
A scientific session of the Division of General Physics and
Astronomy of the Russian Academy of Sciences was held on
14 May 1997 at the P L Kapitza Institute for Physical
Problems, RAS. The following reports were presented at the
session:

(1) Mineev V P, Vavilov M G (Landau Institute of
Theoretical Physics, RAS, Chernogolovka, Moscow
Region) ``De Haas ± van Alphen effect in superconductors'';

(2) Volkov V A, Takhtamirov EÂ E (Institute of Radio-
engineering and Electronics, RAS, Moscow) ``Dynamics of
an electron with space-dependent mass and the effective-mass
method for semiconductor heterostructures'';

(3) Sukhorukov A P (M V Lomonosov Moscow State
University, Moscow) ``New avenue of investigation in the
physics of solitons: parametrically-coupled solitons in a
quadratically-nonlinear medium'';

(4) Bogatov A P (P N Lebedev Physics Institute, RAS,
Moscow) ``Optics of semiconductor lasers'';

(5) Korovin S D (Institute of High-Power Electronics,
Tomsk) ``Generation of high-power microwave radiation on
the base of high-current nanosecond electron beams'';

(6) Ardelyan N V, Bisnovaty|̄-Kogan G S, Moiseenko S G
(M V Lomonosov Moscow State University, Moscow;
Institute of Space Research, Moscow) ``Explosion mechan-
isms of supernovae: the magnetorotational model'';

(7) Slysh V I (Astrocosmic Centre of the P N Lebedev
Physics Institute, RAS, Moscow) ``Stars, planets, and cosmic
masers''.

Summaries of four (1, 2, 6, 7) of the reports are given
below.

PACS numbers: 05.50.+q, 75.90.+w

De Haas ± van Alphen effect
in superconductors

V P Mineev, M G Vavilov

The quantum oscillations of magnetization or, alterna-
tively, the de Haas ± van Alphen (dHvA) effect, is a well-
studied phenomenon in the physics of normal metals.
According to the universally accepted Lifshitz ±Kosevich
theory [1], each extreme section of the Fermi surface
contributes to the oscillating part of the magnetization to
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Here oc � eH=m�c is the cyclotron frequency, F � cS=2pe,
S is the area of the extreme section of the Fermi surface, and t
is the electron-vacancy scattering time. The Planck constant �h
is presumed hereafter to be equal to 1. The quantity 1=2pt is
commonly referred as the Dingle temperature. Both the
temperature and impurity-dependent factors in formula (1)
fall rapidly with decreasing magnetic field, so that in normal
metals dHvA oscillations are observable in sufficiently high
fields. In the case of superconductors, the magnetic fields in
which the dHvA effect is accessible to observation usually far
exceed the critical field of the superconducting-normal phase
transition. Therefore, the marked oscillations of magnetiza-
tion would be expected to appear only in the region of very
low temperatures
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Here Tc is the transition temperature in a zero magnetic field,
and m is the Fermi energy. On the other hand, because of
electron-vacancy scattering [2], dHvA oscillations come into
prominence only in sufficiently pure metals, i.e. when the
condition oct4 1 or, equivalently, limp 4Rc, is fulfilled.
Here limp � vft is the mean free path, and Rc � kfl

2 is the
cyclotron radius with kf being the Fermi wave vector and
l � �����������

c=eH
p

the magnetic length. In magnetic fields of the
order of Hc2, the quantity l coincides with the coherence
length x�T�. Therefore, the requirements on the sample purity
which would be sufficient to observe dHvA oscillations in
fields of the order ofHc2, viz.

limp 4 kfx
2 ; �3�

is much more stringent than the conventional condition on
semiconductor purity limp 4 x0.

Thus, observations of the dHvA effect in the regions of
fields and temperatures typical of type II superconductors are
possible only in the case of ultra-pure superconductors with a
large magnitude of the upper critical field, which are rather
rare. Among these are compounds with the A-15 structure
(V3Si, Nb3Sn) [3, 4], boron carbides (YNiB2C) [5] as well as
some organic and layered superconductors (see the reviews [6,
7]). For example, in V3Si [3] where Hc2 � 18:5 T, Tc � 17 K,
x0 � 6:3 nm and limp > Rc � 130 nm, dHvA oscillations in
fields of the order of Hc2 are accessible to observation at
temperatures of the order of 1 K.
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The dHvA effect in these substances remains when
going to the mixed state �H < Hc2�. In this state, the
oscillation frequency does not change, whereas the
amplitude falls with decreasing field more rapidly than in
the normal state.

The suppression of the magnetization-oscillation ampli-
tude in type II superconductors was calculated in the
theoretical works [8] and [9]. It was shown that quasi-particle
scattering by the nonuniform spatial distribution of the order
parameter D�R� in the mixed state results in an additional
broadening of the Landau levels:
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As a result, the amplitude of the dHvA effect attains, apart
from the Dingle factor, another temperature-independent
multiplier exp�ÿp=octs� and decreases rather rapidly away
from the phase transition line Hc2.

The derivation of expression (4) is inadequate from the
theoretical standpoint. The matter is that the electron
spectrum and the level broadening were obtained by Maki
[8] through formally replacing the quasi-classical spectrum
found by Brandt et al. [10] with the corresponding quantum
expression. The quasi-classical description in terms of the
continuous variables x � k2=2mÿ m and polar angle y is quite
adequate when the distance between the Landau levels is
small in comparison with temperature T or level width
G � 1=2t. When studying the dHvA effect, we are dealing
with the opposite situation oc > 2p2T and oc > pG, so that
the quasi-classical approach is inapplicable for calculation of
the spectrum.

Nevertheless, the quantum approach developed by
Stephen [9] has strengthened the results by Maki [8].
However, when calculating the quasi-particle-energy eigen-
value in the limit of low temperatures T < oc [9], the
summation over the principle quantum number was replaced
with the integration that is admissible only in the case when
the width of the levels exceeds the distance between them.
That was the reason why the results by Stephen [9] and Maki
[8] turned out the same.

Some other descriptions of the dHvA effect in super-
conductors were also proposed [11 ± 13]. Different
approaches were put forward, but in one way or another the
BCS-type spectrum was used, namely
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Stephen [9] showed that spectrum (5) is realized only in
sufficiently weak fields

��������
moc
p

5T, therefore, in view of
Eqn (2), magnetization oscillations in this region are not
observable.

