
Abstract. Peculiarities of cluster properties are considered and
processes involving them discussed. Generation methods and
applications in material fabrication are described. The kinetics
of cluster growth in expanding vapor is analysed. The absorp-
tion and emission properties of clusters as systems of bound
atoms are examined. The properties of a cluster plasma, i.e., a
cluster-containing ionized gas, are discussed in relation to
cluster light sources.

1. Introduction

According to the definition, clusters are systems of a finite
number of bound atoms or molecules. Below we consider
large clusters which are like small particles. Clusters differ
from bulk small particles due to magic numbers [1 ± 3].
Indeed, parameters of small bulk particles are monotonic
functions of the number of atoms, while parameters of
clusters have extrema at magic numbers of atoms. It means
thatmagic numbers correspond to filled structures of clusters,
in particular, to filled cluster shells. Thus a cluster containing
a magic number of atoms has a higher cohesive energy,
ionization potential, electron affinity etc. than clusters with
numbers of atoms more or less by one.

A high specific surface of clusters as small particles differs
clusters from bulk systems. Various cluster parameters
depend on the number of cluster atoms, so that one can
adjust the parameters of bulk cluster assembled materials by
the size of clusters constituting these materials. (Cluster
assembled materials are fine films with embedded clusters).
Note the specifics of formation and usage of clusters. A
system consisting of a condensed system, gas and clusters
transforms to the gaseous or condensed state under condi-
tions of thermodynamic equilibrium in the system as follows
from the concept of a critical size of the nucleation process
[4 ± 7]. This leads to the conclusion that the effective
generation of clusters proceeds under non-equilibrium con-
ditions, and the best way for this is the conversion of a gas or
vapor in a system of clusters, i.e. this gas is transformed in a
condensed phase in a space by cooling, and the process stops
at an intermediate stage. The simplest way to reach it is a free
jet expansion of a gas or vapor under conditions when a
cluster beam is formed as a result of expansion of the gas [8 ±
10]. Clusters forming in a beam are used for fabrication of fine
films and cluster assembled materials. Hence cluster techno-
logy to a great degree is connected with the usage of cluster
beams.

Note that cluster assembled materials are a promising
direction for development in microelectronics. Indeed, a
typical size for clusters consisting of hundreds or thousands
atoms is several nanometers, so that the size of an individual
element for an object of microelectronics can be of the order
of tens nanometers. An important step in cluster technology
was made as a result of the creation of the low-energy cluster
beam deposition technique (LECBD) [11 ± 13], so that one
can expect a new advance in the fabrication of elements of
microelectronics.
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On insertion into a gas or plasma, clusters behave like
small particles. In particular, at high temperatures clusters
emit radiation, so that a plasma containing clusters can be a
light source where clusters are effective radiators. A plasma
with clusters is called a cluster plasma, and below we consider
this physical object as an example of a cluster system and
cluster applications.

Clusters have a high reactivity, and the contact of two
clusters leads to their aggregation. Hence, in contrast to
ultrafine dust [14], clusters must be isolated. Therefore,
clusters are kept in beams, gases or plasmas, and have a
certain lifetime. For example, the lifetime of clusters in beams
is 10ÿ4 ± 10ÿ3 s, the lifetime of clusters of a cluster plasma for a
light source is 0.1 ± 1 s. The behaviour of clusters during their
lifetime is determined by processes in which they partake.
This paper is devoted to cluster processes in non-equilibrium
systems and to the analysis of properties of these systems
which are connected with processes involving clusters.

2. Peculiarities of cluster properties and
processes

2.1 Clusters and bulk particles
Clusters as systems of bound atoms differ from macroscopic
or bulk particles in themain. Indeed, any parameter of a small
bulk particle, such as the binding energy, ionization potential,
electron affinity, is a monotonic function of its size (or the
number of atoms which constitute the particle). Clusters are
characterized by so called magic numbers which correspond
to extrema of these parameters. As an example, Fig. 1 shows
the cluster mass dependence for the ion current in expanding

inert gases. Thismass spectrum reflects the size distribution of
neutral clusters and shows that some numbers of cluster
atoms in the distribution are preferable. These numbers do
not coincide with those corresponding to the filled surface
triangles of the icosahedral cluster structure which are
marked in Fig. 1 by arrows. The other example of magic
numbers is given in Fig. 2 where the photoionization
spectrum of magnesium clusters is represented. In this case a
beam of neutral magnesium clusters is intersected by a laser
beam, and the forming charged clusters are detected. As is
seen, themagic numbers of magnesium clusters correspond to
filled icosahedral structures. These numbers are indicated in
Fig. 2.
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Figure 1.Mass spectra of inert gas clusters formed as a result of free jet expansion [15].
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Figure 2. Mass spectra of charged Mg-clusters resulting from photo-

ionization of a beam of neutral clusters [16].
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Thus, magic numbers correspond to filled structures of
clusters, i.e. filled shells or layers. The shell cluster structure
relates both metallic clusters and clusters with an atomic pair
interaction [17]. Clusters with magic numbers of atoms have a
higher atomic binding energy, and ionization potential than
clusters with neighbouring numbers of atoms. Magic num-
bers are observed for enough large clusters. For example,
magic numbers may be extracted for clusters of alkali metals
with more than 104 atoms [18].

Nevertheless, analyzing processes involving large clusters,
we usually model clusters by bulk particles. In particular, we
are guided below by the liquid drop model for a cluster, so
that a cluster is assumed to be like to a liquid drop. Let us
analyze the validity of suchmodels for clusters with an atomic
pair interaction. Then clusters at zero temperature have a
shell structure, so that the icosahedral structure is preferable
for small clusters and large clusters a the face-centred cubic
structure [19 ± 29]. Magic numbers correspond to filled shells,
so that the binding energy of an atom added to a filled shell is
less than that for a previous cluster. It is clear that this effect is
determined by a short-range interaction because a long-range
interaction is not sensitive to shell filling. Hence, this effect is
stronger for clusters with an interaction between nearest
neighbours.

Let us represent the total binding energy of cluster atoms
in the form

E � e0nÿ An2=3 ; �2:1�

where n is the number of cluster atoms. This formula is the
expansion of the total binding energy of cluster atoms over
the small parameter nÿ1=3 [30]. Indeed, e0 is the binding energy
per atom for a bulk system in the limit n!1,A is the specific
surface energy which is connected with the bulk surface
tension. Tables 1 and 2 give values of these parameters for
clusters of heat-resistant metals and for clusters of the first
group of the periodical system of elements. These parameters
follow from bulk parameters of corresponding systems [31].
The value e0 is taken from the dependence of the saturated
vapor pressure psat on the temperature T which has the form

psat�T� � p0 exp

�
ÿ e0

T

�
: �2:2�

Note that parameters of this formula depend both on the
temperature and aggregate state of the system of bound
atoms. Tables 1 and 2 give these parameters for the liquid
state at the melting point. For comparison, Tables 1 and 2

contain D Ð the dissociation energy of diatomic A2 [32].
Alongside it, Tables 1 and 2 contain the melting Tm and
boiling Tb points of bulk metals, and the specific fusion
energy DHm [32].

For large clusters the second term of formula (2.1) is less
than the first. The specific surface energy tends to constant in
the limit n!1. For finite n the function A�n�, which can be
calculated on the basis of formula (2.1) using accurate values
of E, is non-regular with an oscillating structure, so that its
minima correspond to magic numbers when the binding
energy of surface atoms is maximal. In the case of a short-
range interaction of atoms, when only an interaction between
nearest neighbours takes place in the cluster, the parameters
of formula (2.1) are e0 � 6, A�1� � 7:56 [33, 34], where the
dissociation energy of the corresponding classical molecule is
taken as the energy unit. Figure 3 [35] confirms an oscillating
structure for the specific surface energy A�n�. On this Figure
A�n� is given for large clusters with partially filled facets when
the face-centred cubic structure is optimal for clusters with a
short-range interaction of atoms. Then the optimal config-
uration of atoms for a given number of cluster atoms is taken
such that it leads to a maximum binding energy. The specific
surface energy is calculated from formula (2.1) on the basis of
the total binding energy of cluster atoms that is proportional
to the number of bonds between nearest neighbours. As is
seen, if within the framework of some bulkmodel for a cluster
we take A�n� � const, it leads to an error of several percent
for the specific surface energy.

Thus, if a physical property or process correspond to a
group of cluster sizes, and the parameter under consideration

Table 1. Energetic parameters of large liquid clusters of heat-proof metals.

Metal Tm, K Tb, K e0, eV A, eV p0,
105 atm

D, eV DHm,
meV

Be
Ti
V
Fe
Co
Ni
Zr
Mo
Pd
W
Pt

1560
1941
2183
1811
1768
1728
2128
2896
1828
3695
2041

2744
3560
3680
3134
3200
3186
4682
4912
3236
5828
4100

3.32
4.89
4.83
3.65
3.90
3.16
6.12
5.78
3.67
8.9
5.6

1.34
3.01
3.45
2.79
2.78
2.62
3.54
4.24
2.68
4.45
2.20

6.1
23
85
22
31
46
64
5.7
2.7
22
24

0.10
1.4
2.62
0.9
0.9
1.7
1.5
4.1
0.76
6.9
0.93

135
156
182
143
169
182
151
389
176
364
207

Table 2. Parameters of bulk metals and liquid clusters of alkali metals and
metals of the first group of the periodical system of elements.

Metal Tm, K Tb, K e0, eV A, eV p0,
105 atm

D, eV DHm,
meV

Li
K
Na
Cu
Rb
Ag
Cs
Au

454
371
336
1358
312
1235
301
1337

1615
1156
1032
2835
961
2435
944
3129

1.61
1.08
0.91
3.40
0.82
2.87
0.78
3.65

0.99
0.73
0.60
2.02
0.53
2.87
0.51
2.5

1.3
0.63
0.37
15
0.28
15
0.24
12

1.05
0.731
0.551
1.99
0.495
1.67
0.452
2.31

31
27
24
138
23
117
22
130
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Figure 3. The specific surface energy of clusters A as a function of the

number of cluster atoms n for a short-range interaction of atoms at zero

temperature [35].
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results from averaging over cluster sizes, it is convenient to
use bulk models of clusters. In this case cluster parameters for
a given size can differ remarkably from the average. Let us
consider as an example the cluster cohesive energy en Ð the
binding energy of surface atoms for a cluster which is
determined by the relation en � En�1 ÿ En and in the limit of
large clusters has the form

en � dEn

dn
� e0 ÿ 2A

3n1=3
; �2:3�

whereEn is the total binding energy of a cluster consisting of n
atoms.

Let us return to clusters with a short-range interaction of
atoms when the binding energy of cluster atoms is propor-
tional to a number of bonds between nearest neighbours. A
new atom joined to a cluster can have the different number of
bonds depending on the cluster structure at a given number of
cluster atoms. Hence, the cohesive cluster energy en is an
irregular function of the number of atoms. As a demonstra-
tion of this fact, Fig. 4 contains the size dependence of the
cohesive energy for clusters with the Lennard-Jones atomic
interaction potential [36].

This analysis corresponds to zero temperature, i.e. to the
ground cluster state. At high temperatures, when clusters are
found in the liquid state, the size dependence of the cluster
cohesive energy becomes smooth. In addition, large solid
clusters become like bulk particles. The question is at which
sizes and temperatures cluster properties begin to coincide
with bulk ones. Under these conditions, irregular variations
of the cluster energy as a function of the number of atoms due
to the cluster structure are compensated by fluctuations of the
energy of atom vibrations. The irregular part of the cluster
energy DEir is the difference between the cluster energy and
the smooth dependence of the cluster energy on its size
constructed on the basis of accurate data at zero tempera-
ture, and can be estimated as DEir � 10 [37]. The fluctuation
of the total cluster energy as a result of themotion of its atoms
isT

��
s
p

, whereT is the temperature, s is the effective number of
vibrations. On the basis of the Debye approximation for the
cluster oscillations we have

s � 3nT 3

Y3
D

;

where 3n is the number of vibrations, so that n is the number
of cluster atoms, YD is the Debye temperature, and we
assume T5YD. Thus the criterion DEir 5T

��
s
p

corresponds
to the criterion that a cluster becomes a bulk particle due to
the mechanism:

T 5 4T 5
0 ; T0 �

�
30Y3

D

n

�1=5

: �2:4�

Table 3 gives results of the analysis for inert gas clusters
[37]. We assume that the Debye temperature of clusters
coincides with that of the solid, and Y3

D � YlY2
t , where

Yl;Yt are the Debye temperatures for longitudinal and
transverse vibrations of a solid inert gas.

Thus, the usage of macroscopic models for clusters leads
to some errors, and one can expect that if we deal with a size
distribution of clusters these errors will be reduced. This can
be demonstrated by measurement of the mobilities of clusters
in helium [38 ± 41]. If a cluster has a spherical form, its
mobility calculated within the framework of the hard sphere
model will coincide with that measured. Measurements show
that it is fulfilled in most cases, but at some sizes and low
temperatures the cluster shape differs from spherical. Thus
the effect of the cluster structure can be essential for these
clusters, but it is not strong in the case of averaging over sizes,
and this effect disappears at high temperatures due to
transitions of clusters of non-spherical form in excited states
which have a spherical shape on average.

Onemore example in Fig. 5 demonstrates the difference of
the form of clusters in the ground state from spherical. In this
Figure the spherical coefficient x is taken for clusters with a
short-range atomic interaction in the form

x � rmax ÿ rmin

r
; �2:5�
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4
80 90

n

100
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Figure 4.Binding energy of a surface atom for a cluster with the Lennard ±

Jones atomic interaction potential [36]. The binding energy is expressed in

units of the dissociation energy of the diatomic molecule.

Table 3. Values of the parameter T0 for clusters of inert gases.

Metal Parameter T0 at

n � 103 n � 104

Ne
Ar
Kr
Xe

0.60
0.34
0.23
0.18

0.38
0.21
0.14
0.11

200 600 1000 1400 1800

0.30

0.20

0.10

0.35

0.25

0.15

n

x

Figure 5. Sphericity coefficient x of solid clusters with a short-range atomic

interaction with a face-centered cluster structure and a central cluster

atom.
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where rmin, rmax are the distances from the cluster centre of
closest and farthest surface atoms, r is the cluster radius, i.e.
themean distance of surface atoms from the cluster centre. As
follows from Fig. 5, the form of a solid cluster with a short-
range atomic interaction differs from spherical.

2.2 Models of collisions involving clusters
Models of collision of atomic particles with a large cluster are
based on the assumption that the cluster radius is larger than
the radius of action of atomic forces. Then the cross section of
an atom-cluster collision is

s � pr2 ; �2:6�

where r is the cluster radius. For example, if the cluster has a
charge e, the cross section of the polarization capture of an
atom is [42]

spol � 2p

�����
a
2e

r
; �2:7�

where a is the atom polarizability and e is the collision energy.
For large clusters this value is smaller than that from formula
(2.6). The ratio of the cross sections (2.6) and (2.7) has the
form

spol
s
�
�

n

n0

�2=3

: �2:8�

Here n is the number of cluster atoms; for example, in the case
of copper n0 � 79 at a temperature of 1000 K.

Formula (2.6) corresponds to the hard sphere model when
a cluster is assumed to have a spherical form and the radius of
action of atomic forces is small compared to a cluster radius.
Below we use an additional assumption, considering a cluster
to be like a liquid drop. This model is called the liquid drop
model. Within the framework of this model a cluster is a drop
which is cut off from the bulk liquid. Then the drop radius r
and the number of cluster atoms n are connected by the
relation

n � 4p%r3

3m
�
�

r

rW

�3

; �2:9�

where % is the density of the corresponding bulk liquid, m is
the atomicmass, and rW � 3m=�4p%�� �1=3 is theWigner ± Seitz
radius. This model is convenient for the determination of
averaged cluster parameters, and owing to its simplicity, it is
widely used.

