
Abstract. Review of papers dealing with two alternative meth-
ods of describing nonequilibrium processes in fully ionized plas-
ma. The example of `Landau damping' is used to demonstrate
that a number of fundamental problems remain unsolved in the
kinetic theory of plasma. They arise from inconsistent descrip-
tion of transition from the reversible equations of mechanics of
charged particles and field to the irreversible equations of con-
tinuous medium in statistical theory of plasma. These difficul-
ties can be overcome through consistently defining the structure
of continuous medium and the characteristics of dynamic in-
stability of motion. This leads to generalized irreversible equa-

tions which provide the basis for unified description of
nonequilibrium processes in plasma on kinetic and hydrody-
namic scales.

1. Introduction

The birthday of the kinetic theory of plasma may well be
considered the date of publication of Landau's paper entitled
``Kinetic equation in the case of Coulomb interaction'' [1].
Landau's equation was based on the kinetic Boltzmann
equation for a dilute gas, for which (owing to the short-
range interaction between the atoms) a good accuracy is
ensured by taking into account only the pairwise interactions
between the gas particles.

Landau noted that for a plasma, when the interaction
between charged particles is governed by Coulomb's law and
therefore falls off very slowly with distance, the collision
integral in the Boltzmann equation diverges when the
distance between particles is large. This means that the
collisions between charged particles are important at large
distances, when the change in momentum is small. Therefore,
there is good reason for carrying out the expansion in small
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variations of momentum in the Boltzmann collision integral.
As a result, the extremely complicated Boltzmann's expres-
sion reduces to a much simpler collision integral which
describes diffusion in the momentum space.

This method of constructing the collision integral is,
however, not consistent, because a large number of charged
particles are involved in simultaneous interactions in a
plasma. Amanifestation is that Landau's expression contains
the integral which diverges (logarithmically) at large, as well
as at small, distances. Some help comes from the fact that
logarithm has low sensitivity to small changes in the argument
when the latter is large. This gives freedom in the selection of
integration limits. The upper limit is set equal to the Debye
radius, which defines the sphere of interaction of charged
particles. Since in a rarefied plasma there are many particles
within a sphere of Debye radius, the interaction in plasma is
collective, as opposed to the Boltzmann gas. This proves that
the choice of the `starting point' in the construction of the
kinetic equation is physically not justified.

We shall see, however, that Landau's collision integral, in
spite of this inconsistency, in the best possible way describes
dissipation due to redistribution of charged particles in
plasma. This justifies our claim that the kinetic description
of the `collision plasma' was born in 1936 ± 1937.We put these
words in quotes because the interaction of particles in plasma
is collective. This term is opposed to `collisionless plasma',
which implies that interactions which are responsible for
dissipation, and therefore for relaxation towards equilibrium,
are not taken into account.

The statistical theory of collisionless plasma originates
from the classical paper of AAVlasov [2]. It was in this paper
that the kinetic equation for the distribution function of
electrons in fully ionized plasma was formulated without
taking into account those interactions (collisions) which are
responsible for dissipation. In this way, all interaction
between the charged particles is only defined in terms of the
mean field. The rationale (although, as we shall see below, not
completely justified) was that the characteristic frequencies of
electron plasma in typical cases are much higher than the rate
of electron-electron collisions.

In a sense, the approximations of Landau and Vlasov
correspond to two extreme cases. Indeed, Landau only takes
into account that contribution of the interaction which is
responsible for dissipation. The effects due to internal field
are disregarded. By contrast, interaction in the Vlasov
equation is only through the mean field. Because of this, the
Vlasov equations are reversible. However, the question about
the role of collisions in the neighbourhood of resonances
remains open (this concerns those particles whose velocities
are close to the phase velocity of electron waves in plasma). It
was only eight years later that the famous paper by Landau [3]
was published, devoted to this problem.

Landau starts with the Vlasov equation for the distribu-
tion function of electrons and themean electric fieldÐ that is,
with the reversible kinetic equation once again. Embarking
on the problem of plasma oscillations, Landau writes:

``These equations have been applied to the study of plasma
oscillations by A A Vlasov; however, most of his results are
wrong. Vlasov sought solutions of the form const�
exp�ÿiot� ikr� and found the frequency o as function of the
wave vector k. Vlasov's expression defining this function
contained a divergent integral, which by itself points to the
mathematical inconsistency of his method. Vlasov dealt with
this difficulty by taking the principal value of the integral, for

which, however, there are no grounds. In order to obtain a
correct solution of the Vlasov equations, the problem must be
considered in some particular statement; we are going to
consider two such statements.''

In this way, it is assumed that the above difficulty, arising
from the presence of the divergent integral, is only associated
with the insufficiently consistent solution of the reversible
Vlasov equations. The question of the modification of
equations themselves is not raised.

One of the two problems solved in Landau's paper is the
study of time evolution of the initial distribution according to
the Vlasov equation linearized with respect to the equilibrium
Maxwellian distribution. The Laplace method is used for
solving the initial problem. To make sense of the divergent
integral, the technique of adiabatic switching on the field (the
field is switched on at t � ÿ1) is used in place of the strictly
harmonic oscillation exp�ÿiot�. This switching of the field
corresponds to adding an infinitesimal positive imaginary
part to the real frequency o Ð that is, to the replacement
o! o� id, where d! �0. In this way, the rule of detouring
around the pole in the divergent integral consists in the
replacement o! o� i0.

The authors of book [4] write on page 154:
``It is also possible to approach the justification of the rule of

detouring around the pole proposed by Landau for a different
standpoint. Namely, one may introduce a small dissipative term
nf1�r; p; t� into the linearized kinetic Vlasov equation.''

When the kinetic equation is solved by Fourier method,
the presence of this dissipative term will result in that the real
frequency is replaced by o! o� in. Transition to the limit
n! 0 is performed in the final expressions. This leads to the
same expression for the Landau damping coefficient.

So, there are seemingly two different approaches to
solving the problem of damping of plasma oscillations. The
first is based on the formal mathematical method of regular-
izing the divergence in Cauchy-type integral. In this case the
physical nature of damping is not discussed. The initial
equation remains reversible. In the second approach the
initial reversible equation is from the outset replaced with
the dissipative equation. Although the dissipation is assumed
to be small, the transition to the limit n! 0 is only carried out
in the final formulas. This singles out the resonance contribu-
tion, whose width is negligibly small as compared to the width
(dispersion) of the velocity distribution. If the transition to
the limit n! 0 is performed in the kinetic equation itself
(which means going back to the reversible Vlasov equation),
then it is not possible to obtain the Landau damping.

The second way of introducing the Landau damping
seems to bemore natural. It shows that, after all, the collisions
play a fundamental role. It is this standpoint that is postulated
in Section 16 of Chapter 15 in book [5].We shall see, however,
that a more comprehensive solution of this problem can only
be based on the generalized kinetic equation formulated
below.

Let us return to Landau's paper. The second method of
obtaining Landau's result is based on the `corrupt' Vlasov
equation, into which a small dissipative term is introduced.
This might seemingly give grounds to assume that Landau
damping is a consequence of collisions between charged
particles. The authors of [4], however, come to a different
conclusion (Section 30, p. 157):

``Thus, the dissipation already arises in a collisionless
plasma; this phenomenon was predicted by L D Landau
(1946), and it is referred to as Landau damping. Being not
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associated with collisions, it is basically different from dissipa-
tion in ordinary absorbing media: the collisionless dissipation is
not associated with the entropy increase, and is therefore a
thermodynamically reversible process.''

A similar conclusion is repeated with small variations in
almost all monographs and textbooks on plasma theory. We
give just one example:

`` ... the most unexpected and important effect, however,
related to the physics of Langmuir oscillations, was predicted by
L D Landau. He discovered that electron oscillations are
attenuated even in the absence of collisions (that is, forces of
friction)'' [6], p. 12.

We shall see that the physical nature of Landau damping
is not so mysterious. Namely, Landau damping is one of the
dissipative processes whose description is impossible without
taking collisions into account. In this respect, Landau
damping naturally fits in the general scheme of thermody-
namics and kinetics of irreversible processes.

In connection with the history of the question, it would be
interesting to quote P LKapitza. This pronouncement can be
found in the reminiscences of Kapitza seminars, written byM
P Ryutova for the memorial issue of Physics ±Uspekhi (Vol.
37, No. 12, 1994), dedicated to the 100th birthday of P L
Kapitza. On p. 1234 of this issue we read:

``I would like to draw attention to the interesting study of
Landau concerned with the absorption of electrical waves in
plasma, Ð Petr Leonidovich suddenly changed the topic during
the defence of a thesis. Ð This work, which is very important,
was done a rather long time ago, in 1946, almost 16 years ago.
Landau developed a new type of absorption in plasma.

Vlasov had begun to work on the theory of plasma earlier,
but his findings evoked an active response from the side of
theoretical physicists, who started to look for concealed errors.
These works, however, resulted in Landau's paper, which
nowadays plays such a role.

This is yet another case which proves that wrong results
must be published as stimulants of correct results. The worst
thing is a work being trivial. The most important in a work is by
no means its correctness, it is the presence of a new idea. One
must never reject publication of new ideas. Vlasov came with his
new ideas to the theory of plasma, some of them could be wrong,
but anyway he has made a big step forward, Landau's work
would not have been done without him.''

The year 1946 is also marked by the publication of N N
Bogolyubov's monograph [7]. Along with the justification of
Boltzmann's kinetic theory of gases, it laid the foundation of
the statistical basis of the kinetic equations for plasma.
Bogolyubov formulated the conditions under which the
kinetic equations of Landau and Vlasov can be obtained
from the dynamic equations. Moreover, this book lays the
groundwork for the statistical theorywhich allows taking into
account the nature of collective interactions in plasma. This
paved the way for the construction of kinetic equations
incorporating the polarization of plasma. The corresponding
equations were independently established in 1960 by
R Balescu [8] and A Lenard [9]. One result was the expression
for Balescu ±Lenard collision integral. It differs from Land-
au's result by inclusion of the dynamic polarization of plasma
Ð in other words, by a more consistent treatment of the
collective interaction between charged particles in the calcula-
tion of the dissipative term (the collision integral) in the
kinetic equation.

This rounded off a certain stage in the development of the
kinetic theory of plasma. Many original papers, reviews,

monographs and textbooks are devoted to this theory and
its numerous applications. Here we point out just a few
monographs and textbooks [4 ± 7, 10 ± 30], to which we are
going to refer in the forthcoming discussion.

Naturally, further development of the kinetic theory of
plasma not only expanded the scope of its particular applica-
tions, many of which are considered in the works mentioned
above, but also led to the solution of a number of funda-
mental problems of the theory. Let us mention just a few of
these.

The statistical theory of both rarefied gases and rarefied
plasma was developed initially on the basis of the chain of
equations in a hierarchy of distribution functions for coordi-
nates and momenta of charged particles Ð the Bogolyubov ±
Born ±Green ±Kirkwood ±Yvon (BBGKY) equations. As
shown in Ref. [12], it is possible to construct a kinetic theory
of both relativistic and nonrelativistic plasma on the basis of
equations in the microscopic phase density of charged
particles in the six-dimensional phase space of coordinates
and momenta, and the Lorentz equations in the microscopic
strengths of electric and magnetic fields. This method was
shown to be equivalent to the Bogolyubov (BBGKY)
method.

The method of microscopic phase density proved to be
very efficient, and is widely used in the studies on the theory of
both classical and quantum plasma (see, for example, Refs [5,
18, 19, 21 ± 23, 26, 27, 29]. This method also forms the basis of
the statistical theory of plasma-molecular systems, exempli-
fied by partly ionized plasma [5, 21, 31].

The kinetic equations of Landau and Balescu and Lenard
for a rarefied plasma are constructed in the approximation
when the interaction between particles determines the dis-
sipative processes, but does not contribute to the thermo-
dynamic functions. From the standpoint of thermodynamics,
these equations only hold for an ideal plasma.

In recent years, the processes in nonideal plasma have
been the object of active theoretical and experimental studies
[28, 32]. Naturally, at the first stage it was necessary to
develop a kinetic theory of slightly nonideal plasma [21].

The kinetic equations of Landau, Vlasov as well as
Balescu and Lenard are equations in deterministic (nonran-
dom) distribution functions. The description of many phe-
nomena requires taking into account the fluctuations of the
distribution functions. This called for the development of the
kinetic theory of fluctuations [4, 21, 33].

The contemporary theory of nonequilibrium processes in
plasma is the basis for description of a large variety of
phenomena. This does not imply that all the fundamental
problems have been solved. These days, the theory of space ±
time dissipative structures in plasma containing sources of
energy (active plasma) gains in importance. This stimulates
the development of the statistical theory of open systems [33],
which called for revision of some basic notions and concepts
of the kinetic theory of plasma. In particular, it was necessary
to give a concrete definition of the structure of continuous
medium for which the kinetic description is being developed.
Due account for this structure in the kinetic equation gives
rise to an additional collision integral, which describes
dissipation caused by space diffusion of the distribution
function. As a consequence, it becomes possible to give a
unified description of nonequilibrium processes at kinetic and
hydrodynamic scales without using perturbation theory in
Knudsen number.
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The use of such generalized kinetic equation allows
defining the concepts of collision and collisionless plasmas
in a new way. It also becomes possible to treat Landau
damping as a dissipative process in collision plasma.

2. Initial equations of statistical theory
of plasma

2.1 Microscopic equations for Coulomb plasma
Gas plasma constitutes a multicomponent gas consisting of
positively and negatively charged particles and neutrals. The
simplest example is the electron ± ion plasma, in which the
charge of the ion ei equals the electron charge e. In this paper
we shall consider only the Coulomb plasma, when we may
proceed to the limit lim c!1, where c is the speed of light.

We use the following notation: subscript a denotes the
plasma component �a � e; i�; ea andma are the charge and the
mass of the particle, respectively; Na is the total number of
particles of type a; na � N=V is the mean number density of
particles; Na � N, and n � N=V. The plasma is electrically
neutral, which means thatX

a

eaNa � 0 ; or
X
a

ea na � 0 : �2:1�

We start with the set of equations in themicroscopic phase
density of each plasma component in the six-dimensional
phase space x � �r; p�:

Na�x; t� �
X

14 i4N

d
ÿ
xÿ xia�t�

�
; x � �r; p� ; �2:2�

and the microscopic electric field strength E m�r; t�. The
equations for the functions (2.2) and the microscopic field
strength have the form [5, 12]

qNa

qt
� v qNa

qr
� eaE

m�r; t� qNa

qp
� 0 ; �2:3�

rotE m � 0 ; divE m � 4p
X
a

ea

�
Na�r; p; t� dp : �2:4�

Interaction between the charged particles is described by
Coulomb's law.

The field equations for Coulomb plasma may also be
written in the form different from Eqn (2.4):

rotE m � 0 ;
qE m

qt
� ÿ4p

X
a

ea

�
vNa�r; p; t� dp : �2:5�

To go over from one form to the other, one must use the
continuity equation for the microscopic phase density of
electric charge qm �Pa ea

�
Na�r; p; t� dp:

qqm

qt
� div j m � 0 ; �2:6�

where j m �Pa ea
�
vNa�r; p; t� dp is the microscopic current

density.
Let us consider now the characteristic parameters of fully

ionized plasma as required for further discussion. We intro-
duce them using the most simple examples of processes in
plasma, and skip the details which can be readily found in
textbooks, for example, in Ref. [25], or Ref. [5], Chapter 5.

2.2 Basic parameters of Coulomb plasma
2.2.1 Natural plasma oscillations. Langmuir frequency. Con-
sider an approximation when thermal motion of charged
particles can be neglected. Then the plasma motion can be
described by equations in the mean number density of
particles na, mean velocity ua for each plasma component,
and the mean electric field strength E.

This set of equations has a particular solution, in which
the velocities ua and the field E are zero, and the number
densities of electrons and ions are equal, na � n0a. The density
of electric charge q 0 �P ea n

0
a is also equal to zero. For a

small deviation from this state, the equation for the charge
density reduces to the equation of harmonic oscillator

q2q1

qt 2
� o2

Lq
1�r; t� � 0 : �2:7�

The squared eigenfrequency (the Langmuir frequency) is
given by

o2
L �

X
a

4pe2ana
ma

: �2:8�

Along with the plasma Langmuir frequency oL, one can
also consider eigenfrequencies of the plasma components, the
electrons and the ions. The corresponding periods of oscilla-
tions are the characteristic time parameters of plasma.

2.2.2 Screening of external field in plasma. Debye length.
Consider a semiconfined plasma. Let the electric potential
on the boundary be j0, and j�1� � 0 at infinity.

If the plasma is at equilibrium, then the function na�x� is
given by the Boltzmann distribution. Hence, under the
condition eaj�x�5 kT, from the field equations we get a
linear equation for the electric potential

d2j
dx2
ÿ 1

r2D
j�x� � 0 : �2:9�

Under the boundary conditions j�0� � j0 and j�1� � 0 the
solution is written in the form

j�x� � j0 exp

�
ÿ x

rD

�
; �2:10�

where we use the notation

r2D �
kTX

a

4pe2ana
�2:11�

for the square of characteristic distance at which the electric
field is screened by the plasma. This is the so-called Debye
radius (or Debye length) rD.

Along with the radius rD, corresponding lengths are
defined also for each of the plasma components. All these
quantities are the characteristic parameters of plasma.

2.2.3 Space correlation of charged particles. Correlation
radius. We introduce the notation for one-particle fa and
two-particle fab distribution functions. At equilibrium, in the
absence of external field, the one-particle distribution func-
tions are fa � 1, and therefore the two-particle distribution
functions fab are linked with the two-particle correlation
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functions gab by equalities

fab
ÿjrÿ r 0j� � 1� gab

ÿjrÿ r 0j� : �2:12�

Let us compare the relations between the main character-
istic lengths and the structure of correlation functions for
rarefied gas and rarefied plasma.

Rarefied gas. Assume that the atoms make elastic spheres
of diameter r0. Then the correlation radius is rcor � r0.
Another characteristic length is the average distance between
the particles rav � �1=n�1=3 � �V=N�1=3. The third character-
istic parameter is the mean free path l � 1=nr20.

Those gases for which the dimensionless density para-
meter is small, e � nr30 5 1, are called rarefied. In order of
magnitude, r0 � 10ÿ8 cm. At atmospheric pressure, when
rav � 10ÿ6 cm, and the mean free path is l � 10ÿ4 cm, the
density parameter is e � 10ÿ4, and the following inequalities
hold:

rcor � r0 5 rav 5 l : �2:13�

Thus, the correlation radius is determined by the smallest
characteristic length r0.