Formally, spectrum (5) is also derived in the ultra-
quantum limit oc � m [14]. However, it is known that in the
ultra-quantum limit the mean-field approximation in the
theory of superconductivity is inapplicable (see Ref. [15])
and, thus, the mathematical model used in Ref. [14] does not
provide an adequate description of superconductivity in
strong magnetic fields.

We developed a self-consistent quantum theory of the
dHvA effect in the mixed state [16]. It was shown that at a
finite concentration of impurities, despite the requirement
of high purity oc > pG that is necessary to observe the
dHvA effect, in the mixed state near the upper critical field
Hc2 a region of gapless superconductivity exists, in which
the density of states on the Fermi surface remains finite,
i.e.
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�
1ÿ 2

���������
p3nf

p
L ln nf

Hc2 ÿH

Hc2

�
: �7�

Here N0 is the density of states in the normal metal,
nf � m=oc, and L is a numerical constant, L � 2.

According to Eqn (7), in the vicinity of the metal ±
superconductor phase transition there is a region of gapless
superconductivity in the field range
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For the most superconductors the number nf is rather large.
Because of this, the gapless superconductivity is realized in a
very narrow range of magnetic fields. Nevertheless, nf does
not exceed 50 for superconductors in which dHvA oscilla-
tions were observed [3, 4]. In accordance with Eqn (8), the
density of states at the Fermi level remains finite at
Hc2 ÿH � 0:1Hc2.

The oscillating part of the density of states at the Fermi
level and hence the oscillating part of the magnetizationM osc

s

is also suppressed in the mixed state relative to its valueM osc
n

in the normal state:
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Expressions (7) and (9) were obtained in the linear approx-
imation with respect to the square of the order parameter
D2 � �Hc2 ÿH�=Hc2 with the proviso that T < G5oc.
Going beyond the scope of the linear approximation presents
serious mathematical problems resulting from the nondia-
gonality of the energy-eigenvalue matrix, which necessarily
occurs because of the irregular spatial distribution of the
order parameter.
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PACS numbers: 71.25.Cx, 73.20.Dx, 73.40.Kp

Dynamics of an electron
with space-dependent mass
and the effective-mass method
for semiconductor heterostructures

V A Volkov, EÂ E Takhtamirov

1. Introduction

For a quantum-mechanical description of the electron
dynamics in crystals in smoothly-varied external fields, the
effective-mass (EM) method, or approximation, is widely
used. As applied to homogeneous semiconductors, this
method was developed by Luttinger and Kohn [1, 2] 40 years
ago. The mathematical basis for the Kohn ± Luttinger
approach is the envelope-function (EF) method. The case in
point is functions which vary slowly over distances of the
order of the lattice parameter a. With the advent and
development of the physics of semiconductor heterostruc-
tures and their practical use in devices (suffice it to point to a
multiplicity of uses of multilayer heterostructures with
quantum wells), the question arose on the extension of the
EM method to the case of space-dependent EM m�r�. Over
the past 30 years many varied formulations of this question
have been proposed. Among the relevant problems we note
two obvious ones. The first is the lack of uniqueness of the
kinetic-energy operator resulting from the noncommutativity
of the momentum operator and the function m�r�. A priori
this operator must be no more than an Hermitian one; this
imposes a rather weak restriction on its possible form which
may strongly affect the solutions of the EM equation [3]. The
second problem lies in the fact that the effective potential near
a heterojunction in many cases is not a smoothly-varying
function over distances of the order of a. This casts some
doubt upon the validity of using differential equations in the
framework of the EM method.

We shall restrict our consideration to heterostructures
consisting of related substances when the boundary band-
energy jumps are small in comparison with the typical energy-
gap widths; as a rule, this also implies a small difference
between EM parameters. Let us discuss the first problem
which arises even for heterojunctions (HJ) with a gradual
change of the chemical composition over distances of the
order of a. Choose the crystal-lattice potential of one of
materials (mentally extended to all space) as a zeroth-
approximation potential and consider the distinctions of the
lattice potentials of other semiconductors from the basis one
as perturbations. Following the Kohn ±Luttinger approach
and obtaining the multiband k � p-system of equations (see,
for example, Ref. [4]), an effort can be made to resolve the
problem of the proper order of noncommutative operators in
the kinetic-energy operator for `single-band' equations (one
equation being valid near the bottom of the conduction band
or the system of equations near the top of the valence band).

Reducing the multiband system of equations to the single-
band equation is accomplished through elimination of the
small EFs from the multiband k � p-system using a certain
procedure. Here, it is pertinent tomake a small digression and
use a formal analogy between the relativistic Dirac equation
and the multiband k � p-system of equations on EF [5], which
is most easily traced in the two-band approximation

(conduction and valence bands). In the relativistic theory,
there are two approaches to obtain equations for the `shallow'
states of electrons. The first approach consists in expressing
the small positron component of the wave function via the
electron wave function and substituting this component into
the electron-component equation. In doing so, one can deal
with either an exact equation which is not the eigenvalue
equation ([6], Chapter XX, Section 28) or an approximate
equation whose Hermitian behaviour should be tracked
individually [7]. Another approach is the use of the Foldy ±
Wouthuysen-type transformation, i.e. the approximate uni-
tary transformation of the Dirac equation ([6], Chapter XX,
Section 33). In our case the first approach is realized without
problems only in the two-band approximation (see, for
example, Ref. [8]); when taking into consideration remote
bands, some difficulties emerge [9,10]. This point is essential
for describing hole states in III ±V semiconductor structures
since the finiteness of the EM of heavy holes is achieved
beyond the framework of the two-band model. Therefore, we
will follow the second approach, which uses a unitary
transformation eliminating small EFs ([11], Section 15).
Since we are considering heterostructures consisting of
related materials, the canonical Kohn ±Luttinger method
with space-independent effective mass will play the role of
the first approximation. Allowance for the spatial depen-
dence of the EM will generate a need for consideration of
corrections to the canonical theory. All corrections of the
same order of smallness should be taken into account,
allowing no excess of accuracy. Turn now to a relativistic
analogy with a hypothetical Dirac equation involving an
irregular gap 2c2m�r�, where c is the speed of light in a
vacuum. The conventional single-band EM equation is
analogous to the nonrelativistic SchroÈ dinger equation. It is
significant, however, that the EM in the two-band approx-
imation is proportional to the local energy-gap width Eg�r�
and the relative variation of the EM comprises
dm=m ' dEg=Eg. By virtue of the fact that the correction to
the kinetic energy describing the spatial dependence of the
EM would be `relativistic' in character �dm=m / 1=c2�, the
required equations for HJ will be analogous to the SchroÈ din-
ger equation which includes all relativistic corrections
proportional to 1=c2, both the conventional corrections (the
contribution of nonparabolicity which is proportional to p4,
where p is the momentum operator, the contribution of the
spin-orbit interaction and the Darwin term) and a new
pseudo-relativistic correction describing dm�r�.

