
Abstract. Local non-equilibriummodels of heat andmass trans-
port processes are considered and shown to form a hierarchy of
parabolic and hyperbolic equations whose order increases with
deviation from local equilibrium. The basic features of these
models, in particular their relationship to generalized irreversi-
ble thermodynamics, are discussed.

1. Introduction

The processes of energy andmass transport are widespread in
nature and technology. That is why the development of
transport theory and effective techniques to solve transport
problems are of great importance for science and industry.

As any other thermodynamic theory, the classical thermo-
dynamics of irreversible processes and the related theory of
transport [1, 2], are based on a number of main concepts
(axioms). The axioms help to establish clarity in the
formulation of basic theoretical foundations. On the other
hand the axioms considerably restrict the application of
theory. The concept of local thermodynamic equilibrium
and the concept of locality are the main limitations of
classical transport theory.

The concept of local thermodynamic equilibrium implies
that while the system as a whole is in a non-equilibrium state
and gradients of temperature or concentration exist, a state of
local equilibrium exists in each small element of medium. For
local equilibrium, entropy is a function of the same macro-
scopic variables as for a system in equilibrium. This means
that the state of a non-equilibrium system is described by the
local thermodynamic potentials. In turn these potentials only
depend on spatial coordinates and time through thermody-

namic parameters and follow the equations of thermostatics.
For example, if one chooses as independent variables the local
density of internal energy U�x; t�, the specific volume v�x; t�,
and the local concentration of different components Ci�x; t�
then the state of a physically small volume in the vicinity of
point x in the instant of time t is described by the local
entropy:

S � S
ÿ
U�x; t�; v�x; t�; C

1
�x; t�; . . . ; Ci�x; t�; . . .

�
; �1:1�

for which Gibbs' law is valid:

T dS � dU� Pdvÿ
X

mi dCi ; �1:2�

whereT;P; m are the local temperature, pressure and chemical
potential respectively. Physically, the approximation of local
equilibrium is correct if the relaxation time t (the time for the
establishment of equilibrium in the macroscopically small
domains, although containing a large number of particles) is
considerably smaller than characteristic time of the process t0,
that is

t5 t0 : �1:3�
In other words, the state of local thermodynamic equili-

brium can be established in the system if the speed of
deviation of macroparameters due to external stimuli (the
speed of equilibrium disruption) is much smaller than the
speed of system relaxation into the state of local equilibrium.
The concept of locality, used in the development of either the
classical thermodynamics of irreversible processes or other
thermodynamic theories, assumes that the basic laws of
mechanics are valid not only for the system as a whole, but
for any part, however small the part may be. It follows that a
limit transition is possible in the integral conservation laws
for such systems, when the volume of integration tends to
zero. The equivalent conservation laws in the form of partial
differential equations can be obtained. Physically, such a
procedure is not correct as the medium consists of micro-
objects (atoms, molecules, clusters, etc.) with qualitatively
new properties. The properties of micro-objects are incompa-
tible with the classical knowledge of the mechanics of a
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continuous medium. However, if the characteristic micro-
scale of the process L is much larger than characteristic scale
of the medium microstructure h, that is

L4 h ; �1:4�
then such a process is local and complies with the transport
equations in the local form. For example, the law of
conservation of density of any quantity A in the integral
form (substantive balance equation) is [2]:

d

dt

�
v

rA dv � ÿ
�
O
JA dO�

�
v

sA dv ; �1:5�

where r is the density, JA is the flux ofA, sA is the production
ofA, v is the volume, andO is the surface of the system. From
the concept of locality it follows that Eqn (1.5) is valid when
v! 0 andO! 0. A differential form of the balance equation
can be obtained using the Gauss theorem:

r
dA

dt
� HJA � sA : �1:6�

Equation (1.6) is local because the form of the equation is
independent of the characteristic scales of the system. This
equation can be applied to any part of the system, however
small the part may be.

On the grounds of the concept of local thermodynamic
equilibrium and the concept of locality the classical thermo-
dynamics of irreversible processes leads to a parabolic
equation of heat transport (and a similar diffusion equation)
[1, 2]:

qT
qt
� aH 2T�W ; �1:7�

where a is the thermal diffusivity andW is the heat source. As
expected, the classical transport equation (1.7) is local, that is
it does not contain the characteristic scale of these systems
and, consequently, is valid for any part of the system, however
small it may be. Besides, the approximation of
local thermodynamic equilibrium [see inequality (1.3)] leads
to a transport equation which also does not contain the
characteristic time scale (relaxation time). This means that
Eqn (1.7) is local with respect to time. Thus, the classical
parabolic transport equations are local with respect to time
and space.

The characteristic space ± time scales L, h, t0, and t
determine the two characteristic speeds:

V � L

t0
; �1:8�

V � � h

t
: �1:9�

The speed (1.8) represents the ratio of microscales of the
process and characterizes the linear speed of parameter
deviation forced by the external influence. For example, this
may be the speed of isotherm movement upon movement of
the heat source in the thermoconducting medium. The ratio
of microparameters V� in Eqn (1.9) is an internal character-
istic of the system and independent of the external conditions.
The value of V� is the speed of propagation of transport
potential perturbations, in other words, the speed of propaga-
tion of heat and diffusion waves. For example, in gases, the
characteristic microparameters of the medium, for both the
processes of heat transport or mass transport, consist of an
average free path h and an interval of time between two

subsequent collisions of molecules t. Therefore, V� is the
average velocity of gas molecules, and, because in gases
a � D, then V � � 3D=h � 3a=h (where D is the diffusion
coefficient). In more complicated systems the diffusion
coefficient and thermal conductivity may differ consider-
ably. Thus, for example, in molten metals the diffusion
coefficient of an impurityD � 10ÿ9 ± 10ÿ8 m2 sÿ1 is consider-
ably smaller than thermal conductivitya � 10ÿ5 ± 10ÿ4 m2 sÿ1.
Consequently, the speed of propagation of concentration
perturbations (diffusion speed) VD � 1ÿ20 m sÿ1 is much
smaller than the speed of propagation of heat perturbations
VT � 10ÿ3 ± 104 m sÿ1. In this case the characteristic time of
diffusion relaxation tD � h=VD is much greater than the time
of heat relaxation tT � h=VT. In other words, in such system
the thermal local equilibrium is established at the time tT and
only thereafter at the time tD are the local equilibrium values
of concentration achieved. The situation with diffusion
equilibrium following heat equilibrium may arise in other
systems with complicated structure, for example in polymers
and capillary-porous media.

In the case of propagation of traveling waves the concepts
of local equilibrium and space locality are valid subject to
V5V � [3].

