellipse turned
through 90� does not excite the resonance and therefore
weakly interacts with the cylinder.

At the resonance, the scattering patterns for the compo-
nents Ez and Ej � Hz are proportional to cosj [sf. (2.29)]; in
this case the electric field far from the cylinder has right-hand
polarization and the same coefficient of ellipticity (2.36).

The intensity absorbed at resonance is not a monotonic
function of e 00. It has a maximum at

e 00 � p�1� 2m� e 0m�
2m�1� e 0� n2 : �2:37�

The quality of the resonance decreases twofold for this value
of e 00 as compared to the case when there are no dielectric
losses. Under the conditions (2.37) and for the above
polarization of the incident wave (2.36), the absorption
cross-section sa is equal to the scattering cross-section ss:

sa � ss � l
p
: �2:38�

With no dielectric loss �e 00 � 0�, the maximum of scattering
cross-section exceeds the above value by a factor of 4 and
coincides with that for a hollow cylinder (see Section 2.2.2).

Figures 4 and 5 plot the frequency dependences of the
absorption and scattering cross-sections for the cylinder with

x

y

Figure 3. Electric (solid curves) andmagnetic (dashed curves) force lines at

the low-frequency resonance.
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Figure 4.Frequency dependence of the absorption cross-section at n � 0:2,
e 0 � 2, m � 1 and various e 00: (1) e 00 � 0:012, (2) e 00 � 0:035, (3)

e 00 � 0:105, (4) e 00 � 0:314, and (5) e � 0:942.
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n � 0:2, e 0 � 2, and m � 1 at various values of e 00. As is seen
from the figures, the scattering cross-section ss monotonically
depends on e 00 in contrast to sa.

3. Diffraction at arrays of cylinders with helical
surface conductance

First, we outline the results of studying the plane waves
normally incident on isolated arrays formed by cylinders
with helical surface conductivity (Fig. 6). We consider arrays
of two types: from cylinders with combined surface con-
ductivity [following boundary conditions (2.1)] and from
hollow cylinders with electric surface conductivity [bound-
ary conditions (2.8)]. The array period p is assumed to be less
than the wavelength l, ensuring the absence of side lobes. The
arrays are characterized by three parameters such as the angle
c of twisting of the conducting helices, the fill factor q � 2a=p
and the normalized period s � p=l. The quantities q and s fall
within the range �0; 1�.

Finally, we describe filtration and chirotropic properties
of a cascade from two arrays.

3.1 Array of cylinders with electric and magnetic surface
conductance
The problem of circularly polarized plane waves normally
incident on an array of cylinders with combined surface
conductivity is reduced to the calculation of a scalar function
u�x; y� � Ez satisfying the homogeneous Helmholtz equation

Du� k2u � 0 �3:1�

under boundary conditions of the third kind on the surface of
each cylinder

n
qu

q�kr� � u � 0 ; �3:2�

where r is the local radial coordinate. The upper and lower
signs correspond to the right-hand and left-hand circular
polarizations, respectively. Far from the arrays

ÿjxj4 p
�
, the

function u takes the form

u � exp�ÿikx� � R exp�ikx� �x < 0� ;
u � T exp�ÿikx� �x > 0� ; �3:3�

where R and T are the required reflection and transmission
coefficients. An infinite set of linear algebraic equations for
coefficients of the function u expanded in a Fourier series on
the cylindrical surface are found in Ref. [28]. The quantitiesR
and T are expressed by these coefficients via simple formulae.

On excitation with right-hand circularly polarized waves
some effects arise in the array, which are related to low-
frequency resonances in isolated cylinders. The conditions of
the resonances are determined by (2.24) ± (2.26) at y � p=2. In
the vicinity of the resonances, the coefficients R and T change
sharply. Figure 7 depicts the dependence of absolute values of
the transmission coefficient on s for thewaves with right-hand
(solid line) and left-hand (dashed line) circular polarization,
scattered by an array with parameters q � 0:04 and c � 5�.
At the resonance m � 0, the waves are completely reflected,
while in the vicinity of the resonance m � 1 complete
reflection as well as complete transmission take place. The
left-hand wave is subjected to an almost complete transmis-
sion over the whole range of s, thus, the array is an effective
polarized filter, for example, at the zero resonance.

y

x

z

p2a

j

c

Figure 6. The general view of the array of cylinders with helical surface

conductivity.
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Figure 7. Frequency dependences of absolute values of the transmission

coefficient for the right-hand (solid line) and left-hand (dashed line)

circularly polarized waves at q � 0:04, c � 5�.
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Figure 5. Frequency dependence of the scattering cross-section at n � 0:2,
e 0 � 2, m � 1 and various e 00: (1) e 00 � 0:012, (2) e 00 � 0:035, (3)

e 00 � 0:105, (4) e 00 � 0:314, (5) e 00 � 0:942, and (6) e 00 � 0.
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3.2 Array of hollow cylinders with electric surface
conductance
In this case the diffraction problem is not reduced to the
calculation of a scalar function as in the previous section.
Complicated polarization phenomena arise in this situation
and the arrays can be used to transform various types of
polarization. The method for calculating these arrays is
described in detail in Ref. [29]. The matrix reflection and
transmission coefficients are expressed by coefficients of the
Fourier expansion for the current at the cylindrical surface.
These coefficients satisfy an infinite set of linear algebraic
equations. We describe below the electrodynamic properties
of the arrays revealed.