A voluminous, even if far from complete, bibliography on
attempts to obtain the EM equations with space-dependent
band parameters is contained in Ref. [10]. Some of these
publications were discussed in Ref. [12] where the multiband
k � p-system of equations was reduced with the use of a
unitary transformation to the approximate single-band
equation describing the conduction-band states near the C-
point in (001) heterostructures. In this paper, the main
drawback of all the previous works was pointed out,
namely, not taking into account all the terms of the same
order of smallness. Here one cannot but mention that for
homogeneous semiconductors the EM equation analogous to
the SchroÈ dinger equation with the first relativistic corrections
was discussed still in Ref. [11] (Section 27).

The second problem which arises in the EF method is the
lack of smoothness of real HJ when the transition-region
width between two materials is of the order of a. In this case,
firstly, the Leibler's multiband k � p-system calls for refine-
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ment [4] and, secondly, the problem of the inverse Fourier
transformation in k-space confined by the first Brillouin zone
is complicated [1]. These transformations lead to a set of
cumbersome and inconvenient integro-differential equations.
Their reduction to differential equations may be accom-
plished only with some sacrifice in the accuracy of the
method. The resulting error must be also estimated. The
estimation of this error either gives assurance in the absence
of an excess of accuracy or casts some doubt on the validity of
the EMapproximation (notice that in the literature, including
papers [13] and [10], such an estimate is missing).

Below, only one of approaches to the formulation of the
EM approximation for heterostructures is discussed, namely,
the derivation of an effective Hamiltonian which is defined in
all coordinate space. In doing so, the smallness of Eg�r�
variations is used. There is also another approach being
applied only to structures with mathematically sharp HJ.
This is the introduction of boundary conditions (BC) for EF
at the interface between two different semiconductors. In this
case, a problem arises of the determination of the function
space in which the effective Hamiltonian is defined [12]. (The
exception is the HJ between two semiconductors with a very
large difference in the energy-gap width or the semiconduc-
tor ± insulator junction. In this limit, it is sufficient to derive
the boundary conditions only for EFs describing the low-
energy-gap semiconductor [14 ± 16].) Once the single-band
equations take into account the difference in EM parameters,
they must generally include all the above-discussed pseudo-
relativistic corrections, therefore, drawbacks become evident
in the approaches used, for example, in Refs [17, 18] where the
BC for EF were derived, the latter being the solutions of the
canonical EM equation.

Thus, we can state the following stages of the construction
of a correct EM approximation for heterostructures: (a)
obtaining the correct multiband k � p-system of equations on
EF; (b) reducing this system to single-band equations through
a unitary transformation in k-space; (c) conversion to the r-
representation, transformation of the equation obtained to a
differential form and estimation of the accuracy of such a
transformation. Following this scheme, stage (a) is realized in
Section 2. The equations include the contributions deter-
mined by the lack of smoothness of HJ over distances of the
order of a, which are considered in the context of the
approach used in Ref. [11] for a description of a short-range
potential. The main limitation on the accuracy of the
differential equations in the EF method for sharp HJ follows
from the inverse-Fourier-transform procedure in the final k-
space (Section 3). In Section 4.1, the applicability of single-
band equations is discussed. And the effects related to the lack
of smoothness of HJ are considered in Section 4.2 (conduc-
tion band) and 4.3 (valence band).

2. Multiband k � p-system of equations

Consider a structure with one HJ formed from related lattice-
parameter-matched semiconductors having a SZn-type (zinc
blende) crystal structure. For simplicity, we shall restrict our
consideration to the following model of the crystal potential
for this structure:

U � U1 � G
�
U2 ÿU1

� � U1 � GdU ;

where U1 � U1�r� and U2 � U2�r� are the periodical poten-
tials (with the same period) of left and right materials,

respectively, extended to all the structure, the z-axis is
perpendicular to the HJ plane, and G � G�z� is the HJ form-
factor [G�z < ÿd� � 0, G�z > d� � 1 with 2d being the
transition-region width].

As the basis for the expansion of the total wave function
C�r�, we shall use the full set of the orthonormalized Kohn ±
Luttinger functions un0 exp�ik � r�, where un0 � un0�r� is the
Bloch function for the edge En0 of the nth band of the left
crystal in the C-point:

C�r� �
X
n 0

�
dk0F n 0 �k0� exp�ik0 � r�un 00 :

The summation is over all zones, whereas the integration is,
except as otherwise noted, over the first Brillouin zone;F n�k�
presents the EF for the nth zone in the k-representation.
Following the standard procedure [1], one can obtain the
required k � p-system of equations (the relativistic contribu-
tions will be considered below):�
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X
j 6�0
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Here m0 is the mass of a free electron, pnn 0 �


njpjn 0�,

kk � �kx; ky; 0�, Cnn 0
j � 
njdU exp�iKjz�jn 0

�
, dUnn 0 � Cnn 0

0 ,
Kj � �4p=a�j, where j � �1;�2; . . . and G is the Fourier
transform of function G; expression (2) is valid for a (001)
heterostructure at jkxj � jkyj < p=a, where Ox k �100� and
Oy k �010�.

If G�z� is a rather smooth function �a5 2d�, we can
neglect the second term in the square brackets of Eqn (2)
and obtain the well-known set of equations on EF [4]. In the
case of a sharpHJ, one can follow themethodwhich was used
in Ref. [11] for the description of a short-range potential:X

j 6�0
Cnn 0

j G�kz ÿ k0z � Kj� �
X

l�0;1;...
�kz ÿ k0z�lDlnn 0 : �3�

The constants Dlnn 0 are determined by the properties of the
function G 0 � dG=dz in the following manner:

D0nn 0 �
X
j6�0

Cnn 0
j

1

2piKj

�d
ÿd

G 0�z� exp�ÿiKjz� dz ;

D1nn 0 �
X
j6�0

Cnn 0
j

1

2piKj

�d
ÿd

G 0�z� exp�ÿiKjz�

�
�
ÿ 1

Kj
ÿ iz

�
dz ; . . .

