
Abstract. The physical mechanism and general properties of the
motion of relativistic charged particles in the cyclotron auto-
resonance regime are discussed. The motion of particles out of
the autoresonance is analyzed. Various methods of maintaining
the regime are discussed. Applications of the autoresonance are
considered.

1. Introduction

The term `autoresonance' was first introduced by A A
Kolomenski|̄ and A N Lebedev in 1962 [1]. They and V Ya
Davydovsky [2] have independently shown that there exists
such a regime of motion of a relativistic charged particle in a
transverse electromagnetic wave, propagating along a static
uniform magnetic field, in which the initial condition of
cyclotron resonance of the particle with the wave

oÿ kvz � oc0

g
� oc �1�

is preserved `by itself' despite the variation of both relativistic
mass and the longitudinal component of the velocity vz, as the
particle moves along the magnetic field. Here
oc0 � eB0=�m0c� is the classical gyrofrequency of the particle
with charge e and restmassm0, whereB0 is the guidemagnetic
field directed along the z-axis; g is the relativistic factor; o; k
are the frequency and wave vector of the wave, respectively.

Among different versions of exact solutions of the
problem of motion of a relativistic charged particle in a

plane electromagnetic wave, propagating along a uniform
magnetic field [1 ± 5], the regime of cyclotron autoresonance is
a special one, because it is a purely relativistic effect, strictly
existing only in the case of wave, whose phase velocity
vph � o=k is equal to the speed of light c [1 ± 3].

This special feature of cyclotron autoresonance also
manifests itself in the fact that in the regime of autoresonance,
stochastic instability does not arise [6], and only in this regime
can particles be monotonically accelerated or decelerated
depending on the initial conditions. At violation of the
conditions of autoresonance, the particle energy is found to
be periodic function of time [1, 3].

The term `autoresonance' is also used in other physical
situations. Thus, Sloan and Drummond [7] in 1973 proposed
a method for ion acceleration, which they named the
autoresonant method. According to this method one should
use traveling charge density waves, which are excited in a
relativistic electron beam, propagating along a strong long-
itudinal magnetic field in a cylindrically symmetric conduct-
ing waveguide. More specifically one uses a cyclotron mode,
whose phase velocity depends on the magnitude of the
magnetic field. By adiabatically varying the magnetic field in
magnitude one can increase the wave phase velocity from zero
to the relativistic velocity of the electron beam. As this takes
place, by analogy with the traditional linear accelerators, one
needs to sustain the synchronism between the velocity of ions
and the phase velocity of the accelerating cyclotron wave. In
these conditions the energy of the electron beam is auto-
matically extracted both for the acceleration of ions and for
sustaining the accelerating wave. A variety of modifications
to this autoresonant method of acceleration of ions were
considered in a number of works (see, e.g. Refs [8, 9]).

Notice that there is also the term `autoacceleration' which
however has nothing to do with the phenomenon of cyclotron
autoresonance [10].

The present review is devoted to the problem of cyclotron
autoresonance defined in accordance with the original works
[1 ± 3]. A brief overview of this problem in connection with the
possibility of acceleration of charged particles can be found in
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the Ref. [11]. Problems of generation and amplification of
electromagnetic radiation, connected with the phenomenon
of cyclotron autoresonance, are fully reviewed in Refs
[12 ± 15].

2. Motion of a charged particle
in the regime of autoresonance

It is known that in the field of a plane electromagnetic wave
the energy of a particle does not vary on average [16] (if one
neglects weak relativistic effects). However, in the presence of
an external uniform magnetic field in the regime of cyclotron
autoresonance the mechanism of energy exchange between
the wave and the particle essentially varies, and the particle
can gain considerable energy [1 ± 3].

2.1 General properties of the autoresonant motion
of a particle
Neglecting the force of radiation friction, let us consider
motion of a relativistic charged particle in the field of a
transverse electromagnetic wave E~;B~ with an arbitrary
elliptic polarization, propagating along a steady magnetic
field B0 � �0; 0;B0�:

E~� �E1 cos y;E2 sin y; 0� ;

B~� �ÿNE2 sin y;NE1 cos y; 0� : �2�

Here N � kc=o � bÿ1ph is the refractive index; bph � vph=c.
The phase of the wave y is described, in general, by the
equation

dy
dt
� ÿo� kvz : �3�

We can conveniently introduce the ratio of the classical
gyrofrequency to the wave frequency O � eB0=�m0co� and
the reduced momentum of the particle P � p=�m0c�, time
t � ot, and wave amplitudes ei � eEi=�m0co�.

There are various methods for solving the equations of
motion of a particle in the given fields [1 ± 5, 17 ± 20]. It is
appropriate to extract from the outset the cyclotron rotation
of the particle using the formulae

Px � P? cos yc ; Py � P? sin yc ; �4�

where yc is the phase of cyclotron rotation.
Then the motion equations reduce to

dPz

dt
� NP?

2g

��e1 � e2� cos yÿ � �e1 ÿ e2� cos y�
� � N

dg
dt

;

�5�

dP?
dt
� 1

2

�
1ÿNPz

g

���e1 � e2� cos yÿ � �e1 ÿ e2� cos y�
�
;

�6�
dyc
dt
� ÿO

g
� 1

2P?

�
1ÿNPz

g

�
� ��e1 � e2� sin yÿ ÿ �e1 ÿ e2� sin y�

�
; �7�

dy
dt
� ÿ1�NPz

g
: �8�

Here y� � y� yc.

It follows from (5) that in the case of constant refractive
index for arbitrary amplitude and polarization of a transverse
wave there exists an exact constant of motion

Ngÿ Pz � Y � const ; �9�

found first in Refs [1, 2, 21].
This integral is a consequence of the laws of conservation

of energy and momentum in the particle ± photon system.
Really, variations of energy DE and momentum Dpz of a
particle are connected with the energy and momentum of an
absorbed (or emitted) photon by the relationships DE � �ho,
Dpz � �hk. Therefore, DE=Dpz � o=k. This gives the integral
(9).

For a positively charged particle, exact cyclotron reso-
nance (1) in a steady magnetic field takes place, according to
(7) and (8), if the following relation between the wave
frequency (with the Doppler shift) and the gyrofrequency is
fulfilled

gÿNPz � O : �10�
The condition (10) for cyclotron resonance is preserved

for all the time of particle motion, that is to say, (10) coincides
with the motion integral (9) only in the case of the `vacuum'
(luminous) wave, when

N � 1 ; Y � O : �11�

This regime has been labelled as autoresonance [1]. Notice
that the authors of Ref. [3] labelled such motion of a particle
as synchronous.

The physical mechanism of autoresonance is the follow-
ing: if the exact resonance condition (10) is initially fulfilled,
then it may be destroyed for two reasons: due to the Doppler
shift of wave frequency and due to the relativistic variation of
cyclotron frequency. At N > 1 the Doppler shift prevails, at
N < 1 the effect of relativistic change of particle mass
becomes dominant, and only at N � 1 do these two compet-
ing effects mutually compensate each other. Indeed, with the
use of equation (5) and integral (9) for the resonance
mismatch

d � 1ÿN
Pz

g
ÿ O

g
� d0 � dD

we obtain the equation

dd
dt
� ÿ 1

g2
�NYÿ O� dg

dt
:

Here

d0 � 1ÿN
Pz0

g0
ÿ O
g0

is the initial resonancemismatch, which leads to the kinematic
phase shift, and dD � ÿNDVz ÿ DO=g is the resonance
mismatch caused by relativistic change in the cyclotron
frequency and by the change in the axial velocity of the
particle due to the action of wave. It leads to the dynamic
phase shift [13]. Hence it follows that at resonance �Y � O�
the dynamic shift remains constant onlywithN � 1, and if the
initial resonance mismatch is absent �d0 � 0�, then dD � 0
during all the time of particle's motion.
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A more fundamental reason for the existence of auto-
resonance, only in the case N � 1, is the following [22]: at
fixed wave frequency the absorption (or emission) of photon
by a particle is evidently possible, if the spectrum of
absorption (or emission) of a charge in a magnetic field is
equidistant. By using laws of conservation of energy and the
longitudinal component of momentum during absorption (or
emission) of photon and the transition of the particle without
change in spin into a new quantum state, one can show [22]
that the equidistant spectrum exists only at N � 1.