3.2.1 Semi-transparent shields for circularly polarized waves.
Circularly polarized waves exciting an array were studied in
Refs [30, 31]. The authors found a relationship between the
three array parameters c, q, and s at which the transmitted
and reflected waves are circularly polarized and retain the
same direction of polarization rotation as the incident wave.
Figure 8 shows the dependences of q and s on c for this class
of arrays. The dependences of the amplitudes and phases of
transmission coefficients jtr; lj and br; l on the twist angle c are
shown in Figs 9 and 10 for the right- and left-hand circularly
polarized waves. As is seen from Figs 8 and 9, at c � 55�,
q � 0:87, and s � 0:38 the array completely reflects the left-
hand circularly polarized wave and partially transmits the
right-hand wave.

3.2.2 Transducers of polarization as power dividers. The array
parameters can be chosen so that the incident linearly
polarized wave Ey � cos y exp�ÿikx�, Ez � sin y exp�ÿikx�
is transformed into two circularly polarized waves, the

transmitted and reflected waves having opposite directions
of polarization rotation. The relationship between the four
parameters y, c, q, and s providing such transformation was
found in [31]. The transformation can be carried out using
two classes of arrays corresponding to the left- and right-hand
circular polarizations of the transmitted wave.

3.2.3 Effect of frequency-polarization modulation. The array
with parameters c � 15� and q � 0:34 at s � 0:23 transforms
circularly polarized waves into linearly polarized waves [32 ±
34]. On the excitation with right-hand circularly polarized
waves the transmitted electric field vector is directed along the
cylinder axes, while the reflected field is directed perpendi-
cular to them. On the excitation with left-hand circularly
polarized waves the electric field vector of the transmitted
wave is directed perpendicular to the cylinder axes, while the
reflected field is directed along them. For the array involved
the transmitted and reflected fields remain all but linearly
polarized (the coefficient of ellipticity is less than 0.05) over a
fairly wide frequency range. In the case of the right-hand
circularly polarized exciting waves, the transmitted and
reflected electric field vectors rotate a large angle in opposite
directions at small frequency variations near the resonance.
Figure 11 illustrates this effect. On excitation with the left-
hand circularly polarized wave the electric field vectors
virtually do not change direction. The transmitted and
reflected intensities for both the polarizations weakly change
and are equal approximately to 0.5 for the range of s
presented in Fig. 11.

3.2.4 Effect of transmitted electric field vector turned through
90�.An array excited by linearly polarized waves was studied
in Ref. [35], the angles y between the electric field vector and
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Figure 8.Dependences of q and s on the twist angle c.
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the y axis were�45�. A class of arrays was found forwhich the
transmitted and reflected fields are linearly polarized with the
electric field vector for the transmitted wave turned through
90�, while the reflected electric field vector retains the
orientation of the incident field. Notice that at c � 51� and
c � 63� complete transmission occurs for the case when
y � ÿ45�. For the orthogonal polarization �y � 45�� and
certain values of c complete reflection sets in.

3.3 Chirotropic and filtering properties of the two-array
cascade
Compared to above-considered isolated arrays, the array
cascades have some new physical properties. We discuss
here two properties of the cascade of two arrays involving
hollow cylinders with helical electric conductivity. They are
the possibility of ideal filtering of circularly polarized waves
and the possibility of rotation of the electric field vector
through any given angle without the power loss in the
reflection at any direction of the electric field vector in the
incident wave (in contrast to the effect described in Section
3.2.4).

3.3.1 Ideal filtration of circularly polarized waves. The cascade
includes two identical arrays separated a distance d in parallel
planes. The cylinders in both arrays have the same orienta-
tion. It is assumed that d > p, the latter eliminates the
interaction between the arrays at nonpropagated harmonics.
As is seen from Figs 8 and 9, the array with parameters
c � 55�, q � 0:87, and s � 0:38 completely reflects the left-
hand circularly polarized wave and partially transmits the
right-hand circularly polarized wave. Since the phase of the
reflection coefficient for the right-hand wave is zero, the two
identical arrays spaced at d � nl=2 �n � 1; 2; 3� form a
transmitting resonator, which is completely transparent for
the right-hand circularly polarized wave, but completely
reflects the left-hand wave.

3.3.2 Artificial chirotropic structure based on two arrays. The
arrays are in parallel planes, the angle between the cylinder
axes in these arrays is 2g. The theory of the structure was
developed in Ref. [36]. It was shown, among other factors,
that the above chirotropic effect could be produced by fitting
the parameters of the structure. Figures 12 and 13 show the

frequency-dependent characteristics of the structure which
turns the electric field vector through 90�. The array cascade
has the following parameters: c � 61:6�, q � 0:59, d � 1:9p,
and 2g � 45�. Figure 12 plots the dependence of the
transmitted intensity on the normalized frequency at various
orientations of the incident electric field vector. Figure 13
depicts the corresponding coefficients of ellipticity for the
transmitted wave. As is seen from the figures, the structure
exhibits ideal chirotropic properties at the resonance fre-
quency s � 0:64, i.e. without power loss it transforms a
linearly polarized wave of arbitrary direction of electric field
vector into a linearly polarized wave with the electric field
vector turned through 90�.
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