In principle, this approach is applied even to a mathemati-
cally sharp HJ. Thus, Eqns (1) in view of Eqns (2) and (3)
determine the multiband k � p-system of equations for a
structure with one HJ. A generalization to the case of many
HJs is elementary. In this case, it is convenient to define the
coordinates of the heteroboundaries so that a whole number
of a=2 is accommodated between them. This is always
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possible for (001) heterostructures. Then the phase factor in
each expansion of type (3) will be equal to 1.

Now consider the corrections associated with the sharp-
ness of HJ. The terms which are proportional to
D0nn 0 ;D1nn 0 ; . . . can give corrections of order of magnitude
no more than a�kz; �a�kz�2; . . . ; respectively. Here �kz is the
inverse characteristic length for the EF variation. Our goal is
to obtain single-band equations with space-dependent EM
parameters that is accomplished when taking into account
corrections of the order of �l�kz�2 to the canonical approxima-
tion. Here l � �2mEg�ÿ1=2 (for GaAs l � 6 A). Therefore in
Eqn (3) it will suffice to consider the terms l � 0 and l � 1
only.

Let us next include relativistic effects. Consider the spin-
orbit interaction using perturbation theory and assume that
its characteristic value is of the order of a typical boundary
band-energy jump. We shall restrict ourselves to just a spin-
orbit interaction alone since other relativistic contributions
will affect only the numerical values of the constants
obtained. The following corrections will appear in the left-
hand side of Eqns (1):X

n 0

�h


n
���HHU1 � p���n 0� � r

4m2
0c

2
F n 0 �k�

�
X
n 0

�h


n
���HHdU� p���n 0� � r

4m2
0c

2

�
G�kz ÿ k0z�F n 0 �k0z; kk� dk0z

�
X
n 0

�ÿ
S0nn 0 � �kz ÿ k0z�S1nn 0

� � rF n 0 �k0z; kk� dk0z :

Here r presents the spin 1=2 matrices and the vectors S0nn 0

and S1nn 0 are defined in the following manner:
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�
X
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2
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X
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��exp�iKjz��HHdU� p���n 0�

8ipK 2
j m

2
0c

2

�
�d
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G 0�z� exp�ÿiKjz� dz :

Here n is a unit vector along the z-axis, nG 0�z� � HHG�z�. We
do not consider the contributions, linear in k, of the spin-orbit
interaction. They either give corrections of the order of �l�kz�3
(similar to the contribution responsible for the removal of
spin degeneracy in the conduction band of a bulk semicon-
ductor) which are neglected or renormalize the values of some
parameters.

3. Problem of the inverse Fourier transformation
in quasi-momentum space

Let us discuss one more problem arising in the EF method
and relating to the consideration of reciprocal space confined

by the first Brillouin zone (BZ). Consider the following
equation on EF f�kz� in the k-representation:�

H�kz ÿ k0z� f�k0z� dk0z � Ef�kz� ; �4�

where kz and k 0z are belong to BZ. In the r-representation,
Eqn (4) transforms to an integro-differential equation. The
problem lies in the accuracy which can be achieved when
obtaining the relevant differential equation in r-space.
Consider an equation similar to Eqn (4) but with kz and k 0z
belonging to all reciprocal space:��1

ÿ1
H�kz ÿ k0z�g�k0z� dk0z � Eg�kz� : �5�

Eqn (5), in contrast with Eqn (4), reduces to a differential
equation in the r-representation. In order for equations (4)
and (5) to be approximately equivalent, it is necessary that the
function g�kz� should be small for kz 62 BZ. In the case of
smooth perturbations, such a smallness is provided by an
exponentially diminishing EF in k-space. In the opposite case
of sharp perturbations, EF will diminish in a power-series
manner.

For an EF with one discontinuity g�kz� / �d�g=�g��kz�ÿ1 at
large kz when the exponential contribution associated with
the effects of the smooth field is damped out [here �d�g=�g� is a
characteristic relative function jump at the point of disconti-
nuity in the r-representation]. Providing the standard EM
equations [1, 2] are postulated, the second derivative of the EF
will be discontinuous with the relative value of the jump close
to unity and the error resulting from the use of differential
equations will be of order ��kz=K�3, where K � 2p=a.

For a quantum well of width L, one can consider two
cases: �kzL01 and �kzL5 1. In the first case, the error is of the
same order as for a separate HJ, while in the second case it is
of the order of ��kzL�ÿ1��kz=K�3. In the latter case we arrive at
an approximation where the potential of a quantum well may
be replaced by the delta-function with an error of the order of
��kz=K�2. We shall use these results in Section 4.

4. Single-band equations

4.1 Applicability of the single-band equations
In k-space near the C-point, there exists a region L1 in
which one can use a perturbation theory series, converging
when kz < 1=�2l�, for describing the interaction of the
states of separated (closely-spaced) bands with the states of
other bands (this follows from the two-band approxima-
tion). There also exists a region L2 where the interaction
with remote bands is not described by this series. In our case
of a sharp HJ, the EFs in the k-representation diminish in a
power-series manner, therefore we must correctly describe
the region L2 as well. However, it can be shown that if the
ratio of the characteristic values of the band-energy jump to
the energy gap between the states of interest in the region L1

and states in the region L2 is a small parameter r5 1, then
the error of ignoring the region L2 will be of the order of
r�l�kz�2 or less.

Below we shall obtain the EM equation for the conduc-
tion band passing over the details of a unitary transformation
in k-representation and going over immediately to the r-
representation. Formally, the final equation will be a
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differential equation of the fourth order and the EF obeying
this equation will have a discontinuous second derivative with
a characteristic jump, being of the order of the second
derivative itself (just this will determine the error when going
over to the differential equation). And this means that for a
wide quantumwell the accuracy of the EM equation obtained
will be of the order of ��kzl�3. In the case of a narrow quantum
well �L < l�, the EM equation must include only the first
corrections associated with the effects of the sharpness of the
HJ, while a consideration of other corrections, including
those responsible for the spatial dependence of the EM
parameters, would result in an excess of accuracy.