On the basis of formula (2.6) we have for the rate constant
of atom-cluster collision

k � hvpr2i �
�
8T

pm

�1=2

pr2 � k0n
2=3 ; �2:10�

where

k0 � 1:93T 1=2m1=6%ÿ2=3 ; �2:11�

here brackets mean averaging over velocities v of colliding
atomic particles, m is the reduced atom-cluster mass which
coincides with the atomic mass for a large cluster, T is the
atom temperature which is expressed here and below in
energetic units.

By the same way we obtain for the cross section of
collision of two clusters

s � p�r1 � r2�2 ;
where r1; r2 is the radius of the corresponding cluster. For the
liquid dropmodel this is the cross section for the joining of two
neutral clusters, so that as a result of collision two clusters Ð
drops join into one. The rate constant of this process is

k � 
vp�r1 � r2�2
�� k0

�
n1 � n2
n1n2

�1=2

�n1=31 � n
1=3
2 �2 : �2:12�

Here v is the relative cluster velocity, m is the reduced cluster
mass, brackets mean averaging over cluster velocities, and
n1; n2 are the numbers of cluster atoms.

Now let us consider collisions of a charged cluster with a
charged atomic particle, for example, collisions of electrons
or ions with a charged cluster. Then we use the relation
between the impact parameter of collision % and the distance
of closest approach r0 which follows from the law of
conservation of the angular momentum of particles [42]:

1ÿ %
2

r20
� U�r0�

e
;

where U�R� is the interaction potential of colliding particles
with a distance R between them, e is the particle energy in the
frame reference of the centre of mass. In particular, in the case
of an electron collision with a cluster of a positive charge Z;
we have for the collision cross section

s � p%2�r� � pr2 � pr
Ze2

e
; �2:13�

where %�r� is the impact parameter of the collision for which
the distance of closest approach r0 is equal to the cluster
radius, e is the electron energy. These formulae will be used for
the analysis of some processes and equilibria involving
clusters.

Let us consider one such an equilibrium in a cluster
plasma Ð the ionization equilibrium of clusters which is
established by processes

AZ
n � e$ AZÿ1

n ; �2:14�

where the subscript indicates number of cluster atoms; the
superscript marks its positive charge. If we assume each
contact of an electron and cluster leads to electron attach-
ment, we can use the cross section (2.13) for electron
attachment. It gives for the rate constant of electron
attachment in the limit Ze2=r4Te:

kat � hvsi � Ze2
�
8pme

Te

�1=2

; �2:15�

where Te is the electron temperature and me is the electron
mass.

Note that under the condition of the ionization equili-
brium in a plasma containing electrons and charged clusters,
the number densities of charged particles are connected by the
Saha formula [43]

NeNZÿ1
NZ

� 2

�
meTe

2p�h2

�3=2

exp

�
ÿ IZ
Te

�
: �2:16�
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Here Ne is the electron number density, NZ, NZÿ1 are the
number densities of clusters of charges Z and Zÿ 1
correspondingly, and IZ is the ionization potential of a
cluster of a charge Z. On the basis of the above expression
and the principle of detailed balance one can find the rate of
cluster ionization in the plasma. Indeed, the ionization
equilibrium in the plasma leads to the balance equation

NeNZÿ1kat�Zÿ 1� � NZnion ;

where nion is the ionization rate of a cluster by electron impact
in a plasma, i.e. the number of ionization acts per cluster per
unit time, kat�Zÿ 1� is the rate constant of electron
attachment to a cluster of a charge Zÿ 1. In the limit of
high electron number density it coincides with the Saha
formula (2.16). Thus, we have for the ionization rate

nion � 2Ze2rm2
eTe

p�h3
exp

�
ÿ IZ
Te

�
: �2:17�

We use above the principle of detailed balance for
evaluation of the ionization rate. Hence, thermodynamic
equilibrium in a plasma is used only as a method, so that the
ionization rate (2.17) is valid in the absence of thermody-
namic equilibrium between charged particles and electrons.
Next, we used the Maxwell distribution of plasma electrons
for energies, i.e. an equilibrium is assumed inside the electron
subsystem.

Let us consider one more problem where collisions of
electrons and atoms with clusters are essential. Let the
charged clusters be located in a plasma where the electron
temperature Te differs from the gaseous one T. The cluster
temperature Tcl results from collisions of atoms and electrons
with clusters. Let us use a simple model of collisions such that
an atomic particle after collision obtains the cluster thermal
energy on average. It means for Te > T that an atom obtains
on average the energy 3�Tcl ÿ T�=2 from the cluster, and an
electron transfers on average the energy 3�Te ÿ Tcl�=2 to the
cluster. Then the power which a cluster takes from the
electrons is 3�Te ÿ Tcl�veNese=2, where ve is the average
electron velocity, Ne is the number density of electrons, and
se is the cross section of electron-cluster collisions. The power
which atoms obtain from the cluster is 3�Tcl ÿ T�vaNasa=2,
where va is the average velocity of atoms, Na is the number
density of atoms, and sa is the cross section of collisions of
atoms with the cluster. The stationary condition using
formulae (2.10), (2.16) for the rate constants of collisions of
atoms and electrons with clusters leads to the following
expression for the cluster temperature Tcl [44]:

Tcl � T� zTe

1� z
;

where

z �
�
Tema

Tme

�1=2�
1� Ze2

rTe

�
Ne

Na
: �2:18�

As it is seen the cluster temperature can depend both on its
size and charge.

2.3 Processes of growth and evaporation
of clusters in parent vapor
Now let us consider processes of evaporation and attachment
of atoms to a cluster on the basis of the above formulae
assuming the parameters of the cluster surface to be identical

to those of the bulk one. The attachment flux for gaseous
atoms to a macroscopic surface is the product of three factors

jat �
�

T

2pm

�1=2

Nx ; �2:19�

so that the first factor is the average atomic velocity
component which is directed perpendicular to the surface, m
is the atom mass, N is the atom number density, and x is the
probability of atom joining with a surface after their contact.

The flux of evaporating atoms is given by the formula:

jev � C exp

�
ÿ e0

T

�
; �2:20�

where e0 is the cohesive energy of a bulk surface, and
parameter C depends weakly on the temperature and is
determined by properties of the surface. If the atom number
density is equal to the number density of saturated vaporNsat

at this temperature, the attachment flux becomes equal to the
evaporation flux [45, 46]

jev � jat �
�

T

2pm

�1=2

Nsat�T�x ;

where Nsat�T� � N0 exp�ÿe0=T�: Thus we have for the factor
in formula (2.20)

C �
�

T

2pm

�1=2

N0x :

Within the framework of the liquid drop model of the
cluster, we have expression (2.20) for the flux of attaching
atoms. If we transit from a macroscopic surface to the
corresponding cluster surface, one can use the above expres-
sion for the evaporation flux by replacing the atom binding
energy e0 for the bulk surface for the cohesive energy of cluster
atoms en. Then formula (2.20) takes the form

jev � C exp

�
ÿ en

T

�
�
�

T

2pm

�1=2

Nsat�T�x exp
�
ÿ en ÿ e0

T

�
:

�2:21�
The expressions for rate constants of processes

An �A$ An�1 �2:22�

involving large clusters can be obtained on the basis of
formulae (2.19), (2.21). Then we transit from fluxes to the
rate constants, so that the rate constant of atom attachment
corresponds to formula (2.10) [45, 46]:

kn � jat4pr2 � k0n
2=3 ; �2:23�

where k0 is determined by formula (2.11). The rate of
evaporation is connected with the rate of atom attachment
by the principle of detailed balance for processes (2.22).
Formula (2.23) yields the rate of cluster evaporation nn�1,
i.e. the probability per unit time for evaporation of an atom
from a cluster consisting �n� 1� atoms [45, 46]:

nn�1 � knNsat�T� exp
�
ÿ en�1 ÿ e0

T

�
: �2:24�

These formulae will be used for the analysis of the evolution
of clusters if it is governed by processes (2.22).
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2.4 Mobility and diffusion of clusters in gases
The above expressions can be used for the analysis of
diffusion and the mobility of clusters in gases. First let us
calculate the friction force which acts on a moving large
cluster in a gas. This force results from separate collisions of
atoms of a gas with the cluster, and the cluster obtains a
momentum mv�1ÿ cos#� under the action of elastic scatter-
ing of an atom on the cluster, where m is the atomic mass
which is significantly smaller than the cluster mass, v is the
relative velocity of colliding particles, and # is the scattering
angle. Then the force acting on the cluster is

F �
�
mv�1ÿ cos#� f�v�v dsdv ;

where f�v� is the distribution function of atoms on velocities
which is normalized by the number density N of atoms
(
�
f�v� dv � N), ds is the differential cross section of elastic

scattering. The drift cluster velocity w is small compared to a
typical atomic velocity. Taking the Maxwell distribution
function of atoms on velocities f�v� � exp

�ÿmv2=�2T��
and moving to the frame of reference where the mean atomic
velocity is zero, we obtain using v � va ÿ w:

F �
�
mv�1ÿ cos#�f�va ÿ w�v ds dv �

�
mvs�f�va ÿ w�v dv :

where va is mean the atom velocity. Here s� is the diffusion or
transport cross section of atom scattered on the cluster, and
for the considering model of collisions we have s� � pr2

according to formula (2.6), where r is the cluster radius. Let
us use the expansion of the Maxwell distribution function
f�va ÿ w� � f�va��1ÿmvaw=T�. Restricting over a cluster
velocity by these expansion terms, we get for the resistance
force [47]:

F � ÿwm2Ns�

3T
hv3ai � ÿ8�2pmT�1=2 Nr2w

3
; �2:25�

where brackets means averaging over velocities of atoms on
the basis of the Maxwell distribution function of atoms.

From this one can determine the mobility of a charged
cluster K which is introduced on the basis of the relation

w � KE ; �2:26�
where w is the cluster drift velocity, and E is the electric field
strength. Because the resistance force is F � ZeE (Ze is a
cluster charge), we have for the cluster mobility

K � 3eZ

8Nr2�2pmT�1=2
: �2:27�

From this on the basis of the Einstein relation K � eD=T,
which connects the cluster mobility K and its diffusion
coefficient in the gas D, we have in the considered case when
the cluster radius r is small compared to the mean free path l
of atoms in the gas:

D � 3T 1=2

8Nr2�2pm�1=2
; l4 r : �2:28�

In particular, for a particle moving in air this formula has the
form:

D � D0

�
a

r

�2

;

where for a � 1A we have D0 � 1:6 cm2 sÿ1. Note that the
large clusters under consideration are small particles so that
l4 r. In particular, for air under normal conditions it means
that clusters contains less than 107ÿ108 atoms.

3. Generation of clusters

3.1 Equilibrium of clusters in the parent gas
Let us consider the character of the equilibrium of clusters in a
parent vapor if they partake in processes (2.22). Then the
cluster evolution of a size n is given by the balance equation

dn

dt
� 4pr2�jat ÿ jev� ;

where r is the cluster radius and jat, jev are the fluxes of atom
attachment and cluster evaporation respectively. On the basis
of formulae (2.19) and (2.21) one can transform this equation
to the form

dn

dt
� 4pr2

T 1=2

�2pm�1=2
x
�
NÿNsat�T� exp

�
ÿ en ÿ e0

T

��
:

�3:1�
From this it follows that the cluster sizes are divided into two
groups, so that small clusters evaporate with time, while large
clusters are grown as a result of attachment of atoms. The
boundary cluster size is called the critical cluster size and is
determined by the relation

en ÿ e0 � T lnS ; �3:2�
where

S � N

Nsat�T� �3:3�

is the supersaturation degree. Since e0 > en, the critical cluster
size and the above regime of cluster evolution exist only in a
supersaturated vapor N > Nsat�T� .

Let us consider the problem from another standpoint
assuming the cluster equilibrium proceeds through processes
(2.22). Then the size distribution function fn of clusters
satisfies the kinetic equation

qfn
qt
� Nknÿ1 fnÿ1 ÿNkn fn ÿ nn fn � nn�1 fn�1 ; �3:4�

where fn is the number density of clusters contained n atoms,
N is the number density of free atoms of this kind, kn is the
rate constant of atom attachment to a cluster consisting of n
atoms and nn is the rate of atom evaporation for a cluster of n
atoms. Under equilibrium conditions we have

fnnn � fnÿ1Nknÿ1 :

From this it follows the relation between the equilibrium
number densities of clusters of neighbouring sizes:

fnÿ1N
fn
� Nsat exp

�
ÿ en ÿ e0

T

�
: �3:5�

As is seen, this formula has the form of the Saha distribution.
On the basis of formula (2.2) for the cohesive cluster energyÐ
the binding energy of cluster atoms, we have in the limit
n!1:

en � dEn

dn
� e0 ÿ De

n1=3
; �3:6�
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where De � 2A=3. Then using relation (3.6) in formula (3.5),
one can represent it in the form

fn
fnÿ1
� S exp

�
ÿ De
n1=3T

�
: �3:7�

Condensation of atoms takes place at S5 1, if the vapor
density exceeds its saturation value for a given temperature.
Thus, from formula (3.7) it follows that the cluster number
density as a function of size has a minimum at the critical
number of cluster atoms which, according to formula (3.7),
has the form

ncr �
�

De
T lnS

�3

: �3:8�

The concept of a critical size means [4 ± 7] that for large
clusters whose size exceeds the critical one, the probability of
cluster growth exceeds the probability of evaporation, and
such clusters grow, whereas small clusters with n < ncr
evaporate. The critical size concept is the basis of cluster
generators. As follows from formula (3.7), the number
density of clusters as a function of their size has a minimum
at the critical size of clusters. This leads to an important
conclusion for clusters as an intermediate phase of matter
between gaseous and condensed phases. According to
formula (3.7), the most part of atoms of a supersaturated
vapor (S > 1) under thermodynamic equilibrium constitute a
gas or a condensed phase. It means that clusters include a
small part of the atoms of a system in thermodynamic
equilibrium. But transition from the gaseous to condensed
phase in a space proceeds through the formation and growth
of clusters. From this one can conclude that the high content
of atoms in clusters corresponds to non-equilibrium condi-
tions. Hence methods of generation of clusters are based on
fast nucleation of vapors or gases in a space at the stage of
violation of the thermodynamic equilibriumwith a condensed
phase.

For this reason, generators of clusters are usually based
on their formation from a supersaturated vapor as a result of
expansion of the vapor in a region of a low pressure. In the
course of expansion, the vapor temperature decreases and the
vapor becomes supersaturated, leading to the formation and
growth of clusters or small particles. But the time of the
process is not enough for the transformation of clusters in a
condensed system, so that almost all the atoms of the incident
vapor become clusters at the end of the process. Thus, the
generation of clusters covers two stages. In the first stage of
the process an atomic or molecular vapor is formed, and in
the second stage this vapor is converted into a gas of clusters
or a cluster beam as a result of cooling of the vapor.

3.2 Methods of cluster generation through atomic vapor
The widespread method of cluster generation uses the
expansion of an atomic vapor. As a result of evolution of an
expanding vapor, a cluster beam is formed. There are various
methods of formation of an expanding vapor depending on
the cluster material and the parameters of the final cluster
beam. An oven is used for fusible metals (Fig. 6a). Then the
atomic vapor formed in the oven expands through a nozzle in
a vacuum together with a buffer gas. Cooling of this mixture
during expansion causes nucleation of the vapor and the
formation of clusters. This method generates intense cluster
beams and allows clusters to be deposited onto a substratum
for the production of fine films [48 ± 71].