Rarefied plasma.The two-particle correlation function for
a rarefied plasma is given by

gab�r� � ÿ eaeb
kT

1

r
exp

�
ÿ r

rD

�
; gab 5 1 ; �2:14�

fromwhence it follows that the correlation radius in plasma is
rcor � rD.

To define a small parameter for a rarefied plasma, we
consider the expression for the radial distribution function

4pgab�r�r2 � ÿ4p eaeb
kT

r exp

�
ÿ r

rD

�
: �2:15�

The absolute value of this function has a maximum at
r � rD:

jgabj � e2

kTrD
� 1

nr3D
� 1

ND
� m : �2:16�

Here we have introduced the plasma parameter m. For a
rarefied plasma,

m � 1

nr3D
� 1

ND
5 1 ; ND 4 1 : �2:17�

Thus, a large number of particles are involved in a
simultaneous interaction in a rarefied plasma Ð the interac-
tion is collective in character. In this respect the situation here
is opposite to that in the case of a rarefied gas.

2.2.4 Relaxation correlation scales in plasma. For the elec-
tron ± ion plasma there are four characteristic relaxation
times tab (a � e; i, b � e; i), or four collision rates
nab � 1=tab, and four relaxation lengths Ð the four mean
free paths. For a rarefied plasma �m5 1� the relaxation scales
of electron-electron interactions are

tee � 1

moL
� TL

m
4TL ; lee � rD

m
5 rD : �2:18�

From Eqn (2.14) it follows that the correlation radius rcor
and the corresponding correlation length lcor are determined
by the Debye radius:

rcor � lcor � rD : �2:19�

The corresponding relaxation time is

tcor � rcor
vT
� rD
vT
� 1

oL
� TL : �2:20�

Definitions (2.18) ± (2.20) lead to the following inequal-
ities:

rav 5 rcor � rD 5 lee ; tav 5 tcor � TL 5 tee � TL

m
: �2:21�

We see that the relationships between the average distance rav
and the corresponding correlation lengths (r0 and rD) for gas
and plasma are inverse.

2.3 Physically infinitesimal scales for gas and plasma
2.3.1 Rarefied gas. Kinetic level of description. So then,
rarefied gas and rarefied plasma are characterized by dimen-
sionless parameters

e � nr30 5 1 ; m � 1

nr3D
5 1 : �2:22�

These parameters determine also the linkage between the
physically infinitesimal scales tph and lph, and the collision
(relaxation) parameters t � trel and l � lrel of gas and plasma.

The number of particles within physically infinitesimal
volume Vph we denote as Nph � nVph. By definition of
physically infinitesimal scales, the number of particles within
Vph volume is large, and the scales tph and lph are small
compared to the characteristic scales T and L (t and l for the
Boltzmann gas and Debye plasma):

tph 5T ; lph 5L ; Nph 4 1 : �2:23�

The definition of physically infinitesimal scales is not uni-
versal. It depends on the selected level of description of
nonequilibrium processes (kinetic, hydrodynamic, or diffu-
sion).

Boltzmann gas. For a rarefied gas we arrive at the
following relations between the characteristic lengths:

r0 5 rav 5 l ; e � nr30 5 1 : �2:24�

The time of transition to the local distributionwith respect
to velocities is determined by the collision time t. The
corresponding length scale is the mean free path l. Accord-
ingly, for the kinetic stage of relaxation the following
replacements must be carried out in Eqn (2.23):

T! t ; L! l : �2:25�

Now we may select the physically infinitesimal scales tph and
lph which satisfy inequalities (2.23) with the replacements
(2.25).

At first sight, the concept of a rarefied gas as a continuous
medium seems paradoxical. To show that this is not the case,
we do the following.
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Let us divide the time interval t between two consecutive
collisions of any selected particle by the number of particles
Nph. The resulting time interval refers to the time between
collisions of (any!) one particle within the volume Vph. It
would be natural to take this time interval as the definition of
tph. In the kinetic description we also use the relation
tph � lph=vT. As a result, we get two equations

t
Nph
� t

nl 3ph
� tph ; tph � lph

vT
; �2:26�

from which, using the definitions of t � l=vT and e, we obtain
concrete estimates for the physically infinitesimal scales [34]:

tph �
��
e
p

t5 t ; lph �
��
e
p

l5 l ; and Nph � 1��
e
p 4 1 :

�2:27�

For a rarefied gas, when inequalities (2.24) hold, these values
satisfy the general conditions (2.23).

2.3.2 Boltzmann gas. Hydrodynamic description [5, 33]. In
hydrodynamics, the relaxation times are expressed in terms of
the external parameter L and one of the three dissipative
coefficients of diffusion D, viscosity n, and thermal con-
ductivity w. All these are diffusion-type processes. So we
denote by D any of the three coefficients D, n, or w. Then the
relaxation time is given by

tD � L2

D
; �2:28�

where D � D; n or w. For diffusive processes the linkage
between physically infinitesimal scales is determined (in
place of the kinetic relation tph � lph=vT) by the appropriate
gasdynamic relation

tGph �
ÿ
lGph
�2

D
; �2:29�

where D � D; n or w. In this way, the `trace' of the diffusive
(hydrodynamic) motion is preserved within the physically
infinitesimal volume Vph Ð that is, at a `point' of continuous
medium.

As a result, using definitions (2.28), (2.29), we get concrete
estimates for physically infinitesimal scales within gasdy-
namic description:

tGph �
tD
N 2=5

5 tD ; lGph �
L

N 1=5
5L ; NG

ph � N 2=5 4 1 ;

�2:30�

where we have utilized the definition nL3 � N.
We see that now, as opposed to Eqn (2.27) for the kinetic

description, the physically infinitesimal scales are linked with
the external scale L. This indicates that the definition of
physically infinitesimal scales, and hence the very definition
of a `point' of continuous medium, depends very much on the
adopted level of description.

2.3.3 Physical Knudsen number. Thus, we have defined the
concept of a `point' for kinetic and gasdynamic description of
nonequilibrium processes. Naturally, the gasdynamic
description is more rough than the kinetic description, and

the `point' of continuous medium in gas dynamics is larger,
i.e.Vph 4V G

ph. The transition from the kinetic description to a
more rough gasdynamic description is traditionally carried
out in the following manner.

A dimensionless parameter, the so-called Knudsen num-
ber, is introduced as

Kn � l

L
: �2:31�

The approximate solution of the kinetic equation is sought for
using the perturbation theory in small Knudsen number (the
Hilbert, Chapman ±Enskog and Grad methods). The use of
perturbation theory, however, is associated with a number of
serious difficulties [33, 35, 36], which arise from the fact that
the Knudsen number does not reflect the structure of
continuous medium well enough.

Instead of the Knudsen number it is natural to employ
another dimensionless parameter which is always small
within the approximation of continuous medium. It is the
physical Knudsen number, which under the kinetic description
is defined as

Kph � lph
L
: �2:32�

The smallness of this parameter is ensured by the fact that
Nph 4 1.

For the domain of free-molecule flow, when the char-
acteristic length L (for example, the diameter of the pipe) is
much smaller than the mean free path l, the approximation of
continuous medium can be utilized if the following inequal-
ities are satisfied:

lph 5L5 l : �2:33�

With gasdynamic description, the physically infinitesimal
scales are defined by Eqn (2.30), and hence the physical
Knudsen number is given by

KG
ph �

lGph
L
� 1ÿ

NG
ph

�1=2 : �2:34�

The smallness of this parameter is ensured by the condition
NG

ph 4 1.

2.3.4 Reconciliation of kinetic and gasdynamic definitions of
continuous medium. The relationship between two physically
infinitesimal volumes Vph and VG

ph can be expressed in terms
of the density parameter e and the Knudsen number Kn:

Vph

VG
ph

� e3=10 Kn6=5 4 1 : �2:35�

The equality sign here corresponds to the largest value of the
Knudsen number (and, accordingly, to the least value of the
external parameter Lmin), at which a unified kinetic and
gasdynamic description of continuousmedium is still feasible.

Using definition (2.27), from (2.35) we find that

Lmin �
��������
Nph

p
lph � l��������

Nph

p ; Knmax �
��������
Nph

p
: �2:36�

We see that the minimum length Lmin (the smallest size of the
point for which the trace of diffusive motion is still preserved
and the hydrodynamic description of motion is still possible)
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is smaller than the mean free path l, and greater than the
physically infinitesimal scale lph in the kinetic description.

Thus, a unified description of kinetic and hydrodynamic
processes is possible in a broad range of Knudsen numbers
without using the perturbation theory in Knudsen number
Kn.

The corresponding characteristic time scale is defined by

ÿ
tGph
�
min
� L2

min

D
� ��

e
p

t � tph ; �2:37�

and is therefore of the order of the physically infinitesimal
time interval in the kinetic description.We shall use this result
in the derivation of the generalized kinetic equation for
unified description of kinetic and hydrodynamic processes
in rarefied gas and rarefied plasma.

So then, it is possible to give a general definition of a point
of continuous medium. From the above relations we can
estimate the number of particles falling on a point:

Nmin � nL3
min � eÿ5=4 : �2:38�

At standard conditions, when e � 10ÿ4, we find that
Nmin � 105.

2.3.5. Rarefied Coulomb plasma. Let us demonstrate now that
the feasibility range of the unified description of kinetic and
hydrodynamic processes in rarefied plasma is even broader
than that for a rarefied gas. This is because of the collective
nature of interaction between the charged particles. As a
consequence, inequalities (2.24) are replaced by the corre-
sponding inequalities for a plasma:

rav 5 rD 5 l ; tav 5
1

oL
� TL 5 tee � 1

moL
� TL

m
;

m � 1

nr3D
5 1 : �2:39�

The number of particles within the Debye sphere is

ND � 1

m
� nr3D 4 1 : �2:40�

There are two possible ways of defining the physically
infinitesimal scales for rarefied plasma [33, 35]. The first is
similar to the kinetic definition (2.26) for rarefied gas. In this
case we have

lrel � l � rD
m
; tph � trel

Nph
� trel

nl 3ph
; tph � lph

vT
: �2:41�

In this way, we have obtained estimates for the physically
infinitesimal scales in rarefied plasma:

tph � mtee � 1

oL
5 tee ; lph � rD 5 l ;

Nph � ND � 1

m
4 1 : �2:42�

These definitions satisfy the general conditions (2.23). How-
ever, they do not reflect well enough the physical difference
between the Boltzmann gas and the Debye plasma.

Indeed, the Debye radius defines the distance of interac-
tion between charged particles and the number of particles

within the Debye sphere ND 4 1. Thus, the nature of interac-
tion between charged particles in plasma is collective. To take
this property of rarefied plasma into account, one must use
the parameter rD for defining the length lph, and define the
physically infinitesimal time interval as the time of diffusion
of charged particles within a sphere of Debye radius:

lph � rD 5 l ; tph � r2D
D
; D � vT l : �2:43�

Here, like in the case of rarefied gas, we assume by definition
that the three kinetic coefficients of diffusion D, viscosity n,
and thermal conductivity w are the same.

We see that the physically infinitesimal intervals are now
linked by the gasdynamic relation

tph �
l 2ph
D
: �2:44�

Thus, for a rarefied plasma there is a broad (broader than
in the case of a rarefied gas!) range of parameters wherein a
unified description of kinetic and gasdynamic processes is
possible. Now the role of the length Lmin [see Eqn (2.36)] is
played by the Debye radius. The physical Knudsen number
and the maximum value of the conventional Knudsen
number [see Eqns (2.32), (2.31)] are defined for plasma as
follows:

Kph � lph
L
� rD

L
; Knmax � l

rD
� 1

m
4 1 : �2:45�

The last inequality opens up the possibility of unified
description of kinetic and hydrodynamic processes in plasma
in the range L > rD! Cases are known, however, when there
are two Debye radii rather than one. Then inequality (2.45)
has to be modified.

For anisothermal plasma, when Te > Ti, one can intro-
duce two Debye radii for electrons and ions:

r2De �
kTe

4pe2n
; r2D i �

kTi

4pe2n
; re 4 ri ; �2:46�

and define the physically infinitesimal length in terms of the
Debye radius for ions.

Now let us summarize our results.
Physically infinitesimal scales for a rarefied gas are

expressed via the principal scales of the kinetic theory of
gases: the free transit time t, and the mean free path l. The
parameters t and l, as well as the corresponding physically
infinitesimal scales, are linked through the thermal velocity.
Upon transition to the gasdynamic description, however, this
linkage is changed. Then the principal time and length scales
and the corresponding physically infinitesimal scales are
linked through the `diffusion' relations. Because of this, a
unified description of kinetic and hydrodynamic processes
calls for reconciliation of the kinetic definition of continuous
medium with the hydrodynamic one, using equations (2.35)
for a unified definition of the size of a point of continuous
medium.

In case of a rarefied plasma, along with the principal
relaxation parameters t and l there exist smaller (but still
macroscopic) parameters TL � 1=oL and rD, which charac-
terize processes in plasma. Like the corresponding relaxation
parameters, they are linked through the thermal velocity. As a
result, we come to equations (2.41).
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It ismore natural, however, to express the linkage between
the physically infinitesimal scales tph and lph for plasma in
terms of the diffusion relation. This definition of the structure
of continuous medium opens broad opportunities for a
unified description of kinetic and hydrodynamic processes
in a rarefied plasma.

Now we collected sufficient information about the
structure of rarefied plasma regarded as a continuous
medium to embark on the construction of the relevant
kinetic equations.

3. Averaging the microscopic equations
for plasma

3.1 Approximation of second moments
Let us carry out averaging of the microscopic equations for
Coulomb plasma over the Gibbs ensemble. We use the
following definitions of the distribution functions and the
mean electromagnetic field:


Na�x; t�
� � na fa�x; t� ;



E m�r; t�� � E�r; t� ; �3:1�

and the equation

E mNa

� � En fa �


dEdNa

�
x; x 0 ; t : �3:2�

As a result, we get the equation for the distribution
function fa. Here it will be convenient to represent this
equation in the form

qfa
qt
� v qfa

qr
� eaE�r; t� qfaqp

� ÿ 1

n

q
qp



dFa dNa

� � Ia�r; p; t� :
�3:3�

Averaging the microscopic equations for Coulomb
plasma, we arrive at the equations for the mean field:

rotE � 0 ; divE � 4p
X
a

ea na

�
fa�r; p; t� dp : �3:4�

The set of equations in averaged functions fa�r; p; t� and
E�r; t� is not closed, because it also includes a correlatorÐ the
collision integral

ÿ 1

n

q
qp



dFa dNa

� � Ia�r; p; t� ; �3:5�

which is determined by correlators of fluctuations

dNa � Na ÿ na fa ; dE � E m ÿ E : �3:6�
The term `collision integral' is used to emphasize the

analogy with the kinetic Boltzmann equation for a gas. This
analogy, however, is superficial, because each charged
particle in a rarefied plasma interacts simultaneously with a
large number of surrounding particles. For this reason why
Boltzmann's model of pair collisions is not suitable in this
case.

Let us now find the equations for fluctuations. The
equations for functions dNa�r; p; t� are obtained with the aid
of Eqns (2.3), (3.3):�

q
qt
� v q

qr
� eadE�r; t� qqp

�
dNa � dFa

qfa
qp

� ÿea q
qp

�
dEdNa ÿ hdEdNai

�
: �3:7�

The corresponding equations for the field fluctuations are

rot dE � 0 ; div dE � 4p
X
a

ea

�
dNa�r; p; t� dp : �3:8�

The calculation of fluctuations is complicated by the fact
that equations (3.7) are nonlinear. As in the case of rarefied
gas, this gives rise to a chain of coupled equations for the
moments of fluctuations. This time, however, the problem is
much more complicated, because one has to know not only
the particle distribution functions, but also that of the
electromagnetic field.

The situation is much simplified for a rarefied plasma.
Then, as we already know, it is possible to introduce
physically infinitesimal scales of length and time in accor-
dance with the inequalities in Eqns (2.41) ± (2.44). The
number of particles within the physically infinitesimal volume
Vph will be defined in that case by Eqn (2.42). For a rarefied
plasma, when the plasma parameter is m5 1, the number of
particles is Nph 4 1. By virtue of this condition the fluctua-
tions dNa may be considered small. Provided this condition is
satisfied, the right-hand side of Eqn (3.7) may be set equal to
zero. As a result, we get the following equation for fluctua-
tions in Coulomb plasma within the approximation of second
moments:�

q
qt
� v q

qr
� eaE�r; v; t� qqp

�
dNa � eanadE

qfa
qp
� 0 : �3:9�

3.2 Approximation of second correlation functions
The approximation considered above is not sufficient for
constructing the kinetic equations Ð that is, equations in the
one-particle (or, more precisely, single-point) distribution
functions fa. This is because the approximation of second
moments represents the plasma as a continuous medium. In
order to take into account the structure of plasma as a system
of charged particles, we use the so-called approximation of
second correlation functions. This enables us to disregard the
triple and higher correlation functions, and also to assume the
two-particle correlation functions gab to be small. The last
condition implies that

gab�x; x 0; t�5 fa�x; t� fb�x 0; t� : �3:10�

To thrash out the difference between the approximations
of second moments and second correlation functions, let us
consider the relationship between hdNadNbix;x 0; t and
gab�x; x 0; t�. They are linked by the following expression:


dNadNb

�
x;x 0; t � nansgab�x; x 0; t� � nadabd�xÿ x 0�fa�x; t� :

�3:11�

The second term on the right-hand side appears because the
two-particle correlation function (by its very nature) char-
acterizes the statistical linkage between different particles. To
take this difference into account (thus considering the plasma
as a system of charged particles), we represent the fluctuation
dNa as a sum of two terms

dNa�x; t� � dN ind
a �x; t� � dN �s�a �x; t� ; �3:12�

where superscript `ind' stands for `induced', and `s' for
`source'. The second term on the right-hand side dN �s�a �x; t�
takes care of the structure of plasma as a system of charged
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particles. The second one-time moment of these fluctuations
(fluctuations of the source `s') is defined by the second term on
the right-hand side of Eqn (3.11). Thus, we have


dNadNb

��s�
x;x 0; t � nadabd�xÿ x 0� fa�x; t� : �3:13�

The first term on the right-hand side of Eqn (3.12)

dN ind
a �x; t� � dNa�x; t� ÿ dN �s�a �x; t� �3:14�

is defined by the particular solution of the non-homogeneous
equation (3.9), which we conveniently represent now as�

q
qt
� v q

qr
� eaE�r; v; t� qqp

��
dNa�x; t� ÿ dN �s�a �x; t�

�
� ÿeanadE qfa

qp
� 0 : �3:15�

Superscript `ind' indicates that the right-hand side of the
equation is proportional to the field fluctuation dE. Because
of this, fluctuations (3.14) in the solution of non-homoge-
neous equation (3.15) are caused (induced) by fluctuations of
the field.

