
Abstract. New experimental and theoretical results on the
electronic structure and spectral properties of quasiparticles in
copper oxides are reviewed. It is shown that the electronic
structure transforms from antiferromagnetic insulators to opti-
mally doped high-temperature superconductors as the doping
level is varied. The experimental methods considered are pri-
marily angular resolved photoelectron spectroscopy (ARPES),
neutron scattering, andNMR.Two types of electronic structure
calculations for data interpretation purposes are considered,
namely, exact numerical methods for finite clusters (exact
diagonalization and the quantum Monte Carlo method) and
approximate schemes for an infinite lattice. As a result, a
coherent unified picture emerges, in which magnetic polarons
(which are carriers in a weakly doped antiferromagnetic lattice)
transform into a system of Fermi quasiparticles dressed in

short-range antiferromagnetic-type spin fluctuations. In the
region of weakly doped metallic compositions, deviations from
Fermi-liquid properties are seen, such as the failure of Luttin-
ger's theorem, shadowy photoemission bands, and the spin
pseudogap effect in spectral and thermodynamic measure-
ments. The situation in the neighborhood of the insulator ±
metal concentration transition is noted to be least understood.

1. Introduction

The history of systems with strong electron correlation (SEC)
actually stretches back to Ref. [1] which was able to settle the
conflict between the insulating properties of 3d-metal oxides,
such as Fe3O4 and NiO, and the one-electron band-theory
prediction of metallic behavior for a partially filled band. The
discovery of high-temperature superconductivity (HTSC) [2]
caused a resurgence of interest in the SEC because it was very
soon realized that conventional band-theoretical methods
combined with the local-density-functional approximation
lead to a metallic state for undoped insulators such as
La2CuO4, Nd2CuO4, YBa2Cu3O6, Sr2CuO2Cl2, etc. It was
widely believed that an understanding of HTSC requires a
knowledge of exactly how the doping process transforms the
structure of copper oxides, and was impossible to learn
without an adequate description of undoped and weakly
doped systems with an SEC-determined electronic spectrum
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and physical properties. That superconductivity may exist in
systems near the metal ± insulator transition has long been
known [3], and consequently a great number of papers on the
SEC problem have appeared over the last decade.

Although the electronic structure and superconductivity
mechanisms of copper oxides have been reviewed more than
once in the literature [4 ± 13], over recent years a number of
works of direct relevance to the present subject have
appeared. These are, first and foremost, angular resolution
photoelectron spectroscopy (ARPES) measurements, from
which we know the Fermi surface shapes for a number of
superconducting copper oxides [10] and the hole dispersion
near the top of the valence band in the insulator Sr2CuO2Cl2
[14] with its undoped CuO2 planes. Furthermore, the ARPES
technique enabled the first observations of how the electronic
spectrum in Bi-2212 evolves with variation of the hole
concentration [15]. It is these results, together with a number
of important theoretical predictions for Hubbard's and more
complex multiband models, that stimulated the present
review.

Some types of single-particle Fermi-like excitations, or
quasiparticles, exist even in undoped insulating systems,
where the SEC effects are at their strongest and the single-
electron approximation is not applicable. The present review
is concerned with two types of approach to these quasiparti-
cles, namely exact numerical methods (exact diagonalization
and the quantum Monte Carlo method) for finite clusters,
and various approximate methods for an infinite lattice. As it
is not within the scope of this review to discuss super-
conductivity mechanisms, which has already been done in
Refs [6, 12] we will only consider the properties of quasipar-
ticles and their effects on the electronic properties of the
insulating and normal metallic phases.

The author does not advocate the view that models with
SEC are the only ones capable of accounting for HTSC in
copper oxides: one surely cannot ignore the successes of
ordinary band theory in describing Fermi surfaces [5, 10]
and optical properties [16, 17] of superconductors. At the
same time, x-ray photoelectron spectroscopy (XPS) and x-ray
absorption spectra (XAS) have displayed SEC effects even in
metallic compositions [18]. A possible reason why these
effects are not observed at the Fermi surface is given in Ref.
[19].

2. New electronic structure data

Of the various techniques currently available for the analysis
of electronic structure, ARPES is the most informative one.
The photoelectron spectrum is usually considered to be
proportional to the single-electron spectral density,
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where the functions Aÿ and A� determine the photoemission
(PES), and the inverse photoemission (IPES) spectra, respec-
tively, it being implied that the matrix element of the dipole
optical transition is merely a constant. That this is not a
universally valid assumption may be seen by comparing the
ARPES spectra of Sr2CuO2Cl2 taken in nonpolarized and
polarized light (see Section 2.1). In a more elaborate analysis,

two-particle correlation functions are introduced for describ-
ing the light-induced creation and annihilation of electron ±
hole pairs. The probability of a light absorption event with a
valence electron c�ps being excited into the photoelectron state
a�ps with energy ep is
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where the absorbed photon has a frequency o, wave vector
q � 0, and polarization a; andM�p; q; a� is the matrix element
of the dipole transition. Neglecting the vertex part responsible
for the interaction of photoelectrons with the valence
electrons, we have
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Here wA is the work function. The matrix element is wave-
vector and polarization dependent and allows for the relevant
selection rules. The two-dimensional wave vector pII for an
ARPES-detected photoelectron is

pII �
�
2m�oÿ wA ÿ ENÿ1

n; p � EN
0 �
�1=2

sin y ;

where y is the polar angle of emission.

2.1. Electron structure at the top of the valence
band in Sr2CuO2Cl2
The oxychloride Sr2CuO2Cl2, having a K2NiF4-type struc-
ture with CuO2 layers separated by double Sr ±Cl layers, is an
analogue of the tetragonal structure La2CuO4. The electrical
andmagnetic properties of Sr2CuO2Cl2 andLa2CuO4 are also
similar: both are insulators, bothÐ according to band theory
Ð must be half-filled-band metals, and both are antiferro-
magnets. For single crystals of Sr2CuO2Cl2, TN � 256 K [20].
For Sr2CuO2Cl2, no orthorhombic phase is seen down to
T � 10 K. Another important difference between
Sr2CuO2Cl2 and La2CuO4 is that the former cannot be
doped [21]; it is believed that Sr2CuO2Cl2 has no charge
carriers in its CuO2 planes. At the same time, its isostructural
analogue, Sr2CuO2F2�y, at large enough y becomes super-
conducting with Tc � 46 K[22]. An experimental study of the
hole dispersion at the top of the valence band was carried out
using ARPES on single crystals of Sr2CuO2Cl2 [14]. At a
spectrum measurement temperature T � 350 K the samples
are above the NeÂ el point, in the region of short-range
antiferromagnetic order with a correlation length
zAFM � 250A [23]. For rapid local measurements, this
implies that the spectra are sensitive to antiferromagnetic
order effects. From two-magnon Raman scattering data [24],
the exchange interaction between two nearest neighbors is
J � 125� 6 meV. ARPES spectra are obtained using a
synchronous source with an energy resolution of 75 meV
and a wave vector resolution for kx, ky of �1=20�p. The lattice
parameter is taken to be unity. The characteristic points of the
square-lattice Brillouin zone are denoted X � p�1; 0�,
Y � p�0; 1�, M � p�1; 1�, �M � p�1=2; 1=2�. Figure 1 shows
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ARPES data for the direction GM in the undoped insulating
Sr2CuO2Cl2 and superconducting Bi2Sr2CaCuO2�y. From
Fig. 1 it is seen that the top of the band is reached at point
�M with energy E� �M� � ÿ0:8 eV as measured from the Fermi
level. One further point to be noted is the nonmonotonic
behavior of the intensity peak, which has a maximum near �M
and falls off to zero near G and M. The total band width is
W � 280� 60 meV.

A comparison of the spectra of Sr2CuO2Cl2 with data for
the metallic compound Bi2Sr2CaCuO2�y [25] (Fig. 1b) shows
that the peaks in the spectra of the latter are narrower and
disappear after crossing the Fermi level near point p(0.45;
0.45). The dispersion law below the Fermi level is very similar
to the corresponding dispersion for an insulator. Thus, in the
region of k from p(0.27; 0.27) to p(0.45; 0.45), the dispersion
in Bi-2212 was 270� 30 meV, and in Sr2CuO2Cl2,

240� 30 meV. This similarity suggests that the rigid-band
model is applicable here, because the doping process simply
acts to push the Fermi level into the valence band. This simple
dispersion behavior, however, occurs only for the GM
direction. The absence of peaks in the GX direction is
inconsistent with the rigid-band picture because doped
metallic compositions are known to have a flat band with eF
near �p; 0� [25, 26]. Calculations within the t ± J model [7, 27]
yield W � 2:2 J over a wide range of values of t=J. Based on
the above values of the bandwidth W and the exchange
interaction J, W=J � 2:5� 0:5, in good agreement with the
t ± J model. For other Brillouin zone directions there is
deviation from the t ± J model, which is discussed in more
detail in Section 5.2.

In a later work [28], ARPES spectra for single crystals of
Sr2CuO2Cl2 were measured for various photon polarizations.
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Figure 1. ARPES data for Sr2CuO2Cl2 (a) and Bi2Sr2CaCu2O8�y (b) from Ref. [14]. The numbers labeling curves are values of kx, ky in units of p. Top:
two- dimensional Brillouin zone; closed circles correspond to filled states, the size of a circle indicating the wave vector resolution.
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The electron dispersion for the [1, 1] direction was found to be
the same as in Ref. [14]. For [1, 0] the spectra were found to be
light-polarization dependent, so that the spectral density has
no peaks for the electronic states of odd parity for reflections
in the plane defined by the normal and [1, 0] direction,
whereas even-parity states show a clear quasiparticle peak
with a dispersion of 0.2 eV. The difference between the spectra
of unpolarized [14] and polarized [28] photons indicates the
important role of the matrix elements.

2.2. Shadow bands and antiferromagnetic
short-range order in Bi2Sr2CaCu2O8+x

That strong antiferromagnetic fluctuations exist not only at a
low doping level but also in superconducting compositions is
well known from neutron scattering data for La2ÿxSrxCuO4

and YBa2Cu3O7ÿy [30]. The effect of fluctuations on electro-
nic structure is very much under discussion at the present
time. Of great importance in this connection are the ARPES
data on the electronic structure of Bi2Sr2CaCu2O8+x [31],
which directly show the effect of magnetic fluctuations on the
Fermi surface. Unlike the standard ARPES procedure, which
specifies the direction of the vector k � �kx; ky� and in which
spectra are generally measured along a limited number of
high-symmetry Brillouin zone directions, the authors of Ref.
[31] restricted the energy range to DE � 10 meV near the
Fermi level and mapped the intensities of emitted photoelec-
trons over the entire Brillouin zone for 6000 discrete values of
k, with an angular resolution of better than 0:1�. In Figure 2,
which shows the section of the Fermi surface along the plane
kx ky, one clearly sees two distinct types of curves, high-
intensity X- and Y-centered curves, and low-intensity curves
around the center of the zone and the corner points such asM.
That the low-intensity curves are obtained from the high
intensity ones by shifting by the wave vectors GX or GY, as

shown in Fig. 2c, indicates the existence of a new periodic
2� 2 structure. Since low-energy electron diffraction gives no
evidence of atomic structure rearrangement on the surface of
a single crystal, the doubling of the period is associated with
magnetic fluctuations. The excitation of photoelectrons is a
rapid local process whose spatial and temporal scales may be
small compared with spin fluctuation correlations, so that the
superstructure 2� 2 behaves as quasistatic and the weak lines
may well be associated with the contraction of the Brillouin
zone.

Such states had been predicted earlier [33] and called
`shadow' states. In analyzing the effect of spin fluctuations on
the electronic structure, the authors of Ref. [33] used
phenomenological arguments to specify the spin susceptibil-
ity law and showed that, for sufficiently strong antiferromag-
netic correlations the Umklapp processes (the relation
between the vectors k and k0 with jk0 ÿ kÿQj < 1=z, where
Q � �p; p� and z is the correlation length) lead to the
appearance of shadow bands. Their calculations suggest,
however, that for the corresponding satellites to be observa-
ble in the ARPES spectra, the correlation length z must be
large enough, z � 20a, where a is the Cu ±Cu separation.
Since neutron scattering data indicate that in superconduct-
ing Bi-2212 compositions z is only a few a, this interpretation
of the results of Ref. [31] was questioned [34]. However, later
microscopic calculations [35, 36] (to be discussed in further
detail in 5.3) predict shadow bands at a small correlation
length z � 2:5a, consistent with neutron scattering data.