Note that a transport process is essentially non-local as a
particle transports energy andmass fromone point in space to
another not instantaneously, but over a finite interval of time
t. If the approximation of local equilibrium (1.3) and the
concept of space locality (1.4) are satisfied then these effects
can be neglected and the transport processes can be described
by the classical (local) parabolic equations of type (1.7). These
processes are local in space and time and will be called local
below. Otherwise, when t0 � t or L � h the transport process
is not local and cannot be correctly described by the classical
(local) parabolic transport equation of type (1.7). In order to
describe transport in the latter case one should use a non-local
transport model, which is not based on the approximation of
local thermodynamic equilibrium and the concept of space
locality. In the case of the propagation of traveling waves a
criterion of the absence of local equilibrium is V � V � [3].

As indicated earlier the propagation velocity of diffusion
perturbations VD may be several orders of magnitude lower
than the speed of heat perturbations VT. Consequently, it is
not improbable that the characteristic speed of a transport
process can be such that VD � V5VT. In this case the heat
transport process occurs in local equilibrium conditions and
can be described by the classical parabolic heat conduction
equation, while the mass transport process is in local non-
equilibrium and does not obey the classical diffusion equation
[3 ± 6].

2. Extended irreversible thermodynamics

2.1 Basic principles
The so called `extended irreversible thermodynamics' (EIT)
[3, 7 ± 13] is one of the most consistent and comprehensive
thermodynamic theories, based on the space non-locality of
the transport processes and not on the concept of local
equilibrium. Apart from classical independent variables,
used by the local equilibrium thermodynamics of irreversible
processes to describe the state of system far from the local
equilibrium, EIT introduces dissipative fluxes (heat flux q,
mass flux J, and pressure tensor P) as new independent
variables. Thus, in a local non-equilibrium system the
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entropy S is a function of not only classical variables [see Eqn
(1.1)], but of dissipating fluxes as well (we consider one
component diffusion for simplicity):

S � S
ÿ
U�x; t�; v�x; t�; C�x; t�; q�x; t�; J�x; t�; P�x; t�� :

�2:1�

Notice that physically new variables differ significantly
from the classical ones. If classical variables obey the
conservation laws and change relatively slowly in the process
of system evolution, the fluxes, generally, do not obey the
conservation laws and are relatively `fast' variables. The
speed of change of these variables upon system relaxation
may be high. The introduction of fluxes as independent
variables is justified from the physical point of view. Really,
any flux in the system means a directional movement of heat
and mass carriers, that suggests such a system to be more
ordered than a system without fluxes. The entropy is known
as a measure of `disorder'. Consequently, the entropy should
be smaller in the systems with fluxes. EIT uses an extended set
of independent variables in the description of local non-
equilibrium entropy (2.1) and the classical formulation of
the second law of thermodynamics with new local non-
equilibrium terms in the equations for an entropy production
and entropy flux. This leads to evolutionary (relaxation)
differential equations for the dissipative fluxes in the form
[7 ± 13]:

q� tT
qq
qt
� ÿlHT ; �2:2�

J� tD
qJ
qt
� ÿDHC ; �2:3�

p� t0
qp
qt
� ÿzHV ; �2:4�

Pv � t2p
qP v

qt
� ÿ2ZV� ; �2:5�

where P � pd� P v, d is the unit tensor, p is the pressure
viscosity (one third of the tensor trace P), P v is the part of
tensor P with trace equal to zero, l is the thermal
conductivity, D the diffusion coefficient, z the bulk viscosity,
Z the dynamic viscosity, V

�
is the symmetrical part of the

gradient of speed, and tT, tD, t0 and t2p are the relaxation
times for the corresponding dissipating fluxes. In contrast to
the classical local equilibrium case, the inclusion of the
dissipating fluxes into the independent variables leads to a
situation, where the dissipative fluxes are not determined by
the respective transport potential gradients, but are the
solutions to the evolutionary equations. For instance, in a
system with zero temperature gradient the relaxation of the
initial value of heat flux q0 to the equilibrium value q � 0
obeys the exponential law:

q�t� � q0 exp

�
ÿ t

tT

�
:

It should be emphasized that the equations of dissipative
fluxes (2.2) ± (2.5) describe the simplest case of a one-step (or
one-stage) relaxation. This case does not take into considera-
tion either crossover or spatial non-local effects. Generally,
the system can approach local equilibrium through several
subsequent stages with different relaxation times and such a
process can be spatially non-local.

Furthermore, we consider for simplicity only the process
of heat conduction. One should bear in mind that similar

considerations and calculations can be applied to other
transport processes [7]. In this case the local non-equilibrium
entropy S�U; v; q� takes the form

S � Seq ÿ tT
2lrT 2

�q � q� ; �2:6�

where Seq is the local equilibrium entropy. Taking into
consideration that local equilibrium absolute temperature T,
determined by the expression Tÿ1 � �qSeq=qU�v, the local
non-equilibrium temperature Y can be obtained by the
differentiation of (2.6) with respect to U:

1

Y
�
�
qS
qU

�
v;q

� 1

T
� a�q � q� ; �2:7�

where a is a positive constant. For example, for an ideal
monatomic gas expression (2.7) takes the form [11, 12]

1

Y
� 1

T
� 2

5

m

n2k3T 4
�q � q� ; �2:8�

where m is the molecular mass, k is the Boltzmann constant,
and n is the number of gas molecules in the unit of volume.
From equations (2.7) and (2.8) it follows that Y < T. It is
known from molecular kinetic theory that

kT

m
� hV 2

x i � hV 2
y i � hV 2

z i ;

where Vx, Vy, and Vz are the components of the velocity of a
gas molecule. In the local non-equilibrium case the existence
of heat flux q leads to the violation of the concept of a uniform
distribution of energy by degrees of freedom [12]. Let us
assume that the heat flux is directed along the y axis and
qx � qz � 0. In such situation the uniform distribution of
energy by degrees of freedom does not hold, that is
Yx � Yz � Y < T andYy � 3Tÿ 2Y > T, where

Yx � m

k
hV 2

x i; Yy � m

k
hV 2

y i; Yz � m

k
hV 2

z i

[12]. It follows that on deviation of the system from local
equilibrium due to the existence of a heat flux, the mean
square molecular velocity in the direction of the heat flux
exceeds the equilibrium value. In contrast, the mean square
velocity along other directions is smaller than the equilibrium
value and is determined by the local temperatureY [see Eqns
(2.7) and (2.8)].