The resonance relation between frequencies (10) corre-
sponds to the phase combination yÿ (for electrons the
phase combination y� is resonant). In the case of a
circularly polarized wave �e1 � e2 � e� Eqns (5) ± (8) con-
tain the resonance phase as a slow variable and appear to
be exact and valid for arbitrary wave amplitude. In the case
of a wave with an elliptic polarization, in particular, a
linearly polarized wave, the motion equations (5) ± (8)
contain not only the resonant phase yÿ, but also the
nonresonant phase combination y�. If the wave amplitude
is small enough, then the variables Pz, g, P?, yÿ are slowly
varying whereas the nonresonant phase y� should be
considered as the fast variable, so one can perform
averaging over this phase [23, 24]. Therefore, the energy
gained by a particle and the character of its motion depend
on the wave polarization: in the autoresonance regime (10)
at N � 1 in the case of a circularly polarized wave the
energy of the particle increases steadily (in accelerating
phase), while in the case of a linearly polarized wave one
can see fast oscillations about an increasing average value
of energy. As this takes place, according to (5) the energy
growth rate in a circularly polarized wave is twice as large
as that in the case of a linearly polarized wave. This has
been noticed in Refs [1, 25].

Therefore the case of the wave with circular polarization
seems to be the most optimal one. It allows us to find an exact
analytical solution [3]. Let us consider it in detail. In the
autoresonant (synchronous) regime, from the motion equa-
tions one can obtain the following relationships:

Pz � gÿ O ;

P 2
? � 2Ogÿ O2 ÿ 1 ; �12�

P? sin yÿ � P?0 sin yÿ0 � F :

ParameterO is subject towide variations: in the case of the
light wave it is of the order of 10ÿ5 for electrons, and over the
range of centimeter waves it may be more than unity.

This parameter according to (12) determines the minimal
value of energy gmin � �1� O2�=�2O�. In this case P? � 0.
The longitudinal momentum also attains the minimum
Pzmin � �1ÿ O2�=�2O�. If O � 1 then the minimal energy
gmin � 1, and Pzmin � 0. If O2 > 1, then Pzmin < 0. This
means that the particle moves towards the wave, and is then
reflected and accelerated in the direction of the wave's
propagation [1].

Using the last relationship in (12) one can easily verify that
the energy g obeys the equation�

dg
dt

�2

� V�g� � 0 : �13�

Precisely the same equation was first obtained in Ref. [3],
but by a more complicated method.

The `potential' V�g� is defined by the formula

V�g� � ÿ 2Oe2

g2
�gÿ G� ; �14�

where

G � g0 ÿ
P 2
?0
2O

cos2 yÿ0 � 1� O2 � F2

2O
: �15�

The label `0' denotes the initial values of the corresponding
quantities.

Equation (13) has the exact solution

�gÿ G�3=2 � 3G�gÿ G�1=2 � 3e

����
O
2

r
t� const : �16�

From this solution it follows that the energy gained by the
particle grows asymptotically as

g �
�
3et

����
O
2

r �2=3

: �17�

In parallel with the energy increase the acceleration rate
decreases [11]

dg
dZ
� e

���������������������
2O�gÿ G�p
gÿ O

� e

������
2O
g

s
: �18�

Here Z � zo=c is the dimensionless acceleration length. It
follows from (18) that the energy gained by the particle over
the length Z is determined by a formula similar to (17).

When this result is compared with that for a linear
accelerator gL � eZ, it is apparent that at uniform wave
amplitude the linear accelerator is more effective. However
at eZ < 4:5 the energy gained by the particle at autoresonance
can exceed gL [25].

By introducing the dimensionless radius-vector of the
particle R � kr, one can see that in the autoresonant regime
at large values of energy the acceleration length varies in
accordance with the law Z � t while the law for variation of
the radius of trajectory R � �X 2 � Y 2�1=2 is determined by
the asymptotic formula R � �3=2� ������2O

p ÿ
3e

���������
O=2

p �ÿ1=3t2=3.
Therefore, the trajectory of the accelerated particle is an
unwinding helix with growing step.

In the paper [1] the question of admissible initial condi-
tions at autoresonance has been discussed. It was found that
at jOj > 1 the injection of particles in the field of the wavemay
be carried out at any angle, including p=2, and in doing so
each angle of injection corresponds to a definite energy. If
O5 1, then the injection angle a can vary only in the range
ÿO < a < O.

It is easy to obtain the equation for the phase yÿ � c

dc
dt
� ÿ eO

F
sin4 c

q� g sin2 c
; �19�

where

q � F2

2O
; g � 1� O2

2O
:

The exact solution of (19) is

cotc
�
g� q� q

3
cot2 c

�����c
c0

� eO
F
�tÿ t0� : �20�
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From this solution it follows that the initial accelerating
phase c0 � 0 does not vary with time. But if c0 6� 0, then the
phase c tends asymptotically to zero at t!1. So, over a
large enough time interval all the particles are trapped into the
regime of autoresonant acceleration without regard to the
initial phase.

Autoresonance occurs in both traveling and standing
waves. A standing wave can be considered as a sum of two
plane circularly polarized waves, propagating in opposite
direction. Under some conditions a particle can enter the
autoresonant regime with one of the propagating waves as if
the other wave were completely absent. At the same time the
particle energy grows monotonically [25].

In the regime of autoresonance a particle can not only be
accelerated, but also decelerated, depending on its initial
phase. If the parameterO � 1, then according to (12) we have

g � 1� P 2
?
2
: �21�

In this case total deceleration of the particle can occur (the
`arttron' effect [1, 26]): g! 1, P?;Pz ! 0. For total decelera-
tion of a particle not only the parameter O should be equal 1,
but also the initial phase c0 should be equal to p. Then it
follows from the exact solution, that the particle comes to rest
at the length

Ls �
���
2
p

3e
�g0 ÿ 1�3=2 � P 3

?0
6e

: �22�

In this case the rate of change of energy becomes equal to
zero, and if the particle continues to interact withwave, then it
appears to be in the accelerating phase and, consequently, it
begins to be accelerated.

If the initial decelerating phase c0 6� p, then according to
the relationship (12), the particle cannot completely lose its
energy even at O � 1.

In the case of accelerating phase c0 � 0 the particle gains
energy gL � 1� 22=3�g0 ÿ 1� over the length Ls at O � 1. The
energy gain of the accelerated particle Dgacc � gL ÿ g0
appears to be less than the energy Dgdec � g0 ÿ 1, which the
decelerated particle loses. So, over the deceleration length
particles of the beam on average lose more energy than they
gain from the wave. Amplification of the wave thereby takes
place [26].

2.2 Experimental evidence of the phenomenon
of cyclotron autoresonance
The first experiments confirming the existence of the auto-
resonance mechanism of acceleration of charged particles
were reported in Refs [25, 27, 28].