In the case of heat-resistant metals, a laser beam is used to
evaporate them and form free atoms [72 ± 76]. Figure 6b gives
a scheme of this method. Evaporated atoms are mixed with a
flow of a buffer gas, and the subsequent expansion of the
mixture leads to the formation of clusters. One more method
of cluster formation is based on the bombardment of a target
by ions of keV energies [77 ± 87]. Then fragment-clusters
formed as a result of ion impact can have a charge. They are
separated and accelerated. This method allows one to obtain
a beam of small clusters of low intensity and is used for the
generation of selective beams of small clusters which are used
for research.

The formation of clusters from an evaporating vapor can
proceed in any gaseous system with a variable temperature.
For example, Fig. 7 represents a scheme of a cluster lamp
which will be analyzed in Section 6. Then the temperature of
the buffer gas in the generation camera is significantly lower
than that corresponding to the saturated vapor pressure for
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Figure 6. Schemes of cluster generation through the formation of an

atomic vapor. (a) the method of heating for the creation of an atomic

vapor: 1Ðchamber, 2Ðheater and oven, 3Ðnozzle, 4Ðskimmers, 5Ð

electron beam, 6 Ð accelerator and ion optics; (b) laser vaporization of

metals: 1Ðlaser beam, 2Ðrod, 3 ± flow of buffer gas, 4Ðbeam of buffer

gas and clusters, 5 Ð skimmers, 6 Ð electron beam, 7 Ð ion optics and

accelerator, 8Ð final beam.
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Figure 7. Scheme of a cluster lamp: 1 Ð chamber of cluster generation,

2 Ð cluster flux, 3 Ð grid, 4 Ð anode, 5 Ð arc discharge plasma, 6 Ð

discharge tube, 7Ð cathode.

1124 B M Smirnov Physics ±Uspekhi 40 (11)



evaporated atoms, and the formation of clusters from the
vapor takes place. A typical cluster size depends on the time of
cluster location in the generation chamber, so that it can be
adjusted by the pressure of the buffer gas and geometry of the
generation chamber. Thus, all the evaporated atoms are
converted into clusters in the generation chamber, so that
the energetics of the process of cluster formation are
determined by the energetics of evaporation of the wire in
the generation chamber. Let us analyze this process.

For definiteness, consider a tungsten wire as target for
formation of atoms because it is suitable for a cluster lamp.
The efficiency of formation of free atoms from this wire can
be characterized by the energetic cost e of the formation of
one atom by evaporation of this wire. First we consider
heating the wire by an electric current which propagates
through it. Then the heated tungsten wire emits radiation
like an incandescent lamp, and the atom cost is

e � p

j
; �3:9�

where p is the radiation power per unit square, j is the flux of
evaporated atoms. Taking these values from [31], we have a
tungsten atom cost e � 270 keV atT � 3000K, e � 28 keV at
T � 3300 K and e � 4:2 keV at T � 3600 K. The binding
energy per tungsten atom for these temperatures is 7:9 eV [31].

One can see that heat evaporation is not a profitable
method for the generation of clusters of heat-resistant metals.
The sharp temperature dependence of the atom cost takes
place because of the exponential temperature dependence for
the evaporation flux. In the case of laser evaporation the
surface temperature is higher, so that laser vaporization is
more effective than evaporation of the surface by an electric
current. In this respect, gas-discharge methods based on
cathode sputtering by an ion current are more effective for
the production of an atomic vapor which is further converted
into clusters. If this process proceeds in a vacuum, an effective
method results from explosive emission taking place in
vacuum discharges [88, 89 ]. Then on the main stage of the
process, an ion current vaporizes the cathode, and in this way
matter is created through which the discharge current
propagates. Each evaporating atom is further ionized in the
plasma, so that it generates one ion and one electron. This
gives a relation between the atom flux j and the discharge
current density i, if we suppose the ions to be single charged

i � 2ej : �3:10�
From this we find for the atom cost

e � 2eV ; �3:11�
whereV is the discharge drop. Usually,V is of the order of the
ionization potential, i.e. e � 10 eV. Thus, this method of
creation of an atomic vapor is effective if the process proceeds
in a vacuum.

For generation of atoms in a buffer gas by sputtering of
the cathode it is convenient to use the magnetron discharge
which is characterized by a high efficiency of cathode
sputtering. Figure 8 gives a scheme of this method which
uses sputtering of a cathode material in a magnetron
discharge [90 ± 92]. On the basis of this method intense
beams of clusters of Ag, Al, Co, Cu, Fe, Mg, Mo, Si, Ti and
TiN were produced with the mean cluster sizes of 500 ± 10000
atoms. These charged clusters are accelerated by an external
electric field which allows adjustment of the cluster energy in
the range 0.1 ± 10 eV/atom. Cluster beams are used for

deposition onto a substratum for fabrication of fine films,
contacts and holes [90 ± 95]. Thus, this type of gas discharge
provides sputtering of electrodes and the generation of
intense cluster beams. Figure 9 gives an example of the size
distribution function of charged clusters and corresponds to
negative copper clusters formed on the exit of magnetron gas
discharge [92].

The charge of forming clusters which go through a weakly
ionized gas depends on the electron temperature of the
plasma (or the mean energy of electrons), and also on the
electron number density. If an ionization equilibrium (2.14) is
established between clusters and plasma, the relation between
clusters of different charges is determined by the Saha
formula (2.16). From this formula it follows that at high
electron temperatures clusters are charged positively, while at
low electron temperatures they can have a negative charge. In
particular, let us find plasma parameters when in according
with [92] 80% of clusters Cu1000 have a single negative charge,
and 20% of clusters are neutral. Using the Saha formula
(2.16) and values of the electron affinities of clusters, we find
that this takes place at the electron temperature 2800 K, if the
electron number density is Ne � 1013 cmÿ3; this corresponds
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Figure 8. Scheme of a cluster generator on the basis of a magnetron

discharge [90 ± 92]: 1 Ð magnet, 2 Ð target, 3 Ð water cooling, 4 Ð

electrodes, 5 Ð argon flow, 6 Ð helium flow, 7 Ð diaphragms, 8 Ð ion

optics, 9 Ð pumps, 10 Ð substratum, 11 Ð time-of-flight mass spectro-

meter, 12ÐAr�Ð gun for substratum cleaning.
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Figure 9. Size distribution function for negatively charged copper clusters

generated from a magnetron gas discharge [90 ± 92]. The solid curve

corresponds to the log-normal distribution which approximates the

experimental data (dots).
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to a electron temperature of 2510 K, if Ne � 1012 cmÿ3, and
the electron temperature is 2250 K for the electron number
density Ne � 1011 cmÿ3. Note that the cluster temperature is
smaller than these values of the electron temperature.

Because other types of gas discharges can be used for
material sputtering, we analyze below general requirements
for gas discharge with respect to generation of clusters. The
first requirement relates to the effective sputtering of
electrodes. Evidently, it takes place in arc discharges in
regimes with formation of cathode spots. Processes in
cathode spots resemble the process of explosive emission, so
that a discharge electric current is concentrated in cathode
spots where the current density is high enough. Then
evaporation or sputtering of the cathode in cathode spots
creates a region of conducting matter and provides effective
propagation of an electric current. Hence, from the stand-
point of gas discharge, cathode spots lead to optimal electric
parameters for the gas discharge. Simultaneously, this
phenomenon causes an effective erosion of the cathode
material with the formation of atoms and atomic ions. It is
the first stage of cluster generation.

A peculiarity of the gas discharge method for cluster
generation is that clusters are not produced in the gas
discharge plasma due to collision processes involving elec-
trons and ions. Hence, the region of cluster generation must
be separated from the gas discharge region. Actually, clusters
are formed in the plasma afterglow where the most of plasma
electrons and ions are recombined. The clusterization process
proceeds at not very high temperatures and results from
collisions involving evaporated atoms and atoms of a buffer
gas. This process is effective at high pressures of the buffer
gas, while some regimes of gas discharge require a low
pressure buffer gas. Hence, it is necessary to conform the
regime of a gas discharge to the parameters of the buffer gas
flow. In particular, the above technique of magnetron
discharge for cluster generation uses an argon pressure of
10 ± 100 Pa, while the gas pressure is of the order of 1 Pa for
conventional discharges of this type.

From the above analysis one can formulate general
peculiarities of generators of intense cluster beams. Evi-
dently, it is a pulse system where an atomic vapor is produced
as a result of an electric breakdown with the development of
cathode processes accompanied by formation of cathode
spots. After the discharge is shut down, a partially ionized
atomic vapor is formed. This vapor is captured by a pulse flux
of a buffer gas which is conformed to the electric breakdown.
In the course of propagation of the mixture formed, clusters
grow and their typical sizes depend on the parameters of the
mixture. In essence, this scheme of cluster generation is like
that of Fig. 10 if a laser beam for evaporation of a target is
changed for a pulse gas discharge as a more effective method
for production of an atomic vapor. Thus, a contemporary
experimental technique of generation of cluster beams uses
the possibilities of processes provided by the production of
clusters.

3.3 Cluster applications
Clusters have a high reactivity so that the contact of two
clusters leads to their joining, and the properties of incident
clusters are lost in a forming cluster. Note that in contrast to
clusters, fullerenes are molecules, and the properties of
individual fullerene molecules are conserved in a system of
bound fullerenes owing to their closed structure. Because of
their high reactivity, clusters are used in the form of a beam

where they are separated. There are various applications of
cluster beams.

The advantage of a cluster beam consists in the possibility
of charging and accelerating ions. Fast cluster ions can even
be used for thermonuclear fusion reactions [96 ± 100]. A
convenient usage of cluster beams is connected with the
fabrication of holes in foils [92]. There, each fast cluster is
like a bullet, and the hole size depends on the cluster size and
energy. Therefore the density and size of holes of the sieve
formed can be adjusted. As a flux of energy, a cluster beam
can be used for cleaning surfaces. Then surface atoms
evaporate under the action of fast clusters [56, 57].

Themain application of cluster beams is the fabrication of
so called cluster assembled materials which have specific
properties and form one of twelve existing types of nanos-
tructures [101]. There are two methods using cluster beams.
The first, the `ion cluster beam' method [102 ± 114], uses a
beam of charged clusters; the scheme before deposition is
shown in Fig. 6. The other method uses the low-energy cluster
beam deposition (LECBD) technique [11 ± 13] (see Fig. 10)
and deals with a beam of neutral solid clusters of low energy.
Note that fine films can be produced by other methods, while
the fabrication of films with embedded solid clusters gives so
called cluster assembled materials [115 ± 119] which can not
be formed by other methods. Below we consider the character
of the interaction of a cluster beamwith a substratum for each
method of cluster beam deposition.

The interaction of a cluster impinged onto a film depends
on the cluster energy and size (see [53, 66]). If the cluster
energy is small (usually less 1 eV/atom), the cluster attaches to
the surface and cluster atoms spread over the surface . In this
case the cluster collides with the substratum like a liquid drop,
so that on the first stage of the process a cluster attaches to the
surface forming a plane contact with it. Then atoms of the
outside cluster surface run over the surface due to diffusion.
As a result, cluster atoms form a fine continuous film on the
surface of the substratum. If the cluster energy is high, its
collision with a surface causes a strong shift of the nearest
surface atoms. Their motion leads to erosion and vaporiza-
tion of the surface. In addition, it creates a motion of other
atoms like a shock wave. Figure 11 gives an example of the
development in time of a colliding cluster and surface under
such conditions.
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Figure 10. Scheme of the low-energy cluster beam deposition (LECBD)

technique [13] for generation of a beam of neutral solid clusters and their

deposition: 1 Ð chamber of cluster generation, 2 Ð tube of cluster

transportation, 3Ð ultra-high vacuum chamber of deposition, 4Ð valve

for pulse injection of helium, 5 Ð Ti-Sa laser beam, 6 Ð rod, 7 Ð flux,

8Ð skimmer, 9Ð excimer laser beam, 10Ðacceleration grids, 11Ð flux

of detecting cluster ions, 12 Ð detector of cluster ions, 13 Ð substratum,

14 Ð evaporation cell, 15 Ð flux of matrix material, 16 Ð Auger
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The ion cluster beam method is like the method of
deposition by atomic beams. The maximum rate of silver
deposition by the ``ion cluster beam'' method is 74 nm sÿ1. An
equivalent specific powermore 0.2W cmÿ2 is required for this
rate of evaporation of a silver surface. Thus, an atomic beam
which provides the above rate of silver deposition can be
created by a laser beam of low power. This comparison shows
that cluster beams lead to relatively low rates of deposition.
This means that only thin films can be produced by the ion
cluster beam method of deposition.

Thus, one can create more powerful atomic beams
compared to cluster beams. But, there are advantages of
cluster beams. First, the specific energy resulting from the
joining of clusters in a bulk film is smaller than that
corresponding to atoms. Indeed, the surface cluster energy is
released as a result of the joining of clusters, while in the case
of formation of bulk from atoms a specific bulk energy is
released. In reality, these values differ by one order of
magnitude. Hence, films manufactured from atoms are
characterized by a higher heat tension and in the end they
contain larger numbers of vacancies and strains than in the
case of usage of a cluster beam.

Secondly, because clusters are charged, the energy of
clusters is governed. The optimal energy of clusters for
deposition is several electronvolts per atom. This energy can
not be reached by a neutral atomic beam. In particular, atoms
of a buffer gas at such an energy can not be inserted in the
forming film. Thus, the `ion cluster beam' method provides a
higher quality of films compared to atomic beams. This
method is used for the fabrication of metallic, dielectric,
semiconductor and organic films, and is widely practiced in
the technology of microelectronics.

The LECBD method allows one to produce cluster
assembled materials which can not be manufactured by
other methods. A scheme of this method is given in Fig. 10.
The resulting material is a fine film of a deposited substratum
with solid clusters embedded in it. These clusters can be
separated on the substratum surface and can form surface
fractal aggregates depending on the parameters of the
deposition process and the surface density of clusters. Note
that the cluster chemical structure can differ from that of bulk
materials. Correspondingly, the chemical properties of films
with embedded clusters can differ from the properties of bulk
systems. For example [13], carbon and silicon cluster
assembled films can form fullerene-like structures which
include a large amount five-membered rings in a certain
range of sizes of embedded clusters. Hence, the structural
and chemical properties of cluster assembled materials can
differ from those of bulk systems.

Films with embedded clusters can be used as filters
because clusters are absorbers in a certain spectrum region.
The spectral characteristics of these filters can be controlled
by the sort, size and density of embedded clusters. Alongside
filters, films consisting of a transparent matrix with
embedded clusters can be used as elements of optoelectro-
nics. Some transitions of clusters as atomic systems can be
saturated, so that these films can be used as optical locks due
to their nonlinear transparency.

Films with embedded clusters of magnetic materials (Fe,
Co, Ni) are magnetic nanostructures and are like multi-
domain magnetic systems. In this context, the advantage of
these films is as follows. Firstly, the size of individual grains of
these films which coincides with the cluster size is several
times less than for normal magnetic films. This fact reduces
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Figure 11. Series of snapshots for a collision of a Cu1000 cluster with a

copper film according to computer simulation by methods of molecular

dynamics [94, 95]. The cluster energy is 10 eV/atom, the cluster and film

initial temperature is 300 K.
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the saturated magnetic field for this magnetic material.
Secondly, the close sizes of embedded clusters which are
magnetic grains increase the precision and selectivity of
devices using this magnetic material. Thirdly, the possibility
of using various embedded clusters allows us to create
magnetic films with the given parameters. Thus, films with
embedded clusters as cluster assembled materials are a new
prospective material for precise technics and devices.

