
Abstract. Field-representing force line pictures for a number of
simple moving-charge radiation problems are discussed.

Lines of force come to be known to many of us when we first
study physics at school. Later, we have to deal with them as
university students. However, only the lines of force of static
fields are usually addressed in text-books. HHertz scrutinized
the evolution of the force line system for an alternating
electric dipole [1]. Nevertheless, this classical example is
rarely cited and fails to be included in curricula.

Evidently, both the shape and the mutual orientation of
force lines in an alternating field vary with time.

This short communication is concerned with the lines of
force patterns in the case of a charged particle moving in a
vacuum with variable speed.

Let us first examine the lines of force picture for a charge
moving with a constant speed. In this case, the electric lines of
force are straight. Figure 1 shows the electric fields of charges
at rest (Fig. 1a) and in uniform motion (Fig. 1b). The lines of
force of the uniformly moving charge show an anisotropic
distribution. They are concentrated near the plane which
crosses the charge normally to the direction of motion. The
concentration is the higher the closer the charge velocity to
that of light. We shall be dealing below with the motion of the
charge in a vacuum where it can not move at a speed
exceeding the phase velocity of light.

In the present communication, we shall consider only the
lines of force of the electric field. They are known to have the
following main properties. First, the direction of the electric
field at a given point coincides with that of tangent to a line of
force through the same point. Second, the strength of the field
at a given point is characterized by the density of the lines of
force in the vicinity of the point. In other words, if there is a
unit element of area perpendicular to a line of force at a given
point, then the number of lines of force crossing this field is
equal to the field strength at the same point. Lines of force of
an electric field originate and terminate in electric charges. In
the case of a single point electric charge, the lines of force
originate at the point and run away to infinity. If the field of
an electric charge is represented by a certain number of force
lines, this number remains unaltered for arbitrary motion of
the charge. Therefore, the number of force lines may serve as

the integral of motion. This property of lines of force follows
from Gauss theorem. According to this theorem, the electric
field flux across any closed surface containing a charge q is
4pq. But the electric field flux in the terms of lines of force is
equal to the number of these lines crossing the given surface.
For this reason, the number of force lines is a constant
independent of the charge motion law.

We shall confine ourselves to representation of the field of
a moving charge with the help of lines of force. In the general
form, the problem was raised and solved by Harutyunyan [2,
3]. The specific case of the radiation field of a charged particle
undergoing instantaneous acceleration was considered by
Purcell [4] who also discussed some quantitative aspects of
the problem. We shall examine it in more details below.

Let a charged particle lie at the origin of Cartesian
coordinates. The particle is at rest before time t � 0 and
starts moving at t � 0 in the positive direction of x axis with
speed v. The problem is to find the field of the charged particle
for this motion. The assumption of an instantaneous jump of
velocity is a sort of idealization. In a real situation, a finite
change of velocity occurs over a finite time. However, this
assumption is justified if one considers radiation at suffi-
ciently low frequencies. We shall discuss below how the field
picture is modified if the assumption of an instantaneous
jump of velocity is not in case. Let us encircle the starting
point with a sphere of radius r � ct. Inside this sphere, the
solution of the Maxwell equations gives the field of a charge
moving at a constant speed v:
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Figure 1. Electric fields of resting (a) and uniformly moving (b) charges;

v � 0:866c.



Outside the sphere, the field is equal to the Coulomb field
of a charge resting at the origin of coordinates. As the sphere
r � ct expands, it passes through the observation point.
Therefore, at moment t � r=c, the Coulomb field of a resting
charge is substituted by the field of a uniformly moving
charge at point x � vt, regardless of the distance of the
observer from the starting point. Such a field structure is
due to effect of retardation related to the finite velocity of
light. When the observer is far from the starting point, the
field at the observation point remains the field of a resting
charge well after the charge commenced its regular motion. It
will be shown below that the field behaves in a similar way
after the charge stops. In other words, if the observer is far
from the stopping point, the field at the observation point
remains that of a moving charge long after the charge
stopped.

Figure 2 represents lines of force inside and outside the
sphere r � ct. It appears that lines are not continuous on the
sphere, that is they are ruptured at the surface of the sphere.
However, such a disjunction of lines of force at the spherical
surface would mean that the surface is charged. But we are
considering here only the charge q at point x � vt, and no
other charge. Hence, the lines of forcemust be continuous, i.e.
each force line inside the sphere must join the one outside it.
Such a transition is feasible if the lines of force lie at the
surface of the sphere with radius r � ct. It is these lines of
force at the surface of the expanding sphere that define the
radiation in the problem being considered. Indeed, the sphere
r � ct expands with the velocity of light. The lines of force at
its surface are normal to the direction of expansion. There-
fore, the field described by the lines of force lying on the
sphere r � ctmeets all the requirements which are expected to
be satisfied by an electromagnetic wave. It is worthwhile
noting that in the instantaneous start problem in question the
field inside the sphere does not contain radiation and is
therefore the field of a uniformly moving charge. The field
outside the sphere does not contain radiation either and
represents the field of a resting charge. The radiation field
differs from zero only at the sphere r � ct.