4.2 Conduction band
For a smooth HJ, the single-band equation on EF for the c-
bandwas obtained inRef. [12]. In the r-representation it takes
the form

Ec0Fc�r� � 1

2
ma�z�pm b�z�pma�z�Fc�r� � C �z�DUcFc�r�

� a0p4Fc�r� � b0�p2kp2z � p2xp
2
y�Fc�r�

� Z�p� n� � rC 0�z�Fc�r� � EFc�r� : �6�

The boundary conduction-band jump DUc, the modified
form-factor C�z� and EM m�z� are determined by the
following expressions

C�z�DUc � G�z�dUcc �
X
n

0 jdUcnj2
Ec0 ÿ En0

G 2�z� ;

m�z� � m1

�
1�m1�m2 ÿ m1�C�z�

�ÿ1
;

a � m1
2�m2 ÿ m1�

; 2a� b � ÿ1 :

In Eqn (6), a0 and b0 are the nonparabolicity parameters of
the volume spectrum and

m1 �
X
n

0 2
��
cjpxjn���2dUcc

m2
0�Ec0 ÿ En0�2

ÿ
X
n; l

0 4


cjpxjn

�

njpxjl

�
dUlc

m2
0�Ec0 ÿ En0��Ec0 ÿ El0� ;

m2 �
X
n; l

0 2


cjpxjn

�
dUnl



ljpxjc

�
m2

0�Ec0 ÿ En0��Ec0 ÿ El0� ;

Z �
X
n; l

0 �h


cjpzjn

�

n
���HHdU� p�x

��l�
ljpyjc�
4im4

0c
2�Ec0 ÿ En0��Ec0 ÿ El0� :

The modified EF Fc�r� is related to the total wave function
C�r� through a cumbersome expression (see Ref. [12]).

To include the corrections associated with the lack of
smoothness of HJ in Eqn (6), it should be taken into account
that the contributions determined by the terms D0nn 0 , D1nn 0 ,
S0nn 0 and S1nn 0 must be considered in the first order of the
perturbation theory, while the contributions from D0nn 0 and
S0nn 0 Ð in the second order as well (together with the terms
�hk � pnn 0=m0). As a result, there will be an additional term Ĥabr

in the Hamiltonian of Eqn (6):

Ĥabr � D0ccd�z� � rd0�z� � ~Z�p� n� � rd�z� : �7�

Let us represent function G 0�z� as a sum of the symmetric�
G 0s�z�

�
and antisymmetric

�
G 0a�z�

�
parts. Then one obtains

D0cc � ÿ
X
j 6�0



c
��dU cos�Kjz�

��c�
2pKj

�d
ÿd

G 0a�z� sin�Kjz� dz ;

r �
X
j6�0; n

0 �h


cjpzjn

�

n
��dU sin�Kjz�

��c�
2p�ÿi�Kjm0�Ec0 ÿ En0�

�d
ÿd

G 0s�z� cos�Kjz� dz

�
X
j 6�0



c
��dU cos�Kjz�

��c�
2pKj

�
�d
ÿd

G 0s�z�
�
cos�Kjz�

Kj
� z sin�Kjz�

�
dz ;

~Z �
X
j6�0; n

0 �h


c
���HH�sin�Kjz�dU� � p

�
x

��n�
njpyjc�
4pKjm

3
0c

2�Ec0 ÿ En0�

�
�d
ÿd

G 0s�z� cos�Kjz� dz :

TransformEqn (6), taking into account Eqn (7), to amore
compact form, valid for a sharp HJ (2d�kz 5 1). With an
accuracy to terms of the order of max

�
d�kz�l�kz�2; �d�kz�3

	
(see

Ref. [12]), one can obtain the final EM equation for a sharp
HJ:

Ec0Fc�r� � 1

2
m~a�z�pm ~b�z�pm~a�z�Fc�r� �Y�z�DUcFc�r�

� a0p4Fc�r� � b0�p2kp2z � p2xp
2
y�Fc�r�

� d1�p� n� � rd�z�Fc�r� � d2d�z�Fc�r� � EFc�r� : �8�

Here quantities ~a, ~b, d1 and d2 take into consideration the
finite width of the HJ, 2~a� ~b � ÿ1, d1 � Z� ~Z, and

d2 � DUc

��d
ÿd

G�z�dzÿ d

�
�D0cc ;

Y�z� is the Heaviside step function, and lastly

~a � 4r� m1 � 2DUc

�
d 2 ÿ � dÿd 2C�z�zdz�

2�m2 ÿ m1 ÿ 4r� :

Let us analyze the Hamiltonian of Eqn (8). The first and
third terms present the kinetic energy of an electron in the c-
band. The second term is the space-dependent operator of the
kinetic energy, quadratic in momentum (a general form of
this operator was proposed in Ref. [19]). Notice that the
parameter ~a is not a universal constant and depends both on
the materials of the HJ and the form of the HJ transition
region. The fourth and fifth terms in the Hamiltonian of Eqn
(8) describe the corrections for the small nonparabolicity and
are determined only by volume parameters. The sixth term
describes the surface spin-orbit interaction (see, for example,
Ref. [20]) whose intensity (d1) depends not only on the
materials of HJ, but also on the form of the transition
region. The possibility of the existence of a contribution
described by the seventh term was discussed in Ref. [21]; it is
seen that this contribution vanishes for a mathematically
sharp HJ.

In the case of a symmetric quantum well with two
equivalent HJs (with coordinates z � 0 and z � L), the
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Hamiltonian for the c-band takes the form

Ĥ el � Ec�z� � 1

2
m~a�z�pm~b�z�pm~a�z�

� a0p4Fc�r� � b0�p2kp2z � p2xp
2
y�Fc�r�

� d1�p� n� � r�d�z� ÿ d�zÿ L�	� d2
�
d�z� � d�zÿ L�	 ;

where Ec�z� describes the profile of the conduction-band edge.