4. Kinetics of the clustering process

4.1 Kinetics of cluster growth in expanding vapor
The methods of cluster generation consist in the evaporation
of amaterial and its transformation in an atomic vapor. Next,
the vapor as a result of free jet expansion is transformed in a
cluster beam. Below we analyze the kinetics of cluster growth
in free jet expansion. There are different theoretical models
for the analysis of kinetics of cluster growth in free jet
expansion [119 ± 124]. Below we analyze this process on the
basis of transparent models [119, 121, 124] which are realistic
and allow us to extract the main processes which are
responsible for cluster growth. The basis of the models used
is the character of the expansion process. In the course of
expansion and cooling of a vapor, its temperature decreases
and reaches a value when the nucleation process starts. It can
proceed as a result of attachment and evaporation processes
(2.22), and also by the coagulation process according to the
scheme

Anÿm �Am $ An : �4:1�

The nucleation process finishes when the density of atoms and
clusters becomes small, so that collision processes cease. We
account for it in the theory by the parameter tex Ð the
expansion time. Then the balance equation for the number
density of atoms of a buffer gas N has the form

qN
qt
� ÿ N

tex
:

The balance equation for the total number density of vapor
atoms, i.e. the number density of free and bound atoms has
the same form.

Let us first consider the limiting case when the cluster
growth is determined by the coagulation process (4.1). For
simplicity we assume the rate constant of this process to be
independent of cluster size. Then the kinetic equation for the
size distribution function of clusters on a number of atoms fn
has the form

qfn
qt
� ÿfn

X1
m�1

kas fm � 1

2

Xnÿ1
m�1

kas fnÿm fm ;

where kas is the rate constant of association of two colliding
clusters, and the factor 1=2 marks that the process of
collisions of clusters consisting of m and nÿm atoms is
taken into account twice. For large clusters one can replace
the summation by integration, so that the kinetic equation
takes the form

qfn
qt
� ÿkas fn

�1
0

fm dm� 1

2
kas

�n
0

fnÿm fm dm : �4:2�

Assume the buffer gas to be at rest. Then we have that the
total number density of cluster atoms N0 �

P
n n fn is

conserved during their evolution. Introduce the average size
of clusters

�n �
P

n n
2 fnP

n n fn
�
P

n n
2 fn

Nn
: �4:3�

The kinetic equation (4.2) has an accurate solution.
Hence, the momenta

P
n n

k fn of the distribution function
can be separated. In particular, multiplying this equation by n
and integrating over dn, we obtain

d

dt

�1
0

n fn dn � ÿkas
�1
0

n fn dn

�1
0

fm dm

� 1

2
kas

�1
0

n dn

�n
0

fnÿm fm dm � 0 :

It means that the total number density of cluster atoms

N0 �
�1
0

n fn dn

is conserved during cluster growth. Let us multiply the kinetic
equation by n2 and integrate over dn. Then we obtain

d

dt

�1
0

n2 fn dn � d�n

dt
� kasN0 :

From this it follows that the average cluster size varies in time
according to the law

�n � kasN0t ; �4:4�

if we assume the average cluster size to be small at the
beginning.

Now let us solve the kinetic equation (4.2). Let us
introduce the concentration of clusters of a given size
cn � fn=N0, where N0 is the total number density of atoms in
clusters. The normalization condition for the cluster concen-
tration has the form

P
n ncn � 1, and the kinetic equation

(4.2) is

qcn
qt
� ÿcn

�1
0

cm dm� 1

2

�1
0

cnÿmcm dm ; �4:5�

where the reduced time is t � N0kast. Let us take the solution
of this equation in the form

cn � 4�nÿ2 exp
�
ÿ 2n

�n

�
: �4:6�

This form of cn satisfies the normalization condition�1
0 ncn dn � 1 and gives the average value of the cluster size
n in accordance with (4.4). One can see that (4.6) is the
solution of equation (4.5) if n � t in accordance with
formula (4.4), i.e.

cn � 4

t2
exp

�
ÿ 2n

t

�
: �4:7�

Evidently, solution (4.6) is valid for large t if an initial
distribution of particles by size is not essential.
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The above analysis shows an instability of clusters located
in some volume, so that the cluster size grows with time. If
clusters are located in an expanding gas, the nucleation
process finishes over a typical expansion time, so that time t
in formula (4.4) must be changed for the expansion time. Let
us obtain this result accurately from the kinetic equation
which has the form

qcn
qt
� ÿ cn

tex
ÿN0kascn

�1
0

cm dm� 1

2
N0kas

�1
0

cnÿmcm dm :

�4:8�

The first term in the right-hand side of the equation is
responsible for expansion.

The character of the process is the following. In the course
of expansion the rate of collision of clusters decreases, and at
the end of the process the buffer gas becomes rarefied, so that
collisions of clusters cease. From this one can estimate the
mean size of clusters at the end of the process: n � N0kastex.

For a more accurate determination of the mean cluster
size at the end of the expansion process, let us multiply
equation (4.8) by n2 and integrate the result over dn. Using
the normalization conditionX

n

ncn � exp

�
ÿ t

tex

�
;

we obtain�1
0

n2cn dn � �n exp

�
ÿ t

tex

�
:

Thus, the above operations lead to the equation

d�n

dt
� N0kas exp

�
ÿ t

tex

�
;

the solution of this equation for t!1 is

�n � kasN0tex : �4:9�

The dependencies obtained give the character of connec-
tion between the parameters of the problem and the final
parameters of the system. Now let us account for the size
dependence of the rate constant of cluster association
according to formula (2.6). Then the kinetic equation has
the form

qcn
qt
� ÿN0cn

�1
0

k�n;m�cm dm

� 1

2
N0

�1
0

k�nÿm;m�cnÿmcm dm ;

whereN0 is the total number density of atoms inside clusters.
Multiplying this equation by n and integrating over dn, after
symmetrization of the expression under the integral, if the gas
is at rest we get:

d

dt

�1
0

ncn dn � 0 ;

that gives
�1
0 ncn dn � 1:

Multiplication of equation (4.8) by n and integration over
dn leads to the following relation, if we introduce the

continuous variables x � n, y � m:

d�n

dt
� N0

�1
0

x dx

�1
0

y dy k�x; y� cxcy

� N0

�1
0

x dx

�1
0

y dy k�x; y� cxcy�x1=3 � y1=3�2 �x� y�1=2
x1=2y1=2

:

Above we use the relation for the rest gas
�1
0 ncn dn � 1:

Because of a weak dependence k�x; y�, one can use the above
expressions for cn in the right-hand side of the relation in the
case k � const. Then we obtain

d�n

dt
� k0N0�n 1=6J ;

where

J � 16

�1
0

x dx

�1
0

y dy exp�ÿ2xÿ 2y�

� �x1=3 � y1=3�2 �x� y�1=2
x1=2y1=2

� 5:54 :

From this follows the law of cluster growth:

�n � 6:3�k0N0t�1:2 : �4:10�

In the case of an expanding gas we have for the kinetic
equation

qcn
qt
� ÿ cn

tex
ÿN0cn

�1
0

k�n;m�cm dm

� 1

2
N0

�1
0

k�nÿm;m�cnÿmcm dm :

Repeating the above operations, we transform this equation
to integral form. Using the solution for k � const in the right-
hand side of the equation, we get

d�n

dt
� k0N0�n 1=6J exp

�
ÿ t

tex

�
;

where J � 5:54. From this we find the average size of clusters
at the end of the expansion process:

�n � 6:3�k0N0tex�1:2 : �4:11�

Formula (4.11) corresponds to the limiting case of a large
number density of cluster atoms. Then all the vapor atoms are
transformed into clusters, and because of the criterion

k0N0tex 4 1 �4:12�
the clusters formed are large.

In this regime of cluster growth the main time of cluster
evolution proceeds according to pair processes (4.1). But in
the first stage of transformation of an atomic vapor in a gas of
clusters the three body process is essential which proceeds
according to the scheme

2A�M! A2 �M ; �4:13�
where A is an atom of a nucleating vapor andM is an atom of
a buffer gas. Correspondingly, the number density of
diatomic molecules N2 is determined by the balance equation

dN2

dt
� KNbN

2 ;
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where K is the rate constant of this three-body process (4.13),
Nb is the number density of atoms of a buffer gas, N is the
number density of a nucleating gas. We assume that starting
from diatomic molecules, the cluster growth process goes as a
result of pair processes (2.22), (4.1). Then the diatomic
molecules forming are condensation nuclei for clusters.
Below we consider the regime when process (4.13) is of
importance, so that

KNbNtex 5 1 : �4:14�
Then in the course of expansion of a nucleating vapor, process
(4.13) delays the formation of bound systems of atoms. But
the formation of diatomic molecules leads to their subsequent
growth according to criterion (4.12). Let us consider the
regime of cluster growth when owing to process (4.13) only
a small part of the expanding vapor is transformed into a gas
of clusters, but due to criterion (4.12) these clusters are large.
If we neglect the detachment of molecules, the balance
equation for the molecule number density has the form

dN2

dt
� KNbN

2 ÿN2

tex
: �4:15�

In the regime under consideration the number densities of
atoms of a buffer gas and atoms of a vapor vary in time by the
law N, Nb � exp�ÿt=tex�. Then the solution of the balance
equation (4.15) has the form

N2�t� �
�
1ÿ exp

�
ÿ 3t

tex

��
KNbN

2tex
3

:

Here Nb, N are the initial number densities of atoms, N is the
total number density of molecules and clusters at time t. The
number of cluster atoms n is determined by the balance
equation

dn

dt
� k0n

2=3N :

Here we use formula (2.23) for the rate constant of atom
attachment, neglect the process of cluster evaporation and
take x � 1. Because N � exp�ÿt=tex�, the cluster size at the
end of the expansion process depends on the time of
formation of a diatomic molecule which is the nucleus of
condensation for the cluster. The maximum cluster size
corresponds to nucleation on diatomic molecules which
were formed at t � 0 and is

nmax �
�
k0Ntex

3

�3

; �4:16�

where the atom number density corresponds to the initial
time. Because of the criterion (4.12), nmax 4 1.

Thus, in the regime of clusterization of an expanding
vapor under consideration, criterion (4.14) conserves an
atomic vapor from nucleation in the main, and criterion
(4.12) provides large formed clusters. These criteria can be
compatible if

Nb 5
k0
K
:

Typical values of the rate constants are k0 � 10ÿ11 cm3 sÿ1,
K � 10ÿ33 cm6 sÿ1, so that the considered regime of
nucleation is valid if Nb 5 1022 cmÿ3.

Let us use the connection between cluster size n at the end
of the process and the time t of formation of diatomic

molecules which are nuclei of condensation for these
clusters. Clusters resulting from diatomic molecules which
are formed at a moment t have the following size

n �
�
k0Ntex

3

�3

exp

�
ÿ 3t

tex

�
� nmax exp

�
ÿ 3t

tex

�
;

where N is the number density of vapor atoms at the initial
time. Next, the number density of nucleation centres which
are formed at time t is

dN2

dt
� KNbN

2 exp

�
ÿ 3t

tex

�
:

Because the cluster size n is definitively related to the time of
formation of the condensation nuclei, we have from these
equations for the number density fn of clusters of a size n in the
end of the process:

dfn
dn
� Ntot

nmax
; �4:17�

where Ntot � KNbN
2tex=3 is the total number density of

condensation nuclei at the end of the process, normalized to
the initial time. As follows from this, the value dfn= dn does
not depend on n. Besides, we know that the total number
density of atoms in clusters at the end of the process is
Ntotnmax=2. Because we assume that most atoms remain free
at the end of the process, the following condition must be
fulfilled instead of (4.14) �Ntotnmax 5N�:

KNbNtex�k0Ntex�3 5 1 : �4:18�

Under these conditions, we have

fn � nNtot

nmax
;

and nfn is the number density of atoms which are contained in
clusters of size n. Then the average size of cluster formed n and
the total number density of atoms in clusters are

�n � 2nmax

3
� 2

3

�
k0Ntex

3

�3

;
X
n

n fn � 1

2
Ntotnmax 5N :

From the above analysis for two limiting regimes of
nucleation of an expanding vapor one can conclude that
criterion (4.12) is responsible for the large size of clusters
formed at the end of the process. Cluster growth proceeds due
to processes (2.22) when atoms of the vapor are free, and
according to scheme (4.1) when these atoms are bound in
clusters. Let us compare the rates of cluster growth according
to processes (2.22) and (4.1).

In the regime when cluster growth is determined by
attachment of free atoms to nuclei of condensation, and pair
processes of cluster growth start from diatomic molecules, the
average cluster size follows from formula (4.17) and is

�n � 2

3

�
k0Ntex

3

�3

:

Here N is the initial number density of nucleating atoms, and
this result is valid under the conditionN4N0, whereN0 is the
total number density of bound atoms in clusters.
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In the other limiting case, when the cluster growth is
determined by the cluster coagulation (4.1), the average
cluster size is given by formula (4.11):

�n � 6:3�k0N0tex�1:2 ;

where N0 is the total number density of bound atoms at the
beginning. This formula is valid, if the total concentration of
bound atoms does not vary in the course of expansion of the
gases, i.e. N0 4N. Though these formulas correspond to
different regimes of expansion, one can see from comparison
of the corresponding values n that the regime of weak
nucleation occurs if the expansion time tex is small compared
to a typical condensation time, i.e. a time during which all the
vapor can be transformed into clusters. Formula (4.11)
corresponds to the opposite relation between these times.

4.2 Peculiarities of cluster growth in vapor expansion
Let us analyze other aspects of the above regimes of
nucleation in an expanding vapor. As a result of the
processes of cluster growth, energy is released which leads to
the evaporation of cluster atoms. Let us analyze this effect for
large clusters. Using formula (2.1) for the binding energy of
cluster atoms, we obtain for the released energy as a result of
the process (4.1):

DE � A
�
m2=3 � �mÿ n�2=3 ÿ n2=3

�
; �4:19�

where nÿm, m are the numbers of atoms in joining clusters.
In particular, for m � n=2; when this function ofm at a given
n has a maximum, formula (4.19) gives

DEmax � 0:25An2=3 :

As is seen, this released energy is created by the surface cluster
energy. Hence it is small compared with the total binding
energy of cluster atoms, but it can exceed the binding energy
of a surface atom.

The release of this energy leads to an increase of the
temperature of the forming cluster compared to that of
joining clusters. It can cause the release of surface atoms.
Note that an excited cluster can emit only one atom, because
evaporation of molecules and fragments is characterized by a
small probability. Hence, an excited cluster resulting from
joining of two clusters can subsequently emit several atoms,
and we have a more complicated process compared to (4.1)
which proceeds according to the scheme

Anÿm �Am ! Anÿq � qA : �4:20�
Assume that at the end of process (4.20) the temperature of a
formed cluster is equal to the temperature of colliding
clusters. This means that the released energy is spent on the
liberation of atoms, so that the number of released atoms is

q � DE
�

dE

dn

�ÿ1
;

where dE= dn is the binding energy of surface atoms. In
particular, for a large cluster we take

dE

dn
� e0 ÿ 2a

3n1=3
� e0 ;

so that the maximum number of released atoms as a result of
the formation of a cluster containing n atoms is

qmax � 0:25
An2=3

e0
: �4:21�

In particular, for a large fcc-cluster with a short-range
interaction of atoms we have qmax � 0:32n2=3; for a large
icosahedral cluster with a short-range interaction of atoms
this formula gives qmax � 0:28n2=3, and for a large icosahedral
cluster with the Lennard ± Jones interaction of atoms from
this formula it follows qmax � 0:40n2=3: Thus, the considered
effect could be responsible for the formation of free atoms in
an expanding nucleating vapor, but the number of released
atoms is small compared to the number of atoms in a formed
cluster.