It has been shown by Purcell [4] that the problem contains
one-to-one correspondence between force lines of the fields
inside and outside the sphere. If the instantaneous stop
problem is considered for certainty, the line of force inside
the sphere running at an angle y to the direction of motion

continues as the line of force outside the sphere at an angle y0

to the same direction, with

tan y0 � g tan y ; �3�

where g � �1ÿ �v=c�2�ÿ1=2 is the so-called Lorentz factor.
The two lines are linked by a segment of the force line lying on
the sphere. Therefore, they can be regarded as different parts
of the same line.

The strength of the radiation field can be determined in
the following way. Let us introduce a spherical system of
coordinates with the center at the starting point of the charge
and the axis parallel to its velocity. Let us consider a part of
the spherical surface at an angle y to the velocity of the charge.
Let us then calculate the electric field flux across this segment.
Evidently, this flux is equal to the difference between the
internal field flux and external one. The external field flux is
easy to find. This flux across the part of the spherical surface
corresponding to the solid angle dO is equal to q dO. Let us
calculate the internal field flux by assuming x � r cos y,
y � r sin y, r � ct in formulae (1) and (2). This yields the
expression for fields Ex, Ey at the sphere:
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where b � v=c.
The flux of the field E across the element dS of the sphere

surface is En dS, i.e. �nxEx � nyEy� dS, where n is normal to
the surface. Taking into account nx � cos y, ny � sin y,
formulas (4) and (5) give the expression for the flux P across
the element of the sphere surface corresponding to element of
the solid angle dO:

dP � Ex cos�Ey sin y � q�1ÿ b2� 1

�1ÿ b cos y�2 dO : �6�

It follows from Eqn (6) that this relation does not include
the radius of the sphere, i.e. the field flux is defined only by the
element of solid angle dO. This is understandable because the
electric field weakens with increasing radius r as rÿ2 while the
area of the surface element inside the solid angle dO is
proportional to r2. Hence, the field of a charge undergoing
uniform motion in a vacuum can not be a radiation field.
Indeed, a radiation field is characterized by r-independence of
the electromagnetic energy flux into the solid angle dO. But
such a flux is a bilinear combination of electric and magnetic
fields (the Poynting vector P � 4pc E�H); hence, in this
case, the square of the field (rather than its first power) must
decrease with increasing r as rÿ2 while the radiation field itself
decreases with the distance as rÿ1. It is not difficult to
demonstrate that the electric field flux through the total
surface of the sphere r � ct containing the charge is 4pq, in
agreement with Gauss theorem. This means that both the
internal and external fields can be represented by the same
number of force lines.

x
x � 0

Figure 2. Electric field of a charge instantaneously accelerated at point

x � 0 and moving with a constant speed.
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The difference between the external and internal fluxes
across a surface element of the sphere is due to the increased
number of lines of force at a given part of the sphere. Let us
denote the strength of the radiation field at the sphere asEy. It
follows from the symmetry of the problem that the radiation
field depends only on y. Then, the condition of conservation
of the lines of force number (or the equivalent condition
divE � 0) leads to the relation

d

dy
�Ey sin y� � q

r

�
1ÿ b2

�1ÿ b cos y�2 ÿ 1

�
sin y : �7�

This relation may be regarded as a differential equation
for the non-zero tangential component of the electric field Ey

at the expanding light sphere. However, specific features of
the field Ey are apparent even before the solution of this
equation. The lines of force of this field lie at the surface of the
sphere r � ct with the center at the point from which the
charge started. This sphere expands with the velocity of light,
i.e. the charge always remains inside it. An important
characteristic of the field Ey is its decrease in proportion to
rÿ1 with increasing radius r. In other words, the field Ey has
the property of a radiation field. It propagates at the velocity
of light and is at each point perpendicular to the direction of
motion.

To avoid misunderstanding, it is worthwhile to note that
the field of a regularly moving charge (4), (5) also has a
tangential component on the sphere (the corresponding
expression is not given here). However, the tangential
component of the field (4), (5) decreases as rÿ2, unlike that
of the radiation field Ey.

The solution of the differential equation (7) satisfying the
condition Ey � 0 at y � 0 can be written in the form

Ey � q

r
d�rÿ ct� b sin y

1ÿ b cos y
; �8�

where the delta-function of the argument rÿ ct takes into
account that the field Ey differs from zero only at the sphere
r � ct which expands at the velocity of light. The same
expression was obtained in a different way in Ref. [5].

