
Abstract. A review of the theoretical studies on wide-band
microwave sources employing the stimulated Cherenkov radia-
tion of relativistic electron beams in a plasma waveguide is
presented. The motivation for such studies lies in recent experi-
ments on microwave plasma noise sources using intense relati-
vistic electron beams. Although only theoretical problems are
discussed, all the necessary estimates are obtained using para-
meter values taken from actual General Physics Institute ex-
periments, in part already published. A very incomplete
preliminary comparison of theoretical and experimental re-
sults is given.

1. Introduction

Relativistic plasma microwave electronics, both theoretical
and experimental, has been in existence for over 25 years.
From time to time over these years we, in different combina-
tions, have been publishing reviews of the achievements of
this science on the pages of Physics ±Uspekhi [1 ± 4] and
elsewhere [5 ± 8]{. In almost every review we wrote that
``plasma microwave electronics as a science was conceived in
1949 after the pioneering works of A I Akhiezer and Ya B
Feinberg [11], and D Bohm and E Gross [12], who predicted

the effect of beam instability in plasma''. The results of these
first and many subsequent studies at the initial stage of
theoretical plasma microwave electronics are summarized in
reviews [13, 14]{.

Much later it transpired that the effect of beam instability
in plasma has many mechanisms and manifestations. It was
discovered, for example, that of special interest for the
construction of sources of electromagnetic microwaves are
the instabilities caused by the electron beam of proper plasma
electromagnetic oscillations stimulated by Cherenkov emis-
sion. Depending on the density of the beam, the stimulated
emission may be either the wave ± particle effect (single-
particle Cherenkov effect), or the wave ±wave effect
(collective Cherenkov effect) [4, 8, 16] }. In addition, it turned
out that because of the negative dielectric permittivity of
plasma the electron beam may become unstable irrespective
of any emission processes [18 ± 21]. By the early 1980s, as duly
noted in our review [2], the theoreticians for themost part had
masterminded these and many other intricate and complex
features of beam instability in plasma. The next stage was
concerned with the development of a consistent nonlinear
theory and the complex of methods and approaches capable
of explaining and even predicting the results of modern
experiments. It ought to be noted that the first works on the
nonlinear theory of the beam± plasma interaction were
carried out much earlier [22 ± 25]. The results of these early
studies relate mainly to the interaction of weakly relativistic
electron beamswith potential oscillations of plasmaÐ that is,
to a case of little interest for relativistic plasma microwave
electronics.

Concurrently with the theory was developed the experi-
ment on the excitation of electromagnetic waves in plasma by
an electron beam, and their emission from the plasma. The
initial numerous experiments carried out in the 1950s and 60s
revealed, however, that the intensity of this emission is low.
Later it became clear that it was not the low efficiency that
mattered, but rather the electron beam being non-relativistic.
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The waves excited with such beams were highly potential, and
therefore were poorly emitted from the bulk of the plasma.
An excellent historical review of this non-relativistic period of
plasma microwave electronics can be found in Ref. [26].

Pulsed sources of dense relativistic electron beams were
developed in the late 1960s and early 70s, and immediately
found diverse applications in science and technology, includ-
ing microwave electronics [27, 28] {. Relativistic microwave
electronics was born in 1972, when the joint efforts of IOFAN
(then FIAN) and IPFAN (then NIRFI) resulted in the
development of the first sufficiently efficient Cherenkov
microwave generator of the backward-wave tube type using
a relativistic electron beam [31] {. However this generator
used stimulated Cherenkov emission of a dense beam of
relativistic electrons in a vacuum retarding structure, and
thus pertained to the devices of relativistic vacuum micro-
wave electronics. The achievements of relativistic vacuum
microwave electronics are described in detail in Ref. [33] and
collected papers [34].

The first plasma microwave generator based on the
stimulated Cherenkov emission of a relativistic electron
beam in a plasma waveguide (a traveling wave tube)
appeared later, in 1982, and was extensively studied in
experiments [6, 34 ± 37] carried out mainly in IOFAN.

Experimental studies were preceded by theoretical works
[38 ± 40], which laid down the main principles of plasma
relativistic microwave electronics. These and subsequent
papers [2 ± 5, 8, 10] pointed out the main advantages of the
relativistic Cherenkov plasma microwave sources over the
traditional vacuum sources like traveling and backward wave
tubes. These advantages include, in particular, the possibility
to adjust the frequency of radiation relatively easily by
changing the density of the plasma, and to construct both
narrow-band (almost monochromatic) and broad-band
(noise-like) microwave sources realizing either the one-
particle or the collective mechanisms of stimulated Cheren-
kov emission of plasma electromagnetic waves by the
relativistic electron beam. These advantages today are not
just theoretical, they have been demonstrated in experiments
[6, 7, 41, 42].

Another proof of the superiority of the plasma sources of
microwave radiation was given by the recent results of a
theoretical analysis of their efficiency. As demonstrated in
Refs [43 ± 46], the use of diodes with magnetic insulation in
relativistic plasma microwave amplifiers automatically
results in the optimum emission efficiency (about 20%),
which remains practically unchanged when the energy of the
electrons in the beam is above 1 MeV (given, of course, that
the length of the amplifier is sufficient). Because of its
importance, the problem of efficiency will be discussed in
greater detail later on.

The important advantages also include the feasibility of
long-pulse generation and amplification of high-power
microwave radiation in plasma sources. This is possible
because the strong high-frequency field of plasma waves is
separated from metallic surfaces, and there are no break-
downs on the walls of `retarding' structures, which are the

stumbling blocks for high-power vacuum sources of micro-
waves [47 ± 50] (see also collected papers [34]).

It should be observed that until recently the main
emphasis in experimental works on the excitation of micro-
wave radiation in plasma was governed by the desire to
produce narrow-band coherent radiation with an efficiency
as high as possible, and tomove towards shorter wavelengths,
from centimeters to millimeters. Naturally, the same was the
direction of theoretical research, which was mainly concerned
with single-mode (or single-wave) monochromatic (or quasi-
monochromatic) plasma-beam microwave sources. It is
precisely such sources that are dealt with in the reviews
quoted above (see also Refs [5 ± 10]). Recent experimental
studies [41, 42] indicate, however, that for various reasons the
emission spectrum of plasma microwave sources may
broaden. The broadening of the emission spectrum may be
induced, for example, by raising the current in the beam and
generally by increasing the radiated power. The specific
dispersion law of plasma waves (which is almost linear in the
non-potential range) by itself facilitates excitation of these
waves over a broad frequency range. In other words, the
experimental works of recent years have paved the way
towards the construction of high-power broad-band noise
sources of microwaves, based on the stimulated Cherenkov
emission of high-current relativistic electron beams in plasma.

Theory did not fall behind experiment. The broadening of
the emission spectrum resulting from the nonlinearity of the
beam (the generation of harmonics of the principal mode of
the microwave field), the high beam current and the geometry
of the beam±plasma system (the transition from the single-
particle wave ± particle regime to the collective wave ±wave
regime), the capture of a large number of longitudinal modes
into the amplification band, the transverse non-unimodality
of stimulated emission, and the nonlinear frequency shift of
beam and plasma waves was studied in Refs [43 ± 45, 51, 52].
The comparison between theoretical and experimental [41,
42] results qualitatively confirms the validity of the theoretical
developments and, even though such a comparison is not yet
complete (mainly because of the insufficiency of experimental
data available today), we decided to present this review of the
results of these theoretical works tied in with the real
conditions of particular experiments. This work is mainly
focused on the problem of amplification of microwaves in
plasma. The problem of generation has been treated in the
theoretical papers [44, 45, 53]. As far as the experiments are
concerned, at least the latest ones, it is most likely that a
plasma microwave amplifier was realized in Ref. [41], and a
generator in Ref. [42]. Thus, we now have some experimental
material available for comparison with the theoretical results.

2. Initial assumptions and equations

Assume that a relativistic electron beam propagates along the
axis of a metallic waveguide. The beam is injected into the
waveguide in the plane Z � 0 (the Z axis coincides with the
axis of the waveguide), and the collector is located at Z � L
where the horn begins for letting the radiation out. The beam
is injected strictly along the axis of the waveguide, which is
filled with plasma. In the unperturbed state the densities of
the beam and the plasma do not depend on Z. In the
transverse direction, however, their densities are not uni-
form. Both the beam and the plasma are cold, the static
charge and current of the beam are neutralized, and the slow
motion of the plasma ions is disregarded. Assume also that

{ See also monographs [9, 29, 30].

{The experimental parameters were as follows: output radiation power up

to 300 W, pulse length about 20 ns, efficiency of generator about 14%,

wavelength 3 cm. Almost immediately these results were reproduced in the

United States [32].
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the motion of plasma electrons is described by linear
equations, and there is a strong external longitudinal
magnetic field which only permits the beam and plasma
electrons to move along the Z-axis. The validity of these
assumptions and the possible results of their violation are
discussed, for example, in Refs [10, 24, 25, 54, 55] and the
literature quoted therein.

In a strong external longitudinal magnetic field the beam
and plasma electrons are only affected by those field
perturbations whose longitudinal electric component is non-
zero. Such perturbations include the E (or TM) waves with
which we are concerned in this study. It is convenient to
describe the field of such waves in terms of the polarization
potential c which satisfies the following equation [56, 57]:

q
qt

�
D? � q2

qz2
ÿ 1

c2
q2

qt2

�
c � ÿ4p� jbz � jpz� : �2:1�

Here jbz and jpz are the perturbations of the longitudinal
current densities in the beam and the plasma, respectively,
and D? is the transverse component of the Laplace operator.
The perturbations of the current densities are conveniently
represented as

jpz � Pp�r?� jp ; jbz � Pb�r?� jb ; �2:2�
where Pp�r?� and Pb�r?� are the functions which describe the
transverse density profiles, and r? is the coordinate in the
transverse cross section of the waveguide.