To calculate the fluctuations dN �s�a �x; t� (the source
fluctuations), one must use the following equation for the
two-time correlator of fluctuations:�

q
qt
� v q

qr
� eaE�r; v; t� qqp

�

dNadNb

��s�
xt;x 0; t 0 � 0 : �3:16�

Expression (3.13) serves as the initial condition (at t � t 0) for
the solution of this equation. Thus, we have


dNadNb

��s�
x;x 0; t; t 0

���
t�t 0
� nadabd�xÿ x 0� fa�x; t� : �3:17�

Now we can calculate the fluctuations in fully ionized
Coulomb plasma.

4. Two alternative approximations
in statistical theory of plasma

4.1 Traditional and nontraditional methods of describing
the nonequilibrium processes in Boltzmann gas
Two levels of description of nonequilibrium processes in a
rarefied gas are commonly used. One is based on the kinetic
Boltzmann equation, and the other on the equations of gas
dynamics. The latter are obtained from the approximate
solution of the kinetic equation by using perturbation theory
in Knudsen number. This results in a closed theory for
description of nonequilibrium processes in rarefied gases on
kinetic and hydrodynamic scales.

It seems that everything is available for solving particular
problems with the aid of the ready-made equations. The
situation, however, is not that simple for the following reason.
Both the kinetic and the gasdynamic descriptions are given
without specifying the structure of continuous medium. At
the same time, for kinetic and gasdynamic descriptions the
continuous medium is not the same.

As shown in Chapter 13 of Ref. [33], the form of
irreversible equations in the statistical theory of nonequili-
brium processes is changed considerably when the structure
of continuous medium is taken into account. Established was

the generalized kinetic equation as a basis for unified
description of nonequilibrium processes on both the kinetic
and the gasdynamic scales.

Going over from the kinetic equation to gasdynamic
equations was accomplished in this case without using the
perturbation theory in Knudsen number. This opens up the
possibility of providing a unified kinetic description of none-
quilibrium processes not only in passive, but also in active
media.We shall illustrate it below by the example of Coulomb
plasma.

4.2 Smoothing over the volume of a `point'
in nonequilibrium medium
Two levels of description of nonequilibriumprocesses are also
used in the theory of plasma. The first is based on the kinetic
equations of Landau, Vlasov, or Balescu and Lenard. The
second method is based on the equations of gas dynamics,
which are derived from the approximate solution of the
kinetic equation by using perturbation theory in small
Knudsen number. Both the kinetic and the gasdynamic
descriptions are given within the framework of the model of
continuous medium. Here also the structure of continuous
medium is different for kinetic and hydrodynamic descrip-
tions.

The definition of physically infinitesimal scales for plasma
is given by Eqns (2.42), (2.43), which are based on the
diffusion relation between the time tph and the length lph.
This definition of the structure of continuous medium, as
already indicated, opens a broad opportunity for a unified
description of kinetic and hydrodynamic processes in a
rarefied plasma. The relevant generalized kinetic equations
will be presented in the forthcoming sections; they can serve
as a basis for unified description of nonequilibrium processes
in a rarefied plasma on both the kinetic and the hydro-
dynamic scales.

The first task in the implementation of this program
consists in finding the spectral densities of fluctuations dN �s�a

and dE for nonequilibrium states on the basis of the last two
equations.

Let us go back to inequalities (2.21), (2.39), (2.41), which
characterize the relationships between the basic parameters of
the Debye plasma. As with theory of gases, these inequalities
allow separating the small-scale (fine-grain) and the large-
scale (kinetic, or coarse-grain) fluctuations. The small-scale
fluctuations are defined by the following conditions:

tcor 4tph 5 trel ; rcor 4 lph 5 lrel : �4:1�

So far the initial equations have been the reversible
equations (2.3), (2.4) for the microscopic phase densities
Na�r; p; t� of charged particles and the microscopic electric
field strength E m�r; t�. Let us now see how change is made to
the irreversible kinetic equation with due regard for the
structure of continuous medium.

At the first step in going over to irreversible equations, as
in the Boltzmann gas theory (see Eqn (13.3.1) in Ref. [33]), a
relaxation term is introduced into Eqn (2.3) for the micro-
scopic phase density of Coulomb plasma (cf. Eqn (13.3.1) in
Ref. [33]). This term describes the `adjustment' of the
microscopic phase density of particles Na�r; p; t� to the
corresponding distribution Na�r; p; t�, smoothed over the
volume of a point of continuous medium. As a result, in
place of (2.3), (2.4) we get the following irreversible equations
for the phase density Na�r; p; t� and the microscopic electric
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field:

qNa

qt
� v qNa

qr
� eaE

m qNa

qp
� ÿ 1

t�a�ph

�
Na�r; p; t� ÿ eNa�r; p; t�

�
;

�4:2�

rotE m � 0 ; divE m � 4p
X
a

ea

�
Na�r; p; t� dp : �4:3�

The last term in Eqn (4.3) contains smoothed (over the
volume of a point of continuous medium) microscopic phase
density

eNa�r; p; t� �
�
Na�rÿ r; p; t�Fa�r� dr : �4:4�

The particular definition of the smoothing function Fa�r�
depends on a number of factors, which include also the nature
of the mean field E�r; t�. Here we are going to use the simplest
representation in the form of Gaussian distribution with the
mean value proportional to the force eaE�r; t�:

Fa�r� � 1�
2pl �a�2ph

�3=2 exp

"
ÿ
ÿ
rÿ hria

�2
2l
�a�2
ph

#
; �4:5�

hria � ba
ea
ma

E�r; t�t�a�ph :

The variance is determined in our case by the size lph of the
point. Coefficient b � t�a�rel characterizes themobility under the
action of the mean force. The mobility is determined by the
collision time (relaxation time). Finally, hri is the correspond-
ing mean displacement in a time tph.

Now we carry out averaging over the Gibbs ensemble to
obtain the equation for the distribution function fa�r; p; t�
with due regard for the structure of continuous medium. In
place of Eqns (4.2), (4.3) we arrive at the following equations
for the Coulomb plasma:

qfa
qt
� v qfa

qr
� eaE

qfa
qp
� ÿ ea

na

q
qp



dEdNa

�ÿ
ÿ 1

t�a�ph

�
fa�r; p; t� ÿ efa�r; p; t�� ; �4:6�

rotE � 0 ; divE � 4p
X
a

ea na

�
fa�r; p; t� dp : �4:7�

This set of equations is not closed, because it contains not
only the first moments fa�r; p; t�, E�r; t� of the corresponding
microscopic functions, but also the correlator hdEdNai of
fluctuations dNa, dE. As compared with the traditional
equations (see Chapter 15 in Ref. [5]), here we have an
additional relaxation term which allows for the structure of
continuous medium!

In accordance with the right-hand inequality in Eqn (4.1),
when calculating the small-scale fluctuations the distribution
functions fa�r; p; t� and the electric field E�r; t� are slowly
varying functions of coordinates and time. The degree of
slowness is determined by the following relations

tph
trel
� m2 5 1 ;

lph
lrel
� m5 1 : �4:8�

In the zero approximation with respect to these para-
meters, one may completely disregard the space and time
variations of the functions fa�r; p; t�, E�r; t� in the calculation
of small-scale fluctuations. Under this condition, the corre-
lator with respect to variables r, t, r 0, t 0 is
�dNadNb�

�
r; t; r 0; t 0 �



dNadNb

�
rÿr 0; tÿt 0; p; p 0 ; �4:9�

and only depends on the time and coordinate differences. The
dependence on r and t is only via the function fa�r; p; t�, whose
change is not taken into account in the calculation of small-
scale fluctuations.

Equations (4.2) ± (4.7) will be used in deriving the general-
ized kinetic equations for a rarefied plasma. To do this, we
must first build a bridge between traditional and nontradi-
tional kinetic theories of plasma. For this purpose we must
return to the approximate equations (3.15), (3.16) for fluctua-
tions of the microscopic phase density dNa.

To separate the fluctuations at the point of continuous
medium (the small-scale fluctuations), we introduce the
following dissipative terms into equations for spatial Fourier
components:

ÿDadNa�k; p; t� ; ÿDa�dNadNb�tÿt 0; k; p; p 0 ; Da � 1

t�a�ph

:

�4:10�
As a result, from Eqns (3.15), (3.16) we get the equations for
the relevant Fourier components�

q
qt
� Da � ikv� eaE

q
qp

��
dNa�k; p; t� ÿ dN �s�a �k; p; t�

�
� ÿeanadE�k; t� qfaqp

�4:11�

and�
q
qt
� Da � ikv� eaE

q
qp

�
�dNadNb��s�tÿt 0; k; p; p 0 � 0 ; �4:12�

which are supplemented with the initial conditions

�dNadNb��s�tÿt 0 ; k; p; p 0
���
t�t 0
� nadabd�pÿ p 0� fa : �4:13�

Recall that these equations have been obtained in the
approximation when the variations of functions fa�r; p; t�,
E�r; t� in space and time are completely disregarded in the
calculation of small-scale fluctuations. As a result, one arrives
at the following expression for the space-time spectral density
of fluctuations (see Section 15.5 in Ref. [5]):

�dNadNb��s�o; k; p; p 0 � nadabd�pÿ p 0� Da

�oÿ kv�2 � D2
a

fa�r; p; t� :

�4:14�

We have obtained a spectral line whose width is deter-
mined by the smallest time interval t�a�ph � 1=Da. This line is
much broader than those spectral lines whose widths are
determined by the collision rate 1=t�a�rel or a diffusion process.

In the zero approximation with respect to 1=Dt�a�rel , the
width of this spectral line may be considered infinitely large.
This allows us to take advantage of the concept of `white
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noise', which is widely used in the theory of Brownian motion
in connection with the introduction of the so-called Langevin
source. Thus, the spectral density of fluctuations of random
source in the zero approximation is the same at all frequencies
and corresponds to a white noise.

The corresponding time correlation functions are propor-
tional to d�tÿ t 0�. Of course, the actual width of this time-
dependent function is not zero. It is determined by the
smallest temporal parameter. In the theory currently under
consideration, this parameter is the physically infinitesimal
time interval tph. Then we have d�tÿ t 0���

t�t 0� 1=tph. The
corresponding time spectrum is close to a white noise.

From arguments developed above it follows that the
results of the theory of Brownian motion can be employed
for calculating the fluctuations in plasma and deriving the
relevant kinetic equations. In the case of Brownian motion,
the source intensity does not depend on the frequency in the
zero approximation (white noise). Nevertheless, until recently
the development of the theory of nonequilibrium processes in
plasma took a different path! Let us explain the essential
difference between these two approaches.

4.3 Method of adiabatic switching on the interaction
The traditional theory relies on the formal mathematical
technique of regularizing the expressions for spectra in the
neighbourhood of resonances. Such regularization is neces-
sary in many problems of mathematics, physics, and both
classical and quantum mechanics.

This question arose for the first time when the perturba-
tion theory was applied to the three-body problem. This
theory relied heavily on the works of Henri PoincareÂ , and so
we speak today of PoincareÂ resonances. One of the mathema-
tical techniques used to overcome these difficulties is based on
the methods of the theory of functions of complex variables,
namely, the methods for regularizing the divergence. Reg-
ularization is performed by going over into the complex
domain and selecting the sign of detouring around the pole
in accordance with the causality principle. In physics, this
method of regularization is used in the theory of radiation.
The sign of the pole detouring is determined by the condition
of the wave divergence.

In plasma theory, a similar problem arises, for instance, in
connection with the so-called collisionless Landau damping
coefficient. A physical interpretation of this phenomenon will
be given below.

Similar `difficulties' arise also in quantum mechanics in
calculating the probabilities of transition in the presence of
variable fields (see, for example, Chapter 6 in Ref. [37]).

Along with the mathematical method, which became
known in physics as Fermi's golden rule, another method is
used for calculating the transition probabilities. It is based on
the assumption that the variable field is switched on not at the
initial point in time t � 0, but at t � ÿ1. Correspondingly,
the field slowly (adiabatically) increases according to the
exponential law exp�lat� with positive la. The limit la ! 0
is reached in the final expressions. In this way, the time
interval 1=la is introduced, which exceeds all the other
characteristic scales of the system in question.

The method of adiabatic switching on the interaction is
widely employed in the statistical theory of nonequilibrium
processes. It is useful when deriving the kinetic equations for
most diverse systems. It lies in the basis of a very popular
technique, the so-called method of Green's functions.

Given all the diversity of the calculation techniques, they
have one common feature: a formal change from the
reversible equations of classical and quantum mechanics to
the irreversible equations of statistical theory. The physical
justification of this change, however, remains `beyond the
frame'.

We see that one way around this problem associated with
the existence of resonances leads to irreversible equations. In
so doing, the dissipation, albeit implicitly, finds its path into
the theory. The necessity of including the dissipation in the
presence of resonances became obvious a long time ago. For
example, L I Mandelshtam in his famous ``Lectures on the
theory of oscillations'', read at the Department of Physics of
Moscow State University in 1930, said:

``Hence we see that, when considering a steady oscillation
close enough to the resonance, we must take damping into
account, however small it may be.''

And further on:
``As we have seen, however, the smaller la, the slower the

oscillations reach the steady state. When la tends to zero, the
amplitude of oscillations goes to infinity, but the steady regime
is established in infinitely large time, which means that it is
never established.''

So then, the method of adiabatic switching on the interac-
tion is not sufficient for the construction of the theory of
nonequilibrium processes, because it does not describe the
actual change to irreversible equations.

Indeed, going over to the kinetic equations implies change
from the reversible equations of motion to the irreversible
equations of continuous medium. This change to a more
simple description becomes possible and practically inevita-
ble owing primarily to the complexity of motion of the
Hamiltonian system under consideration. In particular, this
complexity is manifested in the dynamic instability of motion,
and, as a consequence, in the mixing of paths in the phase
space. It is the latter that justifies the introduction of
physically infinitesimal elements with subsequent smoothing
over the physically infinitesimal volumeÐover the volume of
the point of continuous medium. Because of this, the
information about the motion through the points of contin-
uous medium is lost, and the corresponding equations of the
statistical theory become irreversible [30, 33, 38 ± 41].

Naturally, the physically infinitesimal scales are the
smallest among the characteristic scales for equations in the
approximation of continuous medium. In this respect the
situation is opposite to that encountered in the theory based
on the adiabatic switching on the interaction, when the
switching on time is larger than any other characteristic
parameter of time in equations obtained in this manner.

The nontraditional method of describing the nonequili-
brium processes was discussed in detail in Ref. [33] using the
example of Boltzmann gas. Here we are going to employ an
analogous method when describing the nonequilibrium
processes in an essentially different system Ð in a fully
ionized plasma. A similar approach to the construction of
statistical theory is also possible for quantum open systems.
The discussion of this problem was started in the last chapter
of Ref. [33].

Of course, the remarks made above do not deny the
usefulness of the traditional statistical theory of nonequili-
brium processes in plasma. It would be natural to use a
reasonable blend of the old and the new. From this standpoint
we shall first consider in brief the most important results of
the traditional kinetic theory of plasma.
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5. Kinetic equations for fully ionized plasma.
Conventional approximation

5.1 Spectral densities of fluctuations
in Coulomb plasma
To go over to the adiabatic approximation, we must change
the meaning of the parameter Da in Eqns (4.10) ± (4.14).
Namely, we replace Da with the parameter of the adiabatic
theory la, i.e. Da ! la. As a result, Eqn (4.14) takes the form

�dNadNb��s�o; k; p; p 0 � nadabd�pÿ p 0� 2la
�oÿ kv�2 � l2a

fa�r; p; t�;

la ! 0 : �5:1�

Using the definition of d-function

lim
la!0

la
�oÿ kv�2 � l2a

� pd�oÿ kv� ; �5:2�

we get the final expression which has no explicit dependence
on la:

�dNadNb��s�o; k; p; p 0 � nadabd�pÿ p 0�2pd�oÿ kv� fa�r; p; t� :
�5:3�

In our current approximation, this is the most general
expression for the spectral density of fluctuations conditioned
by the molecular structure of the plasma. Making use of the
field equations, we find the relationship between the Fourier
components of functions dE, dNa:

dE�o; k� � ÿ ik

k2

X
a

4pea

�
dNa�o; k; p� dp : �5:4�

From Eqn (4.11) follows a second relationship between the
Fourier components of fluctuations dE, dNa:

dNa�o; k; p� � dN�s�a �o; k; p�

ÿ iea
oÿ kv� ila

dE�o; k� q�na fa�
qp

; la ! 0 : �5:5�

Now we can eliminate the function dNa�o; k; p� from the last
two equations. It is convenient to represent the resulting
equation in the form

e�o; k�dE�o; k� � ÿ ik

k2

X
a

4pea

�
dN �s�a �o; k; p� dp ; �5:6�

where

e�o; k� � 1�
X
a

4pe2a
k2

na

�
k qfa=qp

oÿ kv� ila
dp ; la ! 0

�5:7�

is the permittivity of Coulomb plasma.
Using these equations, we find the space ± time spectral

density of the field fluctuations in the approximation of
adiabatic switching on the interaction:

�dEdE�o; k �
1��e�o; k���2

X
a

�4p�2e2a
k2

na

�
2pd�oÿ kv� fa dp :

�5:8�

From the latter follows the expression for the space spectral
density of the field fluctuations in Coulomb plasma:

�dEdE�k �
X
a

�4p�2e2a
k2

na

�
fa��e�kv; k���2 dp ; �5:9�

which depends on the polarization properties of plasma via
e�o; k�.

Observe once again that this calculation of fluctuations
has been carried out in the approximation of adiabatic switch-
ing on the interaction. In this approximation, the dissipation
factor la [and, as a consequence, the width of the spectral line
of fluctuations (5.1)] tends to zero. As a result, the corre-
sponding correlation time tends to infinity.

Thus, the `starting point ' in the traditional theory of
fluctuations is the most coherent state, whose lifetime is longer
than any other characteristic time of the system in question.