Themain difficulties were in the fact that the required high
frequency (HF) fields could be realized only in waveguides
where the waves are not transverse. Moreover, it was difficult
to excite waves traveling along the waveguide axis with
circular polarization. So the authors of Ref. [27] tried to use
more simple electromagnetic waves, in particular, the H11

wave in a waveguide of circular cross section and the H01

wave, similar to it in structure, in an waveguide of rectangular
cross section.

It was shown that the integral (9) which guarantees the
possibility of autoresonance, takes place for an H-wave
traveling along the z-axis and does not exist for standing H-
waves. Since the wave phase velocity in a waveguide exceeds
the speed of light, the continuous acceleration of particles is
impossible. Because of this, the effective length of accelera-

tion was determined

zacc �
lbph

2�bph ÿ 1� : �23�

During the passage of HF power through the accelerating
waveguide, X-ray radiation was observed. For the H11-wave
the quantity bph � 2. Therefore the acceleration length was
z � 3:6 cm. If the length of the uniform part of the solenoid
> 3:6 cm then the particle energy should periodically change
over the waveguide length. To observe this effect, the internal
side of the waveguide was covered with a fine layer of
luminescent solid. At optimal magnetic field luminous rings
were really observed on the walls of the waveguide. The
distance between them was � 6ÿ7 cm, that is � 2zacc.

The kinetic energy of accelerated electrons was deter-
mined from their passing through aluminum foils. It was
� 700 keV at an electric field strength of 3ÿ5 kV cmÿ1. This
energy is far in excess of the energy which the particle could
gain under these conditions in the case of traditional
cyclotron acceleration. A related experiment was realized in
Ref. [28], where a wave with bph � 1:14 was used.

Therefore the performed experiments proved the possibi-
lity of autoresonant acceleration of particles by fast waves in
the case when the integral (9) exists. Note, that the integral (9)
also takes place in real HF fields of TE-mode. But in the case
of TM-mode such an integral only exists when the phase
velocity of a wave is equal to the speed of light [15].

In contrast to the waveguide structures of Refs [27, 28] the
cavity resonators of circular cross section were used in
experiments of Ref. [25]. A low-current, low-energy electron
beam was injected into a cavity resonator oscillating in the
TE111mode. On the basis of experimental data the parameter
e � eEl=�2pm0c

2� was calculated. This provided a way of
estimating the value of the gained energy [see (17)]. The
estimation appears to agree satisfactorily with experimental
value.

The basic conclusion drawn by the authors of Ref. [25]
from the obtained results is that significant acceleration of
particles can be achieved in conditions different from the ideal
situation of autoresonant regime. It is connected with the fact
that real HF field in a waveguide or a cavity can be
approximated by the field of a plane wave with reasonable
accuracy.

Later on the possibility of autoresonant acceleration of
particles was experimentally investigated in Refs [29 ± 31].
These studies showed that the character of particle accelera-
tion in a traveling wave (a waveguide) and in a standing wave
(a cavity resonator) is considerably different.

Under autoresonant acceleration in a cavity the energy of
an accelerated beam is mainly concentrated in the transverse
component of velocity, whereas in the traveling wave scheme
most of the energy is gained in the axial component of
velocity. It follows from Ref. [29] that an autoresonance
microwave accelerator is very effective for the production of
relativistic rotating electron beams, which can be used, in
particular, as a source of coherent radiation [32, 33]. In
studies of the interaction between an electron beam and a
traveling wave [30, 31] some contradiction inherent in the
autoresonancemechanism of acceleration was noticed: on the
one hand an increase in the wave electric field strength tends
to increase the rate of acceleration,and on the other it leads to
the violation of the regime of stable acceleration. The
adjustment of optimal parameters is required.
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There are also proposals for laser acceleration of electrons
and producing an autoresonance laser acceleratorÐALAÐ
with a high rate of acceleration [34 ± 38]. The physical
mechanism of acceleration in the ALA scheme, in principle,
is similar to that of the scheme of the microwave accelerator.
However, there are some distinctions between them:

The intensity of the laser radiation is far beyond that of
microwaves. This affects the rate of acceleration;

The source of laser radiation is external relative to the
region of acceleration. This has an influence on the efficiency
of energy transfer from a wave to a particle and removes the
difficulties connected with the breakdown and so on;

Laser radiation propagates in the form of beam. This
results in the specific character of wave ± particle interaction.

The phenomenon of cyclotron autoresonance can also be
used for producing sources of high-power millimeter and
submillimeter wavelength electromagnetic radiation [12 ± 15].
The first results concerned with the performance of the
cyclotron autoresonance maser Ð CARM Ð have been
reported in Refs [39]. Later on the different schemes of
CARM oscillator and CARM amplifier have been subjected
to extensive studies and numerical simulation [40].

2.3 Autoresonance in an obliquely propagating wave
It follows from relativistic equations of motion of a particle in
the general case of a plane wave, propagating at an angle with
respect to the steady magnetic field, that there exists the exact
integral [5, 41]

NgÿP� i
�
e exp�iy� ÿ e� exp�ÿiy��� �qX� � Y � const :

�24�

From here on we shall use the reduced parameters:
N � kc=o, q � ro=c, X � eB0=�m0co�, e � eE=�m0co�. In
the case under consideration one usually introduces the drift
variables for the particle [41]. However it seems to be more
efficient to separate the cyclotron rotation of the particle with
the help of (4) and to use the transformation of the phase y
into a new phase c by the formula [42]

c � y� m sin�cc ÿ f� ; �25�
where m � N?P?=O, N? � �N 2

x �N 2
y �1=2, tanf � Ny=Nx,

cc � yc. In this case the equations of particle motion have a
rather complicated form. In different conditions they were
considered in many works [41 ± 45]. We will take interest in a
special case of the particle motion, connected with the
existence of integral (24).

In the region of resonance at s-th harmonics of gyrofre-
quency the difference between the frequencies

Ds � 1

g
�ÿg�NzPz � sO� �26�

appears to be small. So, the corresponding combination of
phases crs � cÿ scc becomes a slow, or semifast variable.
That means, that at small enough wave amplitudes the
equation of motion may be averaged over fast phases except
the resonance phase. In this case one should suppose that
separate resonances do not overlap.

It follows from the averaged system that in the range of an
s-th resonance there exists the approximate integral [44, 45]

Nzgÿ Pz � i
�
ez exp�icrs� ÿ e�z exp�ÿicrs�

�
Js�m�

� Y � const�O�e2� : �27�

Here Js�m� is the Bessel function. The resonance condition
Ds � 0 may be compatible with the integral (27), if

Nz � 1 ; Y � sO ; �28�
while jezJsj5 1. So, the integral (27) at the conditions (28)
guarantees a peculiar autoresonance, or more exactly, syn-
chronous regime of motion of a particle. As large values of
energy �m4 1� are approached, the difference gÿ Pz, accord-
ing to (27), tends to the constant value gÿ Pz ! sO.

Consequently, as the particle energy increases, the condi-
tion of cyclotron resonance is fulfilled with increasing
accuracy, so the synchronous regime passes to the autoreso-
nance one. Note, that one of the conditions of autoresonance
Nz � 1 for oblique propagation of an electromagnetic wave
was pointed out in Ref. [22].

In the synchronous regime not only acceleration but also
deceleration of a particle with full loss of energy is possible.
This is evident from the approximate formula (at s 6� 0)

g � 1

2sO

�
P 2
? � 1� �sO�2 � iJs

sO

�
ez exp�icrs� ÿ c:c:

�
� �P 2

? � 1ÿ s2O2�
�
�O�e2� : �29�

Here c.c. stands for the complex conjugation. From this
formula it follows that at sO � 1 the particle can completely
pass its energy to the wave.