The equation for jp follows from the linearized equations
of the cold hydrodynamics of plasma electrons [58] and has
the form

q jp
qt
� o2

p

4p
Ez : �2:3�

Here

Ez �
�
q2

qz2
ÿ 1

c2
q2

qt2

�
c �2:4�

is the longitudinal component of the electric field, and op is
the Langmuir frequency of plasma electrons [it does not
depend on the transverse coordinate, since this dependence
is already included in the first relation in Eqn (2.2)].

Now let us formulate the equations for the perturbation of
the beam current density. Let t0 be the time of injection of
another electron beam into the waveguide through the plane
Z � 0 (the injection velocity is the same for all electrons).
Using the Liouville theorem of conservation of phase volume
and the formal solution of the Vlasov equation [59] one may
demonstrate that the density of current in any cross section
Z > 0 is given by [23, 25]

jb � enb

�
n�z; t0� d

�
tÿ t�z; t0�

�
dt0 ; �2:5�

where nb is the density of the beam electrons (by virtue of the
second relation in Eqn (2.2) this density also does not depend
on the transverse coordinate r?), and n�z; t0�, t�z; t0� are the
solutions of the characteristic set of Vlasov equations

dt

dz
� 1

n
;

n
dn
dz
� e

m

�
1ÿ n2

c2

�3=2

Ez : �2:6�

The system (2.6) is solved with the initial conditions
t�z � 0� � t0, n�z � 0� � u, where u is the beam velocity at
injection{.

Equations (2.1) ± (2.6) form the basis of the theory
presented in this paper.

3. Plasma waves

Consider the frequency spectra of the simplest plasma waves.
To do this we only need equations (2.1) and (2.3) with zero
beam current. The equations being linear, their solution may
be sought in the form

� jp;c� �
�

~jp�r?�; ~c�r?�
�
exp�ÿiot� ikzz� ; �3:1�

where o is the frequency, kz is the longitudinal wave number,
and ~jp and ~c are functions of only the transverse coordinate.

Let jn�r?� be the eigenfunctions of the transverse cross
section of the waveguide �n � 1; 2; . . .�, and k2?n the corre-
sponding eigenvalues. The eigenfunctions and eigenvalues
satisfy the equation

D?jn � ÿk2?njn :

Now we expand ~c in the eigenfunctions, express the
expansion coefficients from Eqn (2.1), and substitute them
into Eqn (2.3), getting as a result the following integral
equation for ~jp:

o2~jp�r?� � o2
p

�
Sw

Kp�r?; r�?� ~jp�r�?� dr�? ;

Kp�r?; r�?� �
X1
n�1

w2

k2?n � w2
Pp�r�?�jn�r�?�jn�r?�

kjnk2
: �3:2�

Here w2 � k2z ÿ o2=c2; Sw is the transverse cross section of the
waveguide, and kjnk is the norm of the eigenfunction. The
condition of solvability of Eqn (3.2) is the dispersion equation
for finding the frequency spectra of plasma waves in a
completely magnetized plasma waveguide in the most
general but implicit form.

With reference to real experiments [6, 35 ± 37, 41, 42], let
us specify the geometry: a circular waveguide of radius R
which contains a thin annular plasma of thickness Dp and
mean radius rp < R. In the theoretical model it is expedient to
assume that the plasma is not just thin but infinitesimally thin
[61], with a transverse density profilePp � Dpd�rÿ rp�, where
r is the coordinate along the radius of the waveguide. Later on
we shall discuss the implications of replacing the real
transverse profile of the plasmawith the infinitely thin profile.

Since the eigenfunctions for the round waveguide are the
Bessel functions, after some cumbersome algebra (see, for
example, Ref. [62]), from Eqn (3.2) we get the explicit
dispersion equation in the form

Dp � o2 ÿ o2
p

w2

k2?p
� 0 ; �3:3�

k2?p �
(
rpDpI

2
l �wrp�

�
Kl�wrp�
Il�wrp� ÿ

Kl�wR�
Il�wR�

�)ÿ1
; �3:4�

{A rigorous derivation of Eqn (2.5) and the limits of its applicability can

be found in the methodological paper [60].
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where Il, Kl are the modified Bessel function and the
MacDonald function, respectively, and l � 0; 1; . . . is the
azimuthal wave number{. At o < kzc formulas (3.3) and
(3.4) define the frequency spectra of the surface plasma
waves, and Eqn (3.4) represents the squared transverse wave
number of these waves.

Consider now the frequency spectra of surface plasma
waves for different wavelengths. In the long-wave limit, when
kz ! 0, from Eqn (3.3) we get

o � op
kzc�����������������������

k2?pc2 � o2
p

q ; �3:5�

where, as follows from Eqn (3.4), the transverse wave number
is given by

k2?p �

�
rpDp ln

R

rp

�ÿ1
; l � 0 ;

2l

(
rpDp

"
1ÿ

�
rp
R

�2l
#)ÿ1

; l � 1; 2; . . .

8>>>><>>>>: �3:6�

At shorter wavelengths, of the order of the radius of the
plasma tube rp, the frequency spectrum is given by (as for
deep-water waves)

o � op

�
kzDp

2

�1=2

: �3:7�

In the range of wavelengths where the spectrum is described
by Eqn (3.6), the longitudinal component of the electric field
of a surface wave falls off very rapidly (exponentially) from
the surface of the plasma tube to the vacuum.

Finally, at wavelengths below Dp �kzDp 5 1� the model of
an infinitely thin plasma is simply not valid, because it does
not take into account the confinement of the fields of the wave
within the plasma tube. If the finite thickness of the plasma is
taken into account, we find thato! op as kz !1, as ought
to be expected. However, this only happens when the plasma
wave becomes highly potential and its Cherenkov excitation
by the electron beam is of no interest for relativistic plasma
microwave electronics.

There is yet another circumstance associated with the
finite thickness of the plasma. As follows from Eqns (3.3) and
(3.4), each azimuthal wave number l in the model of an
infinitely thin plasma corresponds to a unique surface wave
with a squared transverse wave number (in the long-wave
limit) of the order of �rpDp�ÿ1. In addition to these waves, a
finite-thickness plasma also contains oscillations always
confined in the bulk. The estimated squared transverse wave
number of oscillations confined in the bulk is about Dÿ2p ,
which is much greater than the value given by Eqn (3.6) when
Dp 5 rp. Hence it follows that the phase velocities of the
waves confined in the bulk are low, and they cannot be
Cherenkov-excited by a relativistic electron beam. This is
the reason why the finite thickness of the plasma may be
disregarded in the study of the Cherenkov interaction of a
relativistic electron beam with a thin tubular plasma.

Figure 1 shows the dispersion curve for the spectrum of
oscillations of a symmetrical �l � 0� surface wave in an

infinitely thin plasma (curve 1). The curve is plotted for the
following parameters: radius of the waveguide Ð 1.8 cm,
average plasma radius Ð 1.0 cm, plasma thickness Ð 0.1 cm,
plasma frequencyÐ 35� 1010 radians per second. The initial
(the steepest) portion of the curve is described by Eqn (3.5).
The corresponding wave is referred to as the plasma cable
wave [7, 61]. The dispersion law for the next portion of the
curve is given by Eqn (3.7). As the plasma frequency is
approached, the curve ceases to be correct: the finite
thickness of the plasma must be taken into account.

Figure 1 also features the straight line of the Cherenkov
resonance o � kzu (for the beam velocity of u �
2:6� 1010 cm sÿ1) and the point of the single-particle
Cherenkov resonance (wave-particle resonance) of the elec-
tron beamwith the surface plasmawave (point I). FromFig. 1
we see that as the plasma frequency decreases (with increasing
velocity of the beam) the frequency of the Cherenkov
resonance goes down and becomes zero at a certain threshold
value. This threshold value can be found by substituting
o � kzu into Eqn (3.5),

o2
p � k2?pu

2g2 ; �3:8�

where g � �1ÿ u2=c2�ÿ1=2 is the relativistic factor for the
electrons of the beam. The threshold (3.8) depends on the
azimuthal wave number l. As follows from Eqn (3.6), the
lowest threshold value corresponds to the mode with l � 0.

If the plasma frequency is below the threshold, single-
particle Cherenkov resonance is not possible. The absence of
a resonance, however, does not preclude the existence of
stimulated Cherenkov emission, or the stability of the beam in
the plasma. As will be shown below, the threshold is much
lower than that given by Eqn (3.8) when the density of the
beam is high.