To summarize, in the instantaneous start approximation,
a radiation field is formed at themoment of start. Afterwards,
the wave packet of the radiation field propagates in
accordance with law (7) which gives the expression for the
sole non-zero component of the field at the instantaneous
start of the charge.

Let us now consider the radiation field arising at a sudden
stop of a charge. Let us suppose that a charge q undergoes
regular motion in the positive direction of the x axis at a speed
v and comes to a stop at point x � 0 at time t � 0. In this case,
the solution of the Maxwell equation within the sphere r � ct
with the center at point x � 0 gives the Coulomb field of the
charge resting at the origin of the coordinates. The field
outside the sphere r � ct is the field of a charge undergoing
uniform motion with speed v (since the signal of the charge
arrest does not reach the points lying outside the light sphere
r � ct). It is easy to see that the difference between field fluxes
inside and outside the sphere has the same magnitude but the
opposite sign as compared with that in the case of instanta-
neous start. It follows that the radiation field Ey in the case of
the stop has the same magnitude that in the case of
instantaneous start (8) although the two fields have different
signs.

Let us now consider the case of a charged particle resting
at the origin of the coordinates until time t � 0. At t � 0, the
particle's velocity changes jump-wise to become v after which
the particle moves in the positive direction of the x axis during
the time T. At t � T, the particle comes to an abrupt stop at
the point x � vt. Let us find the radiation field for the given
motion. This problem can be solved based on the above
considerations. Indeed, the radiation field associated with the
instantaneous start lies at the sphere r � ct with the center in
the origin of the coordinates. The radiation field generated
upon the instantaneous stop is on the sphere
jrÿ vTj � c�tÿ T� with the center at the point x � vT. At
v < c, the light sphere related to the stop is always inside the
sphere associated with the start. The space between the
spheres forms a certain layer in which the field equals the
field of a regularly moving charge. The field inside the layer is
the field of a Coulomb charge resting at point x � vt whereas
that outside the layer is a Coulomb charge resting at point
x � 0. The radiation fields situated at the spherical surfaces
bounding the layer are responsible for the continuity of lines
of force. The radiation field associated with the start of the
charge has the form (8). The radiation field associated with
the stop may be written as

Estop
y � ÿ q
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To consider radiation fields at distances greater than the
distance covered by a charge �r4 vT�, it is possible to use the
approximate expression jrÿ vTj � rÿ n � vT, where n � r=r
is the unit vector in the direction of observation. Then, the
expression for the total field of radiation takes the form

Ey � q
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The quantity cT�1ÿ v cos y=c� is the distance between two
radiation pulses examined at an angle y to the direction of
motion. Accordingly, the quantity T�1ÿ v cos y=c� defines
the time-interval between the appearance of the first and
second radiation pulses at the observation point. It should be
recalled that the first pulse propagates from the starting point
and the second from the stopping point. Clearly, the motion
time can be large, but the time-interval between two forward
radiation pulses �y � 0� can be much shorter than the
duration of motion T provided the particle's speed v is close
to the velocity of light. If the interval between two forward
radiation pulses is denoted as Dt, then, in the relativistic case
when the velocity of a charge is close to that of light c, the
following relation holds true:

Dt � T

2g2
: �11�

Spectral properties of the radiation field may be obtained
by Fourier transformation of the expressions (8) and (9). If
the Fourier transformation of a field E�t� is given by the
formulae

E�t� �
�
Eo exp�iot� do ; �12�
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then, for the radiation field in the case of an instantaneous
start, it follows from Eqn (8) that

Eo � q

2pcr
b sin y

1ÿ b cos y
exp
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i
o
c
r

�
: �13�

Equation (13) was obtained using the representation of
the d-function

d�t� � 1

2p

�
exp�iot� do : �14�

The spectral component (13) of the radiation field in the
case of an instantaneous start is a spherical wave with
frequency o outgoing from the origin of the coordinates.
The amplitude of this wave does not depend on frequency.
Therefore, the calculation of the radiation energy at a given
frequency followed by integration of the resulting expression
over all frequencies leads to a divergent expression. This
divergency is due to the assumption of an instantaneous
change of velocity. However, the particle's velocity is always
a smooth function of time. Therefore, the Fourier component
of this velocity or that of the related current (which is the
same) undergoes rapid damping at a sufficiently high
frequencies [6]. The Fourier component of the field Eo being
proportional to that of the current jo in the case of a smooth
change of speed, the spectral component ofEo also undergoes
rapid damping at sufficiently high frequencies. Note that if
the transition from initial to final velocity is smooth enough
and takes finite time, then the radiation field is contained in
an expanding layer. This layer divides space into three areas.
The field at those points of the space which have not yet been
reached by the expanding layer corresponds to the initial state
(e.g. to the regular motion with speed v1). The field at the
points of the space which have already been passed by this
layer corresponds to the final state (regularmotionwith speed
v2). The field inside the layer may be represented by lines of
force connecting every force line of initial field with
corresponding force line of final field. In the case of an
instantaneous transition, the layer has zero thickness, hence
the lines of force lie on the sphere. Therefore, the entire
connecting line at the expanding sphere is perpendicular to
the direction of motion and represents the radiation field.
Generally speaking, in the case of a smooth transition, the
electric field inside the layer has both tangential and normal
components with respect to the spherical surfaces bounding
the layer. The radiation field is described only by the
tangential components.