In the particular case Ny � 0 �F � 0�, ex � e1=2,
ey � ÿie2=2, ez � e3=2 we can obtain the integral

Gs sincrs � Qs � const ; �30�

which is the generalization of the integral (12). Here

Gs � e3PzN?
O

Js�m� � e1sJs�m� � e2mJ 0s �m� ; J 0s �
dJs
dm

:

�31�

As in the case of longitudinal propagation of a transverse
wave, there is an equation for the energy of the form (13),
where

V�g� � ÿ
�

O
gN?

�2�
G 2

s �g� ÿQ 2
s

�
: �32�

From that equation it follows that at large values of
energy the rate of acceleration falls as gÿ1=4 without regard
to the resonance order. For comparison we can point out that
in the case of autoresonance in a transverse vacuum wave
propagating along the magnetic field, the rate of acceleration
falls as gÿ1=2.

We have considered the possibility of synchronous
motion of a particle at resonances of gyrofrequency and its
harmonics. Meanwhile, the equations of motion admit a
synchronous regime of motion of a particle in a transverse
wave at the Cherenkov resonance �s � 0�. In this case
ultrarelativistic particles moving at small pitch-angles may
be accelerated without limit. This is evident from the formula�����������������

g2 ÿQ 2
p

ÿ
�����������������
g20 ÿQ 2

q
� e3t ; �33�

where

g0 � g
���
t�0

; g sinc � 1� P 2
?

2e3
� Q � const : �34�
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The viewed synchronous regime of particle motion exists
not only in a transverse wave, but also in a longitudinal wave
propagating at an angle to the magnetic field [45]. Unlimited
acceleration of a particle is also possible in a purely long-
itudinal wave, propagating with the speed of light andwith no
external magnetic field [46].

2.4 Motion of a charged particle at the violation
of the autoresonance conditions
Autoresonance does not occur, if one of the conditions (11)
(N � 1, but Y 6� O, or N 6� 1) is violated. In any case a
frequency mismatch arises, so beats take place, leading in
particular to energy oscillations [1, 3].

A qualitative explanation of the energy oscillations is as
follows: let us assume that at the initial moment the condition
of exact resonance (10) is satisfied, and the velocity of a
particle (with positive charge) is parallel to the wave's electric
field. In this case the particle energy increases. Due to
detuning of the resonance, the angle between the particle
velocity and the field strength varies and can become obtuse.
Then the particle loses energy, until the angle reverts back to
an acute one, and the particle energy again increases. Thus the
energy varies in periodic manner.

One can evaluate the value of maximal energy which the
particle gains before the resonance is destroyed, when the
angle between the transverse velocity of the particle and the
electric field strength vector becomes obtuse.

It is convenient to introduce the dimensionless interval s,
given by the formula ds � dt=g, instead of the reduced time t.
If at the initial moment the resonance condition
g0 ÿNPz0 � O is fulfilled, then the constant Y in (9) is
determined as

Y � O� g0�N 2 ÿ 1� : �35�

Detuning of resonance arises because the difference
gÿNPz is not a constant of motion in this situation. For
estimation we may put yÿ � c � 0. Then the deviation of the
difference gÿNPz from the initial value O is described by the
equation

d

ds
�gÿNPz� � eP?�1ÿN 2� ; �36�

where P? � eOs. Hence, the phase variation is

Dc � e2Os3j1ÿN 2j
6

: �37�

Detuning of resonance occurs at Dc � 1. It allows us to
find smax. Then, taking into account (9), we obtain the desired
estimation

gmax �
�

3e
j1ÿN 2j

�2=3�O
2

�1=3

: �38�

Let us consider next the relation

P 2
? � g2�1ÿN 2� � 2NYgÿ 1ÿ Y 2 : �39�

Quantity P 2
? as a function of g represents a parabola with the

coordinates of its vertex

gv �
NY

N 2 ÿ 1
; P 2

?v �
1ÿN 2 � Y 2

N 2 ÿ 1
: �40�

Therefore, the character of dependence P 2
?�g� is essentially

different in the case of N < 1 (superluminous waves) and
N > 1 (subluminous waves) (Fig. 1). At N < 1

gmin � ÿ
NY� ���������������������������

1ÿN 2 � Y 2
p

1ÿN 2
:

At N > 1

gmax
min �

NY� ���������������������������
1ÿN 2 � Y 2
p

N 2 ÿ 1
:

From the plots given in Fig. 1 it is obvious that in the case
of a superluminous wave the particle energy may have values
as large as one likes, whereas in the case of subluminous wave
the values of the particle energy range between gmin and gmax

and with N increasing the region of allowed values of energy
becomes narrower.

If the constantY � N, then the minimal value of energy in
both cases corresponds to the particle at rest: g�min � 1 and the
maximal value of the particle energy in the case of sublumi-
nous wave is equal to g�max � �N 2 � 1�=�N 2 ÿ 1�.

One can easily obtain from the system (5) ± (8)

d�P? sin y� ÿ Oÿ g�NPz

2eY
dP 2
? � 0 : �41�

In the autoresonance regime �N � 1;Y � O� this equation
leads to the integral (12). AtN � 1, but at the initial detuning
of resonance �Y 6� O�, we have an integral

P? sin yÿ Oÿ Y

2eY
P 2
? � const : �42�

Due to the frequency mismatch beats arise. The maximal
value of the transverse momentum is P?max � 2eY=jOÿ Yj.
It tends to infinity as detuning decreases.

If N 6� 1, then (41) gives the integral

eP? sin y� g
2

��1ÿN 2�g� 2�NYÿ O�� �W � const : �43�

In combination with (39) this integral determines the
family of phase trajectories in the plane �g; y�.

P2
? P2

?

gmingmin

gv;P
2
?v

gv;P
2
?v

gmax gg

N < 1 N > 1

Figure 1. The g-dependence of P 2
?�g�. (The dashed lines are nonphysical

regions of parabolas).
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Using (43), the equation for the energy can be obtained

g2 _g2 � e2
�
g2�1ÿN 2� � 2NYgÿ 1ÿ Y 2

�
ÿ
�
Wÿ g

2

��1ÿN 2�g� 2�NY ÿ O���2

; �44�

where _g � �dg=dt�. An identical equation was first obtained
by the authors of Ref. [3].

This equation admits a general solution in terms of elliptic
integrals [3]. However, examination of this solution is rather
complicated, so numerical methods are most often used. A
detailed examination of the motion of a particle in a slow or
fast electromagnetic wave is contained in Refs [1, 3, 11, 18].

When a particle with zero initial transverse velocity
interacts with a slow wave, the sign of the energy change
depends on the ratio of the initial longitudinal velocity of the
particle vz0 to the wave phase velocity vph according to the
Cherenkov mechanism [18]. If vz0 > vph the particle will lose
its energy. At vz0 < vph the particle, driven by the wave, gains
energy. If vz0 � vph then the energy of the particle does not
vary, because in this case the force of the wave electric field is
exactly compensated by the magnetic Lorentz force.

Notice that the system (38) ± (41) admits a steady solution

ys � � p
2
; Oÿ gs �NPzs � � e

P?s
�gs ÿNPzs� : �45�

In the paper [47] the stability of the steady state with respect to
small deviations from it was discussed. It was shown that the
energy of stable steady states increases without limit as
N! 1.

2.5 Effect of radiation on the motion of a particle
in the autoresonance regime
Resonant motion of a particle with allowance made for the
force of radiative friction was discussed in Refs [11, 48, 49]. It
was shown that radiation imposes a fundamental limit on the
mechanism of autoresonant acceleration although this limit
could be sufficiently high.