4. Linear theory of the amplification of plasma
waves by a relativistic electron beam

In the linear approximation it is more convenient to use the
equations of cold magnetohydrodynamics in place of Eqns
(2.5) and (2.6) for the description of the beam. In this way it is
easy to obtain one equation for jb from Eqn (2.2):�

q
qt
� u

q
qz

�2

jb � o2
bg
ÿ3

4p
qEz

qt
: �4:1�

{ In obtaining Eqns (3.3) and (3.4) one must take into account that the

integrals with respect to radius in Eqn (3.2) can be calculated exactly, since

in the case of an infinitely thin plasma they contain delta-functions.
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Figure 1. Spectra of oscillations in a waveguide with a magnetized thin

plasma and electron beam (neglecting the interaction between plasma and

beam): plasma wave (curve 1); slow beam wave (curve 2); fast beam wave

(curve 3); one-particle Cherenkov resonance (point I); collective Cher-

enkov resonance (point II).
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The latter is the counterpart of Eqn (2.3), and ob �
�4pe2nbmÿ1�1=2 is the Langmuir frequency of the electrons of
the beam. Assuming in the linear approximation [see Eqn
(3.1)] that

jb � ~jb�r?� exp�ÿiot� ikzz� ;
by analogy with Eqn (3.2) we get from Eqns (2.1) ± (2.4) and
(4.3) the following set of integral equations for ~jp and ~jb:

o2~jp�r?� ÿ o2
p

�
Sw

Kp�r?; r�?� ~jp�r�?� dr�?

� o2
bg
ÿ3
�
Sw

Kb�r?; r�?� ~jb�r�?� dr�? ;

�oÿ kzu�2~jb�r?� ÿ o2
bg
ÿ3
�
Sw

Kb�r?; r�?� ~jb�r�?� dr�?

� o2
p

�
Sw

Kp�r?; r�?� ~jp�r�?� dr�? : �4:2�

The condition of solvability of the set (4.2) is the dispersion
equation for finding the complex spectra of the beam-plasma
system. The quantity Kp in Eqn (4.2) coincides with the
second expression in Eqn (3.2). The same expression with
Pp�r�?� replaced by Pb�r�?� defines the quantity Kb.

Before analyzing the general equation, let us consider the
spectra of only the beam waves in the absence of plasma. For
this we need the second equation of Eqn (4.2) withop � 0. To
be consistent with the experimental conditions, we assume
that the electron beam is, like the plasma, also thin annular,
and its density profile is Pb � Dbd�rÿ rb�, where Db is the
thickness of the beam, and rb is its mean radius. In exactly the
same way as the dispersion equation (3.3) was derived, we get

Db � �oÿ kzu�2 ÿ o2
bg
ÿ3 w2

k2?b
� 0 ; �4:3�

where k?b is the beam counterpart of k?p in Eqn (3.4). To find
k?b from the expression for k?p we have to replace the
subscript `p' (for plasma) in the latter by the subscript `b'
(for beam).

In addition to the plasma curves, Fig. 1 also displays the
dispersion curves for the spectra of waves of an infinitely thin
tubular beam in a circular waveguide (recall that the
interaction between the beam and the plasma in this diagram
has not yet been taken into account). The dispersion curves
were plotted for the following parameters: waveguide radius
Ð 1.8 cm; mean radius of the beam Ð 0.65 cm; thickness of
the beam Ð 0.1 cm; current Ð 2 kA; relativistic factor Ð
g � 2; l � 0. The wave with the higher phase velocity
(corresponding to curve 3) is called the fast wave, and the
wave with the lower phase velocity (curve 2) is referred to as
the slow space charge wave. The energy of the slow wave of
the beam is negative, which leads to the instability of the beam
in the plasma [16, 63].

When the finite thickness of the beam is taken into
account, curves 2 and 3 in Fig. 1 are supplemented by the
curves pressed closer to the Cherenkov resonance line
o � kzu. They correspond to the higher radial modes of
space charge, confined in the bulk of the beam. Later on we
shall discuss the effect of these modes on the characteristics of
beam-plasma interaction.

The intercept (point II) of the dispersion curve of the
plasma wave and the dispersion curve of the slow beam wave
(point II in Fig. 1) is the point of collective Cherenkov
resonance (wave ±wave resonance).

Now let us go over to the general equations (4.2). We
assume that both the beam and the plasma are infinitely thin.
We multiply the first equation in Eqn (4.2) by d�rÿ rp�, the
second by d�rÿ rb�, and integrate with the weight r from zero
to R. Eliminating ~jp�rp�, ~jb�rb�, we get the following
dispersion equation of the linear theory of beam± plasma
interaction:

DpDb � Yo2
p

w2

k2?p
o2

bg
ÿ3 w2

k2?b
: �4:4�

From Eqn (4.4) we see that the beam-plasma interaction is
indeed the interaction between the beam waves (4.3) and the
plasma waves (4.4). The efficiency of this interaction is
defined by the coupling coefficient Y on the right-hand side
of Eqn (4.4). The coupling coefficient depends on the
frequency (and the longitudinal wave number), the mean
radius of the beam, and the mean radius of the plasma. If the
beam and the plasma are perfectly aligned in the cross section
of the waveguide, the coupling coefficient is equal to unity.
Otherwise the coupling coefficient is less than one, and
reduces with increasing frequency. Physically, the coupling
coefficient shows how far the field of the beam wave
penetrates into the plasma, and how far the field of the
plasma wave penetrates into the beam. We do not quote
here the general expression for Y because of its complexity
(for details see Ref. [62]), and will confine ourselves to two
extreme cases.

For the round waveguide under consideration with an
infinitely thin annular beam and the plasma in the low-
frequency limit the coupling coefficient is given by (for
definiteness, rb 4 rp and l � 0):

Y � ln�R=rp�
ln�R=rb� : �4:5�

In the opposite high-frequency limit the asymptotic expres-
sion is

Y � exp
ÿÿ2wjrp ÿ rbj

�
: �4:6�

In the first approximation w may mean o=�ug�, since the
Cherenkov instability corresponds to kz � o=u.

Being mainly concerned with the problem of amplifica-
tion, we seek a solution of the dispersion equation (4.4) in the
form

kz � o
u
�1� d� ; �4:7�

where d is the dimensionless complex gain coefficient. Since
the density of the beam is actually always less than the density
of the plasma, we have jdj5 1. Substituting Eqn (4.7) into
Eqn (4.4), after some straightforward algebra we get a cubic
equation which takes into account the effects associated both
with the high beam current and the non-potentiality of the
beam and plasma waves:�

1ÿ ap�1� 2g2d���d2 ÿ ab�1� 2g2d��
� Yapab�1� 2g2d�2 : �4:8�

Here

ap �
o2

p

k2?pu2g2
; ab � o2

bg
ÿ3

k2?bu2g2
�4:9�
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are the `density' parameters which, like the coupling coeffi-
cient, only depend on o=�ug� (through squared transverse
wave numbers). Equation (4.8) is derived for the caseo5op,
when the dispersion of the surface plasma wave is close to
linear. Equation (4.8) can also be extended to the range of
higher frequencies. We are not going to do this here to avoid
cumbersome mathematics (see Ref. [62]). Instead, we shall
show an easy qualitatively sound way of taking the real
dispersion of plasma waves into account at any frequencies
up to op using the simple equation (4.8).

The nulls of the brackets on the left-hand side of Eqn (4.8)
define the longitudinal wave numbers [with the replacement
of variable (4.7)] of the plasma wave traveling in the same
direction as the beam, the fast beam wave and the slow beam
wave. The fast wave is of no interest for our further
discussion. For the plasma wave we have

dp � 1

2g2

�
1

ap
ÿ 1

�
; �4:10�

and for the slow beam wave we get

dÿb �
�������������������
ab � g4a2b

q
� g2ab : �4:11�

Observe that by its properties the slow beam wave is in fact
potential if g2

�����
ab
p

is much less than one; then the wave
number of the slow wave is dÿb �

�����
ab
p

. The parameter g2
�����
ab
p

will be specially discussed later on.
As noted above, when the finite thickness of the plasma is

taken into account we should have kz !1 at o! op.
Naturally, this is not featured by expression (4.10) obtained
for the model of an infinitely thin plasma. One can adjust the
expression for ap in such a way that the dispersion law for the
plasma wave will hold qualitatively for both low and high
frequencies: it is sufficient to make the replacement
ap ! ap�1ÿ o2=o2

p�. This replacement can be conjectured
by considering waves in the waveguide completely filled with
plasma. Equation (4.8) with this correction can be success-
fully employed not only in the low frequency range, but also
at frequencies close to the plasma frequency.

Equation dp � 0 describes, as follows from Eqn (4.7), the
condition of exact single-particle Cherenkov resonance
(wave ± particle resonance). In other words, this equation
defines the frequency at which the velocity of the beam is
exactly the same as the phase velocity of the plasma wave.
Referring to Fig. 1, it is the frequency of point I on the
dispersion curve of the plasma wave.

Equation dp � dÿb describes the condition of collective
Cherenkov resonance (wave ±wave resonance) and defines
the frequency at which the phase velocities of the plasmawave
and the slow beam wave are exactly the same. Referring once
again to Fig. 1, it is the frequency of point II on the dispersion
curves. The frequency of collective resonance is somewhat
higher than the frequency of single-particle resonance.

Depending on the parameters of the beam-plasma system,
amplification is possible in different frequency ranges. If, for
instance, the coupling coefficient Y is large, waves will be
amplified over a broad frequency range, from practically zero
to a frequency above the resonance frequency of point II.
Such broad-band amplifiers have become known as Compton
amplifiers. The dispersion curves of a Compton amplifier are
shown in Fig. 2. These curves are calculated for the
parameters of a real system: beam current Ð 2 kA; mean
radius of the beam Ð 0.65 cm; beam thickness Ð 0.1 cm; a

relativistic factor of 2;mean radius and thickness of plasmaÐ
as those of the beam; and plasma frequency Ð
35� 1010 rad sÿ1. We see that the amplification bandwidth
extends from 0 to about 21� 1010 rad sÿ1. One may say that
Fig. 2 shows what happens to Fig. 1 when the strong
interaction �Y � 1� between the beam and the plasma is
switched on.