Another result of Ref. [31] is that some of the Fermi
surface details are consistent with the band-theory predic-
tions of Ref. [32]. These are, for example, kF in the directions
to points (1, 0) and (0, 1), and the surface curvature near kF in
these directions. However, no small pockets centered at
�M � �p=2; p=2� and similar points were observed, and,
conversely, shadow bands are not predicted by band calcula-
tions.

2.3 Band-structure changes with doping
ARPES studies of band structure as a function of hole
concentration were performed on two groups of Bi-2212
samples [15]. In the first group, consisting of single crystals
of Bi2Sr2CaCu2O8+x, the carrier concentration was varied by
annealing in air at T � 600 �C in order to obtain `overdoped'
samples with Tc � 85 K, and alternatively in argon at
T � 550 �C, to obtain `underdoped' samples with Tc � 67K;
the terms `under' and `over' refer to the optimum hole
concentration, i.e., Tc-maximizing. The second group were
single crystal Bi2Sr2CaxDyxCu2O8+x films grown by mole-
cular-beam epitaxy [37]. For samples with x � 1%, 10%, and
17.5% Dy, Tc was 85 K, 65 K, and 25 K, respectively. For
x � 50% Dy, the films were insulating. The spectra were
measured in a vacuum at T � 110 K.

The electron dispersion curves are shown in Fig. 3. For all
the samples that remain superconducting, the dispersion in
the direction [1, 1] does not change significantly, nor do the
quantities kF. On going to the insulation region, the
dispersion in the direction from (0, 0) to �p=2; p=2� remains
similar to the corresponding portion for metallic samples,
although the bandwidth decreases. The dispersion near point
X shows an entirely different behavior. A transition from
optimally doped to underdoped samples results in the
disappearance of the Fermi surface cross section on the line
XM (Fig. 4). The optimally doped samples (Tc � 85 K)
exhibited large Fermi surface cross sections consistent with
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Figure 2. (a) Intensity map for photoelectrons from Bi2Sr2CaCu2O8�x in

the energy range of 10 meV near the Fermi energy. The logarithmic

intensity scale serves to emphasise weak features. The external circumfer-

ence corresponds to an angle of 90�. (b) Simplified form of (a), indicating

points in the Brillouin zone and emphasizing intense (solid curves) and

weak (dashed curves) lines. (c) Diagram of extended Brillouin zones

showing that when shifted by vector GX or GY the system of intense lines

forms a system of weak lines. (d) Fermi surface of Bi2Sr2CaCu2O2

computed by the Linearized Augmented Plane Wave (LAPW) method

[32]. (After Ref. [31]).
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Luttinger's theorem [10]. If the rigid-band model were valid,
then decreasing the hole concentration would only reduce the
area but not the shape of the cross section (as shown by a
dashed line in Fig. 4), and the Fermi surface would remain
intersected by the line XM Ð which disagrees with experi-
ment which shows an energy gap opening along this line at the
Fermi surface. The authors of Ref. [15] suggest three ways of
explaining their results. The first is that quasiparticles may
pair with no pair coherence above Tc. This pairing would be
able to open a gap without giving rise to a coherent super-
conducting state. Quasiparticle pairing above Tc was treated
in terms of the extendedGinzburg ±Landau theory for d-type
superconductivity in Refs [38 ± 40]. The pairing of d-type
spinons [41, 42] within the theory of resonant valence bonds
(RVB) [43] was also discussed for temperatures above Tc. For
either type of pairing, the shift in photoelectron energy nearX
is treated as the appearance of a gap of symmetry dx2ÿy2 ,

which is greatest at X and zero along GM. The amplitude of
the gap can be estimated from the shift in the binding energy
for point X, which varies between 20 and 30 meV.

The second interpretation involves the formation of a
superstructure, due either to antiferromagnetic ordering or
an atomic ordering rearrangement. In this case points G and
M become equivalent in the new Brillouin zone, and shadow
bands appear on the side ofM. The mixing of the original and
shadowbands opens a gapnearX in exactly the sameway as in
the theory of spin densitywaves (SDW) [44]. The section of the
Fermi surface by a shadow band in this case is shown by a
dash-dot line in Fig. 4. The third approach, finally, also
involves the d-pairing of spinons, but assumes SU(2)
symmetry to be conserved in doping [45]. Comparing the
data of Refs [15, 31] with theoretical predictions [7 ± 9, 33, 35,
36] indicates that the band structure is partially rearranged,
with the density of states at the Fermi surface being modified
by spin fluctuations. In this case the reconstruction of the
Fermi surface with decreasing hole concentration is due to a
change in its topology. Comparing the dispersion curves in
Figs 1 and 3 allows an important conclusion to be drawn
about the transformation of the electronic structure, namely
that in an undoped sample the top of the valence band is
reached at point �M � �p=2; p=2�. Doping gives rise to in-gap
impurity states with deep levels [46 ± 50]. A detailed under-
standing of the effect of doping on the electronic structure
near the metal ± insulator transition is still lacking. In an
underdoped metallic phase, new states appear near X, which
form a flat band. The assumption that these states arise from
the in-gap states of the insulating phase in a very natural way
explains the fact that they have no dispersion. As the hole
concentration is increased to its optimum value, these states
form a band with a saddle point nearX and amaximum atM.

2.4 Band structure of Sr2RuO4

The role of CuO2 layers remains a central question for the
understanding of the mechanism of superconductivity. Could
other, copper-free, layered perovskites be superconducting?
The recent discovery of Sr2RuO4 superconducting com-
pounds with Tc � 0:93 K [51] allows an interesting compar-
ison to bemade with copper oxides. Crystals of Sr2RuO4 have
a body-centered tetragonal K2NiF4 type lattice with
a � b � 3:8694A, and c � 12:764 A at room temperature
[52]. The differences between Sr2RuO4 and layered cuprates
are as follows: (a) superconductivity already exists in
undoped samples; (b) for the ion Ru4+(4d4) in the low-spin
state, S � 1; (c) the process of p ± d hybridization in Sr2RuO4

involves t2g ( dxy, dxz, and dyz) orbitals. The ARPES spectra
for Sr2RuO4weremeasured at 10K in vacuumwith an energy
resolution of 22 meV and an angular resolution of 1�, which
corresponds to Dk � 0:06A

ÿ1
[53]. Analogous to the cup-

rates, the dispersion curve near (p; 0) has a saddle point that
produces a Van Hove singularity (Fig. 5). Comparing these
results with local density functional calculations [54], the
authors of Ref. [53] note that agreement with theory could
only be obtained by introducing a 77 meV shift into the band
calculations. According to Ref. [54], the three bands observed
at the Fermi surface are primarily of dxz, dyz, and dxy type.
The two bands centered about (p; p) are of the hole type, and
the band about (0, 0) is of the electron type. The Van Hove
singularity lies 17 meV below eF.

Previous APRES experiments revealed k � �p; 0� saddle
points and Van Hove singularities in many cuprates as can be
seen in Table 1. The table shows that the n-typeNCCO system
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Figure 3.Dispersion relation for samples of varying hole concentration. (a)

Films of Bi2Sr2Ca1ÿxDyxCu2O8�x: 1, 1% Dy, Tc � 85K; 2, 10% Dy,

Tc � 65 K; 3, 17.5% Dy, Tc � 25 K, 4, 50% Dy, insulator. (b) Single

crystal of Bi2Sr2CaCu2O8�y: 1, annealed in air, Tc � 85 K; 2, annealed in

argon Tc � 67 K. (After Ref. [15]).
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Figure 4. Cross sections of the Fermi surface of Bi-2212 superconductors

for various hole concentrations (From Ref. [15]). Note the opening of a

gap on the line �p; 0� ± �p; p� with decreasing hole concentration.
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is unique both in showing the r�T� / T 2 behavior [58] and in
having its Van Hove singularity far from eF. In Sr2RuO4 this
singularity is as close to the Fermi energy as it is in the
cuprates. The proximity ofTc to the VanHove singularity has
often been considered as the explanation of the high Tc in
cuprates (see [59, 60] and review articles [3, 6, 12]). The low
values of Tc in Bi-2201 and Sr2RuO4 cast some doubt on this
view.

3. Basic multielectron models and the definition
of Fermi quasiparticles in strongly correlated
electron systems

Attempts at adapting band calculations to strongly correlated
systems include (i) correcting the potential in the region of
two-particle states [61] and (ii) the inclusion of self-action

corrections to the potential [62]. Since the Kohn-Sham
theorem is exact, one would expect, in principle, that
quasiparticles in strongly correlated systems could also be
treated using the density functional formalismÐprovided, of
course, that the functional is local. The application of the
density functional scheme to SEC systems deserves special
discussion and need not be pursued here because we limit our
consideration to model theories. Since the first part of this
section, on the Hubbard, three-band p ± d, and t ± J models,
inevitably overlaps withmany previous reviews on the subject
[4 ± 13], the models will be reviewed only briefly, with
particular emphasis on their applicability to the CuO2 plane.

3.1 Single-band Hubbard model with repulsion
The Hamiltonian for a system of electrons in this model is of
the form [63]

H �
X
i; s

�
�eÿ m�nis �U

2
ni; sni;ÿs

�
�
X
i; j;s

�ti j a�is ajs �N: s:� ;

�4�
where nis � a�is ais, ais is the annihilation operator for an
electron on site i with spin s � �1=2, e is the single-electron
energy in the crystal field, m is the chemical potential, U the
Hubbard repulsion, and ti j the hopping integral between sites
i; j. Consider the local basis of this model

j0i; jsi � a�isj0i; j2i � a�i� a
�
iÿj0i �5�

with energies e0 � 0, es � eÿ m � e1, e2 � 2e1 �U. For the
CuO2 plane in the hole representation, j0i corresponds to the
configurationCu+(d10), jsi toCu2+(d9), and j2i toCu3+(d8).
In undoped La2CuO4, copper is in the state Cu2+, i.e., the
ground state of the system has one-hole terms filled. Doping
with holes has the effect of increasing the number of holes per
cell, nh � 1� x, making the configuration Cu3+ partially
filled. However, x-ray spectroscopy has not shown Cu3+ to
be present in a sufficient amount [64]. Holes added to the
system in the doping process primarily fill oxygen orbitals,
not considered in the Hubbard model. This is not to say this
model is not applicable to oxides. The point is that more
realistic models reduce to the Hubbard model for certain
ranges of their parameters. Besides, the study of the proper-
ties of quasiparticles in theHubbardmodel is interesting from
the methodological point of view.

3.2 Three-band p ± d model
This model extends the Hubbard model to the case of the
CuO2 layer [65, 66]:

H �
X
f; s

�
�ed ÿ m�nfs �Ud

2
nfs nf;ÿs

�
�
X
i; s

�
�ep ÿ m�nis �Up

2
nis ni;ÿs

�
�
X
hi; f is

tpd�p�is dfs �N: s:�

�
X
hi; f is

tpp�p�is pjs �N: s:� � Vpd

X
hi; f is

nis nfs : �6�

Here f and i are copper and oxygen sites, respectively; ed and
ep are the energies of a dx2ÿy2 hole at copper and of a px, py
holes at oxygen; Ud, Up are the Coulomb parameters; tpd is
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Figure 5. Flat bands near point �p; 0� for Sr2RuO4 from ARPES data

(from Ref. [53]). Note that in Ref. [53] the notation for Brillouin zone

points is inverted from ours: here �X � �p; p�, �M � �p; 0�.

Table 1. Superconducting transition temperature, temperature depen-
dence of electrical resistance in the normal phase, and the position of the
van Hove singularity as measured from the Fermi energy. (After Ref. [53])

Compound Tc, K rab�T� EVH, meV Reference

YBa2Cu3O7ÿy
YBa2Cu4O8

Bi2(Sr0.93Pr0.03)2CuO6

Bi2Sr2CaCu2O8�y
Nd1.85Ce0.15CuO4

Sr2RuO4

92

82

10

83

25

0,93

linear

linear

linear

linear

quadratic

linear [58]

<10

19

<30

<30

350

17

[55]

[55]

[56]

[25]

[57]

[53]
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the hopping integral between the nearest copper and oxygen
sites; tpp is the oxygen ± oxygen hopping integral; and Vpd is
the copper ± oxygen interatomic Coulomb interaction. An
important parameter of the problem is the energy of
excitation for a charge transfer, D � ep ÿ ed. The p ± d model
has the undisputable merit of taking into account the
chemical composition of the copper oxides. The model Eqn
(6) enables a description of a large number of high-energy-
excitation spectral techniques, such as x-ray absorption and
x-ray photoelectron spectroscopy. On the other hand, models
(4) and (6) are very similar in their low-energy behavior. The
reason for this is indicated in Ref. [67], where it was
demonstrated for the CuO4 cluster that the `hole at copper,
hole at oxygen' complex has S � 0, and that a similar triplet
state lies 2 to 4 eV higher in energy. Since the doping-
produced holes fall into the Zhang ±Rice singlet, the single-
cell local basis of (6) is identical to the Hubbard basis if the
vacuum state is taken to be the copper (oxygen) d10p6

configuration and if, furthermore, the one-hole jsi and two-
hole j2i states are brought into correspondence with the
(d10p5 and d9p6 mixing) molecular orbitals and Zhang ±Rice
singlet, respectively. There is a considerable amount of
literature analyzing the reduction of the three-band p ± d
model successively to the single-band Hubbard model and
further to the t ± J model (see Refs [68 ± 73] and references in
review articles [7 ± 9]).