Using the well known expression for the radiative friction
force [16], the equations ofmotion of a particle in the field of a
circularly polarized electromagnetic wave (at N � 1) propa-
gating along the magnetic field can be written in the form

dPz

ds
� eP? coscÿ mO2PzP

2
? ; �46�

dg
ds
� eP? coscÿ mO2gP 2

? ; �47�

dP?
ds
� e�gÿ Pz� coscÿ mP?O2�g2 ÿ P 2

z � ; �48�

dc
ds
� Oÿ g� Pz ÿ e

P?
�gÿ Pz� sinc : �49�

Here the previous notations for the reduced variables and
parameters are used. Parameter m � 2e2o=�3m0c

3� �
4pr0=�3l�5 1, where r0 � e2=�m0c

2� is the classical electron
radius.

In these equations, small terms of the order of me and
higher are omitted. One can see that the radiative force has
little effect on the evolution of the variables Pz, g, P? but
causes resonance detuning and variation of the resonance
phase c. This occurs due to a deviation of the difference
gÿ Pz from the constant value O.

From (46) and (47) we obtain

d

ds
�gÿ Pz� � ÿmO2P 2

?�gÿ Pz� : �50�

When radiation is fully excluded the quantity gÿ Pz

remains constant, that is, autoresonance occurs. At m 6� 0
the resonance of the particle with a wave can be destroyed. If
the phase variation Dc5 1 the resonance is still preserved.
But if Dc � 1 then the synchronism between the particle and
the wave is violated. It follows from the equations above that
the phase variation due to radiation is

Dc � me2O5s4

12
: �51�

The maximum allowable value of energy which the
particle may gain before the resonance is destroyed is
determined by the relation

gmax �
P 2
?max

2O
� e

O

�������
3

mO

s
: �52�

Such an estimate was obtained in the above quoted papers. It
is seen that the maximum allowable energy at autoresonance
does not depend on the initial energy of the accelerated
particle. As an example, let us consider the quantities
E=B0 � 10ÿ2, B0 � 300 kG. In this case, gmax � 3� 103.

Thus, consideration of the radiative friction leads to the
principle limit on the maximal energy gained by the particle
during autoresonance acceleration.However, this limit can be
completely removed or strongly suppressed by a longitudinal
electrostatic field Ez�Z� [50].

In this case, the additional terms e0 fg and e0 f Pz appear in
Eqns (46) and (47), respectively, where

e0 � eE0

m0co
; f �Z� � Ez�Z�

E0
: �53�

Then, in place of (50) we obtain the equation

d

ds
�gÿ Pz� � ÿ�gÿ Pz��mO2P 2

? ÿ e0 f � : �54�

We can see that the radiative losses at autoresonance are
completely suppressed if

e0 f �Z� � mO2P 2
? � me2O 4s2 � m�6e�2=3O7=3Z 2=3 : �55�

Notice that we have met such a law for the variation of
particle energy in the autoresonance regime over the accel-
eration length Z.

If the electrostatic field is constant � f � 1�, then we can
easily obtain an estimate for the phase variation

Dc � O
�
mO 4e2s4

12
ÿ e0s2

2

�
; �56�

as well as for the maximal energy gained

gmax �
P 2
?max

2O
� 3e0

2mO3

 
1�

�����������������������
1� 4me2O3

3e20

s !
: �57�

This value is considerably above the limit (52), established
from the radiative losses. For instance, at E0=B0 � 10ÿ4,
B0 � 300 kG, l � 10 cm we have gmax � 3� 104.
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Notice that the electrostatic field can increase resonance
detuning if it is directed the opposite way. In this case efficient
particle acceleration becomes impossible.

In conclusion of this section it should be pointed out that
the autoresonantmotion of a charged particle in its pure form
is realized only in the ideal case of a plane electromagnetic
wave, traveling along a steadymagnetic field with the speed of
light in a vacuum. Any deviations from the required condi-
tions violate the synchronism between the particle and the
wave and distort the autoresonant regime. So it is natural that
searches for electromagnetic structures are carried out where
waves travel at the speed of light. Different types of such
structures, for example, multipole fields [11],TEM-waves in a
coaxial waveguide [54], and others have been considered. In
such structures the autoresonant motion of a particle is
possible both in the acceleration and in the deceleration
regimes.

3. Maintenance of synchronism between
a charged particle and a slow or fast
electromagnetic wave

In the case of a slow �N > 1� or fast �N < 1� electromagnetic
wave, propagating along a steady magnetic field, the initial
condition of cyclotron resonance can not be self-maintained
throughout the time of the particle's motion. Thus the
question arises: is it feasible to force the maintenance of
synchronism in such a way that the initial resonance condi-
tion will be retained as long as possible? This can be achieved
by changing the phase velocity or other parameters of the
wave, by profiling of the guide magnetic field or by some kind
of external action (for example, the application of an
electrostatic field). Motion of a particle under varying
conditions is also occasionally known as autoresonant,
although it is more suitable to name it synchronous, because
in this case synchronism between the particle and wave is
maintained not automatically but in a forced manner.

3.1 Maintenance of synchronism in a wave
with varying phase velocity
If the wave phase velocity (the refractive index) varies
arbitrarily, the integral of the type (9) does not exist, and
synchronism between the particle and wave is, in general,
impossible. However, if the refractive index varies in a definite
way along the direction of wave propagation, then the initial
resonance condition would be expected to be retained in the
course of the particle motion

g0 ÿN0Pz0 � gÿN�Z�Pz � O : �58�
Thus, the main problem lies in finding the dependence N�Z�
under the condition (58). Different variants of this problem
have been considered in Refs [47, 52 ± 54].

If relation (58) is fulfilled, in the case of a circularly
polarized wave we have

Pz
dN

dZ
� 1

N
�1ÿN 2� dPz

dZ
: �59�

It follows that the index of refraction remains constant
only atN � 1. IfN 6� 1, then to maintain synchronism (58) in
accordance with (59) one needs to have the relationship
between N and Pz

Pz

������������������
j1ÿN 2j

p
� Pz0

������������������
j1ÿN 2

0 j
q

� G � const : �60�

If N! 1, then Pz; g!1. This special case corresponds to
the autoresonance regime of particle motion.

Note that the quantity j1ÿN 2jÿ1=2 � bphj1ÿ b2phjÿ1=2
can be viewed as a sort of wave `momentum'. So, relation
(60) shows that in the regime under consideration the
longitudinal momentum of a particle should be proportional
to the wave `momentum'. In particular, at G � 1 they are
equal.

An alternative approach was discussed in Ref. [52], where
instead of condition (58), it was supposed that the long-
itudinal velocity of a particle should be equal to the wave
phase velocity.

As in the N � const case, one can obtain an equation for
energy. To do this, one needs to use the integrals (cf.with
Ref. [47])

P? sinc � F
������
2O
p

� const ; �61�

gÿ P 2
?

2O
� I � const ; �62�

and the relation

N � gÿ O�����������������������������
�gÿ O�2 � G 2

q : �63�

It is necessary to note that the constants G, I and the
parameter O are related through

I! I� � 1� O2 � G 2

2O
: �64�

From here on the upper sign refers to the fast wave, and the
lower one to the slow wave.

As a result, one obtains the desired equation of the form of
(13), (14), where an explicit dependence on N is absent, and
the constantG should be changed for a� � I� � F2. From the
exact solution it follows that as N! 1 the particle energy
increases and scales as in the autoresonance regime, all the
particles with the initial energy g0 5 a� being trapped into the
acceleration regime.