The situation is different when the coupling coefficient is
small: then amplification takes place in a narrow or even very
narrow band. Such narrow-band amplifiers are referred to as
Raman amplifiers{. Figure 3 shows the dispersion curves
plotted for the same parameters as those used in Fig. 2, the
only difference being that the mean radius of the plasma tube
is increased to 1.1 cm. This seemingly small separation of the
plasma from the beam has considerably reduced the coupling
coefficient, which has a dramatic effect on the amplification
regime. The frequency band narrows down approximately
from 10� 1010 to 17� 1010 rad sÿ1; and the frequency of the
wave ±wave resonance lies somewhere within this range.
Figure 3 shows what happens to Fig. 1 when the weak
interaction �Y5 1� between the beam and the plasma is
switched on.

Now let us look at the frequency dependence of the
dimensionless gain d [the proper gain is represented by the
imaginary parts of kz Ð that is, Im��o=u�d�]. Although the
dispersion equation (4.8) can be solved analytically (Cardano
formulas), the general solutions are cumbersome and imper-
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Figure 2. Dispersion curves for Compton amplifier (strong interaction

between plasma and beam).

{ In this context the attributes `Compton' and `Raman' are synonymous to

`single-particle' and `collective'.
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Figure 3. Dispersion curves for Raman amplifier (weak interaction

between plasma and beam).
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spicuous. Accordingly, here we shall only quote the analytical
expressions for the limits of small and very high current.

When the beam current is low, and Y � 1, the approx-
imate expression for the complex gain coefficient of a
Compton amplifier is (in analytical expressions we retain
both the imaginary and the real parts of d; the real part of d
will be used later on for evaluating the efficiency of
amplification):

d � 1ÿ i
���
3
p

2

�
1

2g2
Yab

�1=3

: �4:12�

The gain (4.12) is caused by the resonant wave ± particle
interaction, or the stimulated emission associated with the
single-particle Cherenkov effect (the term `Compton effect' is
also used by some authors [4, 34], hence the Compton
amplifier). Amplification with this gain (4.12) occurs at the
frequencies of both single-particle and collective Cherenkov
resonances: there is no difference between these resonances in
the case of low current and Y � 1.

If the beam current is low but Y5 1, the expression for
the complex gain coefficient of Raman amplifier follows
from Eqn (4.8):

d � �����
ab
p ÿ i

�
1

4g2
Y

�����
ab
p �1=2

: �4:13�

The gain (4.13) is caused by the resonant wave ± wave
interaction, or the stimulated emission associated with the
collective Cherenkov effect (the term `Raman effect' is also
used by some authors [4, 34], hence the Raman amplifier).
Amplification with gain (4.13) only occurs at the frequency of
collective Cherenkov resonance: at Y5 1 there is no
amplification at all at the frequency of single-particle
resonance.

There is a parameter which divides the single-particle and
the collective effect in case of low beam currents:

z � Y
2g2

�����
ab
p � Yap

jap ÿ 1j : �4:14�

Formula (4.14) is written with due account for Eqns (4.10)
and (4.11), the condition of wave resonance, and under the
assumption that the beam current is small. Amplificationwith
the gain (4.13) is realized when z5 1, which is obviously only
possible when the coupling coefficient is small. Otherwise the
gain is defined by Eqn (4.12).What the beam currents are that
may be regarded as small will be discussed below.

As the current increases, formulas (4.12) ± (4.14) are no
longer valid, and the analytical solutions of Eqn (4.8) are
rather cumbersome. In this current range the results of
numerical calculations are more convenient and reliable.
The experimental setups discussed in this paper operate in
this range of currents. Let us now embark upon discussing
them.

Figure 4 shows the gain curve for a system with the same
parameters as in Fig. 2 Ð that is, for a large coupling
coefficient (curve a). Such a dependence is rather typical for
a Compton amplifier with high beam current (Fig. 4 and
similar plots only present the quantity Im

ÿ�o=u�d�Ð that is,
the proper gain coefficient). Two vertical straight lines in Fig.
4 mark the frequencies of the single-particle Cherenkov
resonance 11:2� 1010 rad sÿ1 (line 1) and the collective
resonance 15:1� 1010 rad sÿ1 (line 2). We see that the gain
reaches its maximum at a frequency higher than the frequency

of single-particle or even collective resonance. This is a
consequence of the high beam current and the associated
phenomenon of aperiodical modulation of the beam in
plasma which has a negative dielectric permittivity [10, 18 ±
21]. Also, in the case of a high current the frequencies of
single-particle and collective resonances are far removed from
each other, but do not stand out as `resonance' frequencies as
far as the magnitude of the gain is concerned. Accordingly,
one might expect the bandwidth of Compton plasma
microwave amplifiers using high-current beams to be the
broadest, which is indeed confirmed by the experiments [41,
42].

Figure 5 shows the frequency dependence of the gain for
the case corresponding to Fig. 3 Ð that is, for a low coupling
coefficient (the physical parameters of beam±plasma systems
in Fig. 5 and Fig. 3 are the same). The dependence shown in
this diagram is quite typical of Raman amplifiers. We see that
the maximum gain corresponds exactly to the wave ±wave
resonance frequency. Moreover, there is no amplification at
all at the wave ± particle resonance frequency. Accordingly,
the bandwidth of the Raman microwave amplifier should be
narrower than that of the Compton amplifier. So far this
conclusion has been only partly confirmed by experiment.

Observe that in any case, whether the coupling coefficient
is large or small, one should anticipate a broadening of the
band of amplified frequencies as the beam current increases.
By way of example, let us look at the possibility of
amplification of multiple waves with different azimuthal
wave numbers in the experimental system under considera-
tion. The spectra of waves in a circular waveguide containing
infinitely thin plasma are given by formulas (3.3) and (3.4).
Equation (3.4) includes the azimuthal wave number
l � 0; 1; 2; . . . Each azimuthal wave number corresponds to a
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Figure 4.Gain vs. frequency for a Compton amplifier: rp � 0:65 cm (curve

a); rp � 0:8 cm (curve b).
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Figure 5.Gain vs. frequency for a Raman amplifier.
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particular plasma surface wave. So far we have been
considering just one of these. For instance, the results of
calculations represented in the diagrams were obtained for
l � 0. Now the question is the role of the other waves. If the
beam current is small (or, more precisely, tends to zero), the
answer is found from relations of the type of Eqn (3.8). At

o2
p < u2g2k2?p�l � 0�o!0 �4:15�

none of the waves is amplified. At

u2g2k2?p�l � 0�o!0 < o2
p < u2g2k2?p�l � 1�o!0 �4:16�

the azimuthally symmetrical wave is amplified, while the rest
are not, and so on [equations (4.15) and (4.16) explicitly
include the wave numbers (3.6)]. For a finite, and especially
for a high beam current the rules of selection of modes
formulated in Eqn (4.15) and (4.16) do not apply: several
azimuthal modes are found under approximately the same
conditions. By way of an example, Fig. 6 shows the frequency
dependence of the gain in a Raman amplifier for azimuthal
modes from number zero to number three. The parameters in
Fig. 6 are the same as in Fig. 3 andFig. 5.We see that the band
of amplified frequencies is considerably broader than when
only the azimuthally symmetrical mode is taken into account.

There is yet anothermechanism of broadening of the band
of amplified frequencies in case of high currents, which is
associated with the finite thickness of the beam. In addition to
the surface wave, a finite-thickness beam carries new waves
confined in the bulk. These new waves may give rise to
additional resonances Ð or, ultimately, to broadening of the
bandwidth{. This effect may be important in the regime of the
collective Cherenkov effect �Y5 1�, when the band of
amplified frequencies is narrow. Such an effect can only be
revealed by numerically solving the relevant dispersion
equation [66]. Let us consider it for a circular waveguide
with a annular beam and a plasma whose density profiles are
given by

Pa�r� �

0 ; r < ra ÿ Da

2
;

1 ; ra ÿ Da

2
< r < ra � Da

2
;

0 ; r > ra � Da

2
;

8>>>>><>>>>>:
�4:17�

where a � p; b. When Da 5R the plasma and the beam are
thin but not infinitesimally so [in the model of an infinitely
thin beam and plasma we assumed that Pa � Dad�rÿ ra�].
The dispersion equation for profiles (4.17) is extremely
unwieldy [66], and is therefore not reproduced here. Similar
dispersion equations with a detailed derivation can be found,
for example, in Refs [10, 55].

The results of a numerical calculation of the relevant
dispersion equation are shown in Fig. 7, where the imaginary
parts of the complex gain are plotted for a number of plasma
frequencies. Other parameters of the system are the same as
in Fig. 5. We see that at low plasma frequencies, when the
amplified frequencies are not yet high and the coupling
coefficient is not small, the gain behaves in the same way as
in case of the single-particle Cherenkov effect, and there is
nothing peculiar about it. When, however, the plasma
frequency is 35� 1010 rad sÿ1, the gain behaves as in case
of the collective Cherenkov effect, and we observe a new
feature: in addition to the amplification in the main
frequency band (the gain represented in Fig. 5 for the
model of an infinitely thin beam and plasma) there is
amplification in another band marked on the diagram with
vertical dashed lines. This band is attributed to the
interaction of the bulk beam wave with the surface plasma
wave. This interaction is not as efficient as the interaction
between the surface beam and plasma waves. It can be
demonstrated that the ratio of the respective gains is of the
order of �Db=R�1=4. This estimate follows from Eqn (4.13)
and the estimated transverse wave numbers of the bulk and
the surface waves. Note that experiments [41, 42] indicate
that the transverse profiles of the beam and the plasma are
much more sophisticated than the profile described by Eqn
(4.17). Therefore, the issue of the possible mechanisms of
additional broadening of the amplified frequency band
cannot be regarded as completely resolved.