This approach, however, overlooks the physical essence of
the irreversibility origin. Indeed, going over to the irreversible
equations of continuous medium is governed by the elimina-
tion of particles motion within the physically infinitesimal
volumes. In other words, the dissipative terms in the kinetic
equations are determined by the small-scale fluctuations, and
their correlation time is determined by the least characteristic
time interval. So we have two opposite starting points for the
going over from the reversible equations of particle motion to
the irreversible kinetic equations. If we start with equations
(4.2) ± (4.7), then the first step towards the irreversible kinetic
equations consists in the elimination of the most chaotic (non-
coherent) motion within the points whose size is about l

�a�
ph .

This motion is characterized by the smallest correlation times
t�a�ph for the components of rarefied Coulomb plasma.

As we have seen, the conventional kinetic theory starts
from the opposite position. The initial state is the most
coherent one, since the corresponding correlation time is larger
than any characteristic time of the plasma.

Of course, these two approaches are not equivalent. To be
able to compare the results of two approximations, we must
recall the main results of the conventional kinetic theory of
plasma.

5.2 Kinetic equations for rarefied Coulomb plasma
Now we can find the expression for the more general spectral
density �dNadE�o; k. The real part of this spectral density
determines the form of the `collision integral' Ia�r; p; t� in the
kinetic equation (3.3), since this integral can be represented as

Ia�r; p; t� � ÿ ea
na

q
qp

�
Re �dNadE�o; k; r; p; t

do dk

�2p�4 : �5:10�

We shall find the required expression for the spectral density
of fluctuations with the aid of Eqns (5.5), (5.6). The
dependence on r and t is implicit [via the distribution function
fa�r; p; t�]. As a result, we find the collision integral

Ia�r; p; t� �
X
b

2e2ae
2
bnb

q
qpi

�
kikj
k4

d�kvÿ kv 0���e�kv; k���2
�
�
qfa�r; p; t�

qpi
fb�r; p 0; t� ÿ qfb�r; p 0; t�

qpij
fa�r; p; t�

�
dkdp 0 :

�5:11�

This expression was first obtained by Balescu and Lenard,
and is known as the Balescu ±Lenard collision integral.
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The permittivity e�o; k� being dependent on the distribu-
tion functions, the Balescu ±Lenard collision integral is
extremely complicated. It will be expedient therefore to
consider the possibilities of simplifying this equation.

5.3 Landau collision integral
The inclusion of polarization into the collision integral
restricts the interval of integration with respect to k. At large
values of k, however, the integrand in the collision integral is
proportional to 1=k. Then integration with respect to k leads
to logarithmic divergence. This is a consequence of violating
the applicability condition of perturbation theory. Because of
this, the upper limit of integration with respect to k is selected
as

k <
kBT

e2
� 1

lL
; �5:12�

Nowwemay proceed further and set e�kv; k� � 1, but take the
polarization into account by imposing the condition k > 1=rD
on the lower limit of integration with respect to k. As a result,
the lower and the upper limits of integration with respect to k
will be defined by the following conditions

kmin � 1

rD
; kmax � 1

lL
; �5:13�

and integration with respect to k gives rise to a factor, the so-
called Coulomb logarithm:

L � ln
rD
lL
� ln

1

m
; m5 1 : �5:14�

It was this simpler expression that was established in Land-
au's paper [1] but in a different way.We shall use it later when
deriving the generalized kinetic equation for plasma.

5.4 Approximation of first moments. Vlasov equations
Recall that the set of equations in the first moments

Na�x; t�

� � na fa�x; t�,


E m�r; t�� � E�r; t� of the relevant

microscopic functions is nonclosed, since it contains the
collision integral Ia. The latter is defined by the correlator of
fluctuations of microscopic phase density and microscopic
electromagnetic field.

The simplest case, when the set of equations in the first
moments is closed, corresponds to the zero approximation
with respect to fluctuations. Then the collision integral
vanishes, and we arrive at the Vlasov equations (1938). For
Coulomb plasma these equations have the form

qfa
qt
� v qfa

qr
� eaE�r; t� qfaqp

� 0 ; �5:15�

rotE � 0 ; �5:16�
divE � 4p

X
a

eana

�
fa�r; p; t� dp : �5:17�

The Vlasov equations are reversible. This manifests itself
in the fact that the entropy of a closed system remains
constant in the course of time evolution. The Vlasov equa-
tions are identical in form to exact equations in the micro-
scopic functions Na�x; t�, E m�r; t�. They, however, are
approximate equations in deterministic (nonrandom) func-
tions fa�r; p; t�,E�r; t�when the electron-ion plasma is regarded
as a continuous medium.

Like the correspondingmicroscopic equations, the Vlasov
equations are reversible. The reversibility of the Vlasov
equations, however, is illusory. As a matter of fact, the values
of relaxation time and length for plasma are finite. Going over
to the Vlasov equations can only be approximately carried
out on condition that the relaxation lengths lee are much
larger than the size of the system L, i.e. lee 4L. Hence it
follows that the system under consideration is confined, and
therefore the Vlasov equations must be supplemented with
the boundary conditions. In the case of real systems the latter
are always dissipative. Accordingly, the Vlasov equations
together with the boundary conditions constitute dissipative
equations. Dissipation can be taken into account by introdu-
cing the effective collision integral into the reversible Vlasov
equations [Eqn (5.16)]. The question now arises how the
dissipative term ought to be introduced into the Vlasov
equations. This question can be put in a different way: how
should one carry out the regularization of the reversible Vlasov
equation in order to take the real dissipation in plasma into
account?

There are two essentially different approaches to such
regularization. One was first used in Landau's paper [3] in
connection with the introduction of Landau's collisionless
damping. Landau introduced this dissipation in a formal way,
by solving the reversible Vlasov equation with the aid of
Laplace transform. The same result can be obtained using an
equivalent procedure: namely, we can introduce a small
dissipative term, proportional to a certain collision rate na,
into the Vlasov equation. In the final (!) results we set na ! 0.

In this way, dissipation is, although formally, introduced
to overcome the difficulties associated with the presence of
resonances.

Going over from the reversible equations of motion to the
kinetic equations, as indicated above, implies the change to
the irreversible equations of continuous medium. This
requires smoothing over the volume of the points of con-
tinuous medium.Naturally, the physically infinitesimal scales
are the smallest among the characteristic scales pertinent to
the equations of continuous medium.

In this respect, the situation is opposite to that encoun-
tered in the traditional theory when the so-called collisionless
approximation is used. To see this difference, let us recapitu-
late some results of the conventional theory.

5.5 Waves in collisionless Coulomb plasma.
Landau damping
5.5.1 Electric susceptibility of Coulomb plasma. Dispersion
equation. Let us distinguish two cases.

(1) The wave properties of unconfined Coulomb plasma
are considered under the assumption that the collisions do not
play any significant role. This requires that the following
conditions must be satisfied:

l5 lee 5L ; o4 nee 4
1

T
; �5:18�

where l � 1=k is the wavelength, o is the corresponding
frequency, L is the smallest characteristic size of the system,
and T is the corresponding parameter of time. The zero
approximation in l=lee and nee=o [passage to the limit is
carried out in the final results (!)] corresponds to the collision-
less approximation for plasma.

(2) The relaxation scales, determined by the interaction
between the plasma particles, are much greater than the
characteristic parameters of the system. Then the following
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inequalities hold:

l5L5 lee ; o4
1

T
4 nee ; �5:19�

and the Vlasov equations must be supplemented with the
boundary conditions, which in the general case are dissipa-
tive. Dissipation may be due to various reasons: nonideal
conditions of reflection, finite time of flight, etc.

In a certain sense, the case when inequalities (5.18) are
satisfied, is more simple. Indeed, in this case the dissipation is
determined by the collision integrals, whose general proper-
ties are well known. At the same time, it would be difficult to
suggest a general form of the effective collision integral which
would characterize the dissipative boundary conditions
provided that inequalities (5.19) hold.

In the collisionless approximation wemay assume that the
particular form of the collision integral is not important. This
justifies the use of the simplest so-called n-approximation for
the collision integral:

Ia � ÿna
�
fa�r; p; t� ÿ f �0�a �p�

�
; �5:20�

where f
�0�
a �p� is the Maxwellian distribution. As a result, the

reversible Vlasov equation (5.15) will be replaced by the
irreversible kinetic equation

qfa
qt
� v qfa

qr
� eaE

qfa
qp
� ÿna

�
fa�r; p; t� ÿ f �0�a �p�

�
: �5:21�

This equation (as opposed to the Vlasov equation!)
possesses an equilibrium solution in the form of the Maxwel-
lian distribution. The field therewith is E � 0. Consider a
solution f

�1�
a �r; p; t�, E �1��r; t�, which is close to the equili-

brium solution. In the linear approximation, the solution of
the relevant equations for the Fourier components culminates
in the following equation for the field:

e�o; k�E �1��o; k� � 0 : �5:22�

The permittivity is given by

e�o; k� � 1�
X
a

4pe2a
k2

na

�
k qf �0�a =qp

oÿ kv� ina
dp ; na ! 0 :

�5:23�

The condition of existence of nontrivial solution leads to the
dispersion equation

e�o; k� � 0 : �5:24�

Thewave number for unconfined plasma is real.We represent
the complex frequency in the form o � o 0 ÿ g, and consider
the case of slight damping, when g5o 0. In the first
approximation with respect to g=o 0 we get the following
expressions:

Re e�o 0; k� � 0 ; g � Im e�o0; k�
�
qRe e�o 0; k�

qo 0

�ÿ1
:

�5:25�
The former defines the frequency dispersion of oscilla-

tions, i.e. the function o � o�k�, whereas the latter governs
the damping coefficient, which is proportional to the imagin-
ary part of permittivity.

The real and imaginary parts of permittivity e�o 0; k� are
given by the well-known formulas

Re e�o 0; k� � 1�
X
a

4pe2a
k2

naP

�
k qf �0�a =qp
o 0 ÿ kv

dp �5:26�

and

Im e�o 0; k� � ÿ
X
a

4p2e2a
k2

na

�
d�o 0 ÿ kv�k qf �0�a

qp
dp : �5:27�

SymbolP indicates that the principal value of the integral is to
be taken.

Let us now consider an example.

5.5.2 Waves in electron plasma. Landau damping. The ground
state is characterized by the Maxwellian distribution of the
electrons, whereas the ions are assumed to be immobile (cold):

f �0�e �p� �
1

�2pmekBT�3=2
exp

�
ÿ p2

2mekBT

�
and fi�p� � d�p�:

�5:28�

For the phase velocities o 0=k4 vT within the zero
approximation in me=mi we obtain the known results

o 0 2 � o2
L e�1� 3r2D ek

2� ; �5:29�

g � oLe

2
Im e�o 0; k�

� ÿoLe

2

4p2e2a
k2

na

�
d�o 0 ÿ kv�k qf �0�a

qp
dp ; �5:30�

where oLe is the Langmuir frequency, and rDe is the Debye
radius for electrons.

Let k k x; then we can integrate the last expression with
respect to py; pz, getting

g � ÿoLe
4p2e2aname

2k2
qf �0�e �px�

qpx

����
vx�o 0=k

�
���
p
8

r
oL e

1

r3Dek
3
exp

�
ÿ 1

2r2D ek
2
ÿ 3

2

�
: �5:31�

The expression for g obtained in this way defines the Landau
damping coefficient.

The collisional nature of Landau damping is indicated by
the fact that g is zero when the collision rate na is identically
equal to zero in the initial equation (5.21). We shall return to
this matter in the next section.

5.6 Permittivity and Landau damping
in kinetic theory of fluctuations
5.6.1 The kinetic theory. We have described the wave proper-
ties of rarefied Coulomb plasma in the collisionless approx-
imation on the basis of the kinetic equation. All the results
were obtained by solving the dispersion equation (5.24).
Permittivity (5.23) is found by solving Eqn (5.21) and the
field equations. Equation (5.21) may be regarded as the result
of regularization of the Vlasov equation for the distributions
functions fa�r; p; t�, i.e. the first moments of the microscopic
phase density Na�r; p; t�.

The term on the right-hand side of kinetic equation (5.21)
is a `caricature' of the collision integral, because it does not
possess the general properties of the latter. It is only used for
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regularizing the solution of the Vlasov equation in the
neighbourhood of resonances. This, however, is just a formal
mathematical solution to the problem, equivalent to the
approach used in the classical work [3]. Now it is timely to
clarify the physical content of the problem. Notice once again
that the regularization procedure is not unambiguous. From
physical standpoint, the various methods of regularization
are not equivalent.

Indeed, the quantity na in Eqn (5.21) is unvaried. This
means that the time delay and the spatial nonlocality are not
taken into account. As a result, the spectral linewidth in Eqn
(5.23) is also constant (it does not depend on the frequency o
and the wave number k), and na ! 0 in the final expressions.

One may use expression (5.23) for the dielectric constant
also when na is finite Ð that is, before passing to the limit
na ! 0. Then, after integrating it with respect to py and pz, we
come to the following expression for the imaginary part of
permittivity:

Im e�o 0; k� � ÿ
X
a

4p2e2a
k2

na

�
na

�o 0 ÿ kvx�2 � n2a
k
qf �0�a

qpx
dpx :

�5:32�
The integrand is the product of two functions. The former is a
Lorentz line with due account for the Doppler shift kvx. The
result of integration with respect to px depends on the
dimensionless parameter

na
kvT

; or
1

kla
; �5:33�

where la is the mean free path of the charged plasma particles.
In the zero approximation with respect to this parameter

we have an infinitesimally narrow Lorentz line, and integra-
tion with respect to px yields a Doppler contour. In this case
the wavelength 1=k is much less than la. This justifies to some
extent the term `collisionless approximation', which corre-
sponds to Landau's result. If, however, the collision rate na is
identically equal to zero, the result also comes to nought, since
the Lorentz line itself disappears, and there is nothing to be
averaged!

We have paid a lot of attention to this matter because the
concept of `Landau damping' plays an important role in
plasma physics.

5.6.2 Theory of fluctuations. All the above results have been
obtained on the basis of the kinetic equation for continuous
medium. Historically, however, the dielectric constant was
first introduced in the theory of small-scale fluctuations. It is
these fluctuations that determine the dissipative terms in the
kinetic equations. In particular, Eqn (5.5) was obtained for
the electric field fluctuations. Let us quote once again the
relevant expression of permittivity for fluctuations:

e�o; k� � 1�
X
a

4pe2a
k2

na

�
k qfa=qp

oÿ kv� ila
dp ; la ! 0 :

�5:34�
Recall also the expression for the space ± time spectral

density of the source of the electric field fluctuations in the
approximation of adiabatic switching on the interaction:

�dEdE��s�o; k �
X
a

�4p�2e2a
k2

na

�
2la

�oÿ kv�2 � l2a
fa dp ;

la ! 0 ; �5:35�

and the expression for the space ± time spectral density of the
field fluctuations dE

�dEdE�o; k �
�dEdE��s�o; k��e�o; k���2 : �5:36�

We see that the width of the Lorentz line in Eqns (5.35),
(5.36) comes to nothing in the approximation of switching on
the interaction adiabatically. This means that the correspond-
ing correlation time of fluctuations is infinite, and therefore
we are dealing with a completely coherent state.

Anew, like in the case of the collisionless approximation,
in the kinetic theory there exists a contradiction with the
natural (but not traditional) concept of the beginning of
change from the reversible microscopic equations to the
irreversible equations of the kinetic theory. Accordingly, we
may once again note that there are two opposite descriptions
of the rise of irreversibility. One of these is traditional; then
the onset of irreversibility is characterized by coherent
fluctuations with infinitely large correlation times (or infini-
tesimally narrow spectral lines Ð infinitesimally narrow
resonances). In the kinetic theory this corresponds to the
collisionless approximation. According to the other descrip-
tion, which is more physical but not traditional, the change to
the irreversible equations is inevitable when the model of
continuous medium is used. This time, however, the irrever-
sibility is a consequence of a totally chaotic motion of
particles within physically infinitesimal volumes Ð within
the points of continuous medium. Thus, the onset of
irreversibility and the dissipative terms in the kinetic equa-
tions are determined by the noncoherent but small-scale
fluctuations. Their correlation time is defined by the smallest
characteristic time parameter of the plasma.

From formula (5.36) it follows that equation

e�o; k� � 0 ; la ! 0 ; �5:37�
which is similar to dispersion equation (5.24), plays an
important part in the adiabatic theory of fluctuations as
well. Here we can also introduce an analogue of Landau
damping. Indeed, from Eqn (5.34) follows the expression for
the imaginary part of permittivity

Im e�o; k� � ÿ
X
a

4p2e2a
k2

na

�
la

�oÿ kvx�2 � l2a
k
qfa
qpx

dpx ;

la ! 0 ; �5:38�
which defines the width of the spectral line of field fluctua-
tions dE�o; k� at a given value of the wave vector k.

From formulas (5.32), (5.38) it follows that the problem of
calculation of the imaginary part of permittivity for kinetic
equation (5.21) in the collisionless approximation is similar to
the problem which arises in connection with solving the
corresponding equation in the calculation of the small-scale
fluctuations. In both cases the Landau damping arises when
dimensionless parameter (5.33) is much less than one:

na
kv

5 1 ; or
1

kla
5 1 : �5:39�

This means that the wavelength l � 1=k is much smaller than
the mean free path:

l � 1

k
5 la ; �5:40�

as consistent with the collisionless range of wavelengths.
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However, both in the calculation of fluctuations and in the
solution of the dissipative kinetic equation within the
collisionless approximation, the conclusion concerning the
existence of Landau damping is not justified. As a matter of
fact, this damping in the theory of fluctuations is a conse-
quence of the replacement of a broad line in the spectrum of
fluctuations by an infinitesimally narrow line corresponding
to switching on the interaction adiabatically. In other words,
the `white noise' is replaced by an infinitesimally narrow
resonance. This corresponds to the collisionless approxima-
tion in the calculation of fluctuations.

When kinetic equation (5.21) is used in the collisionless
approximation, there is an ambiguity in the selection of the
form of the collision integral. The selectionmade corresponds
to a very particular way of regularizing the reversible Vlasov
equation. Such regularization eliminates the divergence in the
expression for dielectric constant, but, as we shall see below, it
does not reflect in full measure the actual importance of
dissipation.

All this points to the necessity of (1) a more consistent
method for calculating the fluctuations which define the
collision integrals in the kinetic equations for plasma, and
(2) a more consistent inclusion of dissipation in the study of,
for instance, the wave properties of plasma.