The other peculiarity of cluster growth in free vapor
expansion is connected with the size distribution function of
formed clusters. Above we considered some limiting cases for
cluster growth, and the size distribution function of clusters at
the end of the process is a smooth function of size for these
cases. Experimentally, a selectivity in the size distribution of
clusters is observed. Below we consider the mechanisms
creating this selectivity.

Selectivity can result from the total processes of cluster
growth in the system. As an example, Fig. 9 gives the size
distribution of charged copper clusters formed at the exit of a
magnetron gas discharge [92]. In this case negative cluster
ions are formed as a result of attachment of electrons to
neutral clusters. The rate constants of these processes
increases with cluster size, so that small clusters are absent
in the distribution function for this case. This fact is
demonstrated in Fig. 9.

The size distribution function of resultant clusters
depends on their aggregate state during cluster growth. The
above scheme corresponds mostly to liquid clusters with a
smooth size dependence for the binding energy of cluster
atoms. If growing clusters are found in the solid state, the size
dependence for the binding energy of atoms is stronger and
non-regular. An example of this dependence is given in Fig. 4,
and jumps in the binding energy as a result of new atoms
joining a cluster significantly exceeds the cluster melting point
if it is expressed in energetic units.

In the course of cluster growth an equilibrium is
established for clusters with neighbouring numbers of
atoms. This equilibrium results for processes of atom
attachment and cluster evaporation. Relation (3.7) in the
case of this equilibrium has the form

fn
fnÿ1
� S exp

�
ÿ en ÿ enÿ1

T

�
; �4:22�

where en, enÿ1 are the binding energies of atoms for clusters
consisting of n and nÿ 1 atoms correspondingly. For a solid
cluster the exponent is large, so that the distribution function
for cluster with magic numbers of atoms significantly exceeds
that of clusters with neighbouring numbers of atoms. This
provides the selectivity for the size distribution function of
clusters.

Thus, if the cluster growth process finishes when clusters
are solid, clusters are mostly formed with magic numbers of
atoms. Hence, the low-energy cluster beam deposition
method [13] in principle allows the generation of beams of
clusters with magic numbers of atoms.

4.3 Heat processes in the nucleation of expanding vapors
The heat regime of vapor expansion is of importance for its
nucleation. Indeed, the expansion process starts from high

November, 1997 Processes in plasma and gases involving clusters 1131



vapor temperatures when high rates for processes of dissocia-
tion of molecules and evaporation of clusters do not allow the
formation of bound atomic systems. In the course of the
temperature drop resulting from the vapor expansion, these
rates decrease sharply, and the nucleation process starts from
some temperature. This means that in the above analysis of
the clusterization process in an expanding vapor the initial
number densities of atoms for the vapor and a buffer gas
correspond to the temperature when the nucleation process
starts. Next, the nucleation process is accompanied by an
energy release which leads to heating of an expanding vapor
and can prevent nucleation. Hence, the usage of a buffer gas is
important. A buffer gas accelerates the processes of nuclea-
tion in the first stage and takes away an energy surplus. Below
we consider the peculiarities of the heat process in the course
of expansion of a nucleating vapor.

A jet expansion is an adiabatic process which is accom-
panies by transitions of energy between different degrees of
freedom of an expanding gas. For the analysis of this process
let us extract a moving gas volume V in which are located n
atoms of a buffer gas and nv atoms of vapor which consists of
free atoms at the beginning. The variation of the total energy
of this volume is

dE � dQ� p dV ;

whereQ is the thermal energy of particles in this volume, and
p is the gaseous pressure. Assuming the concentration of
vapor atoms in the buffer gas to be small, we neglect the
thermal energy of vapor atoms. Then the variation of the
thermal energy is

dQ � 3

2
nb dTÿ

X
k

Ek dnk ;

where dT is the temperature variation, nk is a number of
clusters consisting of k atoms and located in a given volume,
and Ek is the total binding energy of atoms in a cluster
containing k atoms. Introducing the number density of a
buffer gas Nb and using its definition Nb � nb=V, we obtain

p dV � ÿnbT dNb

Nb
;

where we use the equation of the gas state p � NbT: On the
basis of the adiabatic character of the expansion process
dE � 0, and accounting for the above relations, we obtain

dE � dQ� p dV � 3

2
nb dTÿ nbT

dNb

Nb
ÿ
X
k

Ek dnk � 0 :

�4:23�

If we neglect the nucleation process, then we get the
adiabatic law of expansion of a monatomic gas

Nb � T 3=2 :

Let us assume that the flow of the buffer gas conserves a
cylindrical symmetry during free jet expansion. Denote the
beam radius by R and take into account that the atom flux
J � pR2Nbu is conserved, where the drift velocity of atoms u
is assumed to be independent of the temperature. Then we
have Nb=N0 � R2

0=R
2, where N0, R0 are the initial values of

beam parameters. Substituting it in equation (4.22), we get

3

2
nb dTÿ 2nb T

dR

R
ÿ
X
k

Ek dnk � 0 :

Now let us assume that at the beginning all vapor atoms
were free, and condensation takes place in a narrow
temperature range near T�. The solution of this equation
under these conditions has the form

T � T�

�
R0

R

�4=3

exp
2ec
3T�

; �4:24�

where c � nv=nb is the concentration of vapor atoms, e is the
cluster binding energy per atom.

From this it follows that the nucleation process does not
influence the character of gas expansion if the criterion

c5
T�
e

is fulfilled. In the opposite case, the thermal effect of the
nucleation process stops this process, so that only a part of the
free atoms can form clusters. For this reason a buffer gas is
required for the total condensation of an expanding vapor.

Let us determined the maximum concentration of bound
atoms for a pure expanding vapor. Then the released energy
resulting from the formation of clusters raises the vapor
temperature that stops subsequent clusterization. In this
case equation (4.23) takes the following form

3

2
n dTÿ nT

dN

N
ÿ
X
k

Ek dnk � 0 ;

where n is the number of atoms in a considered expanding
volume, and N, T are the number density of atoms and
temperature. Let the initial values of these parameters be N0

and T0, and at the beginning of clusterization these values be
N� and T�. During the first stage of expansion, when
clusterization is absent, the vapor state is governed by the
equation

3

2
dTÿ T

dN

N
� 0 ;

so that N � T 3=2, and at the beginning of clusterization we
have

N� � N0

�
T�
T0

�3=2

:

At the next stage of the process dT � 0, and we obtain

T
dN

N
ÿ
X
k

Ek
dnk
n
� 0 :

The clusterization process starts at a temperatureT� when
the formation of diatomic molecules Ð nuclei of condensa-
tion is possible. Hence, this temperature can be estimated
from the relation N2�T�� � N, where N2�T�� is the number
density of molecules in thermodynamic equilibrium. Let us
assume that the clusters forming are large, so that the binding
energy per atom is close to that of the bulkwhichwe denote by
e0. Then the above equation of heat balance takes the form

3

2
n dTÿ nT

dN

N
ÿ e0n dc � 0 ;

where c is the concentration of bound atoms, i.e. the ratio of
the number of bound atoms to the total number of atoms in a
given volume.
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We assume criterion (4.14) to be valid. Now it has the
following form

KN 2tex 5 1 :

Here K is the rate constant of the three body process
3A! A2 �A, and tex is the expansion time. If the clusteriza-
tion process is limited by heat release, it proceeds at a constant
temperature and leads to amaximum concentration of bound
atoms at the end of the process which, according to the
solution of this equation, is

cmax �
�
T�
e0

�
ln
N�
Nf

; �4:25�

where Nf is the final number density of free atoms, when the
clusterization process finishes. It follows from the relation

kNf tex � k0Nf texn2=3max � nmax
Nf

N�
� 1 ;

where nmax is a typical number of cluster atoms at the end of
the process which, according to formula (4.16), is

nmax � �k0N�tex�3 � �k0N0tex�3
�
T�
T0

�9=2

:

Thus the maximum concentration of bound atoms at the end
of the expansion process of a pure atomic vapor, with
accuracy up to numerical values under logarithm, is

cmax � T�
e0

ln nmax : �4:26�

In reality T�=e0 � 0:1, so that the real maximum degree of
clusterization in a pure vapor is of the order of 10%.

4.4 Gas dynamics of free jet expansion
The above analysis allows us to understand the character of
cluster growth.Within the model under consideration, we use
the parameter tex as a characteristic of expansion of a
nucleating vapor. It is necessary for the formation of large
clusters that this time should be small compared to a typical
time �k0N0�ÿ1 of atom attachment to clusters, i.e. criterion
(4.12) must be valid. When the number of nuclei of
condensation is enough large under this condition, all the
vapor is converted into clusters, if it does not contradict the
heat balance in the system.

The expansion time tex in the balance equations depends
on the time in the general case according to the character of
vapor expansion. If the nucleation process takes place in a
narrow region of temperatures, this value can be taken as a
constant. In order to understand the validity of this approx-
imation, we consider below the character of gas dynamics as a
result of expansion of a monatomic gas in a vacuum after a
nozzle in the absence of the nucleation process.

Note that the character of vapor expansion in a vacuum
depends on the nozzle profile [60, 64].Wewill be guided below
by the hyperbolic shape of nozzle which is more often used
than others. Besides, all the expressions below correspond to
monatomic gases. After a nozzle the flux obeys a directed
velocity u which is given by the expression

u � v0

1� 3=M2
: �4:27�

Here v0 � �5T=m�1=2, m is the atom mass, M is the Mach
number. The Mach number increase with distance from the
nozzle and is large (M4 1) far from it. According to Wiel
[119], the dependence of the Mach number on the distance x
from a nozzle is given by the formula

M � 1� 2:82d tan a ; �4:28�

where d � x=d, d is the nozzle diameter, 2a is the total opening
angle of the nozzle. This formula is valid up to d � 15. At
larger distances one can use the Hagena asymptotic expres-
sion [59]

M � 2:72d2=3 : �4:29�

The dependence of parameters of an expanding vapor on
the distance from a nozzle can be expressed through theMach
number. In particular, in the absence of condensation the
vapor temperature is [125]

T � T0

1�M2=3
: �4:30�

Using it in equation (4.23) for the gaseous temperature, one
can obtain values of tex over a wide range of distances after
the nozzle. One more peculiarity of the expansion process
consists in the violation of formula (4.29) at very large d. The
Mach number and the gaseous temperature at infinite values
of d tend to finite values [125]. It may be of importance for the
condensation process, because this fact changes the character
of the process.

A convenient scaling law for vapor parameters during a
free jet expansion was suggested by Hagena [61]. The basis of
this procedure is such that on the basis of three gaseous
parameters one can construct the reduced parameters of a gas
and by these reduced parameters one can describe the
evolution of the gas. As gaseous parameters, Hagena took
the binding energy of bulk per atom e, the bulk density % and
the atom mass m. Taking these into account and using
experimental data, Hagena [61] chose combinations of
parameters through which one can express characteristics of
condensation for various gases and vapors. One such
parameter is

c� �
c
cch

; cch � N0dT
ÿ1:25
0 : �4:31�

HereN0 is the initial number density of atoms, T0 is the initial
temperature, and d is the nozzle diameter. The parameter cch

is constructed from the above parameters of the gas and is
1:7� 1011 cmÿ2 Kÿ1:25 for argon, and 3:3� 109 cmÿ2 Kÿ1:25

for copper. The parameter c determines the final gaseous
temperature after a nozzle T1 which is [61]

T1 � 0:6Tch�c��ÿ0:8 ; �4:32�

where Tch characterizes the binding energy of large clusters.
This value is 930K for argon and 4:06� 104 K for copper.
These relations are convenient for the analysis of the
condensation process.

For a demonstration of use of the above relations let us
analyze the character of condensation of copper under the
conditions of the experiment [126]. In this experiment the
condensation of copper up to the formation of dimers was
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studied. The initial vapor temperature was T0 � 2500 K, the
initial vapor pressure was p0 � 100 Torr, and the nozzle
diameter d � 0:625 mm. These parameters correspond to a
final temperature of the copper vapor T1 � 330 K. One can
consider that the temperature when the condensation starts
coincides with the vibrational Tvib or rotational Trot tempera-
tures of dimers when their concentration is small. According
to the above experiment for copper, these parameters are
[126] Tvib � 950� 100 K, Trot � 800� 50 K. From formula
(4.24) it follows that due to the condensation process the final
temperature increases up to Tmin which is given by the
expression

Tmin � T1 exp
2ec
3T�

: �4:33�

From this it follows that the maximum concentration of
dimers at the end of the process at the temperature
T� � Tmin satisfies the relation

c <
3T�
2e

ln
T�
T1

�4:34�

and in this case e correspond to the dissociation of the
diatoms. The above data and formulas give c � 5 ± 7% for
the maximum diatomic concentration in this case.

The above model with the parameter tex which charac-
terizes the expansion process is valid if the clustering process
proceeds in a small space region. According to research for
free jet expansion in monatomic gases, it is not fulfilled in
reality. Hence, for a numerical analysis of the nucleation
process in a free jet expansion, it is necessary to account for
the gas dynamics of a flux after a nozzle. Note that the
information used corresponds to a vapor expansion without
nucleation. But because the nucleation process influences the
flux temperature, it changes the gas dynamics of an expanding
beam. Thus, the correct solution of the problem of nucleation
in free jet expansion of a vapor requires taking into account
the processes of cluster growth together with the heat balance
of a nucleating beam and its gas dynamics. The above model
of these processes allows us to understand the qualitative
character of nucleation processes and the dependence of the
size distribution function of the clusters formed on the
parameters of the system.

5. Radiative processes involving clusters

5.1 Absorption cross section of bulk particle
Clusters are effective radiators, and their presence in a hot or
weakly ionized gas may be important for the radiative
parameters of these systems. Below we will be guided by
metallic clusters where this effect is strong. For example, take
an alkali metal atom which has strong resonant spectral lines
of absorption. When we join atoms of an alkali metal in a
cluster, these spectral lines are converted into spectral bands
located in the visible range of the spectrum or the adjacent
infrared and ultraviolet ranges of the spectrum. A hot cluster
emits radiation in this spectrum range like a hot surface, but
with a higher efficiency. In addition, such a cluster is
transparent for hot infrared radiation, so that it is an
effective light radiator. Note that the recombination radia-
tion of a gas discharge plasma, which determines the radiative
parameters of gas discharge sources of light, results from

collisions of electrons and ions, i.e. it is a secondary process in
the system. A system with hot clusters is an effective source of
light because the radiation of a hot cluster is the primary
process. Thus, radiative properties of metallic clusters require
special analysis.