As the electron beam current further increases into the
region not yet covered by experimental studies, Eqn (4.8)
again admits a simple analytical solution.

When, for example, the current is very large{, at the
frequency of single-particle Cherenkov resonance, when
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Figure 6.Gain factors formodes with azimuthal numbers l � 0; 1; 2; 3 for a
Raman amplifier.

{The finite thickness of the plasma gives rise to new plasma waves, but

these waves are not excited by the relativistic beam, and so there are no

additional plasma-related resonances.
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Figure 7.Gain factors for azimuthally symmetrical modes in themodel of a

finite-thickness tubular beam and plasma: op � 20� 1010 rad sÿ1 (curve
1); op � 25� 1010 rad sÿ1 (curve 2); op � 30� 1010 rad sÿ1 (curve 3);

op � 35� 1010 rad sÿ1 (curve 4).

{Later on we shall define the concept of a large current. Here we just

indicate that a `very large current' implies that j2g2dj4 1.
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dp � 0, Eqn (4.11) reduces to the form

d3 � ÿYab
2g2
�1� 2g2d�

�
1ÿ 2g2d

1ÿY
Y

�
: �4:18�

It is easy to see that when the coupling coefficient Y is small,
Eqn (4.18) has no complex roots, whichmeans that there is no
amplification. Recall that the same occurs at the frequency of
the exact Cherenkov resonance at Y5 1 when the beam
current is not that large. At Y � 1, however, Eqn (4.18)
reduces to

d�d2 � ab� � ÿ ab
2g2

: �4:19�

Equation (4.19) describes two coupled oscillatory systems: a
stable plasma system with d � 0 (no amplification), and an
aperiodically unstable beam system with

d � ÿi �����abp : �4:20�

The gain (4.20) is due not to the excitation of plasmawaves by
the beam, but rather by the aperiodical modulation of the
beam in a plasma whose permittivity is negative [18, 19, 21]. A
similar process in the low-current beam and with Y � 1 is
only possible at frequencies much below the frequency of the
single-particle Cherenkov resonance. When the beam current
is very large, the amplification becomes aperiodical even at
the single-particle resonance frequency.

Consider now amplification at the collective resonance
frequency in the case of high currents. When the current is
high, the spectrum of the slow beam wave changes. From the
general expression (4.11) it follows that

dÿb � 2g2ab : �4:21�

The wave with spectrum (4.21) is highly non-potential.
Accordingly, it is more like a wave of current density than a
wave of charge density. Now taking into account the
condition dp � dÿb of collective wave ±wave resonance, from
Eqn (4.8) we get the expression

d � g2ab�2ÿY� ÿ 2ig2ab

����������������
YÿY2

4

s
�4:22�

for the gain which holds for arbitrary Y. When the coupling
coefficient is small the imaginary part of Eqn (4.22) defines
the gain due to the relativistic collective Cherenkov effect.
When, however, the coupling coefficient is close to one, Eqn
(4.22) becomes

d � �1ÿ i
���
3
p
�g2ab : �4:23�

The gain (4.23) is due both to the relativistic collective
Cherenkov effect and to the effect of self-modulation of the
beam in a medium with negative permittivity.

5. Generation

So far we have been mainly concerned with the amplification
of plasma waves by an electron beam. Now we are going to
deal with generation. The amplified wave is partially reflected
from the boundary Z � L of the plasma waveguide and
returns some of the energy received from the beam back into
the system. This may cause self-excitation of the amplifier Ð

that is, the onset of generation. Obviously, generation is not a
welcome phenomenon for designers of amplifiers. Therefore,
an important task of the theory is to define the conditions of
the onset of generation.

We use the following notation: A0 is the amplitude of the
wave from external source at the input boundaryZ � 0;A� is
the amplitude of the wave amplified by the beam at Z � 0;
Aÿ is the amplitude of the plasma wave traveling backwards
and acting as the feedback; K is the coefficient of reflection of
the amplified wave from the boundary Z � L; d� is the gain
factor for the plasmawave [themodulus of the imaginary part
of the quantity (4.7), plotted in Figs 4 ± 7].

At the boundary Z � L the amplitude of the amplified
wave is A� exp�d�L�. At the same boundary, the amplitude
of the backward wave is given by

Aÿ � A�K exp�d�L� : �5:1�

Since the backward wave does not interact with the beam, the
same expression defines the amplitude of the backward wave
at Z � 0. In addition, at Z � 0 the amplitudes of the input,
backward and amplified waves balance out:

A� � Aÿ � A0 : �5:2�

The expression for the amplitude of the amplified wave
follows from Eqns (5.1) and (5.2):

A� � A0

1ÿ K exp�d�L� : �5:3�

Self-excitation of a plasma amplifier occurs when the
amplitude of an amplified wave goes to infinity. Hence
follows the condition of the onset of generation:

d� � 1

L
ln�4g2� : �5:4�

In writing (5.4) we used the estimate

K � 1

4g2
�5:5�

for the coefficient of reflection proposed in Refs [61, 42] and
refined in Ref. [45]. This estimate holds for a cable plasma
wave emitted into a coaxial horn in a sufficiently low-
frequency range.

Of course, our derivation of Eqn (5.4) is not rigorous, but
the result is nevertheless reasonably correct. More precisely,
the factor of four under the logarithm in Eqn (5.4) ought to be
replaced by ten [2, 10].

It will be worthwhile to get order-of-magnitude estimates
for a real plasma-beam system. Assume that the relativistic
factor of the beam is, as before, equal to 2, and the length of
the system L varies from 10 to 30 cm. Under these
assumptions the magnitude (5.4) of the `threshold' gain
varies from about 0.1 to 0.3 cmÿ1. By order of magnitude
this is exactly the same as what was calculated from the
dispersion equation (4.8) for the experimental beam and
plotted in Figs 4 ± 7. This estimate is supported by the next
diagram.

The isolines for the gain for the zeroth azimuthalmode are
plotted in Fig. 8 in coordinates of plasma radius versus
plasma frequency. The isolines are plotted from the numer-
ical solution of the dispersion equation (4.8). The values
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found from Eqn (5.4) are of the same order of magnitude as
those represented by the isolines. It follows that the experi-
ments of Refs [6, 35 ± 37, 41, 42], to which we are referring
here, were carried out in circumstances where it was hard to
establish whether the system operated as an amplifier or as a
generator. In all likelihood, it was an amplifier in Ref. [41],
and a generator in Ref. [42].

Figure 8 also indicates the threshold (dashed line),
calculated according to Eqn (3.8) for the symmetrical mode.
We see that for a current of 2 kA, the amplification starts at
plasma frequencies much lower than defined by Eqn (3.8).
This fits in well with the results of recent experiments [42], in
which the threshold plasma density above which the emission
starts was measured.

6. Efficiency of a plasma microwave amplifier

Going over from the linear treatment to the problems of
nonlinear theory, we beginwith the efficiency of amplification
of plasma waves by a relativistic electron beam. There is a
very important parameter which defines not only the regime
of amplification of waves in a plasma, but also the efficiency
of a plasma microwave amplifier. Let us introduce this
parameter from the standpoint of efficiency.

The efficiency can obviously be defined as
E � 
Dg=�gÿ 1��, where Dg is the change in the relativistic
factor of an individual electron of the beam, and the angular
brackets denote averaging over all electrons of the beam
which have been engaged in the resonant interaction with the
plasma wave. Expressing the change Dg via the change Du in
the velocity of an electron of the beam, we may rewrite the
formula for the efficiency as

E � g�g� 1�
�
Du
u

�
� g2

�
Du
u

�
:

To get an estimate for the maximum change Du in the
velocity, we note that this change is not greater than the
difference between the unperturbed beam velocity u and the
phase velocity of the amplified wave. Recall that the amplified
wave always lags behind the electron beam, which is evident
from Eqn (4.7) and formulas (4.12), (4.13), (4.22) and (4.23).
Making use of Eqn (4.7), we may write

E � g2 Re �d� � g2jdj ;

where d is found from Eqn (4.8). Obviously, our estimate is
correct if the resulting value of E is much less than unity. The
main thing, however, is that the efficiency of amplification is
determined by the parameter 2g2jdj {. The value of d to be
used in this expression depends on the operating regime of the
amplifier. Let us beginwith the Compton amplifier, whenY is
close to one.

Substituting (at Y � 1) the single-particle gain factor
(4.12) into 2g2jdj, and making use of the second relation in
Eqn (4.9), we get the following expression for the efficiency
parameter:

m1 �
�
4
o2

bg
ÿ1

k2?bu2

�1=3

: �6:1a�

Expressing the Langmuir frequency of the electron beam in
terms of the beam current, and making use of the expression
for k2?b, we finally find the efficiency parameter for a
Compton amplifier:

m1 �
�
Ib
2g

ln
R

rb

�1=3

: �6:1b�

Here Ib is the electron beam current in kiloAmperes. When
the relativistic parameter g is large, the parameter (6.1b) is
proportional to the cube root of the ratio of the beam current
to the limiting vacuum current [1, 9, 29]; because of this it is
sometimes referred to as the high-current parameter.

So, if parameter (6.1b) is small, the efficiency of amplifica-
tion E is directly proportional to this parameter. A more
general result also holds [4, 8, 10]:

E � m1 ; m1 5 1 ;

mÿ31 ; m1 4 1 :

�
�6:2�

According to numerical calculations, the maximum efficiency
is realized at m1 � 1 and may be as high as 20% (assuming, of
course, that the length of amplifier is selected properly, of
which we shall speak later).