We shall see that at the first step towards the irreversible
kinetic equations (in deriving the kinetic equations) one must
take into account the spatial nonlocality due to the finite size
of the points of a continuous medium. As a result, it will be
possible to eliminate the ambiguity in the selection of
regularization procedure when going over to the irreversible
equations of statistical theory of nonequilibrium processes.

6. Nontraditional description
of nonequilibrium processes in plasma

6.1 First step to irreversible equations
in physics of open systems
Recall that at the first step of going over to the irreversible
equations of continuous medium, the microscopic equation
(2.3) was supplemented with a term which characterized the
relaxation of the exact dynamic distributionNa�r; p; t� toward
the distribution smoothed over the volume of the point of a
continuous medium. In this way, the change was made from
exact dynamic equations (2.3), (2.4) to approximate equa-
tions (4.2), (4.3). The latter are approximate because informa-
tion about the motion of particles within the points of
continuous medium is lost. The smoothing procedure is
justified by the path mixing in the phase space because of
the dynamic instability of motion. Averaging these equations
over the Gibbs ensemble, we obtained the set of equations
(4.6), (4.7) for the distribution function fa�r; p; t� [the first
moment of the microscopic functionNa�r; p; t�] and the mean
electric field. This set of equations is not closed, since it
includes the correlator of fluctuations of the phase density
and the field, thus making it necessary to calculate the
fluctuations. The equations for fluctuations are nonlinear,
and we get an infinite chain of coupled equations for the
sequence of fluctuation moments. When the model of a
continuous medium is used, the number of particles within
the point is large. Because of this, we may truncate the chain
assuming that the fluctuations are small. As a result, we
obtained a linear equation (4.11) for the fluctuations of phase
density.

In order to separate the small-scale fluctuations, we
introduced a dissipative term into Eqn (4.11), in which, in
accordance with Eqn (4.10), the dissipative coefficient Da is
inversely proportional to the physically infinitesimal time
interval. Of course, it is a quite crude method of selecting the
small-scale fluctuations; we only used it to facilitate compar-
ison with the traditional calculation of fluctuations which
define the collision integrals in the kinetic equations for
plasma. Further on, we shall take the small-scale fluctuations
into account in a more consistent fashion when deriving the
generalized kinetic equation. The latter is suitable for unified
description of nonequilibrium processes on the kinetic and
hydrodynamic scales.

But let us continue our `brief digression into the past'.
Equation (4.11) was used in deriving Eqn (4.14) for the

spectral density of the source fluctuations which reflects the
molecular structure of continuous medium. The width of this
spectral line is inversely proportional to the physically
infinitesimal time interval, which is the smallest of all
characteristic times for the plasma. In the approximation of
continuous medium the linewidth is infinite, and therefore
the molecular structure of the point manifests itself as a
white noise. This makes the calculation of fluctuations in
plasma similar to (although much more complicated than)
the calculation of fluctuations in the theory of Brownian
motion.

The conventional theory of calculation of fluctuations in
plasma, as we have seen, does not pay respect to this
circumstance and `starts' from the opposite ground. Namely,
it is based on the method of switching on the interaction
adiabatically. As a result, expression (5.1) is used for the
spectral density of the source fluctuations in place of (4.14).
Accordingly, the linewidth in the ground-floor approxima-
tion tends to zero, and we arrive at Eqn (5.3). This means
that the initial state is assumed to be completely coherent,
since the corresponding correlation time turns out to be
infinite. It is on this basis that the above kinetic equations for
description of nonequilibrium processes in plasma were
constructed.

One might ask, however, whether it is worth making an
issue out of the minor blemishes in the formulation of these
equations and striving for a more consistent derivation of the
main equations when describing the nonequilibrium pro-
cesses in plasma. Let us show that there are good enough
reasons for developing the nontraditional statistical theory of
nonequilibrium processes in plasma.

In this connection let us recall that a similar problem has
been encountered in the kinetic theory of gases. Section 13.1
of Ref. [33] contains some remarks concerning the expedience
of the unified description of nonequilibrium processes on the
kinetic and hydrodynamic scales. Taking due account of the
structure of continuous medium, it was possible to derive the
generalized kinetic equation for a rarefied gas. As compared
with the kinetic Boltzmann equation, this equation contains
an additional dissipative term (see Eqn (13.3.10) in Ref. [33]).
This term allows for the space diffusion of the distribution
function. Owing to the diffusion of the distribution function,
three dissipative diffusion-like processes appear on the
gasdynamic level of description: self-diffusion of matter
resulted from occurrence of the density gradient, viscous
friction, and heat conduction.

Now let us demonstrate that a similar generalized kinetic
description is both possible and necessary in describing a
broad scope of phenomena in plasma.

36 Yu L Klimontovich Physics ±Uspekhi 40 (1)



6.2 Generalized kinetic equation
for rarefied Coulomb plasma
Let us go back to our discussion of Section 4.2. In this section
we listed the modifications which must be made in the initial
dynamic equations [Eqns (2.3), (2.4) in the case of Coulomb
plasma] for the microscopic phase density of each plasma
component and the field strength.

Smoothing of these equations over the point of a
continuous medium leads to Eqns (4.2), (4.3). An additional
term in the first of these equations describes the `adjustment'
of themicroscopic phase density (the dynamic distribution) to
corresponding function (4.4) smoothed over the volume of
the point. The smoothing function was defined by Gaussian
distribution (4.5). The dispersion is determined here by the
Debye radiusÐ the size of the point in Coulomb plasma. The
adjustment to the smoothed distribution proceeds within
physically infinitesimal time interval (2.43) Ð the time of
diffusion across the Debye sphere. A different physical
interpretation of the physically infinitesimal time interval
for plasma is also possible.

Recall that integration with respect to wave numbers in
the expression for Landau collision integral is carried out
between the limits [see Eqn (5.13)]

kmin � 1

rD
and kmax � 1

lL
: �6:1�

These definitions indicate that the largest length scale is the
same as theDebye radius, and therefore the same as the size of
the point of a continuousmedium. The smaller scales account
for the structure of the point itself, or, in other words, describe
the specific character of the Coulomb interaction. The
smallest scale is the so-called Landau length

lL � e2

kBT
: �6:2�

Since the ratio of the lengths lL, rD is easily proved to be given
by the plasma parameter m, we have the following sequence of
the characteristic times for plasma electrons:

tph � r2D
D
� m

1

oL
� m

rD
vT
� lL
vT

: �6:3�

Thus, the physically infinitesimal time interval is m times
smaller than the period of proper oscillations and, accord-
ingly, the time of flight over the length rD which defines the
size of the point. It is determined by the smaller time scales:
either by the time of diffusion across the point, or by the time
of flight over the smallest length scale of interaction (Landau
length).

After this digression, let us proceed with the modification
of the basic equations.

Recall that after averaging equations (2.3), (2.4) over the
Gibbs ensemble we obtained the set of equations (4.6), (4.7)
for the one-particle distribution functions and the strength of
a mean electric field. This set of equations is not closed: it
contains not only the first moments fa�r; p; t�, E�r; t� of the
corresponding microscopic functions, but also the correlator
hdE dNai of fluctuations dNa, dE.

We carry out expansion in terms of the physical Knudsen
number of each plasma component in the second term on the
right-hand side of Eqn (4.6). As a result, we get the following
expression for the dissipative term in the kinetic equation,
which is defined by the space diffusion and the mobility of

charged plasma particles:

I �r�a �r; p; t� �
q
qr

�
D�a�

qfa
qr

�
ÿ q
qr

�
t�a�rel

ma
eaE fa

�
: �6:4�

The coefficient of space diffusion is linked with the character-
istic relaxation parameters by the following relations:

D�a� �
l
�a�2
rel

t�a�rel

� vTa
l
�a�
rel � t�a�rel

kBT

ma
: �6:5�

This expression is similar to Eqn (13.3.7) in Ref. [33].
So then, we have established the form of one of the

dissipative terms in the kinetic equation obtained with due
account for the structure of a continuous medium. Now we
only have to establish the structure of the second dissipative
term on the right-hand side of Eqn (4.6), which is determined
by the correlator of the field fluctuations and the phase
density. We denote this term by

I �v�a �r; p; t� � ÿ
ea
na

q
qp



dE dNa

�
: �6:6�

Recall that we have already encountered a similar defini-
tion of the collision integral [see the identity on the right-hand
side of Eqn (3.3)]. Calculating this correlator within the
approximation of the second correlation functions has led us
to the expressions for the collision integrals of Balescu and
Lenard, and also of Landau.

From our current standpoint theBalescu ±Lenard result is
physically not justified, since it has been derived under the
assumption of switching on the interaction adiabatically. This
means that a coherent state is selected for the `starting point'.
Landau's expression is more suitable when the most chaotic
state serves as the starting point. In the original Landau's
paper it was derived from the Boltzmann equation with one
important addition. Namely, Landau singled out the princi-
pal range of scales (or wave numbers) which determine the
collision integral. It is interesting that within the traditional
approach Landau's result is less general than the Balescu±
Lenard expression: it does not take into account the dynamic
polarization of plasma. From the standpoint developed here,
however, Landau's expression is more advantageous.

Let us consider this important issue in greater detail.
Indeed, the range of scales (wave numbers) in the Landau

integral is defined by conditions (5.13).We see that the largest
length corresponds to theDebye radius, and thus to the size of
the point of a continuous medium. This ensures elimination
of precisely those scales which pertain to the small-scale
fluctuations.

Moreover, Landau's expression can be derived from the
Langevin equations for charged particles. Then the width of
d-function in the correlator of the Langevin source is
determined by the time interval which we have adopted
above as the physically infinitesimal time scale. By this
means in deducing the Landau collision integral on the basis
of Langevin equation the following condition should be met:

tcor � tph : �6:7�

As a result, the expression for the collision integral
pertinent to the Coulomb plasma, which was established in
a different way in Landau's classical paper in 1936, defines the
second dissipative term in the generalized kinetic equation for
Coulomb plasma. Themost natural is exactly that form of the
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collision integral which was proposed in Landau's original
work:

I �v�a �r; p; t� �
X
b

Cab
q
qpi

�
Vij�vÿ v 0�

�
�
qfa�r; p; t�

qpj
fb�r; p 0; t� ÿ qfb�r; p 0; t�

qp 0j
fa�r; p; t�

�
dp 0:

�6:8�

Here we use the notation for the tensor of velocity difference

Vij�vÿ v 0� �
�vÿ v 0�2dij ÿ �vÿ v 0�i�vÿ v 0�j

jvÿ v 0j3 �6:9�

and the constants

Cab � 2pe2ae
2
bnbL ; Bab � naCab : �6:10�

We also introduce the notation for the Coulomb logarithm

L � ln
rD
lL
� ln

1

m
for m5 1 : �6:11�

The superscript �v� on the collision integral indicates that
the Landau integral in the generalized kinetic equation is one
of the two collision integrals, which is defined by the
redistribution of charged particles with respect to velocities
(the Brownian motion).

Let us finally rewrite Eqn (4.6) in the formwhere the right-
hand side is the sum of two collision integrals, viz.

qfa
qt
� v qfa

qr
� eaE�r; t� qfaqp

� I �v�a �r; p; t� � I �r�a �r; p; t� : �6:12�

The first integral is given by Landau's expression (6.8); as
indicated above, it is responsible for the dissipation due to the
redistribution of velocities of the interacting charged particles
in Coulomb plasma. The second collision integral is given by
Eqn (6.4) and defines the dissipation due to the space
diffusion of the distribution function.

Naturally, these kinetic equations must be solved together
with the Maxwell equations for Coulomb plasma

rotE � 0 ; divE � 4p
X
a

eana

�
fa�r; p; t� dp : �6:13�

As a result, we have obtained the kinetic equations for
rarefied Coulomb plasma with due account for the structure
of the continuous medium modelling the system under
consideration. As a consequence, the kinetic equation con-
tains an additional dissipative term. This term describes the
adjustment of the dynamic and statistical distributions to the
distributions smoothed over the volume of the point of a
continuous medium. This allows us to call them the general-
ized kinetic equations for the Coulomb plasma.

To end this section, let us mark the following.
We may regard the generalized kinetic equations as an

example of equations from the theory of nonlinear Brownian
motion [33, 42], andwrite the appropriate nonlinear Langevin
equations. The correlators of Langevin sources will then be
characterized by a double set of variables. First of all, these
are the correlations on the physically infinitesimal scales.
These scales determine the `widths' of d-functions in the

expressions for the source correlators. The intensities of
Langevin sources for plasma will be also determined by the
distribution functions fa�r; p; t�, which vary little over the
physically infinitesimal space ± time scales. The equations of
this kind are extremely complicated, which plays down the
advantages of the Langevin method as compared with the
simpler systems. Because of this, it would be better to
concentrate the efforts on solving the kinetic equations
themselves.

Nowwe already may discuss some particular implications
and properties of this generalized kinetic equation.

6.3 Properties of generalized kinetic equations
6.3.1 Equilibrium spatially homogeneous distribution of plasma
particles. Diffusion in the space of momenta. In the absence of
external fields, the set of equations in the functions fa�r; p; t�,
E�r; t� has a particular solution, when the charged particles
are uniformly distributed over the space, the distribution with
respect to momenta is the Maxwellian distribution, and the
electric field is zero. To prove the existence of this solution one
must use the condition of electric neutrality of plasma (then
the charge density is zero) and make sure that the Landau
collision integral I

�v�
a �r; p; t� vanishes upon substitution of the

Maxwellian distribution. This is easily proved using the
properties of the tensor of relative velocity components.

We revert to expression (6.8) for the Landau collision
integral and rewrite it in the Fokker ± Planck form used in the
theory of Brownian motion:

I �v�a �r; p; t� �
X
b

Cab

�
q
qpi

D
�a�
ij �v�

qfa
qpj
� q
qpi

A
�a�
i �v� fa

�
:

�6:14�
Here we use the following notation for the tensor of diffusion
in the space of velocities and the corresponding vector which
characterizes the dissipation:

D
�a�
ij �v� �

X
b

Cab

�
Vij�vÿ v 0� fb� p 0� dp 0 ; �6:15�

A
�a�
i �v� �

X
b

Cab

�
Vij�vÿ v 0� qfb� p

0�
qpj

dp 0 : �6:16�

Let us find the relationship between these coefficients for the
state of equilibrium. For this purpose we substitute the
Maxwellian distribution into the last two formulas. As a
result, with due account for the properties of Landau collision
integral, we get

D
�a�
ij �v�vj � A

�a�
i �v�kBT : �6:17�

This is the Einstein relation in the theory of nonlinear
Brownian motion [4, 33, 42]. The only difference is that
nonlinear are not only the Langevin equations for the
particles, but also the kinetic equations. Because of this,
both the diffusion tensor and the vector of friction themselves
depend on the distribution function.

6.3.2 Equilibrium state in external field. The Boltzmann
distribution.Assume that the plasma is in the external electric
field, and consider the state of equilibrium. The distribution
with respect to velocities is then the Maxwellian distribution,
and the distributionwith respect to coordinates is to be found.
From the kinetic equation we go over to equations in the
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densities of particles

na�r; t� � na

�
fa�r; p; t� dp : �6:18�

For the state of equilibrium we get the following set of
equations for the functions na�r�, E�r�:

q
qr

�
D�a�

qna�r�
qr

�
ÿ q
qr

�
ta
ma

eaEna�r�
�
� 0 ; �6:19�

rotE � 0 ; divE � 4p
X
a

eana�r� : �6:20�

FromMaxwell equations (6.20) it follows that the electric
field is potential: E�r� � ÿgradj�r�. On this basis the
solution of Eqn (6.19) is the Boltzmann distribution

na�r� � na exp

�
ÿ eaj�r�

kBT

�
: �6:21�

6.3.3 Screening of external field by equilibrium plasma.
Assume that the potential of the external electrostatic field is
held on the boundary of plasma. The field is considered to be
weak. This means that the potential energy is much smaller
than the kinetic energy, namely

eaj�r�5 kBT : �6:22�
As a result, we come to the linear equation for the electric
potential

Dj�r� ÿ 1

r2D
j�r� � 0 : �6:23�

Here we used notation (2.11) for theDebye radius. In the one-
dimensional case this equation coincides with Eqn (2.9). Its
solution (2.10) describes screening of the external field by
equilibrium plasma.

This description of the field screening by plasma is more
consistent. Indeed, earlier we had to postulate the existence of
Boltzmann distribution, whereas now it is the equilibrium
solution to the generalized kinetic equation. The presence of
two dissipative terms in the latter allows describing the
relaxation towards both the equilibrium distribution with
respect to velocities (the Maxwellian distribution), and the
Boltzmann distribution. The corresponding relaxation times
are defined by the collision times tee, tii for electrons and ions,
and by the characteristic times of space diffusion
tDa
� L2=Da.
Let us consider the relation between these characteristic

times, and, as a consequence, the possible description of the
time evolution on the basis of diffusion equations.

6.3.4 Coefficients of space diffusion. Ambipolar diffusion in
fully ionized plasma. From the above definitions of the
characteristic scales for rarefied plasma we find the relation-
ships between the collision time and that of diffusion:

ta
tDa

� vTa
la

L2

la
vTa

� l 2a
L2
� 1

m2
r2D
L2
� 1

m2
l 2ph
L2

: �6:24�

This chain of relations gives rise to important conclusions.
First, the characteristic length in the problem of field

screening by equilibrium plasma is the Debye radius, i.e.
L � rD, and therefore the characteristic diffusion time is
smaller than the collision time by the factor of m2. In its

turn, the diffusion time at L � rD is of the order of the
physically infinitesimal time interval.

This implies that the equilibrium Boltzmann distribution
on the scale of the order of Debye radius is established much
sooner than the Maxwellian distribution. It may seem there-
fore that there is no reason for describing the time evolution
on the basis of equations of space diffusion. It should be
recognized, however, that our conclusion does not depend on
the electron/ion mass ratio.

A different situation is yet possible, too.
Assume that the distribution with respect to velocities at

the initial point in time is the Maxwellian one, and that this
distribution is conserved in the course of evolution towards
the state of equilibrium (this assumption is justified at least
when the linear approximation is used Ð the approximation
of a weak field). Substitution of the Maxwellian distribution
into kinetic equation (6.12) reduces to zero the first dissipative
term on the right-hand side. As a result, after carrying out
integration with respect to moments, we arrive at the time-
domain equations for space diffusion:
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The field equations retain their old form, i.e.

Dj � 4p
X
a

eana�r; t� : �6:26�

We see that the temporal evolution of plasma is described
by rather complicated nonlinear equations even in the most
simple case. These equations coincide in form with the
relevant equations for slightly ionized plasma (see Eqns
(25.4) ± (25.6) in Ref. [4]). The physical meaning, however, is
quite different here.