3.3 t ± J model
The t ± J model was originally derived from the Hubbard
model in the limit t=U5 1. A canonical transformation
eliminating two-particle configurations gives rise to the
Hamiltonian [74, 75]

HtÿJ� � ÿt
X
hi; jis
�c�is cjs � c�js cis�

� t 2

U

X
j; d; d0
�c�j�d"c�j#cj#cj�d0" � c�j "c

�
j�d#cj�d0#cj 0"

� c�j�d"c
�
j#cj�d0#cj " � c�j "c

�
j�d#cj #cj�d0"� ; �7�

where j� d and j� d0 are the nearest neighbors to site j. In the
special case d � d0, neglecting the three-center terms in (7), we
obtain the t ± JHamiltonian with J � 4t2=U:

HtÿJ � ÿt
X
hi; jis
�c�iscjs �N: s:� �

X
hi; ji

J

�
Si � Sj ÿ ninj

4

�
: �8�

The operators here act in bounded Hilbert space with two-
particle states excluded, cis ! cis�1ÿ ni;ÿs�. The three-center
terms contribute only in the presence of holes and can be
rewritten in the form

H
�3�
J � ÿ

t2

U

X
j; s

X
d 6�d0
�c�j�d;snj;ÿscj�d0;sÿc�j�d;sc�j;ÿscj;scj�d0;ÿs�:

�9�
The first term in (9) accounts for intrasublattice hopping,
which does not affect the antiferromagnetic order, whereas
the second describes spin-reversal second-nearest-neighbor
hopping. The inclusion of such hops yields the t ± t0 ± Jmodel
[72]. An energy comparison for the Hubbard and t ± J no-hole
ground states and also for the t ± J, t ± J� and Hubbard one-
hole ground states was carried out in Ref. [76] by exactly
diagonalizing a one-dimensional 10-atom chain and a two-

dimensional 10-atom lattice. It was found that for U=t � 20
all the models agree to within about 1%.However, forU � 8t
a discrepancy of up to 20% is noted in two dimensions,
necessitating corrections of higher order in t=U in the effective
Hamiltonian. Thus, strictly speaking the t ± J model derives
from the Hubbard model in the limit J5 t. However, because
of its nontrivial properties, the t ± J model is often used at
arbitrary t to J ratios. This may be justified by referring to
Ref. [77], inwhich it is shown that adding theCoulombmatrix
element Vi j allows a later transition to the t ± J model, for
which the inequality t5 J is not necessary. The reason is that
at large enough values of Vi j the system may develop
instability with respect to charge density waves, and it is
close to such an instability where it may become a physical
realization of the t ± Jmodel with J � t [77].

3.4 Multiband p ± d model
The actual orbital structure of copper is important not only
for the analysis of valence band spectra far away from the
Fermi surface, but also for symmetry analysis of the states
near to it. The nonzero population of the dz2 orbitals was
found in experiments [78, 79] on the polarization dependence
of x-ray absorption in Cu L3, which showed a correlation
between Tc and the dz2 orbital population. As for the t2g
orbitals, these are deep in the valence band (about 4 eV from
the top [5]). Thus, the minimum a realistic model of the CuO2

layer must contain is two d orbitals, dx2ÿy2 and dz2 , and px
and py orbitals at each oxygen ion. In calculations involving
apical oxygen, an oxygen pz orbital is added. A model of this
type suggested for the copper oxides [80] has aHamiltonian of
the form

H � Hd �Hp �Hpd �Hpp ; �10�

Hd �
X
r

Hd�r� ;

Hd�r� �
X
ls

�
�edl ÿ m� d�rlsdrls �

1

2
Udn

s
rln
ÿs
rl

�

�
X
ss0
�Vdn

s
r1n

s0
r2 ÿ Jdd

�
r1sdr1s0d

�
r2s0dr2s� ;

Hp�
X
i

Hp�i�; Hp�i� �
X
as

�
�epa ÿ m�p�ias pias �

1

2
Upn

s
ian
ÿs
ia

�

� �Vpn
s
i1n

s0
i2 ÿ Jpp

�
i1spi1s0p

�
i2s0pi2s� ;

Hpd �
X
hi;ri

Hpd�i; r� ;

Hpd�i; r� �
X
alss0
�Tlap

�
ias � drls �N: s:� Vlan

s
rln

s0
ia

ÿ Jald
�
rlsdrls0p

�
ias0pias� ;

Hpp �
X
hi; ji

X
abs

�tabp�ias pjbs �N: s:�:

Within the multiband p ± d model, the applicability of its
three-band variety can be analyzed. Clearly, in the limit
Dd � e� dz2� ÿ e� dx2ÿy2� ! 1 the multiband model becomes
the three-band model. At the same time, for copper oxides
Dd � 1 eV, so that changing from large values of Dd to
Dd � 1 eV enables the influence of the orbital structure of
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copper to be studied. The simplest such calculation was
carried out by exact diagonalization for the CuO4 cluster [81].

The eigenstates of the cluster are indexed by the number of
holes it contains, n � 0; 1; 2; . . . For n � 0 we have the
vacuum state d10p6. For n � 1, the eigenstates are the usual
one-hole molecular orbitals of b1g and a1g symmetry, dx2ÿy2
and dz2 hybridizingwith the p orbitals of the former and latter
symmetry, respectively. For n � 2 we have the mixed
configurations p5d10p5, p6d9p5, p6d8p6, p4d10p6, giving rise
to a set of spin singlets and triplets in various orbital states.
The energy difference between the two lowest terms, the
singlet 1A1g and triplet 3B1g, is shown in Fig. 6 for three
different sets of model parameters. It is seen that for large Dd

(Dd 5 10 eV) the triplet lies DeS � 2 eV above the singlet (in
agreement with Ref. [67]), which allows it to be neglected in a
low-energy description. As the parameter Dd decreases,
however, so does the singlet ± triplet splitting, and in the
region Dd � 1 eV we have DeS � 0:5 eV for typical values of
the model parameters. A similar conclusion was reached for
the cluster CuO6 by means of the self-consistent field method
including the configuration interaction [82] and also using
perturbation theory [83], both studies exhibiting the crossover
of the singlet 1A1g and triplet 3B1g with the variation in c=a.
Analysis showed [84] that the principal effect of the two-hole
B1 states on the effective single-band t ± t 0 ± J Hamiltonian is
to renormalize the second nearest-neighbor hopping para-
meter t 0. This renormalization may be quite large and may
even change the sign of t 0. The variation of the quantity t 0

from compound to compound shows a correlation with the
optimal doping temperature Tmax

c . The crossover of the
Zhang ±Rice singlet and B1 term invalidates the single-band
model.

Thus, the applicability of the three-band p-d, single-band
Hubbard, and t ± J models is limited, in terms of the energies
involved, by the condition E5DeS and may be very limited
for DeS 4 0:5 eV.

3.5 Quasiparticles in strongly correlated electron systems
The direct use of the concept of the electron as a quasiparticle
in line with the Landau theory of the Fermi liquid [85] is
hardly possible in the theory of SECs because in the half-filled
Hubbard model, strong correlations rearrange the ground
state to the point where even the Fermi surface itself
disappears. However, combining the ideas of Landau and
those of Hubbard, it proves possible to introduce the concept
of a Fermi quasiparticle for systems with SEC as well.
Consider first local states, involving no hopping between
unit cells. Figure 7 shows the local bases of the (a) Hubbard
and (b) multiband p ± d models; in the latter case, only
selected excited states, namely n � 1 and n � 2, are shown.
Following Landau, we define the energy of a quasiparticle as
the change in the energy of an N-electron system on adding
one electron, that is,

Opq � Eq�N� 1� ÿ Ep�N� ; �11�

where Ep�N� is the pth term for theN-electron system. Unlike
Fermi-liquid theory, rather than applying definition (11) to
the whole of the crystal, we shall limit it to that particular cell
where the quasiparticle is produced. We will consider
separately the particle's hopping behavior and its dispersion.
For the Hubbard model, only two such particles may be
considered:

Oÿ � e1 ÿ e0 � e1; O� � e2 ÿ e1 � e1 �U ; �12�

for the lower and upper Hubbard bands, respectively. In the
multiband case, adding one electron increases the number of
possible interlevel transitions. Mathematically, the localized
quasiparticles so introduced are naturally described in terms
of the Hubbard operators

Xpq � jpihqj ; �13�
constructed on a complete set of local multielectron states.
Note that while the X operator is traditionally defined to
involve a single-site state only, the states we employ here are
those of a cell, i.e., multielectron molecular orbitals rather
than atomic orbitals. In view of the projection properties ofX
operators, any local operator can be expressed as a linear
combination of them. In particular, this applies to the one-
electron annihilation operator for cell i with band index l:

ails �
X
pq

jpihpjailsjqihqj �
X
pq

gls�p; q�Xpq
i : �14�

Relation (14) illustrates the difference between the single-
electron and multielectron descriptions of Fermi quasiparti-
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1

Figure 6.Energy difference of the lowest terms of two holes (a singlet and a

triplet) versus the crystal field parameter Dd � e� dz2 � ÿ e� dx2ÿy2 �, for

three sets of model parameters (in eV): 1, Ud � 12, Up � 8, D � 3,

tpd � 1:5, the remaining parameters are zero; 2, Vd � 4:5, the remaining

parameters are the same as in 1; 3, Ud � 12, Up � 8, D � 2, tpd � 1:5,
tpp � 0:2, Vd � 4:5, Vp � 3, Vpd � 0:6, Jd � Jp � 0:5, Jpd � 0:2. (After

Ref. [81]).
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Figure 7. Local bases of the single-band Hubbard (a) and multiband p ± d
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and two-hole sectors of Hilbert space is shown for the multiband model.

The arrows indicate quasiparticle annihilation processes.
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cles. Whereas the single-electron operator decreases the
number of electrons by one for all sectors of Hilbert space
simultaneously, Xpq describes the `partial' annihilation of an
electron for the initial state q with N� 1 electrons and the
final state p with N electrons, the matrix element gls�p; q�
giving the probability amplitude for such a transition. Once
the exact diagonalization of the Hamiltonian is done, the
amplitudes immediately follow. Since SEC poses restrictions
on the Hilbert space regions for states with high correlation
energy, it is clear that a discussion in terms of X operators is
more natural because these restrictions simply remove the
corresponding processes from the right-hand side of (14),
whereas the single-electron operator ails cannot do this.
Thus, splitting the electron annihilation process into partial
components for each pair of possible initial and final states is
the first important factor in the definition of quasiparticles.
Another is the question of the spectral weight of a quasipar-
ticle. Indeed, one can select a jqi ! jpi transition process
which changes the number of electrons by unity, has an
energy of the form (11) and a non-zero matrix element
g�p; q� in Eqn (14), but whose spectral weight is zero if this is
a transition from one empty (unfilled) state to another empty
state. In order to obtain the spectral weight, one needs to
calculate the corresponding Green's function. This is con-
veniently done using the notation of Ref. [86], where each pair
of `initial and final states' (p; q) is associated with a vector
a � a�p; q�. The Green's function within the cell is calculated
exactly, giving

Da;b
i; j�0��o� �


hX a
i jX b

j i
��0�
o � di jdab

F�a�
oÿ Oa � id

; �15�

where F�a� is the filling factor, F�a� � hXp;pi � hXq;qi for
Fermi quasiparticles, and Oa � Opq � Eq ÿ Ep. The single-
electron Green's function is

Gi j;s�o� �

hail1sja�jl2si�o �X

ab

gl1s�a�g�l2s�b�D ab
i j �o� :