It should be emphasized that in strict terms, in the heat
flux equation (2.2), one should use a gradient of local non-
equilibrium temperature, that is HY , instead of HT. In
practice the difference between Y and T is small [11, 12].
However, from the conceptual point of view the appearance
of HY in the heat flux equationmeans the existence of a local
non-equilibrium stationary state with q � ÿlHY [7, 11, 12].
This state may differ significantly from the local equilibrium
stationary state with q � ÿlHT.

2.2 High order fluxes
The inclusion of dissipative fluxes into the independent
variables describing the local non-equilibrium state of
system, results in evolutionary equations for these fluxes.
Without considering cross effects this leads to the so called
Maxwell ± Cattaneo equations (2.2) ± (2.5). However, these
equations can not be represented as complete conservation
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laws, where a change in any quantity in a given point of space
is attributed to the flux of this quantity (divergence term) and
the source of this quantity. Really, the Maxwell ±Cattaneo
equation (2.2) can be represented as

r
qq
qt
� ÿ r

tT
�q� lHT� :

From the phenomenological point of view the right hand
side of this equation can be considered as a source. In order to
obtain the equation in the form of a complete conservation
law the EIT introduces an additional divergence

r
qq
qt
� ÿ r

tT
�q� lHT� ÿ Hq2 ; �2:9�

where q2 is the flux of heat flux or the second order flux
represented by a tensor of second rank. The last term in Eqn
(2.9) describes non-local spatial effects. A comparison with
the kinetic theory demonstrates that the flux q2 is related to
the fourth moment of non-equilibrium function of the
distribution by speeds. Fundamentally, the procedure of
introduction of fluxes should be continued, because in the
general case, the local non-equilibrium entropy may depend
on fluxes of all orders [7].

A rational question at this point is: which order fluxes
have to be considered for the description of any system
relaxation to the local equilibrium? The answer depends on
the range of relaxation times tn. If the relaxation time of flux
qn is much bigger than the relaxation time of fluxes
qn�1; qn�2; . . . then, subject to the condition that the
characteristic time of the process t0 4 tn�1, it is sufficient to
introduce fluxes up to order n. If all the characteristic times tn
are of the same order of magnitude and t0 � tn then one
should take into consideration the fluxes of all orders. Let us
take the simplest case, when tT 4 t2; t3; . . . Then the
evolutionary equation for heat flux takes the form

q� tT
qq
qt
� ÿlHTÿ l 2H2q : �2:10�

Taking into account the second order flux q2 with zero
relaxation time t2 � 0 leads to the appearance of an
additional term l 2H2q, which describes the non-local spatial
effect of the heat transport. Here l is the characteristic scale of
non-locality (correlation length).

Thus, a subsequent introduction of high order fluxes
results in a hierarchy of heat flux equations, which consider
different deviations of the system from local thermodynamic
equilibrium and non-local spatial effects. For instance, to
describe heat waves and other peculiarities of the transport
process in a solid state at low temperature one needs to take
into consideration only the second order flux with zero
relaxation time, that is limited by equation (2.10) [7]. For
ideal gases, fundamentally, all relaxation times tn are of the
same order of magnitude. Consequently, all relaxation times
must be taken into account while describing the system far
from local equilibrium [13]. However, in practice, it is usually
sufficient to consider only several extra fluxes.

2.3 Transport equation
In previous chapters we considered the heat flux equations. A
conservation law is another relationship, which bounds q and
T. From the Maxwell ±Cattaneo law (2.2) and the law of
energy conservation one can derive the equations:

qT
qt
� tT

q2T
qt2
� aH2T� W

cpr
� tT
cpr

qW
qt

; �2:11�

qq
qt
� tT

q2q
qt2
� aH�Hq� ÿ aHW ; �2:12�

where a � l=cpr is the temperature conductivity. These
equations describe the space and time evolution of tempera-
ture and heat fluxes in local non-equilibrium conditions.
Thus, the introduction of a heat flux q among the indepen-
dent variables results in the appearance of relaxation term in
the Maxwell ± Cattaneo law. This in turn leads to the
hyperbolic heat conduction equation (2.11). In such a
formulation, when the heat flux is independent variable, in
order to determine the time ± space evolution of flux a new
equation (2.12) is derived (which is also a hyperbolic partial
differential equation). The hyperbolic heat conduction equa-
tion (2.11) and the related heat flux equation (2.12) possess
two groups of parameters x� VT t � const. Thismeans that a
heat signal (or high frequency heat perturbation) propagates
in the local non-equilibrium conditions with a finite speed
VT � �a=tT�1=2. In other words, Eqns (2.11) and (2.12) predict
that the temperature deviation on the surface of a semi-
infinite body will propagate into the bulk of the body with
finite speed VT. This feature of solutions of the hyperbolic
equations differs drastically from the solutions of the classical
parabolic equations (1.9) or (1.10). According to these
equations the effect of any heat perturbation propagates
instantaneously into all space. That means that after applica-
tion of a heat source the heat from point x propagates so that
at the next instant of time the heat perturbations already
approach zero asymptotically only at x!1 [26]. This
`paradox of the infinite speed of propagation of perturba-
tions' is not correct from the physical point of view as it
violates the concept of causality. Thus, the hyperbolic local
non-equilibrium equations resolve this paradox.

The hyperbolic heat conduction equation (2.11) possesses
the properties of both the classical heat conduction equation,
describing a purely dissipative energy transport, and the wave
equation (the second derivative with respect to time),
describing the propagation of undamped waves. This
explains the experimentally observed wave properties of the
heat transport process at low temperature, namely the
propagation of heat waves with finite speed [14, 15]; the
reflection of a heat wave from a thermo-isolating boundary,
and the partial reflection and transmission from and into
another medium upon arrival of a heat wave on the boundary
between two media [16]; the interference of heat waves [17].

Note that, in contrast to the classical local equilibrium
case, a definition of the boundary problem for Eqns (2.11)
and (2.12) demands specifying an initial value of not only of
the temperature, but of qT=qt, q, and qq=qt. The reason is that
Eqns (2.11) and (2.12) are equations of the second order and
the heat flux q is an independent variable.