Let us now consider the spectral components of the
radiation field for the case of a uniform charge moving over
a finite time T. The coordinate and time dependence of the
field is described by formula (10). For simplicity, we shall
consider the radiation field far from the charge movement
region �r4 vT�. The expansion of the radiation field (10) in
the Fourier integral over time in accordance with Eqn (12)
gives the following expression for the spectral component Eo:

Eo � iq
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This expression coincides, up to the phase factor, with that
obtained by Tamm [7] when solving the same problem. Tamm

derived the expression for the spectral component of the
radiation field and did not consider the space ± time picture.
The appearance of the phase factor
exp�ÿi�oT=2��1ÿ b cos y�� is due to the choice of a different
reference point which Tamm placed in the middle of the
charge trajectory. In the present work, it coincides with the
beginning of the trajectory.

We have until now considered the problem of charge
radiation in free space. Similar considerations are applicable
to the solution of the problem of transition radiation of a
charged particle entering vacuum across a plane boundary of
an ideally conductive body (metal). Let half-space x < 0 be
filled with metal. At the initial moment t � 0, the charged
particle leaves the metal and moves along the x axis with a
constant speed v so that its position is defined by the relation
x � vt.

The field arising in the half-space x > 0may in this case be
represented as the superposition of two moving charged
particles, one of which is a real charge q while the other is its
image. The charge of the image is equal to that of the outgoing
particle but has the opposite sign. The position of the image is
defined by the relation x � ÿvt. Evidently, if the plane is
drawn through the point x � 0 normally to x axis, the lines of
force of the combined electric field generated by the charge
and the image are also perpendicular to this plane. Thus, the
same boundary conditions are satisfied at the plane x � 0 and
at the metal. Therefore, in this case, the problem of transition
radiation is reduced to the problem of radiation emitted upon
the instantaneous start of two equal charges having opposite
signs which move from one point in opposite directions.

In this case, the field has the following space ± time
structure. Let us examine a hemisphere with radius r � ct in
the half-space x > 0 with its center at the start charge's point.
Outside this hemisphere, the field is zero but inside, it is the
superposition of the moving charge and its image. The
radiation field is defined by the lines of force lying at the
sphere surface. In the case of an instantaneous start of the
charge, this field is defined by the formula (8). The radiation
field in the case of an instantaneous start of the charge image
can be derived from Eqn (8) by changing the sign in front of
b cos y in the denominator:

Ey � q

r
d�rÿ ct�

�
b sin y

1ÿ b cos y
� b sin y
1� b cos y

�
� q

r
d�rÿ ct� 2b sin y

1ÿ b2 cos2 y
: �16�

Formula (16) defines the transition radiation field in space
and time. The spectral field composition can be found by
expanding Eqn (16) in the Fourier integral. This yields the
expression for Eo coinciding with that obtained by Ginzburg
and Frank [8].

One essential point is worth mentioning. The transition
radiation field at the sphere r � ct decreases with distance as
rÿ1. The source field inside the expanding sphere weakens
with the distance as rÿ2, that is significantly faster than the
transition radiation field. If the detector of radiation is far
enough from both the point of charge appearance and the
charge trajectory, only the transition radiation field is
recorded. If the detector is close enough to the trajectory,
the contribution of the source intrinsic field to the readings
can be as great as that of the transition radiation or even
greater.
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In conclusion, paper [9] considers radiation generated
upon a sharp change in the charge velocity. The author
argues that, at a jump of velocity, the field surrounding the
charge is striped off and propagates in the direction of its
initial movement. After that, the charged particle for some
time moves without any field (the author calls this state a
`bare' or `half-bare' charge) but gradually acquires the field
corresponding to the final velocity of the movement. Similar
evolution patterns in the case of a scattering charge have been
described in Ref. [10]. The results of the present study appear
to be in contradiction with these findings. Indeed, field
restructuring upon a change in charge velocity takes some
finite time. However, a charge is always surrounded by a field
regardless of the evolution rate since the number of lines of
force originating in it is an integral of motion. In other words,
a transition process, which is described in the present paper,
takes place.

Wewish to thankELFeinberg andENMagar for helpful
discussions and criticism.
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