�16�

Accordingly, the local single-electron Green's function is

G
�0�l1l2
i j;s �o� � di j

X
a

gl1s�a�g�l2s�a�
F�a�

oÿ Oa � id
; �17�

showing that the spectral weight is determined by the product
of the transition probability jgl�a�j2 with the filling factor
F�a�. Taking the transition amplitudes and occupation
numbers to be zero enables one to choose from a large
number of transitions obeying (11), a much less number of
quasiparticles with nonzero spectral weight. The occupation
numbers of the terms are determined by the self-consistency
equation for the chemical potential,X

n; p

nhXp; pi � nh ; �18�

where n � 0; 1; 2; . . . is the number of holes, p indexes all the
states in the corresponding sector of Hilbert space, and nh is
the number of holes per cell. The filling factor is thus
concentration dependent, and the doping process gives rise
to quasiparticles whose spectral weight is proportional to the
doping level. Part of them fall within the gap forming in-gap
states with deep impurity levels [87]. For the single-band

Hubbard model with no doping we find that at T � 0, for
both quasiparticles in the paramagnetic phase
F�O�� � F�Oÿ� � 1=2, so that the number of states in each
Hubbard zone is, including spin, 1 rather than 2 as for a free-
electron band. This change is often referred to as a change in
statistics: strong correlations turn electrons into spinless
fermions. As seen from our definition, the statistics do indeed
change, but the two-fold spin generation is conserved in the
paramagnetic phase, and an external magnetic field acts to
split a Hubbard band. The number of states in a given
Hubbard band ranges from zero to unity depending on the
filling factor. For an infinite lattice, intercell interactions and
hops may be included by applying perturbation theory in the
X representation. The most frequently used approaches are
various splitting schemes for higher-order Green's functions
or, alternatively, the diagram technique for X operators [86,
88, 89]. Because of the complexity of commutation relations
for X operators, however, this diagram technique is more
complicated than that for fermions and bosons, and so have
not come into general use. In recent years there has beenmuch
interest in slave-boson and slave-fermion techniques, with
exact commutation accounted for by imposing additional
constraints on the allowable Hilbert space. In practice,
however, the exact local constraints are usually taken into
account on the average, thus introducing uncontrollable
errors. Although approximate Hubbard model analyses are
numerous [79, 13, 89], their discussion is beyond the scope of
the present review.

4. Exact numerical results

Since there are no exact solutions available for Hubbard type
models in two dimensions, all exact results are obtained from
numerical finite-cluster calculations, either by exactly diag-
onalizing the model Hamiltonian or by the quantum Monte
Carlo (QMC) method. Because there has been a review of
such results [7], here wemainly concentrate on themost recent
work done in the period 1994 ± 1996. It seems appropriate,
however, to begin with a discussion of the exactly solvable
one-dimensional Hubbard model.

4.1 Spectral density in the one-dimensional
Hubbard model
Owing to the availability of an exact solution in the form of
the Bethe ansatz [90], the relevant properties have been
studied in considerable detail in the low-temperature region.
It has been established, in particular, that SEC effects give rise
to Luttinger-liquid properties [91 ± 93]. The characteristic
feature of a one-dimensional Luttinger liquid is that the
electron distribution function nk � ha�k aki has no disconti-
nuity at the Fermi level, namely, nk ÿ nkF �
sgn�kÿ kF�jkÿ kFja, where a is a nonuniversal, interaction
dependent constant. In the limit U � �1, for the Hubbard
model a � 1=8 [94]. The spectral density near the Fermi
energy has the form A�o� / joÿ eFja instead of the delta
function obtained for quasiparticles in the theory of Fermi
liquids. It is because of the spectral density vanishing at the
Fermi level in the one-dimensional Hubbard model that the
description of an electron or a hole in SEC systems as a
quasiparticle with charge e and spin 1/2 has been abandoned
[95]. At the same time, a peak in the A�k;o� characteristic of
Fermi-liquid quasiparticles was obtained by the QMC
method [96]. In a recent paper [97] the spectral density was
calculated in the limit U � 1 for arbitrary filling, based on

October, 1997 Quasiparticles in strongly correlated electron systems in copper oxides 1001



the exact many-particle wave function obtained [98] using the
Bethe ansatz in this limit. The authors of Ref. [97] note the
enhanced role of many-particle effects in A�k;o� as the wave
vector moves from k � 0 and k � p. Manifestations of this
are the decreased weight of the Van Hove singularities, the
appearance of power-law singularities of the type
Aÿ�o� / joÿ eFjÿ3=8 (for n < 1), and non-quasi-particle
tails. The spectral density of single-particle states for the
lower Hubbard band is illustrated in Fig. 8, which shows
blurred Van Hove singularities at the band edges and a
power-law singularity at the center (for n � 1=2). The
inclusion of three-particle electron ± hole excitations in
addition to single-particle excitations accounts for more
than 99.99% of the total spectral weight. In the same paper
[97], the applicability of the Luttinger-liquid concept is
analyzed. The value a � 1=8 occurs for joÿ eFj < t 2=U, and
outside this interval a � ÿ3=8. For U!1, the Luttinger-
liquid region contracts to zero; for larger (but finite) U, there
must be a peak in A�o� for o � t 2=U as a result of the
divergence at a � ÿ3=8; this is precisely the peak that was
obtained by the QMC method in Ref. [96].

4.2 Two-dimensional Hubbard model
and the t ± J model
For an undopedMott ±Hubbard insulator, QMC is the most
convenient choice because, due to the electron ± hole symme-
try, this approach avoids the well-known negative charge
problem [99]. As shown by a series of calculations using the
QMC method (for 4� 4, 8� 8, and 12� 12 clusters [100 ±
102]) and the exact diagonalization technique (see review
article [7]), the ground state has antiferromagnetic order in
agreement with perturbation theory in t=U. This is not at all
as trivial a fact as it may seem: suffice it to recall a host of
alternative scenarios, such as RVB or flux phases (i.e., those
with a nonzero flux of vector potential across an elemental
contour). These phases also do not acquire stability in the t ± J
model [103, 104], nor when next-nearest-neighbor spin ± spin
interactions are considered [105]. The dynamics of a hole in an
antiferromagnetically ordered background has been studied
by exactly diagonalizing theHubbard [106, 107] and t ± J [108]

models, the main conclusion being that the band becomes
narrower as a result of correlation, and instead of a band of
width W � 8t, a narrow quasiparticle band of width
W � J � t 2=U arises. The dispersion for one hole moving in
a background of a fluctuating antiferromagnetic state was
obtained by exactly diagonalizing the t ± J model for 16- and
18-atom clusters [76] and is shown in Fig. 9. Here the solid line
is described by

o�k� � J
�
0:5�cos kx � cos ky�2 ÿ 1

�
; �19�

and accounts for the main contribution, given by intrasub-
lattice hopping.While the fact that the top of the valence band
(bottom of the hole band) lies at �p=2; p=2� agrees with the
ARPES data on Sr2CuO2Cl2, another cluster-calculation
result of Refs [7, 76], that the electron energies at points
�p=2; p=2� and �0; p�, �p; 0� are close to degeneracy, does not.
One further important result is that the insulating gap is filled
upon doping and that, simultaneously, the spectral weight
increases at the band edges [108 ± 112]. The change in the
electron structure at the undoped insulator ± hole metal
transition was studied using the Hubbard ±QMC approach
in Ref. [113], in which the spectral density A�k;o� is obtained
by the `maximum entropy' method [114]. Figure 10 shows the
spectral density and band structure of quasiparticles for a
two-dimensional Hubbard model in the undoped case. The
calculations were performed on an 8� 8 cluster atU � 8t and
U � 12t and two temperatures, bt � 3 �T � 0:33t� and
bt � 10 �T � 0:1t�. For T � 0:1t, the magnetic correlation
length z exceeds the cluster size, allowing a comparison with
T � 0 results. For T � 0:33t, z is less than the lattice size and
therefore short-order effects occur.

The antiferromagnetic phase of a Mott insulator has two
narrow bands below and two bands above eF, as is seen in
Fig. 10. Dispersion at the top of the valence band is the same
as in previous studies and shows a maximum at the point
(p=2; p=2) and a very nearly degenerate state with k � �p; 0�
at X. A nontrivial point to note here is the behavior of the
spectral density, whose maxima are sometimes below and
sometimes above eF, depending on the wave vector. It is not
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entirely clear why the authors of Ref. [113] divided the bands
into coherent ones with joÿ mj � 3t and incoherent ones with
joÿ mj � 6t, because the peak widths are of the same order
for both types. A similar calculation [115] for an 8� 8 lattice
atU=t � 10,T � t=4 for the undoped case also displayed four
peaks, two below and two above eF, but, unlike [113], the
redistribution of peak intensities for different k was found to
conserve the peaks themselves Ð except for k � �p; 0�
(Fig. 11). This difference is probably due to a different
analytical continuation procedure employed for calculating
the spectral density from theMonte-Carlo-calculatedGreen's
function. The high-energy PES satellites obtained in Ref.
[115] from Hubbard ±QMC calculations, agree not only
qualitatively but also quantitatively with PES spectra from
the exact diagonalization of the two-dimensional t ± J model
for 16- and 18-atom clusters.

Calculations for the doped case demonstrate the inade-
quacy of the rigid-band picture. Qualitatively, the results of
Ref. [113] are very similar to the ARPES results in that the
Fermi level is near point k � �p=2; p=2� in the direction GM
and that there is a flat band in the vicinity of X. One can also
see shadow-band satellites near points G�oÿ m � 5t� and
M�oÿ m � 7t�. The similarity between the dispersion rela-
tions and bandwidths in the metallic and insulating phases
enabled the authors of Ref. [115] to conclude that low-energy
bands in the metallic state are inêuenced by the same many-
particle correlation effects as bands in an insulator, namely,
that the width of a band is determined by magnetic

correlations. The difference is that in an insulator these
correlations are determined by long-range antiferromagnetic
order, whereas in a metal, by short-range antiferromagnetic
order.

The change in hole dispersion for a significant (above
10%) hole concentrationwas studied by exactly diagonalizing
the t ± Jmodel for a 18-atom cluster [108]. The top of the band
is shifted to the point �p; p�, and the Fermi momentum is near
�p=2; p=2� in the direction [1, 1] and �p; 0� in the [1, 0]
direction (Fig. 12). The solid line is the ordinary tight-
binding dispersion relation

o�k� � ÿ2teff�cos kx � cos ky� �20�
with teff � 0:24 for J=t � 0:4 and teff � 0:15 for J=t � 0:2.
Note here the change in the nature of dispersion: for a large
number of holes, the antiferromagnetic correlations are
weaker, the system has metallic properties, and the disper-
sion (20) is basically due to nearest-neighbor hopping. A
similar conclusion was reached in Ref. [116], although the
band width obtained there is again of the order of J, not 8t.
The Fermi surface is shown in Fig. 12c, where the states with
n�k� > 1=2 were considered to be filled, and those with
n�k� < 1=2, empty. For J < t the Fermi surface shape was
found to be independent of J, analogous to the Hubbard
model with U4 t [108]. One further nontrivial result is that
the Fermi surface of strongly correlated holes is identical to
that of free electrons. This explains why the Fermi surfaces
calculated for doped metallic copper oxides are consistent
with experimental data [117]. The question of why strongly
correlated and free electrons have the same Fermi surfaces
deserves special discussion, as also does the question of
whether it may be considered proved that the concept of a
Fermi liquid (or of a marginal Fermi liquid [95, 118]) is
applicable to SEC systems. Although according to Ref. [108]
the answer to the second question appears to be `yes', in order
to be perfectly sure it is still necessary to demonstrate that the
width of a spectral density peak vanishes aso2 ato! 0 (or as
o lno for a marginal Fermi liquid), which cannot be done for
an infinite cluster. The first question is answered in part in
Ref. [19], which presents a general analysis of quasiparticles in
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SEC systems. In order to calculate the spectral density

rk�e� �
1

p
ImGR�e; k� �21�

let us introduce the mass operator S�e; k�: Gÿ1�e; k� �
zk ÿ eÿ S�e; k�. By definition, S�0; k� � 0. Assuming that
S�e; k� is not an `overly singular function' [19], let us perform
an expansion for small e to obtain

S�e; k� � lke� igk�e� : �22�
In the region where this expansion holds, gk�e�5 e, we obtain

rk�e� �
gk�e�=p�

zk ÿ �1� lk�e
�2 � g2k�e�

� Zkd�eÿ ~zk� ; �23�

where Zk � �1� lk�ÿ1, ~zk � ~vk�kÿ kF�, ~vk � Zkv. Restrict-
ing ourselves to the low-energy region, as we should in the
Landau theory [119], the Z factor can be completely
eliminated by a proper renormalization. Integrating Eqn
(23), we find�1

ÿ1
rk�e� de � Zk < 1 ; �24�

which is in conflict with the condition for conservation of the
total number of states�1

ÿ1
rk�e� de � 1 : �25�

Showing that some of the states, namely those incoherent and
far away from the Fermi surface, are not covered by Eqn (23).
That non-quasiparticle incoherent states exist is clear from
the exact diagonalization results for all the models discussed.
It can be argued that due to SECs, some of the states [namely,
1ÿ Zk, the difference between (24) and (25)] are pushed from
the Fermi level deep into the band. As seen from (23), the
Fermi surface is determined by the same vector kF as for free
electrons, but with a reduced velocity ~vF Ð hence the reduced
band width. It is this fact which is noted in [10] in comparing
ARPES data and band predictions.