Let us consider now the influence of spatial non-local
effects on the process of heat transport. In such a case the heat
flux q and the temperature gradient are bound by relationship
(2.10). From the conservation law and Eqn (2.10) one can
derive the heat transport equation, describing the space-time
evolution of the temperature of the system T:

qT
qt
� tT

q2T
qt2
� aH2T� l 2

qH2T

qt
� t
cpr

qW
qt
� W

cpr
ÿ l 2

cpr
H2W:

�2:13�
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It follows from Eqn (2.13) that a consideration of spatial
non-locality in the heat flux equation (2.10) results in the
appearance of new term in the temperature equation as well.
The presence of the mixed derivative qH2T=qt in Eqn (2.13)
returns the equation from hyperbolic to parabolic. Thus,
without accounting for spatial non-locality the hyperbolic
transport equation (2.11) predicts that a temperature jump
propagates as a surface of a strong discontinuity with
constant speed VT. In contrast, the non-local term qH2T=qt
smooths the temperature jump and leads to the occurrence of
a front with a continuous change of temperature instead of a
strong discontinuity. The thickness of this front increases
gradually as t1=2. The smoothing action of non-local effects is
similar to the smoothing action of the viscosity in gas
dynamics. Therefore, the mixed derivative qH2T=qt in the
heat transport equation (2.13) may be associated with
`temperature viscosity'.

Note that the method of dummy viscosity, that is the
introduction of a dummy viscous term into the equation of
gas dynamics, is used to overcome difficulties arising in the
numerical analysis of breakup solutions. In this case it is not
necessary to specify the boundary conditions for breakup in
the computation. At the end of the computation the dummy
viscosity tends to zero and the gas return to a non-viscous
state. Such a technique, that is the introduction of dummy
`temperature viscosity' may find application in numerical
modeling of heat shock waves as well.

If t2 > 0 then

�tT � t2� qqqt � tTt2
q2q
qt2
� ÿlHTÿ q� l 2Hqÿ t2l

qHT
qt

:

�2:14�

Thus at t2 > 0 and tn � 0 �n > 2� the heat flux equation
(2.14) is a second order hyperbolic equation. Corresponding
the temperature equation takes the form

qT
qt
� �tT � t2� q

2T

qt2
� tTt2

q3T
qt3
� aHT 2 ��at2 � l 2� qH

2T

qt

� 1

cpr

�
W��tT � t2� qWqt � tTt2

q2W
qt2
ÿ l 2H2W

�
: �2:15�

Equation (2.15) is also hyperbolic with a finite speed of
propagation of perturbations V �2 :

V �2 �
�
a

tT
� l 2

tTt2

�1=2

: �2:16�

From equation (2.16) it is clear thatV �2 > VT � �a=tT�1=2,
that is the heat wave corresponding to the heat transport
equation (2.15), propagates with a higher speed than the heat
wave described by Eqn (2.11) (without consideration of the
high order fluxes).

Fundamentally, the procedure of introduction of higher
order fluxes can be continued. This will lead to a sequence of
partial differential transport equations. The equation will be
parabolic in the case of zero relaxation time and hyperbolic in
the case of non-zero relaxation time. The speed of propaga-
tion of the heat wave, corresponding to the series of
hyperbolic equations, will increase and approach a finite
limit [13].

One of the distinctions of non-local transport equations
(2.11), (2.13), and (2.15) is the existence in the right hand side
of not only the function of source W, but also its derivatives

with respect to both time and space. Formally, these terms
can be considered as additional sources of heat, or more
precisely as `quasi-sources'. Of course, the existence of such
`quasi-sources' does not change the overall specific heat of the
system, determined by the initial specific heat and the
function of real source W. However, `quasi-sources' can
significantly distort the space ± time propagation of the
temperature and heat flux in the system. Note that the
Maxwell ± Cattaneo equation (2.2) can be represented as a
first order approximation under expansion of a more general
relationship q�t� tT� � ÿlHT into a Fourier series as tT.
This expression means that a time shift, equal to the time of
relaxation, exists between heat fluxes and the temperature
gradient. In the context of molecular kinetic theory such a
time delay can be considered as the time between two
subsequent collisions of molecules, because the molecules
need about this interval of time to reach the allocated surface
used for the determination of the heat flux. An extra term
tqq=qt in the Maxwell ±Cattaneo law (2.2) can be considered
as a manifestation of the inertial properties of heat transport.
Really, writing Eqn (2.2) in the form

tT
qq
qt
� q � lT 2H

�
1

T

�
; �2:17�

we can easily find an analogy between Eqn (2.17) and the
equation of a movement of a mechanical body induced by a
force lT 2H�1=T� and the force of viscosity [second term in the
left hand side of Eqn (2.17)]. The heat flux q plays the role of
the velocity of movement and the relaxation time tT plays the
role of mass. Remember that in thermodynamics the quantity
H�1=T� is called a thermodynamic force.

3. Two-temperature model

One of the simplest and at the same time quite effective
models, describing the process of heat transport in the local
non-equilibrium conditions, is the so called two-temperature
(2T) model [3, 10, 18 ± 30]. It is assumed that the system
consists of two interacting subsystems and the characteristic
energy exchange (relaxation) time between them is much
higher than the relaxation time to the local equilibrium of an
individual subsystem. In this case an individual temperature
can be assigned to each subsystem. Then the thermal problem
in the system can be reduced to the determination of the
space ± time evolution of these two temperatures taking into
the consideration the energy exchange between subsystems.

The 2T-model was first used to analyze the process of heat
transport in metals, where electrons and a lattice played the
roles of interacting subsystems [18]. The 2T-model happened
to be rather effective for the description of energy relaxation
between different degrees of freedom for molecules in gases
and between light and heavy fraction in the mixture of two
gases [19]. The 2T-approximation was used for the descrip-
tion of heat exchange between gaseous and solid phases in
capillary-porous media [20 ± 22]. Besides, the 2T-model
showed good performance in the analysis of the interaction
of a high energy source with polymeric materials, when the
energy from the source is first transmitted to a phonon
subsystem and then from phonons to vibrational degrees of
freedom of polymer molecules. In the last case an individual
temperature can be assigned to each subsystem and the
relaxation energy between them plays the most significant
role near the point of glass transition [23]. In addition, the 2T-
model can be applied to analyze the process of heat transport
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in a plasma, where electrons and ions play the roles of
interacting subsystems; in a turbulent flux, where heat
exchange occurs between turbulent patches and an inert
sublayer [25].

In a number of publications [31 ± 33], for the investigation
of heat conduction in inhomogeneousmedia, it was suggested
to use the hyperbolic equation accounting for system
relaxation to the local equilibrium. Using this approach,
estimates of the relaxation times in inhomogeneous systems
were obtained. It was shown that these values are several
orders of magnitude higher than the relaxation times to local
equilibrium in gases, liquids and solids. Consequently, the
relaxation time for heat transport in inhomogeneous systems
has another physical meaning. The same is applied to other
thermophysical parameters of the inhomogeneous system.