Let us find the expression for the absorption cross section
of a small particle whose size r is small compared to the
wavelength l:

l4 r : �5:1�

In this case the interaction potential of the electromagnetic
wave and particle isÿED, whereE is the electric field strength
of the wave, and D is the dipole moment induced on the
particle by the electromagnet wave. The power absorbed by
the particle is:

P � ÿ
�
E

dD

dt

�

where the brackets mean averaging over time. Let us take the
electric field strength of a monochromatic electromagnetic
wave in the form

E � E0 exp�iot� � E�0 exp�ÿiot� ;

where o is the wave frequency. For the induced dipole
moment by the electromagnetic field it gives:

D � a�o�E0 exp�iot� � a��o�E�0 exp�ÿiot� ;

where a�o� is the particle polarizability. From this it follows
for the absorbed power

P � iojE0j2�a� ÿ a� :

The energy flux for this electromagnetic wave is
J � cjE0j2=�2p�. Thus, the absorption cross section of the
particle as the ratio of the absorber power to the energy flux
for the electromagnetic wave is [127]

sabs � P

J
� 4p

o
c
Im a�o� : �5:2�

The deduction of this formula is made in order to
understand the criteria of its validity. As is seen, formula
(5.2) is based on assumption (5.1). If we use the expression for
the polarizability a of a small spherical particle [127], we
obtain for the absorption cross section:

sabs�o�� 12po
c

e00

�e0 � 2�2 � �e00�2 r3 � 12po
c

r3g�o�; �5:3�

where r is the particle radius, the dielectric constant of the
particle material is taken in the form e�o� � e0�o� � ie00�o�,
and

g�o� � e00

�e0 � 2�2 � �e00�2 :

As is seen, the absorption cross section sabs � �r=l�r2, i.e. is
small compared to the particle cross section pr2.

Note that formula (5.2) does not connect with the Mie
theory [128] of scattering of an electromagnetic wave on a
bulk particle. This theory requires the macroscopic character
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of refraction of an electromagnetic wave when it goes through
the boundary of a bulk system. These conditions may be
violated for small particles, and formulae (5.2) and (5.3) are
based on other criteria. We deduced these formulae in order
to convince the reader of this fact.

Let us use the Drude ± Sommerfeld theory [129, 130] for
metallic particles interacting with electromagnetic waves.
Then electrons of the particles are like a gas of free classical
electrons, so that for the dielectric constant of this electron
gas we have

e�o� � 1ÿ o2

o2
p

: �5:4�

Here op � �4pNee
2=me�1=2 is the plasma or Langmuir

frequency, so that Ne is the electron number density, e, me is
the electron charge and mass correspondingly. Damping of
plasma waves determines the imaginary part e00 of the
dielectric constant. The assumption e005 1 transforms for-
mula (5.3) with usage (5.4) to the following form in the
vicinity of the resonant frequency:

sabs�o� � 2p
�ho2

c
r3

G

�h2�oÿ o0�2 � G2

� smax
G2

�h2�oÿ o0�2 � G2
; �5:5�

where o0 � op=
���
3
p

is the resonant frequency, G � �ho0e00=6 is
the resonance width, and smax is the maximum absorption
cross section:

smax � 2p�ho2
0r

3

Gc
: �5:6�

From formula (5.5), the integral relation follows as�
sabs�o� do � psmax

G
2�h

; �5:7�

where the resonance width is assumed to be relatively small.
Within the framework of the liquid drop model for a metallic
particle, we have r3 � r3Wn, where rW is the Wigner ± Seitz
radius, and n is the number of particle atoms. One can
conclude from formula (5.5) that the absorption cross
section is proportional to the number of particle atoms.

5.2 Absorption of clusters
Though the above description of a bulk particle is rough for
clusters, it includes the principal mechanism of metallic
clusters with an electromagnetic wave through valent
electrons. Hence, the absorption spectrum of metallic
clusters is concentrated in the visible range of the spectrum
or near it, and absorption in farthest infrared spectrum
range is absent. In reality, the absorption spectrum of
metallic clusters can have a more complex structure and
include several maxima. Table 4 contains parameters of the
absorption cross section of metallic clusters for elements
when the spectrum consists of one bell-like curve. These
cross sections are measured in [131] for silver, [132, 133] for
potassium and [134] for lithium. The basis of measurement
of the absorption cross section of metallic clusters is the
concept of photoinduced evaporation [135], so that the
absorption of photons leads to cluster fragmentation. Then
measurement of the size distribution function of cluster ions

as a function of the intensity of incident laser beam at a
given geometry of the experiment allows us to find the
absorption cross section. Below we will use the data of
Table 4 as model values for the calculation of the radiation
parameters of clusters located in a hot gas or plasma. In
some cases the absorption cross section as a function of the
photon energy do not have a plasmon-like form. As an
example, Fig. 12 gives the absorption cross sections for
some clusters Agn [135] which show that the spectrum form
of clusters can be different. The other example corresponds
to Nan clusters [136] when the absorption spectrum has a
more complex form than in the plasmon case.

From Table 4 it follows that parameters of the absorption
cross-section in formula (5.5) weakly depend on the cluster
size. Below we use average values of these parameters. The
statistical treatment of experimental data for cluster ions Ag�9
and Ag�21 [131] gives �ho0 � 3:9� 0:1 eV, G � 0:59� 0:03 eV,
smax=n� �9� 1� � 10ÿ17 cm2, for cluster ionsK�9 ±K�900 [132,
133] it yields �ho0 � 2:00� 0:05 eV, G � 0:26� 0:10 eV,
smax=n � �34� 6� � 10ÿ17 cm2, and for ion clusters Li�139 ±
Li�1500 [134] these parameters are �ho0 � 3:1� 0:1 eV,
G � 1:12� 0:15 eV, and smax=n � �52� 8� � 10ÿ17 cm2. In
Table 4 we compare the maximum absorption cross section
with the cluster section pr2 � pr2Wn2=3, where r is the cluster
radius, and rW is the Wigner ± Seitz radius. The ratio of these
values is

b � smax

pr2Wn2=3
: �5:8�

Value b is given in Table 4. Because smax � n, this ratio grows
with increasing cluster radius.

Note that the plasmon mechanism of absorption leads to
relation (5.6) for the maximum absorption cross section. One
can check the validity of this relation for measured para-
meters of the absorption cross section. Let us introduce the
parameter

x � smax
Gc

2p�ho2
0r

3
;

which is equal to unity if formula (5.6) is valid. Values of these
parameters for metallic clusters with the plasmon-like form of
absorption cross section are given in Table 4. As is seen,
parameter x differs from unity stronger than follows from the
accuracy of the parameters used. It means that the assump-
tions used are not valid. These assumptions are based on the
bulk nature of absorption that is expressed by formula (5.3)
and on the plasmon character of the interaction of an
electromagnetic wave with cluster valent electrons that leads
to formula (5.4). Thus we conclude that the concept of

Table 4. Parameters of the absorption cross sections for metallic clusters.

Cluster �ho0, eV G, eV smax, A
2

x b f

Li�139
Li�270
Li�440
Li�820
Li�1500
K�9
K�21
K�500
K�900
Ag�9
Ag�21

2.92
3.06
3.17
3.21
3.25
1.93
1.98
2.03
2.05
4.02
3.82

0.90
1.15
1.32
1.10
1.15
0.22
0.16
0.28
0.40
0.62
0.56

62
120
280
440
830
26
88
1750
2500
8.84
16.8

2.8
3.2
4.9
3.3
3.5
2.9
2.9
4.0
4.5
2.6
2.1

0.24
0.30
0.50
0.52
0.66
0.27
0.52
1.3
1.2
0.24
0.26

0.58
0.73
1.20
0.85
0.91
0.91
0.96
1.40
1.59
0.87
0.64
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absorption of an electromagnetic wave by ametallic cluster as
a result of the interaction of the wave with a bulk plasmon is
not valid even in cases when the spectral form of the
absorption cross section corresponds to the plasmon case.

One more comparison confirms this conclusion. The
resonant frequency for the plasmon character of the interac-
tion of an electromagnetic wave with a metallic cluster is

o0 � op

���
3
p
� 3e

m
1=2
e r

3=2
W

;

because the number density of valent electrons is
Ne � 3=�4pr3W�, where e, me are the electron charge and
mass, and rW is the Wigner ± Seitz radius. From this formula
it follows that �ho0 � 13:5 eV for large lithium clusters,
�ho0 � 7:1 eV for large potassium clusters and �ho0 � 14:7
eV for large silver clusters. A strong deviation of these values
from the data of Table 4 convinces us that the bulk plasmon
model is not valid for these metallic clusters.

Let us consider the sum rule for a metallic cluster. We use
that for fixed nuclei the cluster spectrum in the considered
spectrum range consists of a finite number of `stocks'
comparable with the number of cluster atoms. In the limit of
one atom this spectrum is converted into one or several
resonant spectral lines of this atom. Let us introduce the
effective oscillator strength f per valent electron, so that the
sum of oscillator strengths of this stock form spectrum is nf,
where n is the number of valent electrons of cluster atoms. As
a result of motion of cluster nuclei, the cluster spectrum
becomes continuous with several maxima, but the sum rule is
conserved. Below we consider the sum rule in the case when
the cluster spectrum has a plasmon-like form, as takes place
for clusters of Ag, Li, K of Table 4.

Let us use a general formula for the absorption cross
section of an atomic system [137]:

sabs�0! k� � p2c2

o2

ao
t0k

gk
g0
� 2p2c2

mee
f0kgkao : �5:9�

Here me is the electron mass, o is the frequency of the
considered electron transition between states 0 (lower state)
and k (upper state), g0, and gk are the statistical weights of the
transition states, t0k is the radiative lifetime with respect to
this transition, and ao is the frequency distribution function
of radiative photons, so that

�
ao do � 1, f0k is the oscillator

strength for a given transition, so that the sum rule for dipole
radiative transitions of valent electrons for a spectrum range
included resonant transitions has the form:X

k

f0k � n f :

For definiteness, we consider clusters consisting of atoms
with one valent electron, as the clusters of Table 4. Then,
assuming the considered range of the spectrum to include all
the resonant dipole transitions of electrons, integrating over
frequency in the vicinity of each cluster resonant transition
and summarizing over all the resonant transitions, we obtain
the following integral relation for the absorption cross
section:�

sabs�o� do � 2p2e2

mec
n f : �5:10�

If the absorption cross section of clusters has a plasmon-like
form, as the elements of Table 4, the sum rule (5.7) is fulfilled.
Then from formulae (5.7) and (5.10) it follows

f � smaxGmec

4pe2n�h
: �5:11�

Table 4 contains the values of the oscillator strength f of
metallic clusters per valent electron when the absorption
spectrum can be approximated by a plasmon-like resonance.
There is an excess of these values for each element that could
be connected with the restricted accuracy of the data used. On
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Figure 12. Absorption cross section of silver cluster ions [131].
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average, the values of f for each element correspond to the
oscillator strength of the lowest resonant transition
2S1=2 ! 2P1=2,

2P3=2 of the corresponding atom. These
atomic oscillator strengths are [138] 0:74 for lithium, 1:05
for potassium and 0:77 for silver. The coincidence of the
cluster and atom oscillator strengths confirms the concept
that the active spectrum of metallic clusters is a result of the
transformation of atomic resonant spectral lines by means of
atom interactions. Thus, one can consider radiative transi-
tions in clusters as individual radiative transitions for valent
electrons in this system of bound atoms, and these transitions
are broadened due to the motion of nuclei.

From the above data one can conclude that there is a
partial analogy of valent electrons of metallic clusters with
free electrons of a plasma. This analogy means that only
electrons are responsible for the interaction of the atomic
system with an electromagnetic wave in both cases. The
character of the radiation of metallic clusters as systems of
bound atoms with interacting valent electrons can be
considered in the following way. Let an individual atom
have a resonant excited state, so that a dipole radiative
transition connects this state with the ground state. Usually,
the lowest resonant atom state is characterized by the
maximum oscillator strength for a transition from the
ground state. Now compose a cluster from n atoms. If the
positions of the atomic nuclei are fixed, the atomic resonance
spectral line is split into n lines. Due to vibrational motion of
nuclei in a solid cluster, these lines are broadened and
partially overlap. Hence, the absorption spectrum of a
metallic cluster contains several (or one) wide resonances.
This form of absorption spectrum of metallic clusters is taken
into account in calculations of the maximum absorption
cross-sections of clusters (for example, [139 ± 146]). Note
that from this consideration relationship (5.10) follows. It
gives that the absorption cross section of a cluster is
proportional to the number of cluster atoms. The same
dependence follows from a bulk model of clusters (5.3),
though the above analysis leads to the conclusion that this
model is not valid for metallic clusters.

As an example of such a behaviour of the cluster
absorption spectrum, let us considered the mercury clusters
studied in [147, 148]. Figure 13 explains the character of the
transition from the absorption spectrum of amercury atom to
bulkmercury through clusters. Valent electrons of the ground
state of a mercury atom are found in electron shells 6s2 and
5d 10, so that the main resonant atomic transition is 6s! 6p
and an additional resonant transition is 5d! 6p. As mercury
atoms join in a cluster, the resonant spectral lines are
broadened, so that two spectral lines of the mercury atom
are converted into two spectral bands of a cluster. Figure 14
proves this conclusion for large cluster ions. It shows that the
absorption spectrum of mercury cluster ions consists of two
bands.

According to the above consideration, the broadening of
spectral lines of a cluster is determined by motion of nuclei.
Hence, the spectra of solid and liquid clusters can be different,
so that the spectrum of solid clusters has a more complex
structure. This is demonstrated in Fig. 15 [149] where the
absorption cross-section for cluster ions Naÿ11 is given at
different temperatures. As follows from this figure, indivi-
dual bands in the absorption spectrum are broadened with
increase of the temperature and can overlap. Hence, the form
of the absorption spectrum is simplified with increasing
temperature. This effect also corresponds to other cluster
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Figure 13. Radiative transitions in a mercury atom, mercury cluster and

bulk mercury [147, 148].
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properties. Increasing the cluster temperature causes addi-
tional motion of nuclei and changes the cluster parameters. In
particular, the dependence of cluster parameters on the
number of cluster atoms becomes smoother with increasing
temperature. This fact is demonstrated in Fig. 16 [150] where
the ionization potential of silver clusters is given as a function
of the number of cluster atoms at different temperatures.

As an atomic system, a metallic cluster admits saturation
and nonlinear absorption of monochromatic power signals if
the typical relaxation time of the excited states formed
significantly exceeds the excitation time of the system [152].
Then alignment phenomena arise in the interaction of
polarized monochromatic radiation with and atomic system,
an a hole is burnt in the spectrum of this system. These
phenomena were observed in experiments [153] with clusters
Hg��7 and Hg��9 which were irradiated by polarized mono-
chromatic light. Thus, metallic clusters can be used as a
nonlinear optical element with a bleaching property under
the action of monochromatic power pulses of light.

Thus, information the interaction of metallic clusters with
electromagnetic waves testifies that these clusters have
properties of atomic systems rather than bulk ones.

5.3 Absorption of films with embedded clusters
Let us consider the absorption of films of a transparent
material with embedded clusters produced by the LECBD
method [11 ± 13]. Absorption in these films is determined by
clusters which interact with an electromagnetic wave like free
clusters. Assume the criterion

Nsabsr5 1 ; �5:12�
to be valid, where N is the number density of clusters in the
film, sabs is the cluster absorption cross section, and r is the

cluster radius. Supposing clusters to be located randomly in
the film and to interact independently with an electromag-
netic wave, we have for the absorption coefficient k of the
film:

k � Nsabs : �5:13�
Herewe consider embedded clusters as independent centres of
absorption.

Figure 17 gives the absorption coefficient versus the
photon energy for gold and indium clusters embedded in
transparent matrices. One can see the validity of formula
(5.13) in a rough approximation, so that the absorption
coefficient is proportional to the cluster number density in
the film. But a partial violation of this formula due to
simultaneous interaction of an electromagnetic wave with
several clusters could change the form of the absorption
spectrum of films with increasing cluster number density.