To find the explicit dependenceN�Z� one has an equation
(for the particles with the accelerating phase)

dN

dZ
� e�1ÿN 2�

P 2
z

�����������������������
2O�gÿ a��

p
: �65�

It follows that in the synchronous acceleration regime in the
fast wave, the refractive index has to increase, and in the slow
wave it has to decrease in the direction of the wave
propagation. However, the explicit expression of N�Z�
seems to be rather complicated even in particular cases [53,
54]. Thus, it has little use for applications. In practice, the
linear approximation can be useful

N�Z� � N0 � a�Zÿ Z0� : �66�

Assuming that approximation (66) is valid over the accelera-
tion length L, one obtains an estimation for the dephasing

Dc � e2O
s3

6
�1ÿN 2

0 ÿ aLN0� : �67�
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At the same time the inequality aL=N0 5 1 should be
satisfied. Here s is the dimensionless interval. If

jajLN0 � j1ÿN 2
0 j ; �68�

then the synchronous regime is preserved over the all
acceleration length determined by this relation.

If condition (68) is not fulfilled, then the phase variation
may be large. In this case the synchronous regime is
destroyed, and the maximal energy gained by the particle
over the length L can be estimated by the formula

gmax �
�

3e
1ÿN 2

0 ÿ aLN0

����
O
2

r �2=3

: �69�

This value can be larger than that in the case of particle
acceleration in a nonluminous wave with constant phase
velocity (38).

Note that the regime of synchronous particle deceleration
is also possible, in addition to the acceleration regime.
However in this case the refractive index must increase in
the direction of wave propagation for a slow wave and
decrease for a fast wave.

3.2 Maintenance of synchronism by changing the profile
of the guide magnetic field
Early ideas on the possibility of sustaining the synchronism
between a particle and a nonluminous wave were presented in
Ref. [55]. Then this problem became the subject of investiga-
tion in a number of Refs [25, 56 ± 60]. In particular, the profile
of a nonuniform magnetic field providing autoresonance
acceleration of a particle by a circularly polarized TE-wave
was determined in Ref. [57] under the additional conditions:
(a) the gyroradius of the particle should be constant, i.e. the
particle should move over a cylindrical surface, (b) at each
instant of time the particle remains in phase with the wave and
derives its energy from the wave. Under these conditions two
regimes of acceleration were found: (1) where the increase in
the particle energy is related, mainly, to the increase of
transverse momentum, the pitch of the helix thereby decreas-
ing (in this regime strong magnetic fields are required); (2)
where the energy increases, mainly through an increase in
longitudinal momentum. Then, the pitch of the helical
trajectory grows, and one needs to have a longer acceleration
length than in the first regime.

However one can find the profile of the nonuniform
magnetic field without additional assumptions about the
particle trajectory [58].

If the guide magnetic field is strong enough, so that the
drift theory is valid [23, 24], then in the zeroth-order
approximation one can neglect the gradient and centrifugal
drifts. In this case the averaged equations of motion for the
electron in the field of an either fast or slow transverse wave
take the form [58]

dPk
ds
� P 2

?
2

H � e1 ÿ eNP? cosc � P 2
?
2

H � e1 �N
dg
ds

;

dP?
ds
� ÿPkP?

2
H � e1 ÿ e�gÿNPk� cosc ;

dc
ds
� Oÿ g�NPk � e

P?
�gÿNPk� sinc ;

dR

ds
� e1Pk : �70�

Here, the normalized momentum of the particle is
P � Pke1 � P?�e2 cos yc� �e3 sin yc�; e1 � X=O, e2, e3 is
the basic set of the unit vectors, connected with the force line
of the guide magnetic field, and

PkH � e1 � ÿ
Pk
O

e1 � HO � ÿ 1

O
dO
ds

: �71�

Under the above assumptions one can take

O � O�Rk� ; �72�

where Rk � R � e1 � Z. In what follows we require that the
initial condition of cyclotron resonance (atN � const) should
be conserved over the course of the particle motion

gÿNPk � O�Z� : �73�

In this case the desired profileO � O�Z�will be determined by
the equations of motion (70). So, with constraint (73) one can
obtain integrals similar to (61), (62). From these integrals we
derive the formula

�N 2 ÿ 1�P 2
k � 1ÿ 2IO�Z� � O2�Z� : �74�

The dependence P 2
k �O� at N > 1 is presented in Fig. 2. The

vertex of the parabola has coordinates Os � I, P 2
k s ��1ÿ I 2�= �N 2 ÿ 1�. In the case of I4 1 the acceleration of

the particle takes place in the growingmagnetic field atO5 I.
In the case of I > 1 acceleration is possible only at O5O2 �
I�

�������������
I 2 ÿ 1
p

.

In the case of a fast wave �N < 1� the dependenceP 2
k �O� is

shown in Fig. 3. In this case there are no physical solutions at
I4 1. If I > 1, then a restricted increase in P 2

k from 0 to
�I 2 ÿ 1�=�1ÿN 2� seems to be possible, when the guide
magnetic field increases from O1 � Iÿ

�������������
I 2 ÿ 1
p

to Os � I.
On further increasing themagnetic field fromOs � I toO2 the
particle reverts to the initial state.

Thus, in the case of a fast wave, the particle's longitudinal
momentum varies periodically as the magnetic field grows
over a highly restricted range, and as the original value of P 2

k
increases, the possible variation of magnetic field narrows. At
P 2
k0 � I this range collapses, and the longitudinal momentum

does not vary at all.
From the system (70), and considering the above-men-

tioned integrals one can obtain a formal equation for the

O1 O2 O

P2
k

I < 1 I � 1 I > 1

�N 2 ÿ 1�ÿ1

Figure 2. The O-dependence of P 2
k at N > 1.
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energy�
dg
dZ

�2

� 2e2O�gÿ Iÿ F2�N 2

�gÿ O�2 : �75�

In doing so one needs to use the relation O � O�g� which
follows from the equation

O2 ÿ 2O
�
g�1ÿN 2� � IN 2

�� g2�1ÿN 2� �N 2 � 0 :

However, it is very difficult to obtain an analytical solution of
Eqn (75), as well as of the system (70). Therefore numerical
methods are used [58]. The results of a numerical solution are
presented in Fig. 4. One can see that the regime of the electron
motion we are interested in really does have a resonant
character. Beginning from some small distance, the dynami-
cal variables of the particle as well as the guide magnetic field
grow approximately linearly. The initial dephasing c0 � p
seems to be stable: at the initial dephasing in the accelerating
range from p=2 to 3p=2 the resonant dephasing tends to p [58].

In other words, phase bunching takes place, and all the
particles with initially accelerating phases are trapped into the
regime of synchronous acceleration. During the numerical
solution the magnetic field was excluded using the resonant
condition (73). In this case the dependence O�Z� may be
determined from graphic results. However, the profile of the
magnetic field may be found analytically using the equation

(for the particles in the accelerating phase)�
g�1ÿN 2� ÿ O� IN 2

� dO
dZ
� eN�N 2 ÿ 1�

�������������������������������
2O�gÿ Iÿ F2�

q
:

�76�
In doing so one needs to use the dependence g � gfOg.
Solution of Eqn (76) is possible, but it is too complicated to
be realized in practice. Thus, it is reasonable to consider
simple profiles of themagnetic field, e.g. in the form of a linear
dependence:

O�Z� � O0

�
1� a�Zÿ Z0�

�
: �77�

It is evident that synchronism can not be preserved in this
case as the particle moves along the guide field. At the same
time, there is some distance, where motion can be considered
as synchronous so the particle gains considerable energy
(Fig. 5.)