First let us consider the case when equilibrium in the
system as a whole is absent and there is an energy exchange
between subsystems. That is the subsystems have different
temperatures T1 and T2, but inside each system local
equilibrium exists. Then the space ± time evolution of the
temperatures T1 and T2 is described by a pair of related
parabolic equations (that is by the classical local equilibrium
transport equations) [23, 34]:

ci
qTi

qt
� liH2Ti � g�T2 ÿ T1� �Wi ; �3:1�

where i � 1; 2; g is the coefficient of heat exchange between
the subsystems; a sign plus corresponds to i � 1, a minus
corresponds to i � 2, and Wi is the intensity of the heat
evolution sources. Note that all coefficients in Eqn (3.1) are
related to the volume unit of the inhomogeneous medium.

In the majority of cases it is, in practice, more convenient
to use a mean temperature, which is a measure of heat energy
for a volume unit of the inhomogeneous system. For the two
component system the mean temperature takes the form

�T � c1T1 � c2T2

c1 � c2
:

From equation (3.1) one can obtain the equations, describing
the space ± time evolution of both subsystem temperatures
Ti �i � 1; 2� and the mean temperature �T:

qTi

qt
� t1

q2Ti

qt2
ÿ l 2a

q
qt

H2Ti � a�H2Ti ÿ agl
2
gH

4Ti

�W1 �W2

c1 � c2
� t1

q
qt

Wi

ci
ÿ l 4g

ci
H2 Wi

h2i
; �3:2�

q �T

qt
�t1 q

2 �T

qt2
ÿ l 2a

q
qt

H2 �T�a�H2 �Tÿ agl
2
gH

4 �T�W1 �W2

c1 � c2

� t1
q
qt

W1 �W2

c1 � c2
ÿ l 4g
c1 � c2

H2

�
W1

h21
�W2

h22

�
; �3:3�

where t1 � c1c2=g�c1 � c2�; h2i � t1ai; ai � li=ci;
l 2a � h21 � h22; l

2
g � h1h2; a

� � �l1 � l2�=�c1 � c2�; ag � l 2g =t1.
The heat conduction equations for inhomogeneous media

(3.2), (3.3) differ significantly from either the parabolic or
hyperbolic thermal conductivity equations. Equations (3.2)
and (3.3) contain the parameters of time t1 and space l non-
locality. This means that if the characteristic space ± time
scales of the transport process in an inhomogeneous system t0
and L are such that t0 � t1 and L � l, then parabolic local
transport equation becomes invalid and non-local equations
(3.2), (3.3) should be used instead.

Let us consider a particular case of equations (3.2) and
(3.3) and the physical meaning of the parameters in these
equations. In dissipative processes, when heat is transported
only by diffusion, the macroscales of such a process L and t0
are bound as follows: L2 � a�t0. Then in zero approximation
Eqns (3.2) and (3.3) are resolved into the classical parabolic
local equations (the diffusion equations). In the next approx-
imation all terms in Eqns (3.2) and (3.3) should be taken into
consideration and the process of heat transport is non-local.
The spatial non-locality is characterized by the constants la
and lg, which are the arithmetic and geometric means of
characteristic depths of the warming-up of subsystems h1 and
h2 over the time t1, respectively. Parameter t1 characterizes
the time non-locality of transport process and represents the
relaxation time for the temperature difference between
subsystems (the time to equalize the temperature or the
characteristic time of heat exchange between subsystems).
Both these approximations result in parabolic partial differ-
ential equations with an infinite speed for the propagation of
perturbations.

If the characteristic speed of a process, for example the
speed of heat source movement and the speed of propagation
of thewarm zoneV � L=t0, is similar in order ofmagnitude to
the characteristic speed VT � l=t, determined by the relation-
ship between the scales of space and time non-locality, then
from Eqns (3.2) and (3.3) a hyperbolic equation (in the one
dimensional case) follows:

q �T

qt
�t1 q

2 �T

qt2
� a�

q2 �T

qx2
�W1 �W2

c1 � c2
� t1

q
qt

W1 �W2

c1 � c2
: �3:4�

In this case a spatial non-locality of the heat transport
process is absent and the parameter t1 characterizes the
inertial properties of heat conduction and determines the
speed of propagation of heat perturbations:

VT �
�
a�

t1

�1=2

�
��l1 � l2�g

c1c2

�1=2
:

The inertial properties of heat conduction in inhomogeneous
media is related to the presence of a derivative of the source
function with respect to time in Eqns (3.2) and (3.3). That is,
an external heat stimulus is received by the system with
characteristic time delay t. In a number of cases [31] the
application of the hyperbolic thermal conductivity equation
to analyze processes in media with inhomogeneous internal
structures gives the best fit with experimental data.

Thus, the analysis of heat transport in a two-temperature
medium, which obeys the set of bound local heat conduction
equations (3.1), showed that this process is non-local both in
time and in space. The characteristic scales of non-locality are
represented by the time of energy relaxation between
subsystems t1 and spatial scale l. The latter is equal in order
of magnitude to the depth of warming-up of the system for
the time t1. We should emphasize that these parameters, t1
and l, are internal characteristics of the system, similar to
specific heat and thermal conductivity. They can be obtained
experimentally. The value of these parameters determines
when and at which stage of the heat transport process space
and/or time non-locality should be taken into consideration.
Moreover, as was shown earlier, the relationship between the
scales of non-locality and the characteristic macroscales of
the transport process determine the type (hyperbolic or
parabolic) of the partial differential transport equations for
a given process.
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Let us consider now a practically important specific case,
when the heat conduction and the heat evolution in one of the
subsystems can be neglected, for example, l1 � 0 andW1 � 0.
Then equation (3.2) takes the form

qTi

qt
� t1

q2Ti

qt2
ÿ l 2

q3Ti

qt qx2
� a�

q2Ti

qx2
� W

c1 � c2
� wi

t1
c1

qW
qt

;

�3:5�

where w1 � 0 and w2 � 1. As a consequence of the assumption
that l1 � 0, the heat flux through the allocated area in a 2T-
system is determined by the gradient of temperature only in
the second subsystem: q � ÿl2qT2=qx. However, the Fourier
law for a 2T-system as a whole, represented by the inter-
connection between the heat flux q and temperature gradient
q �T=qx, takes the non-local form:

q� t1
qq
qt
� ÿl q

�T

qx
ÿ l 2

q2q
qx2

: �3:6�

The modified Fourier law (3.6) and the law of energy
conservation, written for the mean temperature, lead to a
non-local transport equation for the mean temperature �T,
similar to Eqn (3.5).

Notice that the equation for heat flux (3.6) in the 2T-
system coincides with Eqn (2.13), obtained in the frameworks
of EIT by the introduction of high order dissipating fluxes as
extra independent variables (see Section 2). This means that
the presence of high order fluxes in the system is equivalent to
a multistage process of energy relaxation between the
interacting subsystems with different temperatures
T1; T2; . . . ; Tn; . . ..