A simultaneous interaction of an electromagnetic wave
with many clusters takes place if they form a fractal structure
as is shown in Fig. 18 [13]. Then a strong correlation in
positions of neighbouring clusters in the film increases the
absorption of an electromagnetic wave in comparison with a
random distribution of clusters of the same number density.
The absorption cross-section of a fractal aggregate with
radius R small compared to the wavelength l is expressed
through the cross-section of absorption of an individual
cluster by the formula [154, 155]:

s � sabs

�
R

r

�3

; �5:14�

where r is the cluster radius. Introducing the fractal
dimensionality of the aggregate D, for the number of clusters
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m constituting the fractal aggregate we have [156]

m �
�
R

r

�D

: �5:15�

If fractal aggregates are located randomly in a film and
interact independently with an electromagnetic wave, we
obtain for the absorption coefficient in the case when clusters
form fractal aggregates with indicated parameters:

k � k0m
3=Dÿ1 ; �5:16�

where k0 is the absorption coefficient of a film in which
clusters of the same number density are distributed randomly
and interact with an electromagnetic wave independently.

Formation of fractal aggregates in the regime of low-
energy cluster beam deposition [13] is described by the model
of deposition-diffusion aggregation [157]. According to this
model, clusters roll on the surface until they join with another
cluster or aggregate. Then they stop and form islands of
clusters on the surface, and new clusters join these island-
aggregates. Such a mechanism of aggregate growth is known
as `diffusion limited aggregation' [158]. The fractal dimen-
sionality of the fractal aggregates formed in the two-
dimensional case is approximately 1.7 [158 ± 164], so that
formula (5.16) has the form

k � k0m
0:77 : �5:17�

Thus, the formation of cluster structures resulting from
deposition of solid clusters onto a surface leads to an increase
of the absorption coefficient of the film formed.

5.4 Radiation of hot clusters
If clusters are located in a hot or weakly ionized gas, they are
effective radiators and can determine the radiation of the
system over a certain spectrum range. Let us use the principle
of detailed balance in order to connect the spectral power of
an individual cluster at a certain temperature with the
absorption cross-section of this cluster. Then one can use
the Kirchhoff law which establishes the connection between
rates of absorption and emission of radiation. It gives for the
spectral power of radiation

p�o� � �hoi�o�sabs�o� ; �5:18�
where

i�o� � o2

p2c2

�
exp

�ho
T
ÿ 1

�ÿ1
: �5:19�
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Here i�o� is the random photon flux of black body radiation
inside a space where this radiation propagates, so that i�o�=4
is the radiation flux from a surface of a bulk black body, and
sabs�o� is the absorption cross-section for a small particle.
Thus, we have for the spectral power of radiation of a small
particle or cluster:

p�o� � �ho3

p2c2
sabs�o�

�
exp

�ho
T
ÿ 1

�ÿ1
: �5:20�

In particular, the radiation power of a small bulk particle of a
radius r is

P �
�1
0

p�o� do � 12p
�hc

r3gsT 5K � 46pr3gsT 5

�hc
;

Tr

�hc
5 1 ;

�5:21�

where we assume the value g�o� � e00
��e0 � 2�2 � �e00�2�ÿ1 to

be independent of the frequency, s is the Stephan ±Boltz-
mann constant, and the numerical coefficient K � 3:83. Thus,
the radiation power� T 5 of a small particle differs from that
of black body � T 4 corresponded to bulk systems.

According to formulas (5.3) and (5.10), the absorption
cross-section of a cluster or small particle is proportional to
the number of atoms n which constitute the cluster or small
particle. From this it follows that the specific absorption
cross-section, i.e. the cross-section per atom does not depend
on the cluster size. Therefore the radiation power of particles
per unit volume is proportional to the total number of atoms
in particles which are located in the unit volume, or to the
particle mass per unit volume. It does not depend on the
distribution of particles by size if the particles have an
identical form. Correspondingly, the total radiation power
of a hot gas or plasma containing small particles or clusters is
proportional to the total mass of particles in the volume
where the radiation is created. This conclusion corresponds
both to the spectral and total radiation power of the
considered element of plasma. It is a general conclusion for
a hot gas whose radiation is created by small particles [154,
165, 166]. This result follows both from the theory for bulk
small particles and from the experiments for some metallic
clusters.

Let us evaluate the parameters of radiation of a plasma
with clusters or cluster ions. Use a simple model of cluster
radiation by assuming parameters of hot clusters or cluster
ions to be identical to that of Li, K andAg-clusters [131 ± 134].
Table 5 gives the specific powers of hot clusters:

Prad �
�
p�o� do

M
; �5:22�

whereM is the cluster mass. We take the radiation power of a
cluster ion to be proportional to its mass. Table 5 also lists the
light efficiencies of hot tungsten cluster ions with the above
model values for the absorption cross-sections. The light
efficiency is determined by the formula

Z �
�
p�o�V�o� do�

p�o� do ; �5:23�

where p�o� is given by formula (5.20), the function V�o�
characterizes the receptivity of the eye and has a maximum
683 lmWÿ1 at l � 555 nm. For comparison Table 5 contains
the light efficiencies of black body. Comparison of the data of

Table 5 shows that the light efficiency for model metals is
higher than that of black body because of the preferable
absorption spectrum of the cluster ions (The infrared part is
cut off in the spectrum of metallic cluster ions). Thus cluster
ions in a discharge plasma provide a high radiation power per
unit mass which is on average 1� 108 W gÿ1 at T � 3600 K.

Thus, clusters or small particles introduced in a hot gas
emit radiation and can be responsible for the radiation of the
system. For example, this occurs in flames whose radiation is
created by soot particles [165 ± 167]. The same takes place in
the products of combustion of solid fuels where small
particles emit radiation. Below we consider one more
example of this type when clusters are used as radiators in
cluster sources of light.

6. Cluster plasma of light source

6.1 Processes in cluster plasma
According to its definition, a cluster plasma is an ionized gas
containing clusters, so that clusters influence some plasma
properties. Below we consider a discharge cluster plasma in
which clusters are not of importance for an ionization
equilibrium, but their radiation gives a significant contribu-
tion to the discharge power. This plasma is the basis of
cluster sources of light. As follows from the analysis of
Section 3.1, a significant number of clusters can exist only in
a non-equilibrium plasma. Hence, the properties of a cluster
plasma are determined by processes inside it which establish
the specific character of equilibrium inside the plasma.
Table 6 gives a list of these processes.

The effective interaction of metallic clusters with light and
a profitable form of spectrum make metallic clusters effective
radiators for a light source. Therefore, starting from the
Weber and Scholl paper [168] of 1992, several types of cluster

Table 5. Specific power of radiation (Prad) and efficiency of radiation (Z) of
large clusters. The specific power is expressed in 107 W gÿ1, the light
efficiency is given in parentheses and is expressed in lmWÿ1. Data for the
absorption cross-sections of Ag, K, and Li-clusters are used as model
parameters for these temperatures.

Cluster Prad �Z) at temperature

3000 K 3500 K 4000 K

Ag
K
Li
Black body

0.71
4.0
2.0

(51)
(108)
(51)
(22)

1.6
8.6
4.9

(75)
(141)
(80)
(39)

3.5
17
10

(88)
(165)
(102)
(57)

Table 6. Processes in the cluster plasma of a light source.

Type of process Process

Processes in arc plasma

Kinetics of clusters

Processes in atomic vapor
Processes with cluster ions

Chemical processes

Mobility of electrons
Atom ionization by electron impact
Three body recombination
Drift of ions and electrons to walls
Evaporation of clusters
Attachment of atoms to clusters
Cluster collisions with electrons and atoms
Ionization of vapor atoms
Ionization of clusters
Diffusion and mobility of cluster ions
Equilibrium of clusters and molecules
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light sources were analyzed both by experimental and
theoretical methods [168 ± 173]. In all cases the clusters are
located in a plasma. The first scheme of a cluster light source
by Scholl andWeber [168] used tungsten and rhenium clusters
in a 100 W microwave discharge. The important element of
this scheme is a regenerative chemical cycle allowing gas at a
low temperature and clusters at higher temperatures. For
example, in the tungsten case the compound WO2Br2 was
used at a pressure of approximately 1 atmwhich is a gas at low
temperatures. Decomposition of WO2Br2 at temperatures
3000 ± 4000 K leads to formation of WO2 and W which can
form clusters. Within the framework of this scheme a light
efficiency for a cluster lamp of 56 lmWÿ1 was obtained in the
tungsten case and 62 lm Wÿ1 for the rhenium lamp. These
values testify cheerful prospects for the above experiments so
that they are now being developed.

Below we consider a cluster light source on the basis of an
arc discharge in a cylindrical tube for supporting a cluster
plasma (see Fig. 7). The peculiarities of this plasma allow us to
simplify the scheme for a cluster light source. First, a high
cluster temperature is required for optimal conditions of
radiation, while the temperature of generation of clusters
must be low. Then it is convenient to divide the region of
generation of clusters and the region where they emit
radiation. It is of importance that the temperature of clusters
ranges between the electron and gaseous ones, and it tends to
the electron temperature in the limit of a large electron
number density. Separating the generation region from the
discharge one by a grid leads to the cluster temperature in the
generation region being equal to the gaseous temperature
which is lower than the cluster temperature in the discharge
region. Secondly, since clusters are positively charged in an
arc discharge, they move towards the cathode under the
action of discharge fields (the electrophoresis phenomenon).
Hence, if the generation region is located near the anode,
clusters propagate over all the discharge region. Clusters
penetrating through a grid between the generation region
and plasma obtain a charge and propagate over all the
plasma. Simultaneously, they emit radiation because of the
high temperature.

It is convenient to choose a refractory material for clusters
in order to increase the temperature of radiating clusters, and
an atomic gas with a small atomic ionization potential in
order to avoid ionization of the vapor of the cluster material.
Hence, we will choose xenon as a gas and tungsten as a cluster
material, so that the optimal cluster temperature is 3000 ±
3600 K. In addition the cluster plasma under consideration is
a special physical object whose properties are determined by
processes of a different kind represented in Table 6.

The generation of clusters proceeds in a special region as a
result of conversion of an atomic vapor into a gas of clusters.
This process was discussed in Section 3, and the best way to
vaporize a solidmaterial for its transformation into an atomic
vapor is a gas discharge with sputtering of an electrode like
the magnetron discharge [90 ± 92] (see Section 3) which is
operated at a higher pressure. Based on the data of cluster
generation in magnetron discharge [90 ± 92], below we take a
typical size of clusters formed to be n � 1000.

Clusters introduced in the plasma are found in the
ionization equilibrium with plasma electrons. If the electron
temperature of the arc discharge is high enough, clusters have
a positive charge. Note that the cluster charge is determined
by the electron temperature of the arc discharge or by the
typical energy of electrons in other gas discharges, because the

cluster charge is established as a result of processes:

A�Zn � e! A�Z�1n � 2e ; �6:1�

hence the cluster charge depends on the electron temperature
only through the temperature dependence of the cluster
ionization potential. Let us calculate the cluster charge Z.
The probability PZ�n� that a cluster of n atoms has a chargeZ
satisfies a relation analogous to the Saha formula (2.17):

PZ�n�Ne

PZ�1
� 2

�
meTe

2p�h2

�3=2

exp

�
ÿ IZ�n�

Te

�
; �6:2�

whereme,Te are the electronmass and temperature, and IZ�n�
is the ionization potential of cluster ions of charge Z
consisting of n atoms. For large metallic clusters we have:

IZ�n� � I0�n� � Z2e2

2r
;

where r is the cluster radius.
Let us write the ionization potential of a neutral cluster in

the form

I0�n� �W0 � C

n1=3
;

where W0 is the work function of the cluster material. In
particular, in the tungsten case we have W0 � 4:4 eV, and, if
we assume this formula to be valid for a tungsten atom, one
can obtain C � 3:4 4eV. Thus the ionization potential of a
cluster ionwhich has a chargeZ and a large size is given by the
formula:

IZ�n� �W0 � C

n1=3
� Z2g
n1=3

; �6:3�

where g � e2=�2rW�, and rW is the Wigner ± Seitz radius. In
the tungsten case we have g � 5:3 eV.

Let us define the mean charge of a cluster ion Z from the
equalityPZÿ1=2�n� � PZ�1=2�n� . Thenwe have from formulae
(6.2) and (6.3):

Z2 � Te

g
ln

�
2

Ne

�
meTe

2p�h2

�3=2�
ÿW0

g
ÿ C

g
: �6:4�

Figure 19 gives the average cluster charge as a function of
the electron temperature for tungsten and rhenium clusters of
size n � 1000 at different electron number densities. From
these data one can conclude that metallic clusters are charged
in an arc plasma.

The cluster charge influences the processes involving
clusters. Under the action of discharge electric fields charged
clusters spread over the discharge tube. If clusters are
introduced into arc through the anode, they move under the
action of a discharge electric field towards to the cathode.
This phenomenon is known as electrophoresis. In addition,
the transverse electric field of a discharge sets clusters moving
to the walls of the discharge tube. Hence, the lifetime of
clusters in a gas discharge plasma is determined by their drift
in the discharge tube. Let us estimate this time. One can
calculate the mobility of clusters on the basis of the Chap-
man ±Enskog approximation [174, 175] formula (2.27). This
formula gives for the drift velocity of cluster ions in an
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external electric field

vdr � 1680
E

N
Z

�
T

1000

�1=2
1

r2Wn2=3
; �6:5�

where the reduced electric field strength E=N is expressed in
Td (1Td � 10ÿ17 V cm2), the gaseous temperature T is given
in kelvin, and the Wigner ± Seitz radius in A is the number
density of xenon atoms in cmÿ3. Because the charge of large
clusters depends on the number of cluster atoms as Z � n1=6,
the drift velocity of large clusters varies with their size as
vdr � nÿ1=2. In the case of tungsten clusters (rW � 1:36A) in
an arc discharge of pressure 1 ± 3 atm the drift velocity of
clusters along the tube axis is about 5 cm sÿ1.

6.2 Evolution of clusters in an arc plasma
In a cluster light source the region of cluster generation is
separated from the plasma region, because a high cluster
temperature in a plasma is not suitable for the generation of
clusters. Therefore, clusters are introduced into a plasma and
then partake in processes which lead to evaporation and
growth of clusters. Because clusters in a hot gas or plasma are
charged, processes of coagulation (4.1) are absent in their
evolution. Below we consider the kinetics of clusters in a
plasma and the evolution of the size distribution function of
clusters in this plasma which develops on the basis of
processes (2.22).