4.3 Valence band
Let us briefly discuss the problem of the derivation of the EF
equation for a valence band. There are two forms of this
equation which frequently occur in the literature: the
`symmetrized' form (see, for example, Ref. [22]) and the
equation obtained in Ref. [23]. Now, on derivation of the
equation for a conduction band, we can point to the
modifications which should be made in the EM method for
the valence band to account for the spatial dependence of the
EM parameters. Firstly, such an equation must include terms
of the fourth order in the momentum operator (corrections
for nonparabolicity) resulting from the interaction of the
valence-band states with the states of other bands. Secondly,
the characteristic parameters of band discontinuity and the
spin-orbit interaction are, as a rule, of the same order,
therefore the EM-equation Hamiltonian must have a 6� 6
rather than 4� 4 dimension, i.e. the interaction of heavy-
hole, light-hole and spin-split bands must be considered
`exactly'. Thus, since the Luttinger's parameters are distinct
from the EM parameters used in the conventional 6� 6
equation (see Ref. [2]), three constants will be inadequate to
specify the EM parameters for the valence band. The two
above-mentioned versions of the EM equation for the valence
band do not meet these requirements and can result in an
excess of accuracy.

The derivation of an equation analogous to that obtained
for the conduction band would constitute a rather cumber-
some problem. Here we shall consider only an effect which is
weak for bulkmaterials in smoothly-varied fields, namely, the
mixing of heavy (hh) and light (lh) holes at the centre of the 2D
Brillouin zone in (001) III ±V heterostructures [24]. It can be
demonstrated that the lack of smoothness of the HJ brings
new operators into existence, which are responsible for this
mixing in the Hamiltonian for valence-band states. Consider
in the first order approximation only that the terms which are
proportional to D0xx 0 , where x, x 0 � X;Y;Z are the Bloch
functions at the top of the valence band, which transform in
accordance with the representation C15. The nonvanishing
off-diagonal matrix elements have the form

D0XY � D0YX �
X
j 6�0



X
��U sin�Kjz�

��Y�
2pKj

�d
ÿd

G 0s�z� cos�Kjz� dz :

We write out the elements of the matrix Hamiltonian for the
valence band, describing the lhÿhh mixing:

Ĥhole
h1; l2 � Ĥhole

h2; l1 � i
D0XY���

3
p d�z� ;

where the indices h1, h2, l1 and l2 number the states of heavy
and light holes (allowing for spin). An estimate of the
constant in front of the d-function was made in Ref. [24] by
taking into account experimental data for heterostructures
GaAs/AlAs: (100 ± 300) meV A. It is seen, however, that this
quantity depends on the structure of the interfaces, and the

intensity of themixing of heavy and light holes at the centre of
the 2D Brillouin zone is greater for sharp HJs than for HJs
with a smoothly-varied chemical composition. For a sym-
metric quantum well, one can obtain

Ĥhole
h1; l2 � Ĥhole

h2; l1 � i
D0XY���

3
p �

d�z� ÿ d�zÿ L�	 :
5. Conclusions

The envelope-function method developed by Kohn and
Luttinger for the description of the electron structure of
bulk semiconductors was generalized to the case of hetero-
structures formed by unstressed layers of related semiconduc-
tors with a SZn-type structure. For electron states near the C-
point in (001) heterostructures, the effective-mass equation
which takes into account the spatial dependence of the
effective mass and the possible sharpness of heterojunctions,
was derived. The problem of derivation of an effective
Hamiltonian for hole states in such structures was briefly
outlined. It was shown that the lack of smoothness of
heterojunctions results in mixing the states of heavy and
light holes even at the centre of the Brillouin zone. The
accuracy of the approach was also discussed.

The work was supported by the Russian Foundation for
Basic Research (project 96-02-18811) and the Federal
Programme ``Physics of Solid-State Nanostructures'' (pro-
ject 1-094/4).
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PACS numbers: 04.40.Dg, 95.30.±k, 97.60.Bw

Explosion mechanisms of supernovae:
the magnetorotational model

N V Ardelyan, G S Bisnovaty|̄-Kogan,
S G Moiseenko

1. Introduction
Supernovae appear at the very last stage of evolution of
massive stars. The evolution, associated with nuclear burning
and generation of more and more massive elements with
increasing binding energies, ends up either with a nuclear
explosion during the formation of a degenerate carbon-
oxygen core of about 1.5 solar masses, or with a loss of
stability and collapse of the core consisting of elements from
the iron group. The collapse terminates when a stable neutron
star forms at the centre. During neutron star formation, a
huge quantity of energy is released, nearly 20 percent of the
stellar rest-mass energy, but almost all the energy is liberated
as the weakly interacting and elusive neutrinos. To explain the
supernova explosion which accompanies the formation of a
neutron star, less than 0.1% of the neutrino energy would be
sufficient, but the use of even so tiny a fraction is not always
possible and onemeets difficulties in producing the explosion.
To date, after 30 years of hard work on this issue, the
conclusion is inferred that an explosion is impossible in a
simple spherically symmetric model, which was first consid-
ered in Ref. [21].

An explosion can be attained in two cases. In the first
variant one assumes the development of a convective
instability, which increases the energy of escaping neutrinos,
and leads to the explosion. Thismodel is sensitive to the initial
physical parameters, to the convection treatment, and even to
the computational scheme used. The explosion obtained in
three-dimensional calculations does not provide a final
assurance because of the inevitable increase of numerical
errors [12, 13, 15, 20].

The second model utilizes a conversion of the rotational
energy of a neutron star with a mantle into the energy of
expanding matter, with the use of the magnetic field as the
transferring agent. In these calculations, the energy conver-
sion coefficient of a few percent is steadily obtained in
different approximations. This proves to be enough to
explain a supernova explosion. Firstly, the field is amplified
by differential rotation, and then such a magnified field leads
to the conversion of the rotational energy into the energy of
explosion. After that the magnetic field returns to its initial
strength, and the star becomes rigidly and comparatively
slowly rotating.