Now we can define the concepts of low current, large
current, and very large current. When m1 5 1, the beam
current must be regarded as low. It is for such low currents
that formula (4.12) for the complex gain holds. Conversely,
when m1 4 1, the beam current is very high. Equations
(4.20) ± (4.23) apply to such currents. When, however,
m1 � 1, the beam current is simply high Ð it is of the order
of the limiting vacuum current. It is currents of this
magnitude that are realized in modern experiments in plasma
microwave electronics. A little later we shall explain why it is
so.

Now let us consider the efficiency of the Raman amplifier.
Substituting the value of Eqn (4.13) into the parameter 2g2jdj,
and noting that Y5 1, we find that

m2 �
�
4
o2

bg
ÿ1

k2?bu2

�1=2

� m3=21 : �6:3�

Actually, for the Raman amplifier we have the same
parameter as in the case of the Compton amplifier, only the
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Figure 8. Isolines of gain: d� � 0 (curve 1); d� � 0:1 (curve 2); d� � 0:2
(curve 3); d� � 0:3 (curve 4); d� � 0:4 (curve 5). Dashed line indicates the

plasma frequency threshold for the symmetrical mode. Beam current

Ib � 2 kA.

{The factor of two appears here not only because of tradition, but also

because the same parameter enters the dispersion equation (4.8) and is

definitive for the character of its solutions. For example, formulas (4.12)

and (4.13) only hold when 2g2jdj5 1.
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exponent is different. The concepts of small, high, and very
high currents are still valid. For example, formula (4.13) only
holds in the limit of low current, when m2 5 1. There is also an
estimate for the efficiency of a Raman amplifier similar to
Eqn (6.2) [4, 8, 10]:

E � m2 ; m2 5 1 ;

mÿ12 ; m2 4 1 :

�
�6:4�

The maximum efficiency (which is somewhat less than that of
the Compton amplifier) again corresponds to m2 � 1.

It turns out that the experimental systems currently
studied in plasma microwave electronics operate in condi-
tions close to optimal in terms of the efficiency of amplifica-
tion. The point is that the experiments we are referring to
employ the high-current electron beam accelerators using
diodes with magnetic insulation.

Let us use the dependence between the current in the high-
current beam and the relativistic factor of the beam in the
diode with magnetic insulation [64, 65]:

Ib � G

ln�R=rb�
�gÿ 1�2

�g2=3 � 2��g2=3 ÿ 1�1=2
: �6:5�

The numerical coefficientG in Eqn (6.5) can be selected on the
basis of experimental data [42], especially the most recent
measurements [67] of the current in the electrodynamic
system of the amplifier as a function of the accelerating
voltage in the diode Ð that is, of the relativistic factor g.
From experiment we have G � 5:5. Further substituting
Eqn (6.5) into Eqn (6.1b), we find the dependence of the
large-current parameter m1 on the relativistic factor, repre-
sented in Fig. 9. For g!1 we have m1 ! �G=2�1=3 � 1:4,
and for the values of the relativistic factor realized experi-
mentally (a few units and more) the parameter (6.1b) [like
(6.3) for that matter] is close to unity, and therefore the
amplification regime is close to optimal. One must bear in
mind that optimal efficiency can only be attained through
optimizing the length of the amplifier and the frequency of the

amplified signal, which will be discussed later within the
framework of nonlinear theory. There are two more issues,
however, that call for our attention.

On the strength of the above definition of the efficiency of
amplification we may write the formula

W � 511�gÿ 1�E Ib �6:6�

for the output power of the amplifier, where the beam current
is in kiloamperes. For the experimental parameters (g � 2,
Ib � 2 kA) we haveW � 1000EMW. In experiments (see, for
example, Refs [6, 42, 67] the output power was reported to be
200 MW and more, which agrees perfectly with the efficiency
predicted by the theory. Also reported were much less
impressive experimental results. They are most likely
explained by poor optimization of the system length.

One final remark: the estimates obtained in this section
are based on the most general physical considerations. They
hold for any amplifier irrespective of its construction, which
will only determine the particular form of the parameter
(6.1b). In the case of a cyclotron resonance maser, for
example, it will involve the transverse velocity of electrons of
the beam, the depth of corrugation in the case of an amplifier
with a bellows-shaped resonator, the amplitude of the
alternating field in the case of an undulator, etc. In this
respect the plasma microwave amplifier is unique, since
parameter (6.1b), which determines its efficiency and operat-
ing regime, is very simple in structure, and is close to unity for
the currents realized in all high-current relativistic microwave
sources, including vacuum sources. At the same time, the
physically similar parameter for vacuum systems may have a
quite different value. Besides, the working current in a plasma
system can bemademuch larger than in any vacuum system{,
which permits a considerable increase of the output power
(6.6).

7. Nonlinear equations for a plasma amplifier

In our presentation of the nonlinear theory we start with the
general nonlinear equations (2.1) ± (2.6), which will be
converted into a form convenient for solving the problem of
amplification of waves. The following circumstances must be
taken into account: firstly, the transverse structure of the
wave field in the plasma-beam waveguide is not known in
advance, but rather is established in a self-consistent way as
progress is made towards larger values of Z; secondly, the
frequency spectrum of the amplified signal is not necessarily
specified, which makes it necessary to consider the simulta-
neous amplification of waves having different frequencies;
thirdly, the longitudinal wave numbers of all waves amplified
by the beam are close to the frequency of the wave divided by
the unperturbed velocity of the beam. These considerations
suggest the following representation of the polarization
potential of the field in the problem of wave amplification:

c � 1

2

X1
n�1

(
jn�r?�

�
X
s�1

�
Ans�z� exp

�
ÿisOt� is

O
u
z

�
� c:c:

�)
: �7:1�1 2 3 4 5 6 7 8 9 10
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Figure 9.Large-current parameter for aCompton plasma amplifier using a

magnetic insulation diode vs. relativistic factor of the electron beam. {When rp > rb, the current may be increased by a factor of

ln�R=rb�= ln�rp=rb�.
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Here O is a certain low frequency used for `discretization' of
the spectrum of the amplified signal. Summation over n in
Eqn (7.1) determines the transverse structure of the field, and
summation over s determines the frequency spectrum.

Observe that the `discretization' of the spectrum and the
introduction of the small frequency O have a simple physical
meaning. As a matter of fact, the field in any cross section of
the waveguideZ can be represented as a Fourier integral with
respect to frequency o. The approximate calculation of this
integral is facilitated by transition to a summation with a
discrete step os � sO, s � 1; 2; . . . This procedure is reflected
in Eqn (7.1). The selection of the small frequencyO is dictated
either by the desired accuracy of representation of the
spectrum, or by physical considerations. If, for example, the
duration of the pulse isT, it would be natural to setO � 2p=T.

Our next task consists in constructing the equations for
the amplitudes Ans�z� (or, more precisely, certain equivalent
quantities, as will presently become clear). Note that the
introduction of amplitudes is only justified if they change
more slowly than exp

�
is�O=u�z�Ðthat is, if the amplification

of the field on the scale of one wavelength is small.We assume
that the amplitudes change slowly, which in the language of
the linear approximation [see Eqn (4.7)] is equivalent to the
condition d5 1, which holds for the beams currently used.
That this condition is satisfied in our situation is clear from
Figs 4 ± 6.

Let us briefly run through the main steps in the
construction of the nonlinear equations for a microwave
amplifier with a thin electron beam and plasma. Using the
first expression in Eqn (2.2), Eqn (2.3), and relations (2.4) and
(7.1), we represent the function jp in the form

jp � 1

2

X
s�1

�
~jps�r?; z� exp

�
ÿisOt� is

O
u
z

�
� c:c:

�
: �7:2�

It is not necessary to expand the functions ~jps�r?; z� in the
eigenfunctions of the waveguide. Substituting now Eqn (7.1),
(7.2) and (2.5) into Eqns (2.1), (2.3) and (2.4), and taking into
account the orthogonality of the functions jn�r?� and
exp
�
is�O=u�z�, we get the following intermediate results:

Ez � 1

2

X1
n�1

(
jn�r?�

�
X
s�1

� bAns�z� exp
�
ÿisOt� is

O
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�
� c:c:

�)
;

bAns�z� � ÿs2 O2

u2g2

�
1ÿ i2g2

u

sO
d

dz

�
Ans�z� ; �7:3a�

ÿ isO ~jps�r?; z� �
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isOkjnk2
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k2?n � s2
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��
Ans
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O
p

�2p=O
0

jb exp

�
isOtÿ is

O
u
z

�
dt : �7:3b�

Here jb is the beam current (2.5). The second expression in
Eqn (7.3b) involves the functions ~jps only at the point where
the plasma is Ð that is, at only one point in the transverse

cross section of the waveguide. This circumstance, which is
characteristic for the case of a thin plasma, makes our job
much simpler.We denote the amplitudes of the sth harmonics
in the plasma and the beam by js � ~jps�rp� and h jbis � enburs
respectively, and the amplitude of the sth harmonic of
perturbation of the beam density by rs. The latter quantity
is made dimensionless by normalizing it to nb. It is convenient
to reformulate equations (7.3) in terms of only the z-
dependent variables js and rs. First we transform the
expressions for the amplitudes of the harmonics of the beam
current. Making use of Eqn (2.5), we replace the integration
over t in Eqn (7.3b) with integration over t0. Then we
introduce the new variables

y � O
�
t�z; t0� ÿ z

u

�
; y0 � Ot0 ;

Z � uÿ n�z; t0�
n�z; t0� ; x � O

u
z ; �7:4�

where t�z; t0�, n�z; t0� are the solutions of the set of character-
istic equations (2.6). Using the first three variables from
Eqn (7.4), we get:

rs �
1

p

�2p
0

�1� Z�ÿ1 exp�isy� dy0 � 1

p

�2p
0

exp�isy� dy0 : �7:5�

The `approximately equals' sign in Eqn (7.5) is the conse-
quence of the small change of the velocity of the beam
electrons at all stages of amplification [it can be demon-
strated that the change in the velocity is of the order of jdj
from Eqn (4.7)]. As shown in Ref. [60], the smallness of the
change of the beam electrons' velocity is crucial for the
validity of the initial equation (2.5) with the characteristics
(2.6).