Processes of cluster growth and decay are determined by
their interaction with the parent vapor which results from the
evaporation of clusters. This interaction establishes the size
distribution of clusters. If clusters are inserted into a hot gas,
they partially evaporate and further interact with the forming

atomic vapor as a result of processes (2.22):

An �A$ An�1 : �6:6�

Let fn be the size distribution function of clusters, i.e. the
number density of clusters consisting of n atoms. The kinetic
equation for this function in a uniform gas has the form

qfn
qt
� Icol�fn� ; �6:7�

where Icol�fn� is the collision integral. Below we get the
expression for the collision integral taking into account
processes (6.6) within the framework of the liquid drop
model for clusters. The liquid drop model is suitable for
large excited clusters, and according to this model, the
binding energy of cluster atoms is determined by formula
(2.1). On the basis of processes (6.6) we have for the collision
integral:

Icol�fn� � Nknÿ1 fnÿ1 ÿNkn fn ÿ nn fn � nn�1 fn�1 : �6:8�

HereN is the number density of free vapor atoms, nn is the rate
of atom evaporation from the surface of a cluster which is
connected with the rate constant of atom attachment kn by
the principle of detailed balance [45, 46] and is given by
formula (2.24):

nn�1 � kn�Tcl�Nsat�Tcl� exp De
Tcln1=3

: �6:9�

Here Tcl is the cluster temperature, Nsat�Tcl� is the number
density of atoms at the pressure of saturated vapor corre-
sponding to the temperature Tcl. Note that this analysis
admits different gaseous T and cluster Tcl temperatures,
though it is not important for the nature of the processes.
One can rewrite equation (6.8) on the basis of (6.9) in the
form:

Icol�fn� � ÿ q
qn

�
k0�T�xn2=3

�
Nfn ÿNsat�Tcl�

�
Tcl

T

�1=2

� exp

�
De

Tcln1=3

�
fn�1

��
: �6:10�

We use formula (2.10) for the attachment rate constant.
Below for simplicity we take the gaseous T and cluster Tcl

temperatures to be identical. Then the expression for the
collision integral has the form:

Icol�fn� � ÿ q
qn

�
k0�T�xn2=3

�
�
Nfn ÿNsat�T� exp

�
De

Tn1=3

�
fn�1

��
: �6:11�

The collision integral has the form of a flux in a space n
and is responsible for transitions between clusters of different
sizes. For large n, which are under consideration, the kinetic
equation (6.7) takes the form of the Fokker ± Planck equa-
tion. Using the relation fn � fnÿ1 � qfn=qn for n4 1, one can
represent the collision integral in the form of the sum of two
fluxes, so that the first one, the hydrodynamic flux, is
expressed through the first derivative over n, and the second
flux, the diffusion one, includes the second derivative over n.
The diffusion flux is small compared to the hydrodynamic
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Figure 19. Mean charge of tungsten (solid curves) and rhenium clusters

(dotted curve) as a function of the electron temperature at different

number densities Ne of electrons: 1 Ð Ne � 1013 cmÿ3; 2 Ð

Ne � 1014 cmÿ3; 3Ð Ne � 1015 cmÿ3.
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flux, but it is responsible for the width of the distribution
function of clusters on sizes. Because under the conditions
considered the width of the distribution function is deter-
mined by other processes, one can neglect the diffusion flux
and represent the collision integral (6.11) in the form:

Icol�fn� � ÿ q
qn

�
k0�T�xn2=3fn

�
NÿNsat�T� exp

�
De

Tn1=3

���
:

�6:12�
Below we use this expression for the collision integral for the
analysis of the size distribution function of clusters.

Let the clusters and their atomic vapor be located in a
dense buffer hot gas or plasma like that described in the
introduction. Then the processes of the cluster growth are
faster than transport processes, so that one can consider that
the evolution of the size distribution function of clusters
proceeds in a uniform system. Because it is determined by
processes (6.6), cluster growth takes place due to the
interaction between clusters and their atomic vapor only. It
is convenient to introduce the total number density of bound
atoms in clusters

Ntot �
X
n

nfn ; �6:13�

so that the average cluster size is

�n �
X
n

n2fn
Ntot

: �6:14�

Under the conditions considered, the total number density of
bound and free atoms is conserved

N�Ntot � const : �6:15�

Then from the kinetic equation (6.7) and expression (6.12) for
the collision integral it follows that the balance equation for
the number density of free atoms is

dN

dt
� ÿ d

dt

X
n

nfn �
�1
0

dn k0�T�xn2=3fn

�
�
NÿNsat�T� exp

�
De

Tn1=3

��
: �6:16�

The first term on the right-hand side of expressions (6.12) and
(6.16) corresponds to the attachment of atoms to clusters, and
the second term corresponds to the evaporation of atoms
from the cluster surface. From this one can introduce the
cluster critical size nc for which the rates of these processes
are:

N � Nsat�T� exp
�

De

Tn
1=3
c

�
: �6:17�

Note that the concept of a critical radius possesses a
central place in the classical theory of condensation [4 ± 7]
where the number density of free atoms N do not vary in the
course of condensation. Though in the case considered the
number density of free atoms can vary and is supported by
processes (6.6), the concept of the critical radius is a matter of
principle. In particular, if the cluster size is smaller than the
critical one, Icol > 0, i.e. such clusters evaporate, while
clusters grow if their size exceeds the critical one. This makes
the cluster growth process not stationary in the absence of an

external source and sink of clusters. Therefore we consider
below the stationary size distribution function of clusters in
presence of these processes. Then the kinetic equation for the
distribution function has the form:

qfn
qt
� 0 � Icol�fn� �Mn ÿ fn

t
: �6:18�

Here Mn is the rate of generation of clusters, and t is the
cluster lifetime which is assumed to be independent of cluster
size. Below we analyze this kinetic equation with expression
(6.12) for the collision integral.

One can represent a general picture of the process. Part of
the clusters grow, and the other part evaporates, so that
clusters must be generated with sizes smaller and larger than
the critical one. Hence, the number density of free atoms is
determined by the function Mn. We consider such a regime
when clusters reach large sizes compared to the critical one
during their lifetime. This corresponds to a large value of the
parameter

b � k0Ntx4 1 : �6:19�

This parameter is large because it is the ratio of the kinetic rate
k0Nx to the transport rate 1=t, and transport processes are
weak. Let us find the asymptotic solution of the kinetic
equation (6.18) in the limit of large n4 nc if evaporation of
large clusters is not essential, i.e. N4Nsat�T� or De4Tn

1=3
c .

Then the kinetic equation has the form

d�n2=3fn�
dn

� fn
b
� 0 �6:20�

and its solution is

fn � C
exp�ÿ3n1=3=b�

n2=3
; n4 nc : �6:21�

Let us find the average cluster size supposing that it is
determined by large clusters. On the basis of formulae (6.14)
and (6.21) we have

�n � 80

81

Cb7

Ntot
; nc 5 b3 :

If we assume that large clusters give the main contribution to
the normalization condition (6.13) of the size distribution
function, we get

Ntot � 2

9
Cb4 ; �n � 40

9
b3 : �6:22�

This dependence can be obtained from the equation of
cluster growth if we neglect the evaporation of clusters

dn

dt
� k0Nxn2=3 :

The solution of this equation is

n �
�
k0Nxt

3

�3

;

and the change of time t by the cluster lifetime t in a plasma
gives the estimate n � b3 which coincides with (6.22).

Let us construct the size distribution function of clusters
in the case n

1=3
c 5De=T if the rate of evaporation of large
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clusters is small compared to the rate of their growth owing to
the attachment of atoms. Then we use the asymptotic
expression (6.21) for the size distribution function of clusters
and for small clusters we account for the equality between
rates of the evaporation and attachment processes. This
equality follows from equation (6.16) since the distribution
is stationary. We suppose the total rate of attachment is
determined by large clusters with the size distribution
function (6.21), so that the above condition has the form�1

0

n2=3fn dn exp

�
De

Tn1=3

�
� 2

9
Cb3S : �6:23�

Here S � N=Nsat�T� is the degree of supersaturation, and in
the current regime S4 1. Note that small clusters n � nc,
n5 b3 give the main contribution into the integral of the left-
hand side of (6.23). It is convenient to represent the size
distribution function in the form

fn � C exp

�
ÿ a

n
ÿ 3n1=3

b

�
1

n2=3
: �6:24�

In such a form the distribution function transforms to (6.21)
in the limit of large sizes, and integral (6.23) converges at
small cluster sizes. The parameter a can be found from
relation (6.23). Supposing that this integral converges in a
narrow region of a, we get

a � 0:34�b2S�4=7
�
De
T

�9=7

: �6:25�

From this it follows a4 1, and this parameter is connected
with the critical cluster size. For this form of the distribution
function, large cluster sizes give the main contribution to the
normalization condition, so that on the basis of (6.22)
Ntot � 2Cb4=9 one can transform formula (6.24) to the form:

fn � 9Ntot

2b4n2=3
exp

�
ÿ a

n
ÿ 3n1=3

b

�
: �6:26�

Formulas (6.25) and (6.26) are valid for S4 1 or
nc 5 �De=T�3. But the method of deduction of these expres-
sions shows that the size distribution function can be obtained
by a numerical solution of equation (6.18) for any relation
between parameters.

Let us analyze the conservation laws which follow from
the kinetic equation (6.18) for the generation function Mn.
First, due to the form of the collision integral this equation
gives the following integral relation�1

0

Mn dn �
�1
0

fn
dn

t
: �6:27a�

which means the equality of rates of formation and loss for a
number of clusters. The other relation accounts for the
stationary process. Then from relation (6.16) it follows�1

0

nIcol�fn� dn � 0 ;

and equation (6.18) gives the integral relation�1
0

Mnn dn � Ntot

t
: �6:27b�

This means an equality of rates of generation and loss of
numbers of bound atoms.

One more relation follows from relation (6.27a) by
dividing it into two parts. Indeed, let us divide a system of
clusters into two subsystems, so that the first one contains
small clusters of size n < nc , and the second consists of large
clusters with n > nc. Because small clusters evaporate and
large ones grow, direct transitions between clusters of the two
subsystems are absent. This fact takes a mathematical form if
we integrate the kinetic equation (6.18) over clusters of each
subsystem:�nc

0

Mn dn �
�nc
0

fn
dn

t
;

�1
nc

Mn dn �
�1
nc

fn
dn

t
: �6:28�

Relations (6.28) indicate the connection between the value of
the critical size nc and the spectra of generating clusters Mn.
Relations (6.27) and (6.28) follow from the kinetic equation
(6.18) and reflect some physical peculiarities of the kinetics of
the cluster processes. They can be used for their analysis.

From the above analysis follow the expressions for the size
distribution function of clusters located in a cluster plasma
for some regime of their kinetics. Numerical evaluations on
the basis of the collision integral (6.12) for cluster kinetics, the
kinetic equation (6.18) and physical peculiarities of kinetics
(6.27) can give such results for certain regimes of the cluster
kinetics.

6.3 Typical parameters of cluster plasma
Let us estimate typical parameters of the cluster plasma under
consideration. The character of evolution of a cluster size is
determined by the equilibrium between clusters and the vapor
resulting from their evaporation. Above we consider the
kinetics of evolution of the size distribution function of
clusters, and now note that the equilibrium between clusters
and their atomic vapor is, actually, the equilibrium between
free and bound atoms. In the regime under consideration the
number density of free atoms is small compared to the
number density of bound atoms, and the total number
density of free and bound atoms is significantly less than the
number density of atoms of the buffer gas. But the number
density of free atoms of an evaporated material several times
exceeds the saturated vapor number density at a given
temperature that results from the condition of the finite
value of the critical cluster size. Hence, the cluster tempera-
ture is restricted. In the case of tungsten clusters the limit of
the cluster temperature is 3600 ± 3800 K.

The electron temperature of this arc discharge is restricted
to a value of about 6000 K. Indeed, due to the ionization
process the following ionization equilibrium is established
(for definiteness, we consider tungsten as a cluster material):

W� e$W� � 2e �6:29�
Alongwith a parent atomic vapor, clustersmust support a gas
of atomic ions. At indicated temperatures the contribution of
tungsten atomic ions to the total number density of free atoms
and atomic ions does not exceed 10%. The gaseous
temperature is such that the cluster temperature which is
determined by formula (2.18) lies in the range 3000 ± 3600 K.
The gaseous temperature lies in the limits 1000 ± 2500 K.

The parameters of a xenon arc discharge of high pressure
[176, 177] which is the basis of a cluster plasma of a light
source must correspond to the above parameters. A typical
electric field strength E=N is about 0:02 Td at a xenon
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pressure of 1 ± 3 atm, and the specific power of discharge is
20 ± 40 W cmÿ1. The contraction of this gas discharge [176,
177] is principle. In the considered regime the current cross-
section is several times less than the total cross-section of the
discharge tube.

In order to analyze the character of cluster growth in the
considered regime, let us take typical parameters of the arc
discharge plasma. Let us take the electron temperature as
Te � 5600 K, the gaseous temperature as T � 2000 K and the
xenon pressure as p � 3 atm. Then the current radius is 0:4
cm, the specific power is about 30 W cmÿ1, while the density
power at the discharge axis is about 200 W cmÿ3, and the
cluster temperature according to formula (2.17) is Tcl � 3200
K. In the region of cluster generation (see Fig. 7) the cluster
temperature coincides with the gaseous one which we take as
T � 2000 K. The number density of tungsten atoms at this
temperature is Nsat � 5� 104 cmÿ3 at the saturated vapor
pressure and N � 5� 106 cmÿ3 for clusters with the critical
size n � 103. The cluster temperature in the arc region
Tcl � 3200 K corresponds to the atom number density
N � 2:4� 1013 cmÿ3 for this critical size. It is the number
density of free atoms resulting from evaporation of clusters of
this size, and the number density of bound atoms in clusters
exceeds this value significantly. Hence, the cluster plasma
under consideration exists only at high rates of generation of
atomic vapor as a result of vaporization of bulk material.

Under the considered conditions, the drift time of clusters
from the axis through the current region is t � 0:4 s. This is
the lifetime of clusters in this plasma. Note that a typical time
of atom attachment to a cluster is � 2 ms, that is small
compared to the cluster drift time through the plasma
region. Since the rate constant of atom attachment for
tungsten clusters is k0 � 3:7� 10ÿ11 cm3 sÿ1, we have for
parameter (6.19) b � 400, and the mean cluster size
n � 2� 108 according to formula (6.22). Though such
clusters have a small radius (� 0:2 mm) compared to a typical
wavelength, the kinetics of cluster growth must be revised for
such large clusters. Nevertheless, these estimates show the
formation of large clusters in the plasma region.

The cluster plasma under consideration provides a light
efficiency of approximately 50 lmWÿ1 that follows both from
experiment [168] and theory [174]. Though this value is lower
than that of gas discharge lamps (100 lm Wÿ1), cluster lamps
have some advantages due to a low heat tension. Hence,
cluster light sources are profitable for power lamps.

The considered scheme of tungsten conversion consists in
the formation of an atomic vapor as a result of sputtering of a
bulk material and the formation of clusters from vapor
atoms. The clusters are then directed to a plasma where they
are used as radiators. In the end the clusters attach to the walls
of the discharge tube. Thus, this scheme leads to tungsten
consumption. In the above example the tungsten consump-
tion is about 1 mg/(cm s), when the light intensity is
approximately 1000 lm Wÿ1.

There is a more profitable method of tungsten usage
[168 ± 172]. At low temperatures tungsten is found in the
compoundWO2Br2, and at high temperatures this compound
decays, and tungsten oxides join in clusters if the cluster
temperature is not very high. This method combines well with
a contact gas discharge because in this case an ion current
does not go through themain part of the volume. Though this
scheme is preferable to the considered one, we cannot analyze
it because of the absence of information for tungsten oxides.

Thus, the cluster plasma under consideration, which is the
basis of cluster light sources, is a specific physical object. Its
properties are determined by processes involving both plasma
charged particles and clusters. The electrical parameters of
the plasma do not depend on the absence of clusters, while the
clusters determine the radiation of the plasmawhich powerful
is compared with the total discharge power. The peculiarity of
the plasma is the requirement of a high rate of cluster
generation, so that the existence of the cluster plasma is
characterized by a threshold. On the other hand, the
contribution of cluster radiation to the total discharge
power can not exceed a certain value, otherwise a discharge
instability can develop. The existence of clusters in a
discharge plasma is accompanied by processes of cluster
growth resulting from the interaction with their own vapor.
Thus, the cluster plasma of light sources is a special physical
object which has a significance both fundamentally and in
application.

7. Conclusions

The research of cluster beams, cluster assembled materials
and cluster plasmas is in progress. These could be the basis of
fine new technologies. It is of principle that these systems
involving clusters are non-equilibrium ones, so that their
properties are determined by the processes inside them.
Hence, cluster applications require a detailed study of the
processes involving clusters and that is the topic of this paper.
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