To wit, the main processes in slightly ionized plasma are
the collisions of charged particles with the atoms. The
collisions between the charged particles are rare and can be
neglected. By contrast, in the fully ionized plasma there are
no collisions of charged particles with the atoms. The
dissipation is due to the interaction between the charged
particles. In the approximation currently under considera-
tion the dissipation depends on the processes of self-
diffusion of each of the plasma components. Of course,
there is also dissipation because of the interaction between
the components of plasma; it does not manifest itself,
however, when the distribution of particles with respect to
velocities is Maxwellian.

Note that the mean free paths of the electrons and the ions
do not depend on the electron/ion mass ratio, because they
are expressed in the same way in terms of the Debye radius
and the plasma parameter:

lee � lii � rD
m
: �6:27�

On the contrary, the ratio of the diffusion coefficients to the
corresponding relaxation times depends on the electron/ion
mass ratio:
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5 1 : �6:29�
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We see that the diffusion time of relaxation for the
electrons is much smaller than the corresponding time for
the ions. This allows us to distinguish two stages in the
relaxation towards the equilibrium distribution of particles
and the field.

A similar situation is encountered in the theory of weakly
ionized plasma, where the small parameter, defined by the
electron/ion mass ratio, is used for distinguishing the slower
process, related to the diffusion of only the ions. It is the so-
called ambipolar diffusion. Then the process of relaxation
towards the state of equilibrium is described by the linear
diffusion equation. Let us show that a similar process is also
possible in fully ionized plasma. Owing to the much different
times of diffusive relaxation for the electrons and the ions, we
may distinguish two stages of relaxation towards the state of
equilibrium.

The first stage refers to the relaxation of electrons in the
diffusion time towards the distribution which satisfies sta-
tionary equation (6.25) with a � e. As a result, the electrons
have time to `adjust' to the ions, and the Boltzmann
distribution of the electrons is established. In this way, at the
stage of `fast' relaxation the concentrations of electrons and
ions are equalized, and the plasma becomes quasi-neutral. The
concentrations are given by the following expression

ne�r; t� � ni�r; t� � n exp

�
ÿ eaj�r; t�

kBT

�
: �6:30�

At the same time, the concentration of ions does not keep up
with the change. The distribution of ions (and therefore the
distribution of electrons) is still nonequilibrium, and is
different from the mean concentration n. Because of this, the
electric field is yet nonzero. As follows from the last formula,
the electric potential is expressed in terms of the function
ni�r; t�:

eaj�r; t� � ÿkBT ln
ni�r; t�

n
: �6:31�

Substituting the latter in diffusion equation (6.25) for the
concentration of ions, we come to the conclusion that the
evolution of ions at the second stage of relaxation is described
by the equation of ambipolar diffusion in fully ionized plasma:

qni�r; t�
qt

� 2DiDni�r; t� : �6:32�

This equation together with Eqn (6.31) describes the temporal
evolution of the distribution of particles and field to the state
of equilibrium.

Naturally, the time of relaxation according to this
equation depends on the characteristic scale of the problem
L �tDi

� L2=Di�. The smallest value of L is defined by the
Debye radius. Even then the process of ambipolar diffusion is
`slow'. This conclusion follows from relationship (6.29) for
the diffusion coefficients and the corresponding relaxation
times. We see that the characteristic time for the second stage
is greater than that for the first stage by the factor of

�������������
mi=me

p
.

Recall that this calculation has been made under the
assumption that the temperature and the Maxwellian dis-
tribution with respect to velocities remain constant in the
course of temporal evolution. This assumption is not always
justified. For example, the calculation of electric conductivity
based on the local Maxwellian distribution yields the value

which is one-half of the result of the more precise Spitzer
calculation. An appropriate refinement can also be made in
the calculation of ambipolar diffusion.

6.3.5 Properties of the Landau collision integral. Recall that
the properties of the collision integrals of Balescu and Lenard
and Landau are similar to those of the Boltzmann collision
integral in the kinetic theory of gases.

Consider the integral

I�r; t� �
X
a

na

�
ja� p�I �v�a �r; p; t� dp : �6:33�

We substitute expression (6.8) into the right-hand side of Eqn
(6.33), integrate by parts with respect to p, and symmetrize
with respect to the variables �ap� and �bp 0�. Then we find that

I�r; t� �
X
a

na

�
ja� p�I �v�a �r; p; t� dp � 0

for ja�p� � 1; p;
p2

2ma
: �6:34�

These properties ensure conservation of matter, total energy
and total momentum in a closed system.

6.3.6 H-Theorem for spatially homogeneous plasma distribu-
tion. Lyapunov functional. If the function ja�p� is selected in
the form

ja�p� � ÿkB ln fa ; �6:35�

then, using the notation

A � q ln fa
qp
ÿ q ln fb

qp 0
; �6:36�

we may rewrite Eqn (6.33) as

I�r; t� � kB
X
ab

Das

�n
�vÿ v 0�2A2ÿ ��vÿ v 0�A�2o fa fb dp dp

0:
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Since the integrand is positive for arbitrary distribution
functions, the following property holds:

I�r; t�5 0 for ja�p� � ÿkB ln fa : �6:38�

The sign of equality corresponds to the equilibrium state,
when the collision integral I

�v�
a is zero.

Property (6.38) is the core of the proof of Boltzmann'sH-
theorem for rarefied spatially homogeneous plasma. Indeed,
using the kinetic equation, in which only one collision integral
I
�v�
a �p; t� [see Eqn (6.14)] is now nonzero, we find that the total
entropy of plasma

S�t� � ÿkBV
X
a

na

�
ln �na fa� fa dp �6:39�

for a closed system in the course of temporal evolution
remains constant or increases, i.e.

dS

dt
5 0 : �6:40�

The sign of equality corresponds to the equilibrium state.
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Like in the case of a rarefied gas, the H-theorem for
spatially homogeneous plasma can be formulated in terms of
the inequalities for the Lyapunov functional, defined as the
difference between the entropies of equilibrium and none-
quilibrium states:

LS � S0 ÿ S�t� : �6:41�

Given the normalization conditions for the distribution
functions and the last property governed by Eqn (6.34),
expression (6.41) may be represented as

LS � S0 ÿ S�t� �
X
a

na

�
ln

fa�r; p; t�
f
�0�
a �p�

fa�r; p; t� dr dp5 0 :

�6:42�

Nonnegativity of the integral is established with the aid of
inequality ln a5 1ÿ 1=a at a � fa=f

�0�
a .

The quantity LS represents a Lyapunov functional only
on condition that the time derivative of LS satisfies the
opposite inequality in the course of temporal evolution, i.e.

d

dt
LS � d

dt

ÿ
S0 ÿ S�t��4 0 ; �6:43�

which is a direct implication of result (6.40) expressing
Boltzmann's H-theorem for plasma.

In this way, when the plasma is spatially homogeneous
and the mean electric field is zero, the H-theorem may be
reduced to the requirement of existence of the Lyapunov
functional defined as the difference in the entropies of
equilibrium and nonequilibrium states. Such formulation is
more general. Indeed, it states not only that the entropy
increases in the course of temporal evolution towards the
equilibrium state, but also that the latter is stable (Lyapunov's
stability). It is important that this formulation is only made
possible by condition (6.34), which ensures conservation of
the total mean energy of particles in the course of evolution
towards the state of equilibrium.

For spatially inhomogeneous plasma in the presence of
nonzero mean electric field, the mean energy is not conserved
in the course of evolution. Because of this, Boltzmann's H-
theorem does not assert, and the Lyapunov functional
defined as the difference in the entropies no longer exists. As
a consequence the question arises of whether could some
other Lyapunov functional be found. A similar problem was
also encountered in the kinetic theory of gases. Such a
functional does exist; it is, however, determined by the
difference in not the entropies but the appropriately defined
free energies.

The equation of balance of local entropy can be used for
finding the expression for production and flux of entropy,
and, in particular, for defining the vector of thermal flux in
rarefied electron ± ion plasma in terms of the entropy gradi-
ent.

We will point out finally that the above properties of the
collusion integral are used in deriving the gasdynamic
equations for plasma.

Now let us return to the question of the physical nature of
Landau damping. We shall see that the generalized kinetic
equation formulated above provides a new idea of this most
interesting phenomenon in plasma physics.

7. Role of collisions in collisionless plasma

7.1 What is collisionless plasma?
Let us revert to Section 5.4. As before, by L, T we denote the
characteristic parameters of the problem. Like we did in the
kinetic theory of gases, we consider two extreme cases (see
Section 7, Chapter 9 in Ref. [5], and Section 6.6 in Ref. [33]).

One such case corresponds to the approximation of free-
molecule flow in the kinetic theory. Flows of this type occur in
rarefied fully ionized plasma when the following two-sided
inequalities are satisfied:

t�a�ph 5T5 ta ; l
�a�
ph 5L5 la : �7:1�

The first pair of inequalities allows using the approximation
of a continuous medium. The second pair of inequalities
justifies using the concept of `collisionless plasma' in the zero
approximation in the appropriate small parameters.

This approximation disregards the relaxation due to
collisions: the relaxation scales ta, la are assumed to be
infinite. Accordingly, the collision integrals in the kinetic
equations for the functions fa�r; p; t� are assumed to be equal
to zero. As a result, we come to the set of Vlasov equations for
a fully ionized Coulomb plasma. In this way, the range of
applicability of Vlasov equations is limited by the set of two-
sided inequalities.

The reversibility of Vlasov equations is manifested, in
particular, in that the entropy of plasma in this approxima-
tion remains unchanged. In other words, according to Vlasov
equations, the initial uncertainty of the state (the degree of
chaoticity) remains the same in the course of evolution (given
that the system is closed).

A similar property is displayed by the Euler equation in
hydrodynamics, which, as opposed to the more general
Navier ± Stokes equation, disregards the dissipative processes
caused by viscosity and heat conductivity. The formal change
to the Euler equation is accomplished by setting n! 0, where
n is the viscosity coefficient. This passage to the limit,
however, qualitatively alters both the mathematical structure
of the equation and its physical content.

The alteration in the mathematical structure is associated
with the ill-defined passage to the limit, when the coefficient
of the highest derivative (the second derivative in theNavier ±
Stokes equation) tends to zero. Physically, this passing
implies that the Reynolds number Re � UL=n approaches
infinity. In this approximation the laminar flows, which are in
fact supposed to be described by the Euler equation, are not
feasible.

There is also another physical argument against this
passage to the limit. Recall that the coefficient of viscosity is
connected with thermal velocity and mean free path by the
following relation:

n � vTl ; l � 1

nr20
� r0

e
: �7:2�

In this way the zero viscosity conforms to zero mean free path
or, equivalently, to infinite density parameter. Naturally, this
state fails to fit the concept of rarefied gas.

Of course, one might argue that the Euler equation, in
spite of such `rigorous' restrictions, is widely used for solving
numerous problems in hydrodynamics. This is possible,
however, for a quite limited range of scales. Going beyond
the limits leads to many known paradoxes.
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The situation with the Vlasov equation is similar. It is
widely used, for instance, in electronics, or when calculating
various processes in thermonuclear devices, such as toka-
maks. Nevertheless, the use of collisionless approximation for
describing nonequilibrium processes in continuous medium
on the basis of Vlasov equations is not justified.

As a matter of fact, the reversible equations in all real
problems are replacedwith themore general irreversible ones.
This replacement is concealed behind mathematical formal-
ism. This is what was done in the classical Landau's paper
entitled `On the oscillations of electron plasma' and published
in 1946. In the physical papers that followed, the mathema-
tical `disguise' was replaced with the physical `disguise'.
Landau's damping is treated therewith as a reversible process,
as the result of resonance interaction between particles and
field in collisionless plasma.We have already noted that in the
Introduction. The fundamental fact that the very concept of
resonance is only rational in a dissipative system is over-
looked in the process.With utmost clarity this has been stated
in the above-quoted passage from the ``Lectures on the theory
of oscillations'' delivered by L I Mandelshtam at the Depart-
ment of Physics of Moscow State University as early as 1930.

We see that the reversible Vlasov equations are not
sufficient in describing, for example, the resonance phenom-
ena related to the interaction of charged particles and plasma
waves, and it is necessary to use the more general dissipative
equations. Notice that two extreme situations are possible, in
which the sources of dissipationmust be taken into account in
different ways. Let us consider them.

7.2 Free-molecule flows in fully ionized confined plasma
Assume that two-sided inequalities (7.1) are satisfied. This
brings us to Vlasov equations (5.15). These equations by
themselves, however, are not yet sufficient for describing the
plasma phenomena. They must be supplemented with initial
and boundary conditions.

Let us specify the meaning of the characteristic para-
meters.

Assume that the state of the plasma is steady, and the
plasma is confined. Let it be, for instance, a flow of plasma in
a pipe. Then the characteristic parameter is the pipe radius R,
so that L � R. Then the pipe radius is much greater than the
Debye length, and therefore much greater than the radius of
screening of external field by the plasma. This allows us to
consider that the mean electric field in the plasma is zero
(given that the flow is steady). As a result, the kinetic equation
takes the form

v
qfa
qr
� 0 ; �7:3�

which coincides with the relevant equation for a free-molecule
gas flow (see Section 7, Chapter 9 in Ref. [5], and Section 6.6
in Ref. [33]). This equation must be supplemented with the
boundary condition, which will depend considerably on the
nature of interaction between the charged particles and the
inner surface of the pipe. Since all real boundary conditions
are dissipative, equation (7.3) together with a real boundary
condition describes a dissipative process.

Assume that, like in the case of a free-molecule gas flow,
the reflection of charged particles from the wall is diffusive.
Then the mass flow of plasma in the pipe is given by the
expression which formally coincides with the formula for
Poiseuille flow. Themain difference is that the mean free path
in Eqn (7.2) for the viscosity coefficient is replaced with the

pipe radius, l! R. As a result, two-sided inequality (7.1) for
the length scales is replaced with the one-sided inequality

l
�a�
ph 5L � R ; la ! R : �7:4�

The dissipative boundary conditions for a free-molecule
flow of plasma can be taken into account by introducing a
certain effective collision integral into the Vlasov kinetic
equation. As a result, the problem of description of none-
quilibrium processes is also reduced to solving the appro-
priate dissipative kinetic equation, except that it includes a
certain effective collision integral.

Thus, the reversible Vlasov equations are insufficient for
describing the nonequilibrium processes in confined plasma
even when the mean free path is much greater than the
characteristic size of the system. This brings us back again to
the dissipative kinetic equation. There is, however, an
important difference. Namely, the relaxation length in the
effective collision integral is determined not by the mean free
path of plasma particles, but rather by the characteristic size
of the system.

Open remains the question how useful is the collisionless
approximation for describing nonequilibrium processes in
unconfined plasma.

7.3 Is collisionless approximation possible
for unconfined plasma?
Themean free path and free transit time in unconfined plasma
are finite because the density of particles and the temperature
have finite values. The characteristic parameters T and L can
be the parameters of wave processes in the plasma Ð for
example, the period of proper or forced oscillationso and the
wavelength l. This offers an opportunity of giving a new
definition of the concept of `collisionless plasma'.

This concept is justified as long as the wavelength l (the
characteristic length of the process under consideration) is
much less than the mean free path la. One must also take into
account the appropriate relationship between the time para-
meters.

It seemingly would be natural to regard the plasma as
collisionless when the collision rate na is much less than the
characteristic frequency of plasma oscillations o (the free
transit time ta is much greater than the period of oscillations).
Accordingly, the approximation of `collisionless plasma'
might seemingly be justified for unconfined plasma as long
as the inequalities

l
�a�
ph 5 l5 la ; t�a�ph 5

1

o
5 ta �7:5�

are satisfied. However, as we have noted more than once, the
role of dissipation caused by collisions may be definitive even
if strong inequalities (7.1) hold. This is always the case in the
neighbourhood of resonances. It is for this reason that, for
example, the Landau damping, which is commonly held to be
nondissipative and thus not associated with an increase in
entropy, actually vanishes when the dissipative terms are set
equal to zero in the initial equations. In the forthcoming
section we shall consider this fundamental problem of plasma
theory in greater detail.

7.4 Collisional nature of Landau damping
Let us pay attention to another important circumstance
related to the physical interpretation of Landau damping.
This circumstance to some extent justifies the reference to
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`collisionless damping' in Landau's formula. Let us revert to
Eqn (5.23) for the dielectric constant when the dissipative
constant na is finite.

Consider again the case of electron plasma, when the ion
mass equals infinity. Let us be k k x, then after carrying out
integration with respect to px and py we obtain the expression
for the permittivity of electron plasma in the conditions when
the deviation from the state of equilibrium is small. Here we
shall only need the imaginary part of this complex function.

The integrand is the product of two functions defining the
Lorentz line and the Maxwellian distribution. The widths
(dispersions) of these functions for electron plasma depend on
the ratio of velocities n=k and vT. Landau's result (5.30)
follows in the zero approximation in n=kvT Ð that is, when
the resonance is infinitesimally narrow, and the Lorentz line is
replaced by the d-function. For the electron plasma the
frequency is o � oL, and is thus defined by the Langmuir
frequency; the damping coefficient is g5oL, and hence the
wavelength l � 1=k is much greater than theDebye radius rD.
It follows that Landau's formula only holds when the
following two strong inequalities are satisfied:

rD 5 l � 1

k
5

vT
n
� l : �7:6�

The left-hand inequality ensures that Landau's damping
coefficient is small, and also expresses the condition of
applicability of the continuous medium approximation,
since the Debye radius defines the size of the point of
continuous medium [compare with the left-hand inequality
in Eqn (7.5)]. Observe in this connection that another case of
extremely short waves, when krD 4 1, was also considered in
Ref. [3]. Such scales, however, fall within the size of the point
of continuous medium, and therefore do not give any
contribution to the mean electric field.

Let us return to the inequalities of Eqn (7.6). The right-
hand inequality indicates that the wavelengths under con-
sideration are much less than the mean free path (the
relaxation length). This is the reason why Landau's damping
may be referred to as `collisionless damping'.