Further we proceed as follows. From the second relation
in Eqn (7.3b) we express the amplitudes Ans. This is especially
easy in the case of sufficiently low frequencies, when the upper
frequency in the spectrum of the amplified signal is small
compared to k?1ug, and the derivative on the left-hand side of
the second relation in Eqn (7.3b) may be neglected. For the
sake of simplicity we shall confine ourselves here to this most
important case (the same approximation was used in the
linear theory; the more general case is considered in Ref. [43]).
Now the first relation in Eqn (7.3b) we multiply by d�r? ÿ rp�
and integrate over the cross section of the waveguide, getting
the equations in js�z� as a result. With due account for Eqn
(7.3a), we substitute the coefficients Ans into these equations
and Eqn (2.6), and go over to the dimensionless longitudinal
coordinate x [see Eqn (7.4)]. Finally we come to the following
set of equations:

dy

dx
� Z ;

dZ
dx
� i

2

�
1� 2g2

u2

c2
Z
�3=2

�
X
s�1

�
s exp�ÿisy� bLs�abs rs � js� ÿ c:c:

�
;

�1ÿ aps bLs� js � Ysapsabs bLs rs : �7:6�
Here

bLs � 1ÿ 2ig2
1

s

d

dx
; �7:7�
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rs is given by Eqn (7.5), and the coefficients aps, abs, Ys are
defined by Eqns (4.5), (4.6) and (4.9) with the following
replacement (the general form of the limiting formulas (4.5)
and (4.6) can be found in Ref. [62]):

w2 ! s2
O2

u2g2
; s � 1; 2; . . . �7:8�

Let us also quote an alternative form of the third equation in
Eqn (7.6), to make it clear that it precisely defines the
amplitudes and spectra of the plasma waves:

djs
dx
ÿ idps js � ÿ i

2g2
sYsabs bLsrs : �7:9�

Here

dps � s

2g2

�
1

aps
ÿ 1

�
�7:10�

is the counterpart of the quantity (4.10).
As indicated above, equations (7.6) were derived in the

low-frequency limit. They can be easily generalized to higher
frequencies [10, 43]. To do this on a qualitative level, as in the
linear theory, it is sufficient to carry out the replacement

aps ! aps

�
1ÿ s2

O2

o2
p

�
:

The dispersion equation (4.8) follows from Eqn (7.6) in the
linear approximation.

The first integral of equations (7.6), which expresses the
conservation of the flow of energy along the waveguide, has
the form

hPi � qg2

4

X
s�1

Yÿ1s aÿ1bs j jsj2 �
qg2

4

X
s�1

absj rsj2

� qg2

4

X
s�1
� jsr�s � j �s rs� � const ;

hPi � 1

2p

�2p
0

�1� qZ�ÿ1=2 dy0 : �7:11�

Here hPi is the mean flow of mechanical energy of the beam
electrons related to the flow of mechanical energy of the
unperturbed beam; the terms proportional to qg2=4 define the
flows of energy of plasma and beam waves with due account
for their interaction, and q � 2g2�u=c�2. Some asymmetry
with respect to js and rs in Eqn (7.11) is due to the different
procedures of normalization; the replacement
js !

������������������
Ysabsaps

p
rps restores symmetry with respect to rs, rps.

The efficiency of emission of the beam is defined as the
relative part of the flow of the kinetic energy converted into
the flow of energy of the waves:

E � 1ÿ hPi : �7:12�

This is the same quantity as found in Eqns (6.2), (6.4) and
(6.6). Strictly speaking, Eqn (7.12) defines the part of the flow
of electromagnetic energy transferred not only to the plasma
wave but also to the beam wave, as is clear from Eqn (7.11).
For the actual experimental parameters, however, the plasma
part is definitive, which allows us to disregard these insignif-
icant details.

Let us also consider the additional conditions imposed on
Eqn (7.6) which are defined at the input boundary of the
amplifier Z � 0. It is possible, for example, that plasma
oscillations with a certain spectral distribution are excited at
the input boundary, and an unperturbed electron beam is
injected. This situation corresponds to the following addi-
tional conditions:

js

���
x�0
� js0 ;

y
���
x�0
� y0 2 �0; 2p� ;

Z
���
x�0
� 0 : �7:13�

Alternatively, one could imagine a different situation: no
plasma waves are supplied to the input, and the density (or
velocity) of the injected electron beam is modulated. In the
case of density modulation, the additional conditions may
have the form

js

���
x�0
� 0 ;

y
���
x�0
� y0 � 1

2

X
s�1

�
bs exp�isy0� � c:c:

�
;

Z
���
x�0
� 0 ; y0 2 �0; 2p� : �7:14�

We shall use this last set of additional conditions. The
quantities bs in Eqn (7.14) define the depth of the initial
modulation of the beam at the respective harmonic. The
values selected for the calculations were small in magnitude
(about 0.01 ± 0.05), which ensured low initial modulation of
the beam (jbsj � 1 corresponds to a 100% modulation of the
beam). Modulation of the form (7.14) will be referred to as
regular modulation of the beam. Indeed, as will become clear
from our subsequent discussion, under the conditions (7.14)
the beam at Z � 0 appears as a homogeneous background
against which compact clusters are injected into the wave-
guide at regular intervals of 2p=O. One may also consider the
case of chaotic modulation of the beam. Then the second
relation in Eqn (7.14) must be replaced by

y
���
x�0
� y0 � bsqs ; y0 2 �0; 2p� ; �7:15�

where qs are random numbers from the interval �ÿ1; 1�.
One last comment: it is worthwhile solving two variants of

the problem (7.6) and (7.14). One corresponds to the case
when the sum in the second relation in Eqn (7.14) involves a
large number of terms, and the frequencies sO rather densely
fill the frequency range from 0 to op. This is the problem of a
broad-band or noise amplifier. Conversely, the sum in Eqn
(7.14) may contain just one term with s � 1. This is the
problem of a narrow-band or monochromatic amplifier.
Amplification of monochromatic signal has been considered
in numerous publications (see, for example, Refs [4 ± 10, 43]),
so we are going to concentrate on broad-band amplification.

8. Spatial dynamics of amplification and the
spectra of a plasma amplifier

Since the plasma frequencies in experiments did not exceed
35� 1010 rad sÿ1, the frequency range selected for numerical
simulation of the broad-band amplifier extended from zero to
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40� 1010 rad sÿ1. A total of Smax modes were evenly
distributed over this interval. Equations (7.6) were solved
for each s from 1 to Smax. The number of large clusters
simulating the beam was 10Smax. In different calculations
Smax varied from 30 to 50. The following aspects are
considered below: the spatial distribution (along the Z axis)
of the efficiency of emission (7.12); the spatial distribution of
absolute values of the amplitudes of harmonics whose
frequencies are closest to the wave ± particle and wave ±
wave resonances; and the spectral distribution of the flow of
electromagnetic energy in plasma waves.

Let us start our discussion with the Compton amplifier
based on the single-particle Cherenkov effect. Since the case
rp � rb is technically hard to realize, we set rp � 0:8 cm, the
remaining parameters being the same as in Fig. 4. The gain for
this case is represented on the same diagram by curve b, and
the resonance frequencies are as follows: 11� 1010 rad sÿ1 for
the wave ± particle resonance, and 15� 1010 rad sÿ1 for the
wave ±wave resonance.

Figure 10 shows the spectra of the amplified signal close to
the input of the amplifier (whereZ is of the order of tenths of a
centimeter). The frequency is plotted on the horizontal axis;
the vertical axis shows the spectral distribution of the
electromagnetic energy of plasma waves. Also marked on
the diagram are the frequencies of the wave ± particle (straight
line 1) and wave ±wave (line 2) resonances. The vertical dash
(right above the frequency axis) indicates the upper limit of
the amplification zone according to the linear theory. The
insert in the upper left corner of Fig. 10 shows the phase plane
of the beam electrons. Plotted on the horizontal axis of the
phase plane are the flight times of all electrons which have
reached the given cross section of the waveguide in the time
interval from zero to 2p=O; the vertical axis is graduated in the
perturbations of the electron velocity (in relative units).

Let us explain whence the perturbations of the electrons'
velocity arise at small Z. As follows from the last condition in
Eqn (7.14), there are no perturbations at Z � 0. As follows
from the second relation in Eqn (7.14), or fromEqn (7.15), the
electrons are injected into the waveguide in bursts, and so
even at Z � 0 there are perturbations of density, whereas
rs � bs. These perturbations create an electric field which
perturbs the velocity of the electrons.