The 2T-model (3.1), with the corresponding heat trans-
port equations (3.2) and (3.3), and the equation for the heat
flux (3.6), is obtained with an assumption of local equilibrium
inside each subsystem. The 2T-system, where the process of
relaxation to the local equilibrium takes place in one of the
subsystems, is a natural generalization of this model:

c1
qT1

qt
� g�T2 ÿ T1� ; �3:7�

c2
qT2

qt
� t2c2

q2T2

qt2
� l

q2T2

qx2
� g�T1 ÿ T2� ; �3:8�

where t2 is the relaxation time to local equilibrium for
subsystem 2. It is assumed for simplicity that W � 0. After
simple transformations from Eqns (3.7) and (3.8) one obtains
the heat conduction equation for each temperatureT1 andT2:

qTi

qt
� t1

�
1� t2g

c2

�
q2Ti

qt2
� t1t2

q3Ti

qt3
� a�

q2Ti

qx2
� l 2

q3Ti

qt qx2
:

�3:9�

As should be expected, accounting for the relaxation
process in the subsystem 2 [see Eqn (3.8)] leads to a
hyperbolic heat conduction equation (3.9). Both (3.8) and
(3.9) determine the finite speed of propagation of heat
perturbations V2 � �a2=t2�1=2.

Equation (3.9) contains three additional parameters
(compared with the classical parabolic equation of heat
conduction): two times t1 and t2 (t1 > t2) and one space
parameter l. The relationship between these micropara-
meters, which characterize the internal properties of the
system, and the characteristic parameters (macropara-
meters) t0 and L of the transport process, determine the type

of transport process and the type of corresponding heat
conduction equation.

1. The local limit. If t0 4 t1 and L4 l then Eqn (3.9) is
resolved to the classical local equilibrium equation of
parabolic type. In this case the transport process is local in
time and space and independent of the characteristic scales of
non-locality t1, t2, and l. A temperature profile in a semi-
infinite body, x > 0, at T � const on the surface x � 0, is
shown in Fig. 1a. As was already noted, the temperature
variation on the surface x � 0 is affected by the finite interval
of time even at the infinity point x! 0. This means that the
parabolic local heat conduction equation predicts an infinite
speed of propagation for heat perturbations.

T

x

V1

t � t1

L4 l

b

T

xl

t � t1

L � l

V1

c

T

x

t � t2

V2

V1

d

T

x

t4 t1

L4 l

a

Figure 1. Temperature profiles in a semi-infinite body at x > 0 after the

temperature jump on the boundary (x � 0), at the initial time instant: (a)

in the locally equilibrium approximation, corresponding to the solution of

the classical parabolic heat conduction equation; (b) in the locally non-

equilibrium approximation, corresponding to the solution of the hyper-

bolic heat conduction equation (2.11) [`telegraph' equation]; (c) in the local

approximation, corresponding to the solution of the 2T-model; (d) in the

local approximation, corresponding to the solution of the 2T-model of

hyperbolic type (3.5).
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2. In the local spatial limit (L4 l), taking into account
local non-equilibrium (that is time non-locality) t0 � t1, the
transport equation (3.9) is resolved into a hyperbolic one.
This equation predicts that the heat perturbations in the local
non-equilibrium system propagate with finite speed
V1 � �a�=t1�1=2. In other words, the temperature jump on
the boundary of a semi-infinite body propagates as a surface
of strong discontinuity with finite speed V1 (Fig. 1b).

3. In the next approximation, when both the spatial,
L � l, and temporal, t0 � t1, non-locality of the process are
taken into consideration, Eqn (3.9) takes the form (3.5). The
spatial non-locality again results in an infinite speed of
propagation of perturbations (Fig. 1c). The spatial non-
locality also smooths the surface of strong breakup, trans-
forming the surface into a wave structure with continuous
variation of temperature. The speed of propagation of this
front is of the same order of magnitude as V1 and the front
width increases with x1=2. The presence of this front is
attributed to the energy relaxation process between subsys-
tems.

4. Taking into account all the non-local terms in equation
(3.6) we obtain two characteristic fronts in the temperature
profile for a semi-infinite body (Fig. 1). The first, propagating
with a higher speed V2 � �a2=t2�1=2, corresponds to relaxa-
tion to local equilibrium inside subsystem 2 and does not
depend on the heat exchange with subsystem 1 as t1 < t2.
This front represents the surface of strong breakup. The
second front, propagating with a lower speed V1 < V2, is
related to the process of energy relaxation between subsys-
tems. This front was discussed in some detail in case 3.

The choice of heat transport model depends on the
problem to be solved. For example, if one needs to obtain
the speed of the heat wave front, corresponding to the energy
relaxation between subsystems, and the distance from the
front to the surface of body, but the structure of front is not
important, the approximation described in case 2 should be
used. In this case the distanceL between the body surface and
the wave front is a characteristic macroscale, and L4 l. If the
structure of the wave front is also important, that is L � l, the
spatial non-locality should be considered (case 3).

The presence of a large number of interacting subsystems
will lead to the appearance of new wave fronts in the
temperature profile. The speed and form of these fronts will
correspond to the stage of energy relaxation between
subsystems.

Example. The 2T-model (3.7) and (3.8) and the corre-
sponding transport equation (3.9) can be applied to the
analysis of the heat transport process upon irradiation of a
metal surface with super-short laser pulses. Such experiments
revealed the wave propagation of heat pulses with speed
V � VF, where VF is the Fermi speed [35]. The set of
equations (3.7) and (3.8) predict the propagation of a heat
wave through an electron gas with a speed V2 (see Fig. 1).
Taking into account that the electrons make the main
contribution to the heat transport and their speed is of the
order of VF, it is possible to estimate that V2 � VF. This
estimate corresponds to the experimental results.

4. Discrete model

Currently the interest in discrete type models is increasing.
Contrary to the classical continuous approach these models
assume that space and time are not continuous, but discrete
variables. In other words, it is assumed that the system

consists of interacting discrete objects and the state of these
objects changes in discrete intervals of time. This approach is
used in mechanics, hydrodynamics, magnitohydrodynamics,
the theory of crystal growth, biology, etc. [27 ± 29, 35 ± 41].