And one more remark.
To derive Landau's formula, a small dissipative term was

introduced into the Vlasov equation, i.e. model collision
integral (5.21). It is defined by the constant collision rate na.
In the final results we set na ! 0, and thus they do not depend
on the collision rate. This is, however, just one of the possible
methods of introducing the dissipation into the reversible
Vlasov equationÐ the simplest way to regularize the solution
of this equation which contains diverging integrals. Such
regularization is not unambiguous. A physically sound
procedure can only be selected on the basis of the kinetic
equation. Then, aswe shall see, the constant na is replaced by a
function which depends both on the velocity and the wave
number with the use of the generalized kinetic equation.
Because of this, the conventional Lorentz line is replaced by
a more sophisticated structure, namely

n�v; k�
�oÿ kv�2 � n2�v; k� : �7:7�

Naturally, this will change not only the condition of applic-
ability of the formula for the damping coefficient, but also the
physical interpretation of this phenomenon. There will be
additional arguments in favour of replacing the term `colli-
sionless Landau damping' by `collision Landau damping'. In

Section 9 we shall formulate these arguments on the basis of
the generalized kinetic equation tailored for the electron
plasma.

Before proceeding to this problem, however, we need to
consider another question of principle, which does not arise in
the conventional kinetic theory but becomes very important
when the generalized kinetic equation is used. Namely, we
have to modify the definitions of the flows of matter and
electric charge when the structure of continuous medium is
taken into account.

8. Laws of conservation of matter and charge
in Coulomb plasma

8.1 Flow of matter and mean velocity
in microscopic theory
Recall that the initial equations in the theory of fully ionized
Coulomb plasma were the equations for the microscopic
phase density of each componentNa�r; p; t� and the equations
for the microscopic electric field strength E m�r; t�.

Is the system is closed, the flows of matter, momentum
and energy across the surface surrounding the system under
consideration are zero. The fulfilment of these requirements is
ensured by the boundary conditions for the coordinates

Na�r; p; t�
��
ra��1� 0 ; a � 1; 2; 3 ; �8:1�

and similar boundary conditions in the space of momenta

Na�r; p; t�
��
pa��1� 0 ; a � 1; 2; 3 : �8:2�

The microscopic phase density can be used for expressing the
simpler microscopic characteristics, like the density of matter
rma �r; t� and the flux density Jm

a �r; t� for each plasma
component:

rma �r; t� � ma

�
Na�r; p; t� dp ; �8:3�

Jm
a �r; t� � rma �r; t�um

a �r; t� � ma

�
vNa�r; p; t� dp : �8:4�

The second of these expressions may be regarded as the
definition of the mean microscopic velocity um

a �r; t� in the
space of coordinates. For our future discussion it is very
important that we actually gave two independent definitions of
the mean velocity. The definition expressed by the left-hand
equation is in terms of the flux of matter, and will be referred
to as the hydrodynamic definition. The right-hand equation
expresses the mean velocity in terms of the first moment of
momentum p � mav for the microscopic phase density
Na�r; p; t�, and will be referred to as the statistical definition
of the velocity um

a �r; t�. In the microscopic theory these two
definitions are, of course, equivalent, both being straightfor-
ward implications of the mechanical definition of velocity.

Indeed, the equation of continuity of matter on the
microscopic level is written as

qrma �r; t�
qt

� qJm
a �r; t�
qr

� 0 : �8:5�

At the same time, the equation for the density rma �r; t� can be
obtained with the aid of the equation for Na�r; p; t�, and has
the form
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qrma �r; t�
qt

� qrma �r; t�um
a �r; t�

qr
� 0 : �8:6�

Here we have used the statistical definition of the mean
velocity. The equivalence of two above definitions of
velocity um

a �r; t� follows from comparison of the last two
equations.

Let us also recall the microscopic definitions of the
densities of electric charge and current:

qm�r; t� �
X
a

ea

�
Na�r; p; t� dp �

X
a

ea n
m
a �r; t� ; �8:7�

jm�r; t� �
X
a

ea

�
vNa�r; p; t� dp �

X
a

ea n
m
a �r; t�uma �r; t� :

�8:8�

The density of electric current for each component is

jma �r; t� � ea n
m
a �r; t�um

a �r; t� ; �8:9�

and is therefore proportional to the product of the micro-
scopic density and the velocity.

Now we can write the microscopic equation of continuity
for the density of electric charge. It follows from continuity
equation (8.5) and has the form

qqm�r; t�
qt

� qjm�r; t�
qr

� 0 : �8:10�

All functions and equations presented in this section
follow directly from the equations of motion. The reverse
change back to the equations of particles motion is also
possible. These equations are invariant with respect to the
transformation

t! ÿt ; ri ! ri ; pi ! ÿpi ; �8:11�

and therefore the motion described by them is reversible. We
may reason that the equations of motion display the time
symmetry of reversible processes.

With respect to transformation (8.11), the microscopic
phase density and the microscopic field strength also possess
the time symmetry of reversible processes:

Na�r; p; t� � Na�r;ÿp;ÿt� ; E m�R; t� � E m�r;ÿt� : �8:12�

Of course, one should remember that the concept of the `arrow
of time' is more cardinal than the concepts of `reversibility'
and `irreversibility'. The replacement t! ÿt is not possible in
Nature. We may only speak of `coming back home' Ð in the
time 2�tÿ t0� the particles will return to their initial positions
with reversed velocities if we flip the sign of their velocities at
the point in time tÿ t0. All this considered, Eqn (8.11)must be
replaced by

Na�r; p; t0� � Na

ÿ
r;ÿp; 2�tÿ t0�

�
;

E m�R; t0� � E m
ÿ
r; 2�tÿ t0�

�
: �8:13�

The above definitions of the mean velocity seem to be so
obvious that they are directly transferred (without good
enough reason) to the kinetic theory and hydrodynamics.
Thus they are assumed to be suitable for the description of
irreversible processes as well.

Before considering the irreversible equations in the
averaged microscopic functions, let us check the equivalence
of two representations of the microscopic field equations for
Coulomb plasma, which follow from the Lorentz equations
for the microscopic field strengths. So far we have been using
equations (2.4) for the microscopic field Em�r; t�. The
equations for the field Em�r; t� can also be written in a
different form

rotE m � 0 ;
qE m

qt
� ÿ4p

X
a

ea

�
vNa�r; p; t� dp : �8:14�

Both representations are equivalent by virtue of continuity
equation (8.10) for the density of charge.

So then, there exist two equivalent representations of the
equations for themicroscopic phase densityNa�r; p; t� and the
microscopic field strength Em�r; t�. Now a natural question is
whether this equivalence is preserved when we go over to the
kinetic description?

This question is avoided in the conventional kinetic theory
of plasma. This becomes possible because the irreversibility
does not prevent translating the above two definitions of
velocity um

a �r; t� to the definition of the mean velocity ua�r; t�
when the Landau kinetic equation is used. The situation is
different, however, when we employ the generalized kinetic
equation.

8.2 Flow of matter and mean velocity in kinetic theory
The kinetic equations are dissipative. Because of this, the
distribution functions fa�r; p; t� generally do not exhibit the
time symmetry of reversible processes. This issue deserves
more attention.

Recall that the distribution function fa�r; p; t� and the
mean field strength E�r; t� are linked with the corresponding
microscopic functions Na�r; p; t� and Em�r; t� by relations
(3.1). Let us rewrite them once again:

na fa�r; p; t� �


Na�r; p; t�

�
; E�r; t� � 
E m�r; t�� : �8:15�

We see that the distribution function is defined by the
value of microscopic phase density averaged over the Gibbs
ensemble. This microscopic phase density, as known, displays
the time symmetry of a reversible process. Why does aver-
aging destroy this symmetry?

The violation of time symmetry is rooted in the very
definition of the Gibbs ensemble for the irreversible processes.
Recall that J Gibbs used averaging over the ensemble of
identical systems only for the state of equilibrium and only for
quasistatically reversible processes.

In the statistical theory there are two possible definitions
of the Gibbs ensemble for nonequilibrium processes (see Refs
[30, 33]).

(1) The microstates of the systems in the ensemble are not
the same because of the uncertainty in the initial values of the
variables: only the distribution function of the initial condi-
tions for particles and field is defined. The equation for the
many-body distribution function itself (the Liouville equa-
tion or the equation for the microscopic phase density and the
microscopic field) remains unchanged. Then, however, aver-
aging over the initial values preserves the time symmetry of
reversible processes. This is the reason why the Gibbs
ensemble for nonequilibrium processes is, implicitly as a
rule, redefined in the construction of irreversible kinetic
equations in the BBGKY theory.
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(2) Smoothing over physically infinitesimal volumes (the
volumes of the points of continuous medium) is carried out at
the first step of going over from the reversible equations to the
irreversible equations. Such smoothing is justified by the
dynamic instability of particles motion, when even very
small uncontrollable external forces have a randomizing
effect. The differences in the microstates of systems in the
Gibbs ensemble is due to the lack of information about the
motion of particles within the points of continuous medium.
In this situation the irreversibility of kinetic equations
becomes inevitable.

Thus, there is a possibility of defining the Gibbs ensemble
for irreversible processes. With such selection of the ensem-
ble, definition (8.15) results in the distribution functions
whose time symmetry is different from the time symmetry of
reversible processes.

Let us represent the distribution function thus defined as a
sum of two terms

fa�r; p; t� � f �dyn�a �r; p; t� � f �dis�a �r; p; t� ; �8:16�

where the first dynamic term (dyn) displays the time
symmetry of a reversible process,

f �dyn�a �r; p; t0� � f �dyn�a

ÿ
r;ÿp; 2�tÿ t0�

�
; �8:17�

while the second dissipative term (dis) does not possess the
time symmetry of a reversible process,

f �dis�a �r; p; t0� 6� f �dis�a

ÿ
r;ÿp; 2�tÿ t0�

�
: �8:18�

Naturally, the normalization condition applies solely to the
total distribution function:

na

�
fa�r; p; t� dp dr � N : �8:19�

Let us now discuss the definition of the mean velocity in
the kinetic theory.

The density of matter is given by

ra�r; t� � ra

�
fa�r; p; t� dp ; ra � ma na ; �8:20�

and the mean velocity by

ra�r; t�ua�r; t� � ra

�
v fa�r; p; t� dp : �8:21�

Let us clarify the meaning of the last expression. Considering
the definition of the density, Eqn (8.21) can be rewritten as

ra

��
vÿ ua�r; t�

�
fa�r; p; t� dp � 0 : �8:22�

Definition (8.21) of the velocity ua�r; t� implies that this
velocity is the first moment of velocity for the distribution
function fa�r; p; t�. This allows us to refer to Eqn (8.21) as the
statistical definition of the mean velocity.

Recall that there exist two equivalent definitions of the
velocity um

a �r; t� in the microscopic theory, as given by Eqn
(8.4). The left-hand equality expresses the velocity in terms of
the flux of matter, and the right-hand equality defines the
velocity in terms of the microscopic phase density (the
microscopic distribution).

In the description of irreversible processes, the definition
of the velocity can also be given in terms of the flux of matter:

Ja�r; t� � ra�r; t�ua�r; t� : �8:23�

This can be referred to as the hydrodynamic definition.
The equivalence of these two definitions of the mean

velocity in the case of irreversible processes in continuous
medium is not obvious. If these definitions are not equivalent,
then which of them is more natural from the physical
standpoint?

This question has been discussed in Chapters 13, 14 of
Ref. [33].With the aid of the Boltzmann equation it was found
that the kinetic and the hydrodynamic definitions of the mean
velocity ua�r; t� are truly equivalent. The same is true in the
plasma theory when the kinetic equations of Vlasov, Landau
and Balescu and Lenard are used.

When, however, we turn to the generalized kinetic
equation, these definitions are no longer equivalent, and the
linkage between the flux of matter and the mean velocity is
given by a more general relation

Ja�r; t� � ra�r; t�ua�r; t� � J �dis�a �r; t� : �8:24�

Superscript `dis' in the added term indicates that this term is
completely defined by the dissipative processes, and vanishes
when the macroscopic processes are described by the rever-
sible equations. Such example is the Euler equation in
hydrodynamics.

8.3 Continuity equation for plasma
Let us revert to generalized kinetic equation (6.12). As
compared with the Landau kinetic equation, it contains the
additional dissipative term, which takes care of the structure
of continuousmedium and corresponds to the `adjustment' of
the microscopic distribution function to the microscopic
function smoothed over the volume of the point of contin-
uous medium.

It might seem that this additional term would further
complicate the formidable task of solving the kinetic
equation. As a matter of fact, however, the inclusion of
dissipation caused by the redistribution of particles in
space makes the kinetic equation more regular, and, in
particular, allows for a more consistent treatment of the
irreversibility in the definitions of the flux of matter and
the flux of heat.

Recall once again that for accomplishing the change from
the kinetic equation to equations of gas dynamics in the
theory of gases it sufficed to assume that the distribution
function presents a local Maxwellian distribution, which
amounts to postulating the existence of local thermodynamic
equilibrium.

Admit now that the distribution functions of electrons
and ions are given by the local Maxwellian distribution. To
obtain the equation for the density of matter, we must
multiply kinetic equation (6.12) by the constant ra � mana
and carry out integration with respect to momenta. The
contribution from the Landau integral is then equal to zero.
Let us find the contributions from the other terms.

The first term gives the time derivative of the density. The
second term, given the local Maxwellian distribution, results
in div raua and defines the contribution from the dynamic
part of the flux of matter. Finally, the dissipative term defines
the dissipative part of the flux of matter. As a result, we arrive
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at the continuity equation

qra�r; t�
qt

� div Ja�r; t� � 0 : �8:25�

The flux of matter is defined here as the sum of three terms:

Ja�r; t� � ra�r; t�ua�r; t� ÿDa
qra�r; t�

qr

� ta
ma

eaE�r; t�ra�r; t� : �8:26�

The first term is responsible for the convective (dynamic) part
of the flux of matter, the second for the flux of matter caused
by self-diffusion, and, finally, the third for the flux of matter
caused by mobility.

The coefficient of space diffusion Da is linked with the
relaxation time ta through the Einstein relation Da �
takBT=ma, and hence it will suffice to define just one of the
kinetic coefficients, for example, the coefficient of space
diffusion Da. Recall in this connection that additional
dissipative term (6.4) in generalized kinetic equation (6.12)
arises because of smoothing over the physically infinitesimal
volumes for, respectively, electrons and ions [see Eqns (4.6)
and (6.5)]. With this method of smoothing the coefficients of
space diffusion Da �a � e; i� characterize the self-diffusion of
electrons and ions. Accordingly, the relaxation times ta are
determined by the rates of electron-electron and ion-ion
collisions.

The condition of closure of the system is that the total flux
of matter across the surface enclosing the system is zero. At
the state of equilibrium, which is only possible when the field
E � ÿgradj is constant, the mean velocity is zero, and the
density distribution conforms to the Boltzmann distribution:

ua � 0 ; ra�r� � ra exp
�
ÿ eaj�r�

kBT

�
: �8:27�

The relative contributions of the dynamic and the diffusion
processes to the total flux of matter are determined by the
diffusion Reynolds number

ReD � uL

D
; �8:28�

which can be represented as the ratio of two characteristic
times: the diffusion time tD and the time of passage tpas taken
by the flow to cover the characteristic distance L:

ReD � tD
tpas

; tD � L2

D
; tpas � L

u
: �8:29�

Now we have everything at hand for describing the diffusion
and wave processes in electron plasma on the basis of the
generalized kinetic equation.

9. Electron plasma

9.1 Generalized kinetic equation for electron plasma
Let us show that the inclusion of space diffusion allows for a
more consistent treatment of the conditions when the
resonances arising in the solution of the kinetic equation are
narrow. This will help us to define the range of existence of the
collision Landau damping.

We have already quoted the reasons by which the Landau
damping is always a collision process. This is the case even for
the confined collisionless plasma, when the characteristic
sizes of the system (for example, the diameter of the pipe)
are less than the mean free path. Here we shall consider an
unbounded plasma, in any case such that the size of the
system is much greater than the mean free path. Then there
may be wave processes whose wavelength is much greater
than the mean free path, but much less than the characteristic
size of the system:

l5 l5L : �9:1�
Under these conditions one may introduce, along with the
hydrodynamic small parameter (the Knudsen number)
Kn � l=L, the wave Knudsen number Kl � l=l, which is
also small.

Recall that in gas theory the transition from the general-
ized kinetic equation to the equations of gas dynamics was
carried out without using the perturbation theory in Knudsen
number (see Chapters 13, 14 in Ref. [33]). To go over to the
equations of gas dynamics it was sufficient to assume that the
distribution function accords with the local Maxwellian
distribution. Let us consider the corresponding approxima-
tion for the electron plasma.

We assume that functions fa�r; p; t� are defined by the
local Maxwellian distributions. In this approximation the
integrals of electron-electron and ion-ion collisions are zero.

Consider next the electron plasma. The mass of ions is
assumed to be infinitely large, and their role consists in
creating the positive charge background. This ensures that
the plasma as a whole is electrically neutral.

By f�r; p; t� we denote the distribution function for
electrons. In our current approximation, kinetic equation
(6.12) is simplified and becomes

qf
qt
� v qf

qr
� eE�r; t� qf

qp
� I

�v�
ei � I �r� : �9:2�

The first term on the right-hand side takes care of the
electron-ion interaction, and the second term is responsible
for the space diffusion of the electron distribution function.
Both terms are much simplified for electron plasma in the
approximation of local equilibrium.

Since the role of ions is reduced to maintaining the
positive charge background, the ion distribution function
may be represented by d-function:

fi�r; p; t� � d�p� ; �9:3�
whereas the electron distribution function is given by the local
Maxwellian distribution:

nf�r; p; t� � n�r; t�
�2pmkBT�3=2

exp

�
ÿ
�
pÿmu�r; t��2

2mkBT

�
: �9:4�

Let us return to Landau's collision integral (6.8). In the
case of electron plasma, the second term on the right-hand
side is zero, since the mass of ions is assumed to be infinite. In
the first term [with due account for ion distribution function
(9.3)] integration can be carried out with respect to momenta
of ions. As a result, we get a relatively simple expression for
the integral of electron ± ion collisions:

I
�v�
ei � Cei

q
qpi

�
Vij�v� qf�r; p; t�qpj

�
: �9:5�
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The expressions for the tensor Vij and the constant Cei follow
from Eqns (6.9), (6.10), and now are represented as

Vij�v� � v
2dij ÿ vivj
jvj3 ; Vijvj � viVij � 0 ; �9:6�

Cei � 2pe4nL �and below D � nCei� : �9:7�

The collision integral I
�v�
ei in this approximation depends

linearly on the electron distribution function. The latter is
given by local Maxwellian distribution (9.4). This allows for
further simplifications of the collision integral.