4.3 Exact results for the p ± d model
On changing from the single-band Hubbard model to a more
realistic three-band p ± d model, the following effects are
obtained [120]: (1) the indirect exchange interaction (super-
exchange) J comes into play; (2) new quasiparticles are
created; (3) the next-nearest-neighbor hopping integral t 0

appears, important for detailing the dispersion law; and (4)
an asymmetry between electron and hole doping is observed.
The possibilities for an insulating state of a system with SEC
are illustrated in Fig. 13. Since for copper oxides we typically
have Ud � 10 eV, D � 2 ± 3 eV, they should be classified as
charge-transfer insulators according to Ref. [121]. In an
undoped state there is one hole for one CuO2 cell, nh � 1.
Neglecting the p ± d hybridization, this hole resides at copper,
that is, the configuration of the cell is Cu(d9)O(p6). Cu2+ ions
with spin S � 1=2 form an antiferromagnetic lattice. The
effect of hybridization is to mix the d9p6 and d10p5 states, thus
decreasing the effective magnetic moment at copper. Along
with zero quantum spin fluctuations, there is a quite notice-
able covalent contribution [123], both of which combine to
give the observable value meff � 0:6mB. The p-d model has
been able to give correct values for the insulating gap Eg and
the indirect exchange integral J for a large number of
insulating copper oxides, such as the T 0 phase of R2CuO4

(R=Pr, Nd, Sm, Eu, and Cd); the T phase of La2CuO4; T�

phases of (La ± Ca ± Sr)2CuO4 and (La ± Tb ± Sr)2CuO4;
(Ca ± Sr)CuO2, Bi2Sr2YCu2O8; and YBa2Cu3O6 [124]. Good
agreement with the experimental values of Eg and J can be
obtained by fixing all themodel parameters except the charge-
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transfer energy. The parameter values chosen were
Ud � 8:5 eV and Up � 4:1 eV. In Ref. [124], the parameters
for Sm2CuO4 were chosen to be tpd � 0:873 eV and
tpp � 0:366 eV, and in going to other substances, tpd and tpp
were taken to vary as 1=r4 and 1=r3, respectively. The change
in the charge-transfer energy is mainly due to the change in
the Madelung potential, reflecting the difference between the
three-dimensional spatial lattices of the oxides listed above.

An exact diagonalization of the three-band p ± dHamilto-
nian has been performed for the largest-size cluster of all,
Cu4O13 [107, 109, 110, 112, 125 ± 130]. The multiband p-d
model was treated by exactly diagonalizing Cu2O7 and Cu2O8

clusters [120, 131]. The finite-temperature spectral density for
the three-band p ± d model was obtained from QMC calcula-
tions of the imaginary-time Green's function [132 ± 134]. The
general conclusion to be drawn from the above studies is that
the p ± d and Hubbard electronic structures are similar if the
Zhang ±Rice band is identified with the lowerHubbard band.
Doping redistributes the spectral weight, decreasing it at the
edges of the gap and, as charge transfer proceeds, giving rise
to new in-gap states which fill the gap as the carrier
concentration increases. Unlike the Hubbard model, this
effect is asymmetric with respect to electron and hole
doping, the amount of asymmetry depending on the para-
meters of the model [135]. Similar predictions were also made
with the multiband p ± d model (10) by exactly diagonalizing
the CuO4 cluster [136]. Figure 14 shows the density of states
for filled (PES) and empty (BIS) states for the CuO2 plane for
two hole concentrations [112]. It is seen that doping results in
filling the gap, the in-gap states being related to the
appearance of a hole at a ligand. The dispersion of the
Zhang ±Rice band [133] is in qualitative agreement with
experiment (Fig. 15).

A recently developed trajectory QMC algorithm [137]
allows a cluster of as many as Na � 108 atoms to be treated.

It was found that the energy and the filling factor cease to
depend on the cluster size starting from Na � 24, and the
amplitude of antiferromagnetic correlations, from Na � 54
(for temperature T � 0:25t). Doping reduces the spin correla-
tions function S�p; p� dramatically (Fig. 16), and at large
cluster sizes, the hole and electron doping become asymmetric
in that holes suppress antiferromagnetismmore strongly than
electrons. This is a known experimental fact, which manifests
itself in that the slope dTN= dx in La2ÿxSrxCuO4 is greater
than in Nd2ÿxCexCuO4 [138]. The density of single-particle
states for the undoped case was calculated using the same
trajectory algorithm for the Cu36O72 cluster with Na � 108
[139]. The results support the qualitative picture shown in
Fig. 13 for an insulator with charge transfer. The main
difference from Fig. 13d is that the bonding (B) band has
merged with the lower Hubbard (LHB) band and that the
correlated states have a much greater weight due to the
influence of the nonbonding band (NB).

Physically, the mechanism of formation of in-gap states
in multiband SEC models is easy to understand by
considering exact multielectron bases of the type shown in
Fig. 7b [87]. Without doping, the only filled term is the
lowest one, n � 1, which corresponds to the bonding
dx2ÿy2 ÿ ps molecular orbital of b1g holes. Possible Fermi-
type quasiparticles are shown in Fig. 7b, where particle 1, to
use the electron language, forms an empty conduction band,
whereas 2, 4 and the two-hole terms lying above (not shown
for simplicity) form a complex valence band. In hole
doping, the ground term n � 2 and the single-particle term
are filled with the respective probabilities x and 1ÿ x. As a
result, the particle 3 in Fig. 7b has a spectral weight
proportional to x, and its energy falls within the insulating
gap. Similarly, for electron doping the term n � 0 is filled
with probability x, and the quasiparticle 6 in Fig. 7b forms
an in-gap state.

One further example of exact work is the symmetry
analysis of electronic wave functions in the antiferromag-
netic phase of the copper oxides [140, 141]. One important
result of this analysis is that the orbitals dz2 and dx2ÿy2 do not
mix at the point (p=2; p=2).
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5. Fermi quasiparticles in an infinite lattice

The problems to be discussed in this section are basically the
following: the properties of quasiparticles in undoped CuO2

layers; the role of multiband effects; a comparison with
ARPES data for various insulating and superconducting
copper oxides; and Fermi surface changes resulting from
doping.

5.1 Magnetic polarons in quantum antiferromagnets
In the absence of doping, SEC models of both the p ± d
Hubbard and t ± J varieties, and those involving an SDW-
unstable metallic state [142] reduce to the two-dimensional
S � 1=2 Heisenberg model [7 ± 9]. In the tight-binding limit
U4 t, SDW equations yield a spin wave velocity identical to
that in the Heisenberg model [143]. Formally, these two
treatments of holes differ in that the former starts from a
localized quasiparticle, which is dispersive due to intersite
hopping, whereas in the latter the point of departure is a
Hartree ±Fock bandwith a Fermi surface having the `nesting'
property

e�k�Q� � ÿe�k� : �26�
The Coulomb interaction, accounted for in the random phase
approximation (RPA), causes a transition to an SDW state
(antiferromagnetic if Q � �p; p�). Ab initio, spin-polarization
Hartree ±Fock calculations [144] for the antiferromagnets
La2CuO4, La2NiO4, K2NiF4 and K2CuF4 describe an
insulator with the gap (Eg) and superexchange integral (J)
values consistent with experiment. However, the top of the
valence band has a dispersion inconsistent both with the
ARPES data and with exact numerical calculations, and is
found to lie at the point �p; 0� rather than �p=2; p=2�. The
inclusion of the configuration interaction in the nine-band
model results in shifts in the band energies and the top of the
valence band lying at �p=2; p=2� [144]. However, in all the
approaches above, the holes have a similar physical meaning,
namely, quasiparticles dressed in local spin fluctuations. We
now turn to consider the basic concepts relevant to the subject
and to discuss new results not covered in the previous reviews.

The string picture dates back to Ref. [74], in which the
corresponding quasiparticle was dubbed a quasi-oscillator.

The meaning of this concept is that (quoting from Ref. [145])
``a charge carrier oscillates about the equilibrium position
which slowly moves through the crystal. When moving away
from the equilibrium position, the electron produces a chain
of reversed spins Ð i.e., an antiphase antiferromagnetic
ordering Ð along its path. On its return to an equilibrium
position along the same path, the electron erases the
antiphase ordering thus restoring the normal, antiferro-
magnet ordering.'' Unlike free electrons, a quasiparticle is
described by a superposition of many-particle states. Varia-
tional [146 ± 148] and closely related projection-operator
[149 ± 151] calculations rely on a finite-size set of basis
operators in which, along with the original one-electron
operators, various mechanisms for spin-reversal and inter-
site in-string hopping are included. The difference between a
free particle and a quasiparticle is clearly demonstrated in the
exact-diagonalization t ± J calculation of the spectral density
A�k;o� in Ref. [152]. In this work, the polaron annihilation
operator is taken in the form

ck;" � 1����
N
p

X
j

X3
l�0

exp�ik � Rj�al�k�Aj; l ; �27�

Aj;0 � cj;" ; Aj;l �
X
h2N�j�

Sÿj ch;# ; �28�

Aj;2 �
X
h2N�j�

X
l2N�h�

Sÿj S
�
h cl;" ; �29�

Aj;3 �
X
h2N�j�

X
l2N�h�

X
m2N�l�

Sÿj S
�
h S
ÿ
l cm;# : �30�

Here N�j� denotes the set of the nearest neighbors to site Rj,
and al�k� are the variational parameters. For a free electron,
the spectral density (Fig. 17) has a wide spectrum for
practically all k. The large incoherent contribution to
A�k;o� indicates the inadequacy of the free electron descrip-
tion. For a quasiparticle, in contrast, we obtain narrow peaks
in the much-less-dispersive spectral density, and the small
contribution from incoherent non-quasi-particle states indi-
cates that Eqn (27) is a good choice as far as the description of
the magnetic polaron is concerned.
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5.2 Multiband models
Multiband models are employed both for developing efficient
single-band models [73, 84, 153] and for directly calculating
the quasiparticle band structure [154 ± 157]. The important
point to bear in mind is that, apart from strong intra-atomic
Coulomb correlations, covalent effects, i. e., interatomic p ± d
hybridization, are important in copper oxides. Whereas the
former are easier to incorporate in the framework of a local
approach, for the latter, in contrast, a change to k space is
more convenient. In a search for an approach in which both
the covalence and SEC effects would be accounted for, the
method of local unitary transformations was proposed [158],
in which the Hamiltonian of the model is mapped onto the
space of weakly correlated p orbitals.

The alternative approach of Ref. [159] is an extension of
the band-theory tight-binding method. Let us divide the
lattice into nonintersecting clusters (unit cells) and rewrite
the original Hamiltonian as a sum over the cells plus a sum
over the intercell hops and interactions,

H � H0 �H1 ; H0 �
X
i

Hi ; H1 �
X
i; j

Hi; j ; �31�

where i indexes cells rather than sites. When an exact
diagonalization of Hi has been done, Hubbard operators
can be constructed on the basis of themultielectronmolecular
orbitals. Using relations (14) and their spin-operator analo-
gues, the intercell Hamiltonian can also be written in the X
representation. As a result, the original Hamiltonian is
written in the exact form

H0 �
X
ing

�Eng ÿ nm�X gg
i ; H1 �

X
i j

X
g1g2g3g4

Lg3g4
g1g2

X
g1g2
i X

g4g3
j :

�32�

The single-band Hubbard Hamiltonian in the X representa-
tion is formally the same, the only difference being in the

structure of the local basis Eng. For the Hubbard model this
basis consists of four states (5), whereas in (10), for a cell in the
form of a CuO2 cluster, the number of states in the local basis
is� 100. Thus, Hamiltonian (32) differs quantitatively, rather
than qualitatively, from its single-band Hubbard counterpart
in theX representation. Therefore, themethods developed for
the Hubbard model may be used here as well, with the
perturbation being the intercell hopping and interactions
and the zeroth approximation accounting in an exact way
for both the SEC and covalent effects within the cell. Note
here that the matrix elements involved in the problem depend
on the size of the cluster. Denoting the number of atoms in the
cell byN, each eigenstate contains a factor 1=

����
N
p

. The matrix
element hg1jailsjg2i contains a factor 1=N. The hopping
operator c�i cj acquires a factor 1=N2, and the four-fermion
Coulomb interaction operator, a factor 1=N4. The renorma-
lization of the effective intercell hopping, eT � Tpd=N

2, may
generally be compensated by the increase in the number of
scattering channels, so that representation (32) does not make
it easier to obtain an exact solution, nor does it offer any
advantages in the vicinity of the Mott ±Hubbard transition,
where the bandwidth W is of the order of the insulating gap
Eg. Copper oxides, however, are far from theMott ±Hubbard
transition [160] and usually obey the condition W5Eg, so
that the band-narrowing effect is felt by each individual
quasiparticle.