Figure 10a corresponds to regular density modulation of
the beam [boundary conditions (7.14)]. From the phase
diagram we see that the perturbations of the electrons'
velocity are local; accordingly, the field is a sequence of local
wave pulses with a time spacing of 2p=O. The pulsed nature of
the field can also be seen from the spectral density of the
radiation: leaving aside the fall-offs at the high and low-
frequency edges, all lines in the emission spectrum have about
the same intensity. Accordingly, the shape of a single field
pulse can be approximated by finding the sum of a simple
geometric progression:

Re
XSmax

s�1
exp�isy�

 !
� sin�Smaxy=2�

sin�y=2� : �8:1�

This formula agrees very well with the electron distribution in
the phase plane. So we see that in case of regular modulation
the sequence of wave pulses of the type of Eqn (8.1) excited by
the beam at small values of Z is amplified. The pulses follow
one after another at intervals 2p=O.

Figure 10b shows the case of chaotic modulation of the
beam, when boundary condition (7.15) is used. From the
phase diagram we see that the perturbations of the electron
velocity are not localized, but rather involve the entire beam.
As a consequence, the field excited by the beam is not split
into a sequence of pulses, but acts continually throughout the
entire period of injection of the beam with chaotic modula-
tion. The spectrum of emission created by such a beam at the
input of the amplifier is rather ragged, as is clear from the
diagram. From further discussion we shall see that the nature
of amplification crucially depends on the method of primary
modulation of the electron beam.

Figure 11 shows the spatial dynamics of the efficiency of
modulation (7.12) and the absolute values of the amplitudes
of the harmonics whose frequencies are closest to the wave ±
particle and wave ±wave resonances (harmonics number 13
and number 18 for the parameters in question). Figure 11a
corresponds to regular modulation of the beam, Fig. 11b to
chaotic modulation. The results which follow from these
diagrams are listed in Table 1.

The last column in Table 1 contains data taken from
Fig. 12, which shows the spectra and the phase planes at the
amplification stage close to saturation for each of the
modulation modes (regular in Fig. 12a and chaotic in
Fig. 12b). Certain regularities catch the eye. The higher the
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Figure 10. Spectral distribution of energy flow in plasma wave near the

input cross section of Compton amplifier: (a) regular density modulation;

(b) chaotic density modulation.

Table 1. Characteristics of a Compton amplifier for different beam
modulation modes.

Beam
modulation

Saturation
length, cm

Maximum
eféciency, %;
power, MW

Width of spectrum
at half-height of the
principal peak,
1010 rad sÿ1

Regular
Chaotic

28
16

15; 160
23; 240

8
2.5
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degree of chaotization of the input beam, the shorter the
saturation length, the higher the maximum efficiency and
power, the narrower the band of amplified frequencies.
Obviously, the `input beam' can be replaced by the more
general term `input signal'.

These regularities can be interpreted in the following
manner. When the modulation of the beam is regular, then,
as follows from Fig. 10a, a large number of modes, including

those from the amplification range predicted by the linear
theory (see curve b in Fig. 4), occur under approximately
equal conditions. All these modes are amplified to form a
relatively broad spectrum. Observe that the resulting spec-
trum presented in Fig. 12a contains components from regions
not predicted by the linear theory: there are amplified modes
from the high-frequency region, where the gain according to
the linear theory is zero, and there are amplifiedmodes at very
low frequencies. This is probably the result of a nonlinear
interaction between waves with close s numbers. Then, as
follows from the phase diagram included in Fig. 10a, the field
formed in the case of regular modulation of the beam is in the
shape of localized packets which only act upon some of the
beam electrons. Even at the resulting stage (see Fig. 12a) the
beam exhibits weakly perturbed portions which are not
affected by the still compact wave packets. Since not all
electrons of the beam are involved in the interaction with the
field, regular modulation corresponds to the greatest satura-
tion length and the lowest efficiency of emission.

In the case of chaotic modulation the situation is different.
The field is not split into a sequence of short pulses (see phase
diagram in Fig. 10b), and so all the electrons of the beam take
part in the interaction. As a consequence, the efficiency is
higher, and the saturation length is shorter. The phase
diagram in Fig. 12b shows that a large number of electrons
are decelerated, which proves that most of the electrons of the
beam interact with the plasma waves and give away part of
their energy. Moreover, as follows from Fig. 10b the initial
spectrum in case of chaotic modulation is ragged, and the
amplification of waves starts in different conditions. The
most efficiently amplified waves are those whose frequencies
lie close to the maximum of the linear gain. This explains the
narrow emission spectrum in the case of chaotic modulation.

Now let us consider the Raman amplifier based on the
collective Cherenkov effect. The parameters remain the same,
only the radius of plasma is increased to rp � 1:1 cm. The
behavior of the gain for these parameters is shown in Fig. 5.

Figure 13 shows the space dependence of the efficiency of
emission (7.12), and the absolute values of the amplitudes of
the harmonics corresponding to the wave ±wave (number 11)
and wave ± particle (number 7) resonances. The curves are
plotted for the case of regular modulation. For other
modulation modes the curves are similar. Actually, the
mode of modulation of the beam is not important for the
Raman amplifier, since in any case amplification occurs in a
narrow band. In the case of regularmodulation the local wave
pulses smear out (that is, become monochromatized) in the
initial stage. In the case of chaotic modulation regular (close
to sinusoidal) structures are formed in the phase planes
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Figure 11. Spatial dynamics of the total efficiency of emission and the

amplitudes of resonance harmonics for the Compton amplifier: (a) regular

density modulation; (b) chaotic density modulation.
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Figure 12. Spectral distributions at saturation stage for the Compton

amplifier: (a) regular density modulation; (b) chaotic density modulation.
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Figure 13. Spatial dynamics of the total efficiency of emission and the

amplitudes of resonance harmonics for the Raman amplifier (regular

density modulation).
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corresponding to the interaction of the beam with a single
mode. Thereafter the initial modulation ceases to be of any
significance. Note the following:

Ð the maximum efficiency is about 14%;
Ð the maximum power is about 140 MW;
Ð the amplification saturation length is about 50 cm;
Ð the saturation results in a quasi-steady state, in which

the highly thermalized beam (see below) and the amplified
waves no longer interact on the average;

Ð the wave corresponding to the wave ± particle reso-
nance (harmonic number seven) is not amplified.

Figure 14 shows the spectra and the phase planes at the
saturation stage in theRaman amplifier; Fig. 14a corresponds
to regular modulation of the beam, and Fig. 14b to chaotic
modulation. In the case of regular modulation the spectrum is
not too narrow, but falls precisely into the range predicted by
the linear theory (see Fig. 5). In the case of chaotic
modulation the spectrum is extremely narrow: in fact, just
one mode corresponding to the wave ±wave resonance is
amplified. In all cases the beam after saturation is highly
chaotized (thermalized), as is clear from the phase diagrams
in Fig. 14.

Let us consider yet another amplification regime which
occurs close to the plasma frequency limit. Inequality (4.15) is
satisfied, but owing to the high current there is a narrow
amplification band at very low frequencies. All parameters
are the same as those of the Compton amplifier with
rp � 0:8 cm, but the plasma frequency is reduced to
op � 15� 1010 rad sÿ1. The gain for these parameters is
shown in Fig. 15. We see that the wave ± particle resonance
is not present, whereas the wave ±wave resonance occurs at a
very low frequency. As the plasma frequency is reduced
further, the wave ±wave resonance disappears, and soon the
amplification disappears too.

Figure 16 shows the spatial dynamics of the efficiency of
amplification and the absolute values of the first and third
harmonics. One may conclude that when the plasma
frequency is close to the threshold, the efficiency of emission
may be very high (up to 24%), and the output power may be
as high as 250 MW. Figure 17 shows the emission spectrum.
We see that the amplification is restricted to a very narrow
waveband, corresponding to the maximum of the linear gain.
In addition, there is a small peak in the spectrum of amplified
waves at the doubled frequency, which may be attributed to
the nonlinear generation of second harmonics of the beam
charge density. The effect of amplification at the near-
threshold plasma frequency may be useful for the construc-
tion of a low-frequency source of monochromatic radiation.
The diagrams in Fig. 16 and 17 correspond to regular
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Figure 14. Spectral distributions at the saturation stage for the Raman

amplifier: (a) regular density modulation; (b) chaotic density modulation.
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Figure 15. Gain factor for the Compton amplifier at low value of plasma

frequency.
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Figure 16. Spatial dynamics of the total efficiency of emission and the

amplitudes of the second and third harmonics for the Compton amplifier

at low values of plasma frequency and for regular density modulation of

the beam.

4.29 8.59 12.88 17.17 21.47 25.76 30.05 34.35 38.64

o, 1010 rad sÿ1

2

Figure 17. Spectral distributions at the saturation stage for the Compton

amplifier at low values of plasma frequency and for regular density

modulation of the beam.
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modulation of the beam. Other modulation modes lead to
similar results, but the above-noted effect remains: the more
regular the modulation, the broader the spectrum and the
lower the efficiency of emission.

9. Conclusion

Observe once again that all the particular results quoted in
this review have been obtained for real objects of experi-
mental study. The most important feature is that the
theoretical predictions generally fit in well with the experi-
mental results. This concerns such crucial characteristics as
the threshold plasma frequency, the initial beam current, the
emitted frequency range, the integral efficiency of emission,
etc. There are certainly some difficulties associated mainly
with the insufficiency of available experimental data on large-
current relativistic plasma sources of microwave radiation.
We hope that further experiments will provide a basis for a
more comprehensive comparison, and we shall have the
opportunity to discuss some problems which at present had
to be left out of the discussion.
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