In the next section we shall use the above kinetic equation
for studying the wave processes in electron plasma. It would
be natural to start with the linear approximation. For this it
will suffice to examine the kinetic equation for small devia-
tions from the state of equilibrium. We mark the equilibrium
function with subscript `0', and represent the electron
distribution function and the field E�r; t� as

f�r; p; t� � f0�p� � f1�r; p; t� ; f1 5 f0 ; �9:8�

E�r; t� � E1�r; t� ; E0 � 0 : �9:9�

Here f0�p� is the Maxwellian distribution function

f0�p� � 1

�2pmkBT�3=2
exp

�
ÿ p2

2mkBT

�
: �9:10�

The distribution function f1�r; p; t� is represented as local
Maxwellian distribution (9.4). For small deviations from
equilibrium, the relevant gasdynamic functions can be
reported as

n�r; t� � n� n1�r; t� ; T�r; t� � T� T1�r; t� ;
u�r; t� � u1�r; t� ; u0 � 0 : �9:11�

Hence it follows that the function f1�r; p; t� is represented as a
linear combination of three distribution functions:

f1�r; p; t� � f
�n�
1 �r; p; t� � f

�u�
1 �r; p; t� � f

�T�
1 �r; p; t� : �9:12�

The terms on the right-hand side are proportional,
respectively, to n1�r; t�, u1�r; t�, T1�r; t�, and to the Maxwel-
lian distribution f0�p�. This opens up the possibility of further
simplifying the collision integral introduced in (9.5).

Given the properties of the tensor Vij�v�, which are
expressed by the last equalities in Eqn (9.6), the terms
proportional to n1�r; t�, T1�r; t� give no contribution to
collision integral (9.5). Accordingly, we only need to include
the contribution proportional to the function u�r; t� (sub-
script `1' is dropped). Then we can represent the none-
quilibrium part of the distribution function as

f1�r; p; t� � u�r; t�v
v 2
T

f0�v� ; �9:13�

where u is the vector of hydrodynamic velocity, f0 is the
Maxwellian distribution which depends only on the modulus
of velocity.

When distribution function (9.8) is substituted into
collision integral (9.5), the contribution of the function f0�p�
comes to nought. Accordingly, it is sufficient to substitute
only the function f1�r; p; t� into Eqn (9.5). Using Eqn (9.13),

after some straightforward algebra we get the following
expression for the collision integral:

Iei�r; p; t� � ÿnei�v� f �u�1 �r; p; t� : �9:14�

The collision rate depends therewith on the velocity, and is
given by

nei�v� � 4pe4n
m2v3

L : �9:15�

As before, L is the Coulomb logarithm. We see that the
collision rate falls off quickly as the velocity increases. Such
dependence is very important for describing the wave proper-
ties of electron plasma. This will be demonstrated in the
forthcoming section.

Consider the expression for the second dissipative term in
the kinetic equation for electron plasma. In the general case it
is given by Eqn (6.4), which holds also for the electron plasma
(subscript `a' is dropped):

I �r��r; p; t� � q
qr

�
D

qf
qr

�
ÿ q
qr

�
t
m

eEf

�
: �9:16�

In the linear approximation this expression is simplified:

I �r��r; p; t� � q
qr

�
D

qf1
qr

�
ÿ e

t
m

qE
qr

f0�p� : �9:17�

In writing the last term we have taken advantage of the fact
that at equilibrium the field is zero Ð there is no external
static field. The coefficient of self-diffusion of electrons is
linked with the rate of electron-electron collisions by the
Einstein relation D � tkBT=m [cf. Eqn (6.5)].

Thus, the generalized kinetic equation for electron plasma
in the linear approximation takes the form

qf1
qt
� v qf1

qr
� eE�r; t� qf0

qp
� I

�v�
ei � I �r� : �9:18�

The collision integrals are given by formulas (9.14), (9.15) and
(9.17). This equation must be supplemented with the equa-
tions for the field

rotE � 0 ; divE � 4pen
�
f1�r; p; t� dp : �9:19�

As a result, we have a closed linearized set of equations for the
nonequilibrium component of the electron distribution func-
tion and electric field for states close to equilibrium.

9.2 Charge continuity equation. Electric current
Now we use a different representation of the field equations
for electron plasma:

rotE � 0 ;
qE
qt
� ÿ4p

X
a

eana

�
fa�r; p; t� dp � 4pj�r; t� ;

�9:20�

here we have introduced the notation for the vector of electric
current density j�r; t�; for the electron plasma we derive

j�r; t� � q�r; t�ua�r; t� ÿDa
qq�r; t�

qr
� ta
ma

eaE�r; t�q�r; t� :
�9:21�
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Equation (9.21) now defines the current density entering field
equation (9.20). It also enters the continuity equation for the
electric charge

qq�r; t�
qt

� div j�r; t� � 0 : �9:22�

In this way, the density of electric current is determined
not only by the convective transport of charge, but also by the
diffusion of the charge density and the mobility of electric
charges in the field. Changes in the structure of the expression
for the current, as well as in the structure of the kinetic
equation itself, are due to the fact that the structure of
continuous medium is now taken into account. Let us
examine how these changes affect the wave properties of
electron plasma. This will also give us an opportunity of
making a new physical interpretation of the Landau damping.

We start with the simplest particular cases.

9.3 Self-diffusion in electron plasma
Assume that the mean velocity is zero, and the temperature is
constant. Carrying out integration with respect to momenta,
from kinetic equation (9.18) we get the equation of self-
diffusion for n1�r; t�:

qn1
qt
� D

q2n1
qr2
ÿ en

t
m

qE�r; t�
qr

; �9:23�

which must be solved together with the field equations

rotE � 0 ; divE � 4pen1�r; t� : �9:24�

These equations offer a particular case of the more general set
of diffusion equations for electron ± ion plasma. The corre-
sponding equations for the space ± time Fourier components
have the form

�ÿio�Dk2�n1�o; k� � ÿien t
m

ÿ
kE�o; k�� ; t � 1

n
;

i
ÿ
kE�o; k�� � 4pen1�o; k� : �9:25�

This set of equations reduces to a single equation for the field

e�o; k�ÿkE�o; k�� � 0 : �9:26�
Here we have introduced the notation for the complex
dielectric constant of a plasma for the diffusion-like relaxa-
tion:

e�o; k� � 1� 4pe2n
mn

1

ÿio�Dk2
; D � kBT

mn
: �9:27�

Consider the corresponding dispersion equation

e�o; k� � 0 : �9:28�

If o � 0, we have

Re e�o � 0; k� � 1� 1

r2De
k2
� 0 ; Im e�o � 0; k� � 0 :

�9:29�
Here we have used the notation for the Debye radius of
electron plasma.

Assume that the field is directed along the x-axis. Then the
field that is given on the boundary x � 0 is screened at a
distance of the order of the Debye radius rD.

9.4 Wave properties of electron plasma.
Landau collision damping
Thus, we have considered the simplest model of relaxation
when the dissipation is due to the self-diffusion of plasma
electrons. The nature of the dissipation does not then depend
on the electron distribution with respect to velocities. Now let
us try to take this effect into account.

Recall that the solution of the generalized kinetic equation
for electron plasma was set as local Maxwellian distribution
(9.4). Equations for the three appropriate functions r�r; t�,
u�r; t�, T�r; t� (the equations of gas dynamics for plasma
electrons) can be obtained from generalized kinetic equation
(9.2). In studying the wave properties of plasma, these
equations may be replaced with the linearized equations for
the functions r1�r; t�, u1�r; t�, T1�r; t�, which can be obtained
directly from linearized kinetic equation (9.18) with the
collision integral in the form of Eqn (9.14).

The kinetic equation, however, allows for a more com-
prehensive treatment of the electron distribution over velo-
cities, and, in particular, the effects of velocities much higher
than the thermal velocity. These `particulars' fall beyond the
scope of the equations of gas dynamicsÐ the equations in the
first five moments of the particle distribution with respect to
velocities. Recall in this connection that Landau's damping is
determined by nothing else but the `tail' of the Maxwellian
distribution.

Let us narrow down the problem still further. Namely, we
are going to use linearized kinetic equation (9.18) under the
assumption that the local Maxwellian distribution only
depends on the function r1�r; t�, whereas u1�r; t� � 0 and
T1�r; t� � 0. In other words, we suggest that themean velocity
of electrons comes to nothing, and the temperature is
constant. As a result, linearized kinetic equation (9.18) is
simplified and becomes

qf1
qt
� v qf1

qr
� eE�r; t� qf0

qp
� q

qr

�
D

qf1
qr

�
ÿ e

t
m

qE
qr

f0�p� :
�9:30�

Here we have used Eqn (9.17).
Carrying out integrationwith respect tomomenta, we find

the linearized continuity equation. Given that u1�r; t� � 0,
this equation takes the form

qn1
qt
� D

q2n1
qr2
ÿ en

t
m

qE�r; t�
qr

�9:31�

and coincides with diffusion equation (9.23). What is an
additional information that is contained in the kinetic
equation?

In the linear kinetic equation we carry out the Fourier
expansion in terms of time and space variables. As a result, we
get a set of equations in the space ± time Fourier components
of the distribution function and the electric field. The
resulting set of equations is written as�ÿi�oÿ kv� �Dk2

�
f1�o; k; p�

� ÿeE�o; k� qf0�v�
qp
ÿ ie

t
m

ÿ
kE�o; k�� f0�v� ;

�
kE�o; k�� � 0 ; i

ÿ
kE�o; k�� � 4pen

�
f1�o; k; p� dp :

�9:32�
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The left-hand side of the first equation in Eqn (9.32) contains
all terms with the function f1�o; k; p�. The right-hand side
contains the terms which are proportional to the distribution
function f0�v� and the electric field strength E�o; k�.

Using the first equation, we express the distribution
function f1�o; k; p� in terms of the electric field strength:

f1�o; k; p� � ÿi
�oÿ kv� � iDk2

�
�
eE�o; k� qf0�v�

qp
� ie

t
m

ÿ
kE�o; k�� f0�v��: �9:33�

The solution of the set of equations for the field is represented
as

E�o; k� � ÿi k

k2
4pen

�
f1�o; k; p� dp : �9:34�

Substituting the expression for f1�o; k; p� into the right-
hand side of the last equation, we can write the equation for
the field E�o; k� in the form

e�o; k�ÿkE�o; k�� � 0 : �9:35�

Here again we have used the expression for the permittivity of
plasma, this time with due account for the distribution of
electrons with respect to velocities:

e�o; k� � 1� 4pe2n
k2

�
k
qf0�v�
qp

dp

�oÿ kv� � iDk2

� 4pe2n
mn

�
i

�oÿ kv� � iDk2
f0�v� dp : �9:36�

The relative contribution of the two functions in the integrand
is characterized by the dimensionless parameter

vT
Dk
� nee

Dk2
� 1

kl
� l

l
; �9:37�

which defines the ratio between `widths' of the functions in
the formula for e�o; k�ÐtheMaxwellian distribution and the
Lorentz spectral line (with respect to velocities, frequencies,
lengths). Here, as before, l is the mean free path, and l is the
wavelength.

Let us consider a number of special cases.

9.4.1 Unconfined plasma. Large Knudsen numbers: k5 l. This
condition corresponds to the collisionless wave approxima-
tion for the selected range of wavelengths (wave numbers).

It is in this approximation that we obtained the expression
for the Landau damping coefficient in Section 5.5.2. The
width of the Lorentz line was then determined by the collision
rate nee or by the corresponding velocity nee=k. Because of
this, the Lorentz line narrowed downwith the increasingwave
number k (or decreasing wavelength).

Now the situation is reversed: in the zero approximation,
the Maxwellian distribution f0�v� can be replaced with the d-
function:

f0�v� ! d�v� : �9:38�

This allows carrying out integration with respect to momenta
in Eqn (9.36). As a result, the expression for permittivity takes

the form

e � 1� 4pe2n
mn

i

o� iDk2
; D � kBT

mn
�9:39�

and coincides with Eqn (9.27).
Thus, in the zero approximation in parameter (9.37) Ð

that is, disregarding the motion of plasma electrons Ð we
turn back to the results obtained on the basis of diffusion
equation (9.23).

Notice also that the smallness of parameter (9.37) implies
that the collision rate in the electron plasma is much less than
the diffusion width of the line Dk2. In this way, the `old' term
`collisionless approximation' changes now its meaning: for a
fixed value of thermal velocity, the diffusion collision rateDk2

grows as the wave number k increases. Accordingly, the
dissipation is due not to collisions, but rather to self-diffusion.

It is also important that small parameter (9.37) is limited
from below. This restriction is related to the structure of
continuous medium. Since the size of a point is defined by the
Debye radius, then applicability of collisionless approxima-
tion in question is limited by the two-sided inequality

rD
l
5

l
l
5 1 : �9:40�

We see that the imaginary part in this collisionless approx-
imation is not determined by the Landau damping, but by
dissipation caused by diffusion.

Now let us consider another case of Landau damping,
which this time is a collision process.

9.4.2 Unconfined plasma. Small Knudsen numbers: l5 k. In
this case the width of the Maxwellian distribution is much
greater than the width Dk of the Lorentz line (in units of
velocity). In the zero approximation in this parameter wemay
carry out the following replacement in Eqn (9.36):

1

�oÿ kv� � iDk2
! P

1

�oÿ kv� ÿ ipd�oÿ kv� : �9:41�

As a result, we get the following expression for the imaginary
part of permittivity:

Re e�o; k� � 1� 4pe2n
k2

P

�
k
qf0�v�
qp

dp

oÿ kv

� 4p2e2n
mn

�
d�oÿ kv� f0�v� dp : �9:42�

The last term in this expression is exponentially small. Indeed,
after integration with respect to p it can be represented in the
form ���

p
2

r
oL

1

rDk
exp

�
ÿ 1

2r2Dk
2

�
: �9:43�

Since the following two condition hold for electron plasma:

o � oL ; krD 5 1 ; �9:44�
the assumption concerning the exponential smallness of this
term is true. Then the expression for the real part of
permittivity is simplified, namely

Re e�o; k� � 1� 4pe2n
k2

P

�
k
qf0�v�
qp

dp

oÿ kv
; �9:45�
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and coincides in the case of electron plasma with our earlier
expression (5.26).

Let us now consider the corresponding expression for the
imaginary part of dielectric constant in electron plasma:

Im e�o; k� � ÿ 4pe2n
k2

�
d�oÿ kv� k qf0�v�

qp
dp

� 4pe2n
mn

�
oÿ kv

�oÿ kv�2 � �Dk2�2 f0�v� dp : �9:46�

The first term on the right-hand side coincides in the case of
electron plasma with the expression for Landau damping
coefficient. We denote it by �Im e�L. This time, however, the
expression for Im e�o; k� contains an additional term. We
denote it by �Im e�D, since this term is associated with the
presence of the diffusion dissipative term in the kinetic
equation. Let us show that this term restricts the range of
wave numbers in which the Landau damping is the main
dissipative term.

We fix the value of the phase velocity o=k, and single out
the resonance region in the distribution with respect to
velocities:

joÿ kvj � Dk2 : �9:47�
The ratio between two contributions to the imaginary part of
permittivity is

�Im e�L
�Im e�D

� l2

rDl
�9:48�

and is thus defined by the dimensionless combinations of
three characteristic lengths. Let the ratio l=rD be fixed; then
the contribution of the Landau damping only depends on the
ratio of l to l. As l=l decreases (that is, as we move towards
the wave collisionless approximation), the contribution of the
Landau damping becomes smaller. The situation is opposite
to that encountered in the conventional theory of wave
processes in plasma.

In this way, in the case of unconfined plasma the Landau
damping is overwhelmed by the much stronger diffusive
dissipation.

9.4.3 Confined plasma. Landau damping. Let L be the
characteristic size of the system. Assume that the flow of
plasma is of free-molecule type. This means that themean free
path is much greater than the size of the system, i.e. l4L.

The calculation of free-molecule flow must be carried out
with due account for the dissipative boundary conditions [5,
14, 33]. This is equivalentÐ at least on the qualitative levelÐ
to introducing the effective collision integral into the kinetic
equation. One may assume that the structure of this integral
remains the same, but the mean free path is replaced by the
characteristic size of the system:

l! L ; l4L : �9:49�

Let us show that in the case of free-molecule flow there
exists a range of wavelengths (wave numbers) for which the
contribution from the Landau damping to Eqn (9.46)
dominates. From Eqns (9.46), (9.48) we see that this range is
defined by the following inequalities:

rD 5 l5
���������
rDL

p
; rD 5L5 l : �9:50�

Under these conditions, in place of Eqn (9.46) we get a simpler
expression for the imaginary part of permittivity of electron
plasma

Im e�o; k� � ÿ 4p2e2n
k2

�
d�oÿ kv�k qf0�v�

qp
dp : �9:51�

In the case of electron plasma this expression coincides with
Eqn (5.27), and thus leads to expressions (5.30), (5.31) for the
Landau damping coefficient.

We see that the use of the generalized kinetic equation for
describing thewave processes in electron plasma allows giving
physical interpretation of the concept of `Landau damping',
and specifying the conditions under which this damping
dominates.

Similar considerations can be applied to other casesÐ for
example, to nonisothermal plasma.

10. Conclusions

Let us make some final remarks.
In the Introduction we gave a historical summary of the

kinetic theory of wave processes. Now we see that this history
is still in the making. The use of the generalized kinetic
equations opens vast possibilities for further studies on
nonequilibrium processes in plasma under the most diverse
conditions. In particular, they can be useful for describing the
nonequilibrium processes in the devices for thermonuclear
fusion of light elements.

The plasma in such devices is collisionless in the sense that
the mean free path for charged particles is much greater than
the size of the container. At the same time, the Debye radius is
small. This means that, with a good enough accuracy, the
plasma can be regarded as a continuous medium. Because the
boundary conditions are dissipative, this is a good opportu-
nity for using the dissipative kinetic equations. The appro-
priate collision integrals will take care of the dissipative
processes on the walls within which the plasma is confined.

Our discussion has only been concerned with the fully
ionized plasma. One possible and important generalization of
the theory would consist in the extension of the basic
microscopic model, which will bring us into the domain of
the statistical theory of plasma-molecular open systems [22,
31]. The systems of this kind include the fully ionized plasma
and the gas of neutral particles as extreme cases.

The unifying model is the model of partially ionized
plasma, which is built up of at least four components:
electrons, ions, atoms, and electromagnetic field. Naturally,
the analysis of such systemsmust rely heavily on the quantum
theory of open systems.

I would like to take this opportunity to express my
gratitude to A A Rukhadze and members of the seminar of
V D Shafranov for fruitful discussions.
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