By estimating the resonance mismatch and the phase shift
one may find the value of the magnetic field gradient which
provides a maximal gain of energy

aopt � Ae2�1ÿN 2�2
NO0

: �78�

The parameter A is numerically found to be A � 5� 102.
Note that to find the magnetic field profile consistently

one needs to take into account both the transverse compo-
nents of the guide field and the particle drift motion. A
reduced version of this problem was considered in the paper
[59]. On the basis of a numerical solution, the scaling laws
were determined for the laser acceleration of electrons: the
maximal acceleration length kzm, depending on the accelerat-
ing field, varies according to the law eÿ1 and depending on the
phase velocity it varies as �bph ÿ 1�ÿn, where n � 0:6. The
energy of the accelerated particle varies in accordance with
the relation �gf ÿ gi�=�gi ÿ 1� � �bph ÿ 1�ÿm where m � 0;5, gi,
gf are the initial and final energies respectively.

A somewhat different arrangement of the problem of
finding a synchronizing magnetic field was considered in
Ref. [61]. The authors proposed a simplified model system,
where the particle moves in a plane perpendicular to the
magnetic field. The required field was also assumed to vary
only in this plane. The case of plane-polarized wave traveling
along the magnetic field was considered. It was assumed that
along the given trajectory the wave's electric field on average
did positive work on the particle. Then it was found that the
desired magnetic field was periodic in the direction of wave
propagation.

O1 Os > 1 O2 O

P2
k

�N 2 ÿ 1�ÿ1

Figure 3. The O-dependence of P 2
k at N < 1.
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Figure 4. Autoresonance in a synchronizing magnetic field (O�0� � 1,

Pk � 0:02, P? � 0:205, g�0� � 1:02, c�0� � p, bph � 0:95, e � 0:01).
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Figure 5. Synchronous regime in the case of a linearly increasing magnetic

field (O�0� � 1, Pk�0� � 0:02, P?�0� � 0:205, g�0� � 1:02, c�0� � p,
bph � 0:95, e � 0:1, a � 0:05).
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More recently, the idea of using a periodic magnetic field
for the purposes of synchronization of a particle with a wave
(undulator, wiggler) was applied to a variety of problems
connected with the acceleration of charged particles and the
generation of electromagnetic radiation [62 ± 64].

3.3 Sustaining synchronism with a longitudinal
electrostatic field
The effect of an electrostatic field parallel to a static magnetic
field on the resonant interaction between a particle and a
transverse electromagnetic wave at N 6� 1 was discussed in
Refs [65 ± 67]. In particular, the authors of Ref. [67] have
considered the effect of an electrostatic field on the induced
radiation of nonisochronous oscillators. An adequate profile
of an electrostatic field for sustaining the resonance has been
found in implicit form in Ref. [66]. It was numerically shown
in Ref. [65] that the action of a uniform electrostatic field led
to two types of energy gain in a wave with N 6� 1: either a
steadily increasing oscillatory energy variation, or a step in
energy followed by decaying energy oscillations.

Particle motion in a circularly polarized wave is described
by Eqns (5) ± (8) with additional terms from the electrostatic
field (see Section 2.4). We assume that the initial resonance
condition is sustained as the particle moves along the guide
magnetic field. To do this one needs to have an electrostatic
field which will compensate the phase shift arising due to
N 6� 1. In this case the equations of motion give the relations

e0 f�Z� � ÿ 1

O
d

ds
�Ngÿ Pz� � e�N 2 ÿ 1�P? cosc

Pz ÿNg
: �79�

The desired electrostatic field is thus determined in implicit
form [66].

From (79) it follows that there is a singular case
Pz ÿNg � 0 in which the electrostatic field is not defined. It
happens only at N < 1 with the threshold value of energy
glim � O=�1ÿN 2� [66]. Excluding this case we can introduce
an electrostatic potential U�Z� so that f �Z� � ÿdU=dZ, and
f �Z�Pz � ÿdU=ds.

In the synchronous regime we can obtain separate
equations for the determination of both potential and energy.
To find these equations let us write integrals of the equations
of motion of the particle

P? sinc � F � const ; �80�

gÿ P 2
?

2O
� e0U�Z� � G � const ; �81�

�1ÿN 2�P 2
z � 2e0OU�Z� � I � const : �82�

The relativistic relation also takes place

�N 2 ÿ 1�g2 � 2Og � NP 2
? �N 2 � O2 : �83�

From (82) it follows that particles behave variously in fast and
slowwaves: with an increase in potential at e0 > 0 a particle in
a slow wave is accelerated, but in a fast wave it is decelerated.
The converse occurs for a decrease in potential.

With the obtained relations we can find the equation for
the determination of particle energy (in the accelerating
phase)

g�g� q� dg�������������������������������������������
�N 2 ÿ 1��g� q�2 ÿ a

q � eqN dt ; �84�

where

a � N 2

N 2 ÿ 1

�
N 2 � O2 ÿ 1� �N 2 ÿ 1�F2

�
; q � O

N 2 ÿ 1
:

�85�

From these expressions it follows that the acceleration
rate in a slow wave falls with increasing energy faster than in
an autoresonant regime in a vacuum wave: dg=dt � 1=g.

There is an exact solution of Eqn (84) (at N > 1):�
x
�������������
x2 ÿ a

q
�
�
aÿ O���������������

N 2 ÿ 1
p

�
arcosh

x���
a
p
�����t

0

� 2etON
���������������
N 2 ÿ 1
p

; �86�
where x � �g� q�

���������������
N 2 ÿ 1
p

. Equation (79) also yields the
equation for the determination of the electrostatic field
potential with which the synchronous regime of particle
motion in the accelerating phase is sustained

e0
dU

dZ
�

e
�������������������������������������������������������������������
P 2
z �N 2 ÿ 1� � 2NOPz � O2 ÿ F2

q
Pz �Nq

: �87�

Here Pz must be expressed viaUwith integral (82). It gives, in
principle, the possibility for the determination of U�Z�.
However the resulting dependence is rather complicated, so
it is unlikely that it may be realized experimentally. Therefore
it is reasonable to consider a simple, e.g. a linear, dependence
of the form U�Z� � 1� aZ. This corresponds to a uniform
electrostatic field. This case was studied in detail in Ref. [65].

It is apparent that a uniform electrostatic field cannot
maintain synchronism for an extended time interval. As in
earlier sections we can estimate a maximal energy gain for the
particle before the initial gyro-resonance condition is mis-
matched

gmax � e0aNjqjsmax � jqj
�
e2�1ÿN 2� � �e0a�2

� s2max

2
; �88�

where

smax �
�

6

O
�
e2�1ÿN 2� � �e0a�2

��1=3

: �89�

In the absence of an electrostatic field this estimate agrees
with (37), so the energy of the particle is a periodic function of
time. As long as the electrostatic field is small enough, its
effect on the character of the energy variation is weak. In this
case the energy oscillates and on average increases. There is a
value of the field e0aopt, which provides a significant growth of
energy. If the field exceeds this value, then the resonance
condition is violated sooner, so the particle has no time to
gain sufficient energy. One can evaluate the optimal gradient
of the electrostatic field

e0aopt � A

N

�
e2j1ÿN 2j����

N
p

�2=3

; �90�

where the constant A is numerically found to beA � 1; 2 [65].

3.4 Sustaining synchronism by an electrostatic field
crossed with the guide magnetic field
Under the action of an electrostatic field, crossed with the
guide magnetic field, the character of resonant interaction
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between the wave and particle changes considerably, so some
physical effects appear. In particular, the mechanism of the
Cherenkov absorption of a transverse electromagnetic wave,
propagating along a steady magnetic field seems to be
possible, and this mechanism compares well with that of
cyclotron absorption [68]. Peculiar autoresonance in the case
of a nonrelativistic charged particle in the field of a plasma
wave, traveling at an angle to the external magnetic field has
also been revealed [69]. This effect is wholly caused by the
slightly inhomogeneous electric field, crossed with the mag-
netic field.