2. Basic equations of the magnetorotational model of
explosion
The magnetorotational model for a supernova explosion was
suggested in paper [7], and one-dimensional calculations were
published in Refs [1, 11]. Two-dimensional calculations using
an implicit Lagrangian scheme with a triangular grid have
been started in papers [2, 3]. In the subsequent papers [4 ± 6],
the computations were performed with an improved grid with
readjustment. In Refs [5, 6], the magnetorotational explosion
of a rotating cloud was first simulated, and calculations of a
supernova explosion taking account of a realistic equation of
state of the superdense neutron star matter and neutrino

cooling are presently being carried out [8]. The magnetorota-
tional model of explosion was explored in paper [19], in which
a spherically symmetric model was used in one-dimensional
calculations, as well as in papers [17, 23], in which two-
dimensional calculations were performed with an Eulerian
grid that does not permit the treatment of large jumps of the
parameters, using a simplified magnetic-field structure and
assuming a highly overstated field strength. The results of
these works, in which an effective explosion was obtained,
does not allow us, however, to make conclusions about its
form, time scale, and other observable characteristics. Notice
that the magnetorotational mechanism was considered in
paper [16] for the glowing of the Crab nebula to be explained
through the winding of its magnetic field by a rotating
neutron star.

The system of equations of magnetic gas dynamics
describing a magnetorotational supernova explosion has the
form

dx

dt
� u ;

dr
dt
� rdiv u � 0 ;

r
du

dt
� ÿgrad

�
p� B � B

8p

�
� 1

4p
div�B
 B� ÿ r gradF ;

r
d

dt

�
B

r

�
� B � Hu ;

r
de
dt
� p div u � 0 ; Z � 1

r
� TR

p
; e � TR

gÿ 1
;

DF � 4pGr : �1�

The problem is considered in a cylindrical frame of reference
under the assumption of equatorial (symmetry plane z � 0)
and axial �q=qj � 0� symmetry. Here d=dt � q=qt� u � H,
x � �r;j; z� is the radius-vector of a continuous medium
particle in cylindrical coordinates, u is the velocity vector, r
is the density, p is the pressure, B is the magnetic field
strength, F is the gravitational potential, e is the internal
energy, G is the Newtonian constant of gravitation, R is the
molar gas constant, and g is the adiabatic index. The problem
is being solved in a bounded region beyond which the density
vanishes. The poloidal components of the magnetic field Br,
Bz can be nonzero outside the cloud as well.

3. Results of one-dimensional calculations
In a one-dimensional setting of the problem, an axially
homogeneous cylinder with vz � Bz � jr � jj � 0 is consid-
ered. This corresponds to neglecting motions along the axis z
in a real star. The one-dimensional nonstationary MHD
equations were solved inside the region R0 < r < R�t�,
where R0 is the radius of a rigidly rotating core with a mass
M0 per unit length. Under cylindrical symmetry the condition
of conservation of the magnetic flux radial component
reduces to the equality rBr � A � const. Let the mass per
unit length of the mantle be M. The problem has two
dimensionless parameters

a � A2

4pMV 2
0

�V0 �
����������������
2pGM0

p
� ; b �M0

M
: �2�

Calculations [1] were carried out for b � 1, a � 10ÿ2, 10ÿ4,
10ÿ8. They demonstrated that the solution tends to a
universal one at small a, when the characteristic time scales
of processes increase as � aÿ1=2, and functions vra � vraÿ1=2,
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ha � rBja1=2 behave similarly depending on the radius r and
the reduced time ta � ta1=2. Figures 1 ± 3 display calculated
changes in the distributions of angular velocity and tempera-
ture across the mantle, as well as the form of the magnetic
force lines at the instant close to that of maximum winding of

the force lines. In Fig. 2 one can see the formation and
expansion of a shock wave in the mantle, and Fig. 1 shows
how the angular velocity of the core decreases during the
magnetorotational explosion due to removal of angular
momentum by the expelled matter. Under the condition of
conservation of the total angular momentum of the core and
the mantle, a reversal rotation of the core and adjacent
mantle, as well as magnetorotational oscillations arising
only in the cylindrical model, become possible. Taking
account of the spherical gravitational potential of a real
neutron star, one can estimate the mass and kinetic energy
of the ejected matter at small a:

Msh � 0:13M� ; Esh � 0:035Erot ; �3�

where Erot is the total rotational energy of the core-mantle
system at the beginning.

4. 2D calculations in an axially symmetric model
First we consider a rigidly rotating homogeneous gaseous
sphere, in which [6]

r � 3:81� 1016 cm ; r � 1:492� 10ÿ17 g cmÿ3 ;

M � 1:73M� � 3:457� 1033 g ;

g � 5

3
; ur � uz � 0 ;

Erot0

Egr0
� 0:04 ;

Ein0

Egr0
� 0:01 : �4�

The cloud starts collapsing and after several oscillations
arrives at a quasi-stationary state. At this stage the rotation
of the cloud becomes differential. The stationary central
density is rc � 400r0. By the moment t1 � 5:15 (in dimen-
sionless units related to the characteristic collapse time), a
magnetic field with a configuration close to a quadrupole
`turns on'. The ratio of the magnetic field energy at the `turn-
on' moment to the gravitational energy of the cloud at this
moment is Emag1=Egr1 � 0:05. A toroidal magnetic field
component appears owing to the differential rotation of the
cloud, which growswith time and leads to amagnetic pressure
increase inside the cloud. The maximum of the toroidal
magnetic field component is in the equatorial plane of the
cloud and moves toward the cloud centre with time. By the
time t � 10:2, the toroidal magnetic field energy reaches its
maximum. After that the toroidal magnetic energy decreases
with time.

Beginning from the moment of the magnetic field turn-on
at t � 5:15 until the moment t � 10:2, when the toroidal part
of the magnetic field energy reaches its maximum, the
velocities in the cloud are small. Starting from t � 10:2, the
cloud expands under the action of the magnetic pressure,
mostly in the equatorial plane. Beginning from t � 11:3, the
outer parts start acquiring sufficient kinetic energy to escape
to infinity. Equatorial matter outflow changes the form of the
cloud, which is shown in Fig. 4 for the last moment of the
calculations at t � 32:6. Figure 5 demonstrates the increase of
mass of the ejected matter, whose kinetic energy reaches
almost one percent of the gravitational energy of the ultimate
cloud configuration.

The results obtained show the high efficiency of the
magnetorotational explosion mechanism, reaching one per-
cent of the gravitational energy in the case of a cloud. For a
supernova explosion with the formation of a neutron star, an
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Figure 1. Distribution of angular velocity (normalized to the maximum)

over the dimensionless mantle mass.
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Figure 2. Distribution of temperature (normalized to the maximum) over
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Figure 3. Form of the magnetic force lines in the region near the core at the

moment of time close to the maximum winding.
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efficiency of about 0.25 percent of the binding energy would
be enough, which is near 3 percent of the energy of rotation of
a newborn neutron star with the maximum possible angular
velocity.