In order to calculate the band structure of the quasipar-
ticles, various formulations of perturbation theory in intercell
hopping can be employed. In the simplest, the `Hubbard I'
approximation, the dispersion relation is of the form [156]

det
�
dmndfg

ÿ
oÿ O�am�

�ÿ F�am�
�
Amn

fg �k� � Bmn
fg �k�

�	�0 ;

�33�

where the subscripts f and g refer to two antiferromagnetic
sublattices, the indices m and n designate quasiparticles, and
A and B are the p ± d and p ± p intercell hopping matrices.
The cluster treatment has been applied to the three-band p ± d
[161 ± 163] and five-band p ± d [73, 84] models using the CuO4

cluster as a cell. The problem of nonorthogonal molecular
orbitals, stemming from there being a common oxygen ion to
two neighboring CuO4 clusters, was resolved by constructing
Wannier functions centered at copper sites and defining the
Hubbard operators on the basis of them. Despite the
difference in the unit cell used, Refs [81, 84] arrive at the
same conclusion about the influence of dz2 orbitals, namely
that the stabilization of the B1 triplet due to the Hund
configuration j dx2ÿy2 dz2i restricts the applicability of the
single-band model of the CuO2 layer. The effects arising
from the proximity of the two-hole singlet and the triplet are
treated in Ref. [81] which calculates the hole dispersion in the
antiferromagnetic phase in the no-doping case (Fig. 18).
Figure 18 also shows ARPES data for Sr2CuO2Cl2 [14] as
well as the t ± J dispersion calculated in the self-consistent
Born approximation (30). In the calculation of Ref. [27],
quantitative agreement with experiment is obtained along
GM, but not in the GX and XY directions. An attempt to
improve the agreement by including a next-nearest-neighbor
hop t 0 [164] succeeded for the XY line, somewhat worsened
the agreement on the GM line, and gave nothing for GX.
There is no experimental evidence to support the conclusion
of the t ± J model about the nearly degenerate energies at
points �p=2; p=2� and �p; 0�. In our view, it is the limited
applicability of the t ± J model itself, discussed above, that
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explains all these discrepancies. In fact, for all points in the
Brillouin zone there is good agreement with experiment in a
narrow region DE � 0:1 eV near the top of the valence band,
and greater discrepancies deeper into the band. At the same
time, a calculation with the dz2 orbitals [81] shows the
distinctly better agreement over the entire Brillouin zone.
The fact that it is precisely at �p=2; p=2� where the t ± Jmodel
is good presumably relates to the fact that dx2ÿy2 and dz2
cannot mix for symmetry reasons. At the bottom of Fig. 18
one can also see a nondispersive level corresponding to hole
excitation into the two-particle triplet state. The absence of
dispersion and the incoherent nature of the excitations were
also found in an extended t ± Jmodel with triplet holes [165].

The introduction into the t ± t 0 ± t 00 ± J model of matrix
elements for hopping to the second (t 0) and third (t 00)
coordination shells [166] removed the main disagreement
between the t ± t 0 ± t 00 ± J model and experiment, related to
the nearly degenerate nature of the quasiparticle energies
E�p=2; p=2� and E�p; 0�. Intracell hopping (t 0 and t 00) pushes
the level E�p; 0� into the valence band in agreement with the
ARPES data. A comparison of the A�k;o� obtained for
undoped and doped (x � 10%) clusters of 16, 18 and 20
atoms using the exact-diagonalization method shows that the
main effect of doping is to shiftA�k;o� by� 0:5t for the wave
vectors �k; 0�, p=24 k4 p, which is precisely the reason for
the formation of a plane wave near �p; 0�. Recall that the
magnitude of the hopping integrals t 0 and t 00 depends on the
detailed nature of the multiband models in their low-energy
reduction to t ± J [72, 73].

One further perturbation approach to treating clusters
involves the diagram technique for X operators [86]. This
method has proved useful in considering superconductivity in
the p ± d model [167, 168] and explaining the electron ± hole
asymmetry in the phase diagram of n- and p-type copper
oxides [169].

5.3 Electronic structure of doped systems
At finite hole concentrations one faces the problem of the
distortion of antiferromagnetic order by other holes, which
has been treated both in the tight-binding approximation
[170] and in the weak-binding limit (`spin-bag' model [143]).

In the SDW state, a doped hole reduces the sublattice
magnetization locally on the scale of the coherence length

zSDW �
vF

pDSDW
; �34�

where vF is the velocity at the Fermi surface, and DSDW, the
order parameter of the SDW state.

As little as 2% Sr-produced holes in La1.98Sr0.02CuO4 or
14% Ce-produced electrons in Nd1.86Ce0.14CuO4 suppress
the three-dimensional antiferromagnetic order. As shown in
Ref. [171], short-range order persists with a correlation length
z � dCu�Cu

=
���
x
p

(dCu�Cu
� 3:8A being the copper spacing in

the CuO2 plane), indicating holes to be responsible for the
reduction of short-range order in the CuO2 plane. Incom-
mensurate spin fluctuation in La2ÿxSrxCuO4, with the
w00�q;o� peak near q � Q � �p; p� splitting in four due to �d
shifts along the x and y axes, were observed for x � 0:075 and
x � 0:14 [172]. Themost recent neutron scattering data on the
family of La2ÿxSrxCuO4 single crystals with x � 0:04 ± 0:18
show that the splitting of the peak varies with the hole
concentration (Fig. 19), the measure of incommensurability,
d, depending on the concentration in the same way as tc. The
threshold xc above which d differs from zero coincides with
the superconductivity threshold. The existence of incommen-
surate spin fluctuations in YBa2Cu3O6�x remains an open
question [30], possibly due to the holes being distributed in a
special way between the CuO2 layers and CuO chains [174,
175]. It has been shown [176] that upon doping, holes fill the
chain states up to x � xc and that at x > xc they rapidly
overflow to the plane, suppressing antiferromagnetism at
xc � x0 � 0:4.

Even in the region of optimum doping, an electron moves
in a background of strong antiferromagnetic-type spin
fluctuations. In the t ± J, Hubbard, or p ± d descriptions of
quasiparticles at finite hole concentrations, much reliance is
placed on the slave-boson and slave-fermion concepts [7 ± 9],
which make it possible to obtain an efficient band model
satisfactorily describing both the spectroscopic and kinetic
properties of the normal phase [177]. Figure 20 shows the
dispersion of the Zhang ±Rice band for two Brillouin zone
directions in YBa2Cu3O7 and YBa2Cu3O8 [179], as predicted
by the three-band p ± d model. Good quantitative agreement
is seen with the ARPES data of Ref. [178]. The splitting of the
two bands in the figure is due to hole tunneling between
neighboring CuO2 planes.

If there were no fluctuations and long-range order were
present, an SDW state gap would appear in the carrier
spectrum. Since we actually have short-range order, how-
ever, the SDW gap is washed out. This is how the concept of
the spin pseudogap emerges. To describe it, a modification of
the standard mass-operator expression was proposed, [33]

S�k; ien� � U2T
X
q;on

w�q; ion�G0�kÿ q; ien ÿ ion� ; �35�

w�q; ion� being the spin susceptibility, by phenomenologically
introducing an expression for w with a diffuse maximum near
the antiferromagnetic wave vector Q � ��p; �p�. The
quasiparticle density of states calculated in this way shows a
decrease near the Fermi surface, which may be attributed
either to a partial rearrangement of the band structure or,
alternatively, to the appearance of a pseudogap. On the other
hand, the states pushed away from the Fermi surface produce
density-of-states peaks at the edges of the gap, seen as
satellites or shadow bands in the photoelectron spectra.

(0; 0) (p=2; p=2) (p=2; p=2)(p; p) (p; 0) (p; 0)(0; 0) (0; p)

ÿ0:7

ÿ0:8

ÿ0:9

ÿ1:0

ÿ1:1

ÿ1:2

Sr2CuO2Cl2E, eV

Figure 18. Electron dispersion near the top of the valence band of an

undoped antiferromagnetic CuO2 layer in comparison with ARPES data

[14]. Open rectangles, theory; circles with vertical bars, experimental data

[14]. Solid and dashed curves are from the t ± t 0 ± J [164] and t ± J [27]

models, respectively. (After Ref. [81]).
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Because electrons move in fluctuating antiferromagnetic
regions, the appearance of shadow bands actually relates to
local Umklapp processes, since the states k and k�Q are
equivalent in the reduced Brillouin zone. That this is indeed so
is confirmed bymicroscopic calculations ofA�k;o�within the
Hubbard model using the QMC approach [35] or perturba-
tion theory [36] (the term microscopic meaning that no
phenomenological expressions are used for susceptibility).
For the diagonal kx � ky � k, an Umklapp process in the
antiferromagnetic phase results in the k1 � �k; k� and
k2 � �pÿ k; pÿ k� quasiparticles having the same energy.
In Fig. 11, which shows the A�k;o� calculated for the half-
filled Hubbard model, this is seen for k1 � 0:25p (1, 1) and
k2 � 0:25p (3, 3). However, the intensities, which are equal in
the S � 1=2 Heisenberg antiferromagnet, redistribute them-
selves in the finiteU=tHubbard model. For k2 � 0:25p (3, 3),
the integral of A�k;o� over the filled portion of the spectrum,
which determines the intensity of the photoelectron spectrum,

is 23% of the total spectral weight (for U=t � 8). On doping,
the filled states for k � k2 decrease in weight, giving � 10%
for hni � 0:87 and 4% for hni � 0:70 [35]. As regards the spin
correlation length, the same calculations yield z � 1:5a for
hni � 0:88 and z < a for hni � 0:77. According to Ref. [35], at
the optimum doping the intensity of shadow band satellites
slightly exceeds the noise level and is therefore measurable,
whereas in overdoped samples these satellites are too weak to
observe.

Very interesting results concerning quasiparticle spectra
in the two-dimensional Hubbard model have been obtained
by self-consistent mass-operator calculations [36] using the
FLEX (fluctuation exchange) approximation. This approx-
imation [180, 181] goes back to the early idea [182] of a self-
consistent perturbation theory satisfying the Ward identity
and thereby also the particle number, momentum, and energy
conservation laws. The resulting equations for S and G are
usually solved numerically on the imaginary axis, after which
a complex problem of analytical continuation to the axis of
real frequencies must be addressed. In Ref. [36], numerical
calculations are made for S�k;o� ig�witho real and g < pT
small, which makes the analytic continuation for g! 0 an
easy task. Results for various concentrations x � 1ÿ hni are
presented in Fig. 21, in which the pseudogap at x � 0:12 in the
density of states appears as a forerunner of an antiferromag-
netic SDW state. The spin correlation length is found to be
z � 2:5a, in good agreement with the neutron data. Thus,
both the QMC and FLEX approaches confirm that satellites
with z � 2a are indeed possible.
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Figure 22 shows the quasiparticle dispersion constructed
in the FLEX approximation from the positions of spectral
density maxima near X � �p; 0�. For x � 0:22, there is only
one band, with a saddle point at X giving a Van Hove
singularity. For x � 0:12, below the optimum value, the
main (large-weight) band has almost the same dispersion
and shows a flatter portion for o � 25 meV above the Fermi
level. To the right of X, the dispersion in this band shows a
dramatic increase, leading to a drop in the density of states.
Open squares for x � 0:12 indicate shadow bands. It is
interesting that the shadow bands calculated in Ref. [36] do
not, in contrast to Ref. [33], correspond to the poles of the
Green's function but rather result from the redistribution of
intensity due to quasiparticle attenuation processes. Under

long-range order conditions, the coupling between the k and
k�Q states would indeed be secured by Umklapp processes.
With short-range order, we have dynamic coupling deter-
mined by the decay of the state k into the final state k�Q as a
result of attenuation. Spin fluctuations are not the only ones
acting to renormalize the Hartree ± Fock quasiparticle spec-
trum. Earlier, in Ref. [183], it was shown that the exact mass
operator of the Hubbard model consists of three terms
accounting for fluctuations in spin density, electron density,
and two-particle excitations. An expression of this type was
employed in three-band-model FLEX calculations in Ref.
[184], which gives virtually identical results to those from the
QMC method and indicates the spin fluctuations contribute
the most to the mass operator. The plane waves near point x
result in there being a Van Hove singularity in the density of
states N�E�. A similar type of singularity is known in one-
electron band theory, but its origin there lies in band effects,
whereas in models with strong correlations the flat band
results from the strong correlations themselves. While band
effects are easily suppressed by impurities, the correlation-
related band narrowing and small-dispersion features are
stable to impurities.