Consider next the possibility of sustaining the synchro-
nous regime of a charged particle in a nonluminous wave
taking into account the electric drift. We take the direction of
the steady electric field E0 to be the y-direction, and the
direction of B0 to be the z-direction.

To extract the cyclotron rotation of a particle we need to
make a transformation from the laboratory frame of refer-
ence to the frame of reference S 0, moving with the electric
drift velocity VE � cE0=B0 along the x-axis. Then for the
components of the 4-vector velocity in this system
wi � �w 0;w 1;w 2;w 3� we have covariant equations [70],
which after averaging over the fast phases yield a simplified
system of equations of motion of a particle in the range of
cyclotron resonance

dw 0

ds
� w?

2
�e1 � e2G� cosc ; �91�

dw?
ds
� 1

2

�
e1�w 0 ÿNGw 3� � e2G�w 0 ÿNw 3�� cosc ; �92�

dw 3

ds
� Nw?

2
�e1G� e2� cosc ; �93�

dc
ds
� 1

GO

�
Oÿ G 2

�
w 0 ÿN

G
w 3

��
ÿ sinc

2w?

�
e1�w 0 ÿNGw 3� � e2�Gw 0 ÿNw 3�� : �94�

Here G � �1ÿ V 2�ÿ1=2; V � VE=c; ei � Ei=B0, ds � dt=g is
the dimensionless interval. The above equations have the
integral

w 0 ÿ e1 � e2G
N�e1G� e2� w

3 � I � const : �95�

The exact cyclotron resonance is determined by the relation-
ship

G 2

�
w 0 ÿN

G
w 3

�
� O : �96�

It follows that the condition of cyclotron resonance will be
preserved as the particle moves, if the quantity
w 0 ÿ �N=G�w 3 � Y is a constant of motion. Thus the condi-
tion of cyclotron resonance (96) is preserved if the following
relationship is fulfilled

N

G
� e1 � e2G

N�e1G� e2� ; �97�

with I � Y � O=G 2.
The given synchronous regime of motion of the particle is

thus seen to be dependent on the wave polarization. In the

general case of a wave with arbitrary elliptic polarization the
synchronism between a particle and the wave will be pre-
served if the crossed electrostatic field is determined by the
equation

G �
e1�N 2 ÿ 1� �

�������������������������������������������
e21�N 2 ÿ 1�2 � 4N 2e22

q
2e2

: �98�

In the case of a circularly polarized wave �e1 � e2� the
synchronous regime occurs under the condition

G � N 2 : �99�
In the case of a transverse linearly polarizedwave we have two
possibilities. The first possibility is

�1� e1 � e 6� 0 ; e2 � 0 : �100�
Then in accordance with (97) the refractive index must be
equal to unity. Thus, in the case of a vacuum wave, the
autoresonant regime exists in the moving reference system as
well, if the wave is polarized in the direction of electric drift.
The second possibility is

�2� e1 � 0 ; e2 � e 6� 0 : �101�
It follows from (97) that if a wave is polarized in the direction
of the electrostatic field, the synchronous regime is possible
only for a slow wave and under the condition

G � N > 1 : �102�
Our calculations show that the case (101) is the optimal one.
In this case one can find the equation for energy

w 0 dw 0

dt 0
� eO

2N

����������������������
2Yw 0 ÿ a2
p

; �103�

where t 0 is the normalized time in the moving frame of
reference, a2 � 1� Y 2 � F2. It follows that in this case the
acceleration rate falls in accordance with a law, similar to that
in the case of the autoresonant regime in a vacuum wave.

The exact solution of Eqn (103) is similar to (16).
The energy of reasonably accelerated particles in the

moving frame of reference scales as

w 0 �
�
3eYOt 0

N
���
2
p

�2=3

: �104�

The energy gained on average by the particle, is G � N
times as large in the laboratory frame of reference as in the
frame of reference moving with the electric drift velocity. The
time dependence of the particle energy in the laboratory
frame of reference is shown in Fig. 6. From this figure we

0 50 150 250 300 400350 450 t100 200

6

w

4

2

w 0

w 3

Figure 6. The time dependence of the particle energy in the laboratory

frame (N � 1:1, e � 0:05, V � 0:42, c0 � 0).
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notice that although the energy oscillates, it increases on
average, as in the autoresonant regime.

Notice that in addition to the acceleration regime of the
particles in a slow wave, the regime of their deceleration and
stimulated emission is also possible [71]. This is evident from
Fig. 7.

4. Conclusions

Our analysis of cyclotron autoresonance is based on the single
particle approximation which is valid if the energy of the
accelerating field is far in excess of the energy gained by the
particle. In this case we may ignore the reaction of an
accelerated current on the field. Otherwise it is necessary to
use a self-consistent description of the interaction between the
particles and the wave. In Ref. [72] the autoresonant accel-
eration of the particle beam was analyzed on the basis of the
self-consistent cold beam model under the assumption that
the beam density was constant and the longitudinal velocity
depended only on time. It has been shown that a rapid
increase in energy occurred initially and then the acceleration
rate decreased (as well as in the case of the single-particle
approximation). The maximal energy of the particles was
determined using laws of conservation of energy and momen-
tum in the wave ± beam system. A self-consistent theory of
interaction between the relativistic electron beam and the
electromagnetic wave was developed in Ref. [73] on the basis
of kinetic approach.

If the charged particle beam propagates in a dense plasma,
then the problem is rendered rather complicated due to a
variety of possible effects. However, as is shown in Ref. [74]
there are conditions when the effect of the directional motion
of the particles prevails and the beam does not manage to be
heated during the time of acceleration. In such a situation,
Coulomb's collisions between the beam particles and the
plasma particles destroy the phase synchronism between the
beam and the wave, so the growth of the beam energy is
limited. It is quite similar to the action of radiative friction on
the autoresonant motion of a particle.

Acceleration of particles in the regime of autoresonance is
also possible in the medium with an inverse population of
energetic states in which a transverse wave is generated [75].

In the problem of generation of electromagnetic radiation
the autoresonance mechanism is useful for the increase in
efficiency of the interaction between the relativistic electron
beam and not only single waves but also combination of
waves. It is realized in the devices which are known as ubitron
and scattron [76, 77].

We will point out some features of the autoresonant
mechanism under astrophysical conditions. Calculations on

the basis of Eqn (13) show [78] that under the conditions of a
high-latitude (65�) magnetospheric plasma at an altitude of
1000 ± 2000 km electrons may acquire a considerable energy
during a short time and may then be precipitated in the
auroral zone. This may be the reason for occasional auroral
and geomagnetic phenomena. When strong coherent radia-
tion and strong magnetic fields arise, e.g. in a pulsar or
quasar, such a mechanism may lead to the acceleration of
cosmic rays. The authors of Ref. [79] considered the simulta-
neous autoresonant acceleration of guided electrons and
positrons by an intensive linearly polarized electromagnetic
wave, propagating along an axial magnetic field. It was
shown that high-current electron ± positron beams can be
accelerated to high energies with low radiation losses. This
mechanism may act, for example in a pulsar magnetosphere,
which consists of a magnetized electron ± positron plasma
[80].

In parallel with the regular autoresonant mechanism the
mechanism of stochastic autoresonant acceleration of
charged particles was also discussed [81, 82]. In this case a
marked increase in the average kinetic energy of particles may
occur.

Due to active experiments in Space new problems on the
propagation of the strong electromagnetic pulses in plasmas
along the magnetic field are arising [83, 84]. It was shown in
[84] that in the autoresonant regime such pulses are long-
itudinally transverse and have the form of solitons with `built
in' Langmuir oscillation.
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