5. Violation of magnetic-field mirror symmetry and the
formation of rapidly moving pulsars
Radiopulsar timing research and measurement of their
proper motions have revealed that many pulsars move with
very high velocities, sometimes exceeding 1000 km sÿ1 [18].
Since pulsars originate from massive stars residing in the
galactic disc, whose peculiar velocity is much lower, theymost
probably acquired such high velocities during neutron star
formation in consequence of supernova collapse and explo-
sion. In the magnetorotational model, a natural mechanism
for the acceleration of a neutron star appears during the
collapse. It is based on the violation of themirror symmetry of
the magnetic field in differentially rotating stars, which have
different symmetries of the initial poloidal and toroidal fields
[9]. As an example one can consider a combination of a dipole
and a symmetric toroidal fields, or a quadrupole and
antisymmetric toroidal fields in a rigidly rotating pre-super-
nova. Consider the case with a dipole field. A differential
rotation inevitably emerges as a result of the stellar collapse,
and the winding of the radial component of the dipole field
would lead to the formation of an antisymmetric component
of the toroidal field, which, added to the initial symmetric
component, would violate the mirror symmetry of the
magnetic field.

The dipole components of the magnetic field in radio-
pulsars reach 1013 G and their toroidal components may be
even higher by a few orders of magnitude, like the field in
solar spots, which is apparently connected with the toroidal
component of the solar magnetic field. Even higher tempor-
ary fields are feasible at the stage of the magnetorotational
explosion. For such strong fields exceeding the characteristic
magnetic field, Bc � m2

ec
3=e�h � 4:4� 1013 G (when the

energy corresponding to the difference between Landau
levels matches mec

2), the dependence of the weak interaction
cross-section on the magnetic field becomes significant due to
the change of the phase space volume and the wave function
of electrons. For very strong fields, the beta-decay cross-
section increases linearly with the field [22]. If the energy of a
beta-transition is eb � Dmec

2, then the magnetic field effect
becomes significant at B > DBc, which for D � 10ÿ20 would
require fields with B > 5� 1014 G, which could be appreci-
ably augmented during themagnetorotational explosion. The
difference in the weak interaction cross-sections in two
hemispheres of the neutron star would lead to a difference in
neutrino energy flux, inversely proportional to the interaction
cross-section for the neutrino heat transfer [14].

Using the neutrino cooling curve [21] and assuming a
linear law for the induced toroidal field growth, which results
in the total toroidal field in two hemispheres changing by the
law

B� � Bj� � a� bt ; a � Bj0 ; b � jBpj
P

; �5�
we calculated the recoil velocity of the neutron star due to the
anisotropic neutrino flux [10]:

vnf � 2

p
c

10

P

20 s
x

�
0:5� ln

�
20 s

P

1

x

��
� x

�
0:5� ln

2� 104

x

�
� 1 km sÿ1 : �6�

Here the rotation period of the newborn neutron star is
P � 10ÿ3 seconds, the neutrino pulse duration is 20 seconds
with luminosityLn � 0:1Mnc

2=20 s, c is the speed of light, and
x is the ratio between the initial toroidal and poloidal fields.
For x � Bj0=jBpj from 20 to 103 we get vnf from 140 to
3000 km sÿ1. As follows from (6), the neutron star velocity
acquired by this mechanism has a maximum, as a function of
x, which with the same poloidal field gives the characteristic
function with a maximum and a decrease for weak and strong
fields for the dependence of the radiopulsar velocity on the
dipole magnetic field. Unfortunately, observations have not
so far allowed us to confirm or refute this dependence because
of the significant influence of selection effects.
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Stars, planets, and cosmic masers

V I Slysh

As early as 1966, immediately after OH masers have been
discovered, I S Shklovski|̄ proposed to connect cosmic masers
with star formation processes. The formation of a star can be
also accompanied by the formation of its planetary system
from the surrounding gas-dust protoplanetary disk which
appears as an angular momentum reservoir. The protostar
may shrink and accrete fresh matter only providing its own
angular momentum is transferred to the disk. Consequently,
disks around stars exhibit the generic attribute of protostars.
The disk can in turn fragmentate into ring zones with the
subsequent formation of planets. Such a picture, suggested in
general form by Kant and Laplace, is presently being
confirmed due to emerging of new observational methods
with a high angular resolution. Planets are discovered around
20 near stars of the main sequence, with the mass of 9 planets
being less than 13 Jupiter masses, the latter is known to be a
conventional border between planets and low-mass stars
called brown dwarfs. High resolution of the Hubble Space
Telescope allowed astronomers to find numerous evidences of
star formation processes under way and to obtain images of
very dense blobs of matter Ð globules, as well as individual
protostars surrounded by gas-dust disks. They were called
`proplydes', the precursors of planetary systems. The disk
near b Pictoris may provide such an example as well.

Radiointerferometric systems, which are used to obtain
images of maser sources, have an even higher angular
resolution of 0.1 milliarcsecond corresponding to 0.1 AU
linear size at a distance of 1 kpc, which is much smaller than
the typical planetary system size. Since masers turned out to
be closely connected to star formation regions and are bright
enough for radiointerferometric studies, they may be used for
searching and exploring protoplanetary systems at different
evolutionary stages. Recently, in addition to well-known OH

and H2O masers, new methanol masers were discovered
which are sensitive indicators of physical conditions. Studies
of masers have established that they are related to several
different stages in the evolution of protostars and planetary
systems. Methanol masers of class II and OH masers emerge
in peripherical remnants of the disks around young hot stars
with a high mass (50M�) at a distance of several thousand
astronomical units from the star. These masers are probably
correlated with extended atmospheres of ice planets (giant
comets). Some H2O masers (such as IC1396N) are associated
with disks around protostars of low mass (0.1M�) which are
still accretingmatter. These disks are not large in size, of order
20 AU. Even more earlier stage of protostar evolution, cold
dense nuclei in molecular clouds, is connected with methanol
masers of class I (OMC-2, NGC2264).

Similar phenomena, disks with maser sources, were
discovered in much larger scales in nuclei of some active
galaxies around black holes with masses of 106ÿ109M�.
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