An axiom of the discrete approach to the modeling of
transport processes is based on the idea of a random walk [3,
7, 27, 39 ± 41]. Let us consider for the simplicity the one-
dimensional case. It is assumed that a particle, which follows
a random walk and transfers energy or mass, undergoes a
jump of equal probability along positive or negative x
direction with length h. These jumps occur in equal time
intervals t. Then taking into consideration that the transport
potentialY (temperature or concentration) is proportional to
the number of particles in the considered element of medium,
we can write the following discrete transport equation [27,
39 ± 41]

Y�x; t� t� � 1

2

�
Y�x� h; t� �Y�xÿ h; t��� F

ÿ
Y�x; t�� ;

�4:1�

where F
ÿ
Y�x; t�� is the discrete analogue of a heat or mass

source. Equation (4.1) means that the number of particles in
an element of medium x for the time t� t is equal to the sum
of particles, arriving from the nearest neighboring elements of
the medium with coordinates x� h and xÿ h (where these
particles were on the previous time step t) and the number of
particles, determined by an external source (not related to the
transport process). Note that it has been assumed in Eqn (4.1)
that the probability of a particle jump along the positive and
negative x directions is 1/2. The function F is the solution of
the semigroup of the ordinary differential equation [38]

dY
dt
�W

ÿ
Y�t�� : �4:2�

It follows that the function of source F�Y� in the discrete
transport equation (4.1) and the function of source W�Y� in
the differential equation (4.2) are interrelated as follows

F�Y� �
�t�t
t

W
ÿ
Y�t��dt :

As was discussed earlier, in the local non-equilibrium
situation either the temperature or the heat flux is an
independent variable. Consequently, the value of the heat
flux is not accessible through differentiation of a temperature
distribution in the system as in the local equilibrium case. This
value should be found from a solution to the independent
equation describing the space-time evolution of flux . There-
fore, to describe the heat transport process we have to
formulate a discrete equation for the heat flux along with
the discrete temperature equation (4.1). By definition, the
heat flux q is the energy transferred through unit area per unit
time. In the discrete model the heat flux through a discrete
element of medium with coordinate x can be described in the
form

q

�
x; t� t

2

�
� ÿ cprh

2t

�
Y�x� h; t� ÿY�xÿ h; t�� : �4:3�

One considers an average instant of time t� t=2, that is
the time between two states of the discrete element in the
instants of time t and t� t. An energy exchange between
discrete elements occurs exactly in the intermediate moment
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between stationary states of the system. In expression (4.3) the
heat flux is described at this average time. Notice that one
generally needs only a single discrete equation (4.1) to
describe the system dynamics and expression (4.3) may be
considered as a definition of the heat flux.

The discrete transport equations (4.1) and (4.3) are
particularly convenient for computer modeling of non-local
mass or heat transport processes as a translation to a the
language of discrete mathematics is not necessary. Examples
of numerical modeling based on the discrete equation (4.1)
can be found in Ref. [40].

Furthermore, we shall express the discrete equations (4.1)
and (4.3) in operator form:�

exp�tqt� ÿ cosh�hqx�
�
Y�x; t� � F�Y� ; �4:4�

exp

�
t
2
qt

��
q�t; x�� � ÿsinh�hqx��Y�x; t�� cpht : �4:5�

Now one can make a limit transition from the discrete
equations (4.1) and (4.3) to continuous partial differential
equations. For that we should take the limits t! 0 and
h! 0 in the Eqns (4.4) and (4.5). Such a limit is expanded as
an infinite number of terms of the Tailor series with two small
parameters t and h.

To derive an equation with finite number of terms the law
of limit transition has to be formulated. That means one has
to describe the relationships between t and h at t, h! 0. The
law of limit transition is determined by a character of
processes occurring in the system. Let us consider two basic
cases.

4.1 Diffusion law of limit transition
In the random walk theory it is usually assumed that the
transport coefficient D � h2=2t remains finite when h and t
tend to zero, that is

lim
n; t!0

h2

2t
� D � const > 0 : �4:6�

In this case a zero approximation with respect to t of the
discrete equation (4.1) takes the form of the classical
parabolic transport equation:

qY
qt
� D

q2Y
qx2
�W : �4:7�

In a similar approximation of equation (4.6) we obtain the
classical Fourier law (or the Fick law in the case of mass
transport):

q � ÿl qY
qx

; �4:8�
where l � Drcp is the thermal conductivity.

It should be emphasized that expansions of any accuracy
for the discrete equation are parabolic equations in the sense
that they determine an infinite speed for the propagation of
perturbations V � ! 1. This feature is a consequence of the
diffusion law of limit transition (4.6), because
V � h=t � 2D=h!1 when h! 0.

4.2 Wave law of limit transition
In the previous section we considered the diffusion law of
limit transition which determines the infinite speed of
propagation of perturbations V� . Let us consider now such

a law of limit transition which results in a finite value for V�.
Consequently, we shall assume that

lim
h; t!0

h

t
� V � <1 : �4:9�

Let us call this law of limit transition `the wave law'. In a
first approximationwith respect to t fromEqns (4.4) and (4.5)
and using the wave law of limit transition (4.9) we obtain

qY
qt
� t
2

q2Y
qt2
� V �2 t

2

q2Y
qx2
�W� t

2

qW
qt

;

q� t
2

qq
qt
� ÿV �2 tcpr

2

qY
qx

: �4:10�

As expected, Eqns (4.10) are the hyperbolic equations
with finite speed of propagation of perturbations V� which
corresponds to the wave law of limit transition (4.9). These
equations coincide with the hyperbolic transport equation
(2.11) and the law of Maxwell ± Cattaneo (2.2), respectively,
which were obtained in the EIT by the introduction of heat
flux into the independent variables describing local non-
equilibrium systems.

Thus, the law of limit transition has to be specified while
going from the discrete transport equation to an approxima-
tion of any accuracy in the form of partial differential
equations. This means that the relationship between the
characteristic time and space microscales has to be specified.
The law of limit transition determines the type (hyperbolic or
parabolic) of transport equations and, consequently, deter-
mines the main qualitative properties of their solutions. The
choice of law of limit transition is determined by the speed of
transport process. For relatively slow processes of `diffusion'
type, with characteristic speed Vmuch smaller than the speed
of propagation of perturbations V�, the diffusion law of limit
transition (4.6) has to be used. The high speed regime of
transport processes, when V � V�, corresponds to the wave
law of limit transition (4.9).

The two-temperature discrete model, which unites the
principal features of the discretemodel (Section 4) and the 2T-
model (Section 3), was considered and analyzed in Refs [27,
29].

