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METHODOLOGICAL NOTES
Quantum models of relaxation
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Abstract. Exactly solvable quantum models for an atom or
a molecule interacting with a physical environment are consid-
ered. The kinetic description of the random walk of an open
system is shown to be generally consistent with the phenomen-
ological relaxation equations found use in spectroscopy. Some
aspects of the problem of entropy increase are also revised.

1. Introduction

There is a rich historical background behind the application
of kinetic relaxation equations to atomic and molecular
spectroscopy. Starting from the semiclassical Bloch [1] and
energy spin component [2, 3] equations, the theory of
quantum microwave processes have incorporated effective
group-theoretical methods [4, 5] and adopted some lines of
attack of the fundamental quantum field theory. Given that
at the same time much of the current work continues to rely
on semiclassical or phenomenological methods of approach,
it is sometimes difficult to obtain a unifying picture of the
processes which, while seemingly different, are in fact of a
similar nature both structurally and physically.

One of the basic achievements of the last two decades is
the recognition that physical kinetics makes a part of the
general theory of open systems [6—9]. In this context, the
irreversible character of relaxation processes results from the
interaction of the object with external subsystems (not subject
to further observation) and is fundamentally quantum-
mechanical. It seems very instructive — and this is the aim
of the present paper — to illustrate this approach step-by-step
by using models for which an exact quantum solution is
possible.
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There is another major reason for addressing this subject.
In parallel with the development of quantum kinetics, a
principally different approach to the justification of statis-
tical physics has been persistently advocated over the years:
the dynamic chaos concept that came to existence and has
been developed on the basis of classical nonlinear mechanics
[10—12]. Although corresponding quantum models have
also been recently proposed [13], still at the heart of the
chaos idea is the notion of infinitely tangled phase trajec-
tories of a closed system as the basic cause of randomness.
While advancing no constructive ideas for the theory of
relaxation, this approach puts in a claim on revealing the
profound causes of irreversibility in nature: the claim which
we believe is unfounded.

Now this does not mean at all to deny the theoretical and
practical significance of the work on discontinuous transfor-
mations in nonlinear dynamics. These transformations may
be undoubtedly adequate to reflect reality in many problems
allowing the macroscopic continuum description of an object
(such as nonlinear waves or turbulence theory). But it would
of course be naive to take it as the basis for constructing, say,
a theory of radioactive decay.

Notice that the history of science abounds with such
examples of extending a method beyond the application area
where it was first found practically effective. Suffice it to
mention the attempts to interpret the Maxwell’s equations in
terms of elasticity theory; or to describe the hydrogen atom
spectrum with the nonlinear theory of vibrations.

To date, the quantum theory of open systems has proved
helpful in resolving many of the earlier debated questions on
the nature of irreversibility. The clue was provided by the
famous Einstein—Podolsky — Rosen [14] paradox, a subject
of repeated examination for nearly 