The maximum in the imaginary part of the spin suscept-
ibility Im w�q;o� in Ref. [184] corresponds to spin fluctua-
tions with an incommensurate wave vector and energy os.
For doping x < 0:25, os � 0:01 ± 0:03t and depends linearly
on x. For the imaginary part of the electron mass operator,
there is a nontrivial result [184] that ImS � o foro > os and
ImS � o2 for o < os. Thus, Fermi liquid properties are
exhibited only at the very lowest energies. A similar result
was obtained earlier for mixed-valence systems using the
periodic Anderson model and the X-operator diagram
technique [185].

5.4 Concentration dependence of the Fermi surface
and the violation of Luttinger's theorem
In the spirit of the rigid-band model, the Fermi surface at low
hole concentrations is very naively described as consisting of
hole pockets centered about the point �M, whose volumes are
proportional to the hole concentration x. Although direct
experimental evidence of small hole pockets is lacking, the
kinetic, and in particular the Hall data indicate that the
carrier (hole) concentration nh / x [4 ± 10]. Theoretical
calculations using the t ± J [186] and two-dimensional
Hubbard [187] models do support this picture, but only if
the concentration is not too low, x5 0:10. The region
x � 0:05, with the insulator-metal transition and incipient
superconductivity, has been little explored. Quality samples
with a sufficiently uniform dopant distribution are hard to
fabricate, possibly because of the phase separation process in
an antiferromagnetic semiconductor, in which carriers of
finite concentration accumulate to form a conducting drop
[188, 189]. However, even far away from the insulator-metal
transition the concentration dependence of the Fermi surface
is nontrivial and exhibits non-Fermi-liquid effects. This
question has been studied [187] within the FLEX approxima-
tion of the Hubbard model. It was found that the relaxation
rate Gk � ÿImSk�o � 0�, which shows Fermi-liquid beha-
viorGk / T 2 in highly doped systems with x5 0:20, increases
with decreasing temperature in the shadow band in under-
doped systems �x � 0:11� instead. For the main band, the
limit of Gk at T! 0 is unclear, because FLEX calculations
are performed numerically and at finite temperatures. Since a
small scale of o�q energies (o

�
q � 1 ± 5 meV) exists, determined
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by the accuracy of the calculations, one can only speak of the
anomalous behavior of Gk at T > o�q, which results in the
violation of Luttinger's theorem [190]. The volume of the
Fermi surface is given by

nLutt�T� � 2

N

X
k

y
ÿ
mÿ ek ÿReSk�o � 0�� ; �36�

and the particle concentration is given by

n�T� � 2

N

X
k

nk � ÿ 2

N

X
k

�1
ÿ1

do
p

f�o� ImGk�o� i0�� ;

�37�
where f�o� is the Fermi distribution function. Luttinger's
theorem states that for T � 0

n�T� � nLutt�T� : �38�

which when extended by lifting the assumption Gk � 0,
becomes [187]

n � nLutt � 2

pN

X
k

arctan

�
Gk

ek �ReSk�0� ÿ m

�
; �39�

which is exact in the limit T! 0. Figure 23 shows the
deviations from Luttinger's theorem, obtained by directly
solving the FLEX equations (solid line) and by using Eqn (39)
(dashed line). Note that Eqn (38) may fail due to the
temperature broadening of the Fermi distribution Ð hence

the approximate equality symbol in (39). The inset to Fig. 23
shows, however, that this effect is small, at least an order of
magnitude less than the deviation from Luttinger's theorem
which we are discussing.

The reason why Luttinger's theory is violated is the non-
zero value of Gk. While Gk 6� 0 is symmetric in states below
and above the Fermi surface, the summation over k on the
right-hand side of (39) causes some terms to compensate,
giving n � nLutt. If, however,Gk is asymmetric, as is the case in
the FLEX approximation (because the maximum value of Gk

relates to shadow bands outside the main Fermi surface), n
deviates from nLutt. Since a comparison shows that the solid
and dashed lines agree well, the violation of Luttinger's
theorem is due to the anomalous properties of Gk which, in
turn, relate to the existence of the shadow bands. Indeed, the
very concept of the shadow bands is due to the fact that the
spectral density partially moves from beneath the Fermi
surface to above it, so that the particles beneath become
fewer, and it is no surprise that the theorem is violated. For
x > 0:20, above the optimum doping values, it has been
shown [187] that the attenuation Gk ! 0 for T! 0, and
Luttinger's theorem therefore holds. For this Fermi liquid
region, both theoretical calculations and ARPES data
indicate nesting of the Fermi surface in the �p; p� direction
[10]. Although the nesting is most pronounced in Bi-2212, it is
also seen in Bi-2201 and, possibly, also in YBaCuO and
La2ÿxSrxCuO4. As is well known, this property makes the
normal metallic state unstable toward SDW and CDW
phases, leading to a partial rearrangement of the band
structure. Superconductivity in such electron ± hole pairing
systems was treated in detail in Ref. [142], and with
application to copper oxides, in Refs [191, 192]. The band
theory of phase separation also employs the nesting concept
[193].

6. Electronic properties of the normal phase

To avoid overlapping previous reviews [4 ± 12], we will not
discuss here the unusual temperature dependences exhibited
by many normal phase properties, nor the marginal Fermi-
liquid concept or other approaches developed for explaining
these dependences. In this section we restrict ourselves to two
problemswhich are currently under active discussion, the spin
pseudogap and charge ordering with the formation of one-
dimensional domains (or stripe phases).

6.1 Spin pseudogap
The term spin gap stems from the observation that the
temperature dependence of the inverse relaxation time
�T1T�ÿ1 in NMR experiments exhibits a maximum at
T � 130 ± 150 K, well above the Tc of YBa2Cu3O6�x in the
underdoping region [194, 195]. Later, inelastic neutron
scattering studies [196] identified this gap as that for spin
excitations with q � Q � �p=a; p=a�. Since what is actually
observed is a decrease in the spectral weight w00�Q;o� at low
frequencies and an increase at high frequencies, the term
`pseudogap' was introduced. The pseudogap is also seen in
NMR as a maximum in the temperature dependence of the
spin ± spin relaxation rateT�. NMR evidence for the existence
of a pseudogap at T � T� in various copper oxide super-
conductors is reviewed inRef. [197]. The value ofT� decreases
with increasing hole concentration, and for optimum doping,
T� � Tc (Fig. 24). A pseudogap in the quasiparticle spectrum
also shows up in infrared optical spectra, Raman spectro-
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scopy, and in the kinetic properties (see review [198]). Finally,
in Figs 3 and 4, which showARPES results for Bi-2212 oxides
with varying hole concentration [15], one can directly see the
opening of a gap at the Fermi surface along the �p; 0� ± �p; p�
line as the hole concentration decreases. The macroscopic
nature of the pseudogap is the subject of much discussion at
present. In our view, the formation of local antiferromagnetic
domains, which produce shadow bands and have been
discussed in Sections 5.3 and 5.4, is quite enough to account
for the pseudogap. There are other proposals, however, such
as local quasiparticle pairing without inter-pair phase
coherence [39] and the separation of the charge and spin
degrees of freedom [45], among others. According to Ref.
[199], the spin gap is due to the singlets formed from the spins
of adjacent CuO2 layers, the interaction between the spins
being enhanced by strong in-plane spin fluctuations.

6.2 Quasi-one-dimensional charge ordering
When introduced into an antiferromagnetic insulator as a
result of doping, holes form slowly fluctuating metallic stripes
and move quasi-one-dimensionally along them. Between the
stripes there are insulating regions, which induce a spin
pseudogap due to a magnetic analogue of the proximity
effect as shown in Ref. [200]. Experimentally, alternating
conducting and nonconducting stripes were found in
Bi2Sr2CaCu2O8�y in extended x-ray absorption fine struc-
ture (EXAFS) and electron diffraction [201] measurements.
Figure 25 shows the alternation of LTO (low-temperature
orthorhombic) and LTT (low-temperature tetragonal) stripes

with widths L � 2:65a andW � 2a, so that the total period of
the structure is lp � L�W � 4:65a. The EXAFS technique
showed an alternation of Cu ±O bonds with apical oxygen
below Tc, the length of the Cu ±O bond being 2.53A and
2.37A for the LTO and LTT phases, respectively. In Ref.
[201] the tetragonal phase is described as a one-dimensional,
polaronic charge density wave (CDW), whereas the ortho-
rhombic phase is associated with metallic conduction.

For a two-dimensional Fermi gas in the superlattice of
quantum stripes of width L oriented along the x axis, the
vector ky is quantized due to the size effect, so that
k
�n�
y � np=L. For n � 2 we have k

�2�
y � 0:38�2p=a�, which is

very close to the Fermi vector in the GM direction,
kF � 0:37�2p=a� [10]. Therefore the density-of-states peak
due to the y-propagating standing wave of wavelength l � L
falls in the vicinity of the Fermi surface which, according to
estimates [201], increases Tc five-fold as compared with the
uniform case. A system of stripe phases is a special case of the
phase separation phenomenon. Insulating ordering may be
produced both by charge and spin fluctuations. Presumably,
the higher the hole concentration, the lower the relative
contribution of spin fluctuations. For the optimally doped
Bi-2212 system studied in Ref. [201], it is quite likely that
charge ordering is responsible for the insulating properties of
the nonconducting stripes.

The conclusion about the nonuniform distribution of
charge in TmBa2Cu4O8 was made based on NQR studies
[202, 203]. In Ref. [202], two stripe types Ð straight stripes
along [1, 1, 0] and zigzag stripes along [1, 0, 0] with a period of
2aÐwere proposed. Both separation possibilities lead to the
formation of `spin ladders' [204] with copper spins coupled by
a strong antiferromagnetic exchange J. The ladders are
separated by conducting stripes, with antiferromagnetic
correlations weakened by the presence of carriers. For
exchange between the ladders lt, the spin excitation spec-
trum has a gap with a width from 0.5 t at l � 0 to zero at
l � 0:25 [204]. Thus, the ordering of separated electrons into
a stripe phase may lead to a spin gap, although further
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investigation is needed to clarify the temperature and
concentration dependences of the gap-related effects in this
mechanism.

7. Effects of the electronic system
on the concentration dependences of TN

and Tc in underdoped copper oxides

In this section we will consider the suppressive effects of the
electronic structure on the antiferromagnetism of a material
doped with carriers or in which copper is substituted by other
magnetic ions. Since, on p-type doping, a hole moves mainly
over oxygen orbitals, an additional exchange JCu�O

4 JCu�Cu

arises, producing fluctuations in a Heisenberg antiferro-
magnet and rapidly suppressing three-dimensional long-
range order. A static model with fluctuations was analysed
in Ref. [205]. A t ± J analysis of spin waves including the
interaction of magnons with holes and with electron ± hole
pairs [206, 207] shows both the sublattice magnetization Mi

and spin wave velocity v to increase nonlinearly with
increasing hole concentration. The critical concentration xc
can be determined not only from the condition Mi�xc� � 0,
but also by requiring the vanishing of the magnon velocity
[208]. As shown in Ref. [207], both approaches predict
virtually the same value of xc, and this value agrees quite
well with the experimental La2ÿxBaxCuO4 data. By extending
the calculations of Refs [206, 207] to finite temperatures, the
concentration dependence of the NeÂ el temperature was
derived [209].