5. The integral model

As already noted, the extended irreversible thermodynamics
and other thermodynamic statistical theories lead to the
space ± time non-locality of the equations for dissipating
fluxes (mass and heat fluxes). These equations, complemen-
ted with the corresponding conservation laws, lead to non-
local transport equations for temperature and concentration.
Notice that this treatment usually involves conservation laws
in the form of local partial differential equation. Strictly
speaking, a correct derivation of the transport equations
has to be based on the non-local form of the conservation
laws, containing the same number of non-local terms as in the
equations for dissipating fluxes. We shall show in this section
that an assumption of the space ± time non-locality of the
conservation laws simultaneously leads to an non-local
transport equation and a non-local equation for dissipating
fluxes.

Let us consider a set of classical (local) equations, which
are the basis of the locally reversible thermodynamics of
irreversible processes and, consequently, the locally reversi-
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ble theory of transport processes. The set consists of the
energy conservation law, the Gibbs law and the equation of
entropy balance. In the case of solid state the equations take
the form

r
dU

dt
� ÿHq ; �5:1�

dS � Tÿ1 dU ; �5:2�
r

dS

dt
� HJS � sS ; �5:3�

where JS and sS are the flux and production of entropy,
respectively. As already noted, the differential form of Eqns
(5.1) ± (5.3) is a consequence of the assumption of space ± time
locality, when the volume of integration in the conservation
laws tends to zero. In the general case, the integral equations,
corresponding to Eqns (5.1) ± (5.3), take the form:

r
�
U�x; t� t� ÿU�x; t�� � 1

O

�t�t
t

�
Z
q�x; t� dZ dt ; �5:4�

S�x; t� t� ÿ S�x; t� � Tÿ1
�
U�x; t� t� ÿU�x; t�� ; �5:5�
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�
S�x; t� t� ÿ S�x; t��� 1

O

�t�t
t

�
Z
JS�x; t� dZ dt

�
�t�t
t

�
sS�x; t� dO dt ; �5:6�

where t is the time scale of non-locality, O is the volume, and
Z is the area, corresponding to the linear scale of non-locality
h, that is O � h3 and Z � h2.

Let us underline that Eqns (5.4) ± (5.6) are non-local in
space and time, because the speeds of variation of energy and
entropy (first derivatives by respect to time), representing
local members, are substituted with the finite differences of
the characteristic scale of non-locality t. In the one-dimen-
sional case Eqn (5.4) can be rewritten

r
�
U�x; t� t� ÿU�x; t��
� ÿ t

2h

�
q

�
x� h; t� t

2

�
ÿ q

�
xÿ h; t� t

2

��
: �5:7�

In equation (5.7) an integration with respect to time is
substituted by some approximate value q in an average
instant of time t� t=2. Substituting Eqn (5.7) into (5.5) we
obtain the expression for the flux and entropy production,
corresponding to the integral formulation (5.4) ± (5.6).
According to the second law of thermodynamics the entropy
production should be positive. From this requirement the
relationships, represented in the form of a Fourier series with
the small parameter t and h, become:

qT
qt
� t
2

q2T
qt 2
� . . . � a

�
q2T
qx2
� h2

12

q4T
qx4
� . . .

�
; �5:8�
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q2q
qt 2
� . . . � ÿl

�
qT
qx
� h2

6

q3T
qx3
� . . .

�
: �5:9�

The heat conduction (5.8) and the flux (5.9) equations in
the corresponding approximations, and with the correspond-
ing law of limit transition, contain the classical parabolic
transport equation and the Fourier law, the hyperbolic
transport equation (telegraph equation) and the Maxwell ±
Cattaneo law.

Thus, the integral formulation of Eqns (5.4) ± (5.6) and the
corresponding second law of thermodynamics lead to the

appearance of non-local terms in the transport equations,
coinciding with (or equal in order of magnitude) the terms in
the transport equations, obtained in the framework of EIT or
other thermodynamic and statistical methods based on the
local formulation of conservation laws. This signifies that a
strict approach to the study of the dynamics of non-local
systems has to be grounded on the conservation laws in the
integral or other non-local form.

6. Conclusions

Mathematical models, describing locally non-equilibrium
transport processes, form a hierarchical sequence, corre-
sponding to the degree of deviation of the system from local
equilibrium. The degree of deviation of the system from local
equilibrium and, consequently, the adequate choice of a
transport model depend on the relationships between the
characteristic space ± time scale of transport process
(macroscales) and the microscales, characterizing the relaxa-
tion of the system to local equilibrium. Notice that the
characteristic scale of the transport process depends on
external factors, such as boundary and initial conditions,
heat and mass sources, and also on the system parameters,
e.g. the diffusion coefficient, thermal conductivity, etc. The
characteristic relaxation times and the scale of space non-
locality are internal system parameters, independent of
external conditions.

The hierarchy of mathematical models, describing locally
non-equilibrium transport processes, consists of a sequence of
parabolic and hyperbolic partial differential equations. The
order of these equations increases with an increase of the
degree of system deviation from local equilibrium. The type
of equation depends on the law of limit transition, which is in
turn determined by the character of the transport process. It
should be noted that the problem of a small parameter (or
several parameters) often occurs in thermodynamic and
statistical theories, e.g. the Navier ± Stokes theory, the Grad
method, the Chapman ±Enskog method, etc. Consequently,
the idea of the introduction of the different laws of limit
transition, which determine the mutual behavior of the
distribution parameters when they tend to zero, appears to
be useful in these cases.

On the one hand the locally non-equilibrium models of
transport processes discussed above are in agreement with the
existent versions of local non-equilibrium thermodynamics.
On the other hand they expand the range of possible objects
for investigation. These models possess a relatively simple
form, allowing them to be used for the analysis of specific
physical situations.

Discrete models of transport processes are particularly
convenient for computer simulation as they do not require a
transition to the language of discrete mathematics. Discrete
models are already represented in a recurrence form.

The investigations based on these models revealed that
locally non-equilibrium effects exert a primary control over
the mechanism and principal behavior of the propagation of
high speed traveling waves in active media [3 ± 6, 28, 40, 42 ±
50]. Among the examples of such waves are the combustion
waves, waves of superconductor ± normal metal, fusing and
solidification waves, etc. In conditions far from local
equilibrium the transport potential distribution (e.g. tem-
perature and component concentrations) differ significantly
from the classical locally irreversible conditions. This leads to
qualitatively new properties of traveling waves in locally
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irreversible conditions. These problems will be discussed in
some detail elsewhere.

The methods developed are sufficiently general and may
serve as the basis for construction of locally irreversible
models of transport processes, occuring in different physical
systems. For instance, this approach may appear to be useful
in the analysis of a transition from combustion to detonation,
in the study of anomalous diffusion in polymer materials near
the point of glass transition, in the investigation of the
interaction of supershort laser pulses with plasma, in the
study of conditions of fabrication of amorphous alloys upon
superfast hardening, etc.
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