The asymmetry of the magnetic phase diagram for
electron and hole doping originates from asymmetry in the
electron structure [210], because whereas p-type systems
display frustrations, in n-type systems we actually observe
diamagnetic substitution. Neglecting covalence, i.e., assum-
ing that in the absence of doping all copper ions are in the d9

state with spin S � 1=2, one additional electron produces the
d10 configuration with S � 0, which is indeed equivalent to
diamagnetic substitution Ð for example, in the
La2Cu1ÿyZnyO4 system. Experimentally, this equivalence
was demonstrated by the similarity of the TN�y� dependences
in La2Cu1ÿyZnyO4 and Pr2ÿyCeyCuO4 [138].

Due to covalence, the ground state of the cell in the
absence of doping is a superposition of a hole at copper and
a hole at oxygen,��GS�nh � 1�� � uj d9p6i � vj d10p5i ; �40�

where u and v are the coefficients determined by the
parameters of the p ± d Hamiltonian, u2 � �1� D=n�=2,
D � ep ÿ ed, n2 � D2 � 8t 2pd. After adding an electron, the
cell is in the state jGS�nh � 0�i � j d10p6i, so that the
diamagnetic substitution at a copper ion upon n-type doping
occurs with probability u2 < 1, not 1 as in the absence of
covalent effects. As a result, the slope of the concentration
curve is different in n-type systems and diamagnetically
substituted systems [211]. Although this difference is small,
because u2 � 0:8 for realistic values of the relevant para-
meters, it agrees well with the data of Ref. [138].

The suppression of antiferromagnetism and superconduc-
tivity due to the substitution of copper by various magnetic
(Fe, Co, Ni) and non-magnetic (Zn, Al, Ga) ions has been
studied in considerable detail. In Y-123, trivalent impurities
generally substitute Cu1 sites in Cu ±O chains, and divalent
Zn and Ni substitute in-plane Cu2 sites [212]. The suppres-

sion effect of various impurities is conveniently compared
using the La2ÿxSrxCu1ÿyMyO4 system (M � Fe, Co, Ni, Zn,
Ga, Al) in which all impurities are located in the CuO2 plane.
Systems with Cu substituted by Ni are the most anomalous in
behavior: the slope dTN= dx for Ni is almost three times less
than for Zn. For Zn, dTN= dx � ÿ17K (at.%)ÿ1, and for Ni,
dTN= dx � ÿ5:5 K (at.%)ÿ1 [213].

The Tc�y� dependences for La1.85Sr0.15Cu1ÿyMyO4

proved to be virtually the same for the nonmagnetic Zn, Al,
Ga and magnetic Co impurities; the most rapid falloff of Tc

was found for Fe and the slowest, for Ni [214]. Assuming a
low-spin state for Co3+, it proved possible [214] to qualita-
tively explain the concentration dependences Tc�y� and the
magnetic properties of the impurities Co, Zn, Ga, Al, and Fe,
but the situation with Ni is more difficult. From static
susceptibility measurements, the magnetic moment at a
nickel atom turned out to be even smaller than S � 1=2,
instead of the S � 1 anticipated for Ni2+. A small magnetic
moment and a slow falloff of Tc�y� were also reported for
YBa2Cu3ÿyNiyO7 [215].

The multielectron analysis in Ref. [216] not only provided
quantitative and qualitative agreement with the concentra-
tion dependences of Tc and TN but also explained the
anomalies that arise when Cu is substituted by Ni. For-
mally, the Ni2+ ion has the configuration d8, which is
equivalent to hole doping as far as the number of holes per
CuO2 cell is concerned, and the ground state of the system
should therefore be considered in the two-hole sector of
Hilbert space. Due to the SEC effects, the contribution from
the p6d8p6 configuration is suppressed, and the ground state
(Zhang ±Rice singlet) is described by a mixture of configura-
tions��GS�nh � 2�� � u0jp5 d10p5i � v0jp5 d9p6i ; �41�

where u20 � �1ÿ D0=v�=2,D0 � Dÿ Vpd, n20 � D2
0 � 8t 2pd. This

result is obtained in the limit Ud � 1, when the contribution
from d8 is zero. For Ud � 10 eV, the contribution from d8 to
the ground state is � 1%. Due to the Coulomb interaction
between Cu and O, the charge transfer energy is renorma-
lized, D0 < D, increasing the role of covalence in the two-hole
compared to the one-hole sector. As a result, we see from (41)
thatNi2+ in the CuO2 lattice is not in the state S � 1, but with
probability u20 has S � 0 in configuration d10 and with
probability v20 has S � 1=2 in d9. Taking D � 2 eV, tpd � 1
eV, and Vpd � 0:6 eV, the weights are found to be u20 � 0:28
and v20 � 0:72. The effective spin at nickel,

SNi � v20 � 0:5 ; �42�

is 0.36 [215].
The concentration dependence of TN for diamagnetic

substitution has been calculated in two different ways. A
QMC calculation using the two-dimensional low-anisotropy
Heisenberg model showed that for an anisotropy-to-
exchange ratio K=J � 10ÿ3, dTN= dx is close to the experi-
mental value. In the Hubbard model, diamagnetic substitu-
tion was modeled by spin wave scattering on a static magnetic
impurity, with the magnon mass operator calculated in the
random phase approximation [217]. As a result, TN�x� is
given by

TN�x� � TN�0�
�
1ÿ ax ln

1

r

�
; �43�
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where a � 1, r � Jjj=J? � 6� 10ÿ3 for La2CuO4. Since
TN�0� � J ln�1=r�,

dTN

dx
� ÿaT

2
N�0�
J

:

The inclusion of anisotropy produces a gap Da in the spin
wave spectrum and yields a renormalization
r! �r2 � �Da=2J?�2�1=2. The value of Da=J is of the same
order (� 10ÿ3) as r. The resulting slope dTN= dx is also close
to the experimental value for substituting Cu by Zn. As
regards dTN= dx for substitution by nickel, Eqn (41) shows
that with probability v20 the spin of the impurity, S � 1=2, is
equal to that of the lattice, i.e., magnetic disorder is virtually
absent (since the lattice does not change, it may be considered
that, for x5 1, the parameters of theHamiltonian are also the
same, so that the exchange terms JCu�Ni and JCu�Cu

are close
in magnitude in this d9 state). With probability u20 the
substitution of Cu by Ni is equivalent to diamagnetic
substitution, i.e., in La2ÿxSrxCu1ÿyMyO4 the fraction of
diamagnetic centers, which is y for M � Zn, is u20y in the
case of Ni. This means that

dTN

dy
�Ni� � u20

dTN

dy
�Zn� � ÿ4:76 K �at:%�ÿ1 ; �44�

which is very close to the experimental value for Ni,
ÿ5:5 K (at.%)ÿ1. [213]. Thus, the mechanism of antiferro-
magnetism suppression for Zn and Ni substitutions is the
same [216], the quantitative difference between the two
stemming from the fact that their electronic structures are
affected differently by substitution.

A clue to the understanding of the concentration
dependence of Tc for Zn, Ga, Al and Co substitutes is
provided by static susceptibility measurements [213, 214],
which show that the effective magnetic moment of an
impurity is close to that of Cu2+. A lattice with one site
empty behaves, quite obviously, as a single paramagnetic
center due to the sublattices not being compensated. A similar
conclusion about a Zn-induced magnetic moment results
from NMR data [215]. This implies that the Tc suppression
following the substitution by formally nonmagnetic impu-
rities is in fact due to the scattering of the Cooper pairs by
magnetic moments that are induced by the impurity locally in
an antiferromagnetic environment, i.e., we are actually
dealing with the ordinary BCS magnetic suppression effect.
With this understanding, and taking into account the
quantitative difference in the concentration of diamagnetic
centers on substitution by Zn and Ni, we also obtain an
explanation of the anomalously weak suppression ofTc in the
case when Cu is substituted by Ni. For the slope of Tc�y�, the
following expression, analogous to (44), is obtained [216]:

dTc

dy
�Ni� � u20

dTc

dy
�Zn� : �45�

The Ni-to-Zn Tc�y� slope ratio is 0.38 for
La1.85Sr0.15Cu1ÿyMyO4 [213] and 0.25 for
YBa2(Cu1ÿyMy)3O7ÿx [215], to be compared with the theore-
tical value of u20 of 0.28. Thus, the notion that substituting Cu
by Ni leads to the filling of the Zhang ±Rice singlet and that
the latter remains localized due to the small radius of the
impurity state, provides a unified description of the concen-
tration dependences of both TN and Tc.

It is also interesting to note that, on substituting copper by
transition metals, the concentration dependences in under-
doped systems differ from those in overdoped, as observed
both for La2ÿxSrxCu1ÿyMxO4 (M=Zn, Ni) [218] and for
Bi2Sr2Ca1ÿxYx�Cu1ÿyMy�2O8�z (M=Fe, Co, Ni, Zn) and
Bi2Sr1.6La0.4Cu1ÿyMyO6�z (M=Co, Zn) [219]. In overdoped
systems the dependence of Tc on the hole (p) and impurity (y)
concentration may be written in the form [218]

Tc�p; y� � Tc�p; 0� g�y� �46�

where the function g�y� is independent of the hole concentra-
tion for all investigated substitutions of Cu by Fe, Co, No,
and Zn in the B-2212, Y-123, and La-214 systems. Qualitative
agreement with the Abrikosov ±Gor'kov theory [220] can be
achieved by assuming that the density of states N�0� at the
Fermi level increases with hole concentration and that the
scattering of quasiparticles by impurities is strong enough to
be treated in the unitary limit.

Underdoped systems exhibit strongerTc suppression than
predicted by (46). According to Ref. [218], this is the region
where localization effects are more important.

In n-type systems the differences in the suppression effect
in replacing Cu by Zn, Fe, Co, and Ni agree quite well with
theory [220]. Thus, for a nonmagnetic Zn impurity the
suppression is very weak, whereas for magnetic Ni and Co,
data from ceramic samples [221, 222] show the suppression to
be already complete at a concentration� 1%. Recent studies
on single crystals of Pr2ÿxCexCu1ÿyMyO4�z withM � Ni, Co
support the ceramic data and also show that
dTc= dy � ÿ20 K (at.%)ÿ1 for both Ni and Co [223]. This is
the highest Tc suppression rate among all the copper oxides
for which the effect of substituting copper by transition
metals has been studied to date.

8. Conclusions

Due to extensive experimental and theoretical work, much
progress has been made in recent years in the understanding
of the energy-band structure of the strongly correlated
electron system of copper oxides. The spin-polaron antiferro-
magnetic-lattice description of holes in underdoped systems,
which developed from mutually consistent numerical cluster
calculations and various perturbation calculations for the
CuO2 lattice, is well supported by experimental studies,
notably by the ARPES data. In the metallic phases one
distinguishes two regions, underdoped and overdoped sys-
tems, the degree of doping being measured from the optimum
doping level. Although overdoped systems obey Luttinger's
theorem and have a large Fermi surface consistent with band
calculations, SEC effects do still arise in that near point
X � �p; 0� the electron dispersion has a flat portion and that
near eF the band is narrower than predicted by band theory.
This metallic state is sometimes referred to as a strange metal
because some experimental data, in particular the tempera-
ture dependence of the kinetic coefficients, indicate a non-
Fermi-liquid behavior of the system. The concept of a
marginal Fermi surface provides a good qualitative descrip-
tion of this strange behavior.

Even more strange, though, is the region of underdoped
metallic compositions which, in addition to Tc, is also
characterized by the spin pseudogap formation temperature
T�. The body of data summarized above demonstrates that
the formation of the electronic structure in this composition
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region involves strong local antiferromagnetic fluctuations,
which control the pseudogap and the shadow bands, cause the
mass operator to deviate from the Fermi-liquid behavior near
the Fermi energy, and lead to the violation of Luttinger's
theorem. At the phenomenological level, this systemmight be
identified as an almost antiferromagnetic Fermi liquid, a
concept which proved very successful in describing the
deviation from the Korringa law of the spin-lattice relaxa-
tion rate in NMR spectra [224]. The hole concentration
region near the insulator ±metal transition remains least
understood. Although, qualitatively, the concept of insulat-
ing and metallic phases coexisting with the percolation-
controlled insulator ±metal transition is consistent with the
phase separation phenomenon observed in a number of
oxides, it remains unclear exactly when this separation is
disordered and when ordered stripe phases appear. Since
La2ÿxSrxCuO4 does not show any phase separation, the
question arises as to precisely how and when the insulator ±
metal transition occurs in a spatially uniform system.

Although the mechanisms of superconducting pairing
have not been considered here, the dominant role of spin
fluctuations in forming the electronic structure suggests that
they are important in this respect as well. It is commonly
believed that the exchange by spin fluctuations leads to d-type
pairing [6 ± 12], although the possibility of s-pairing due to
exchange by antiferromagnetic fluctuations should also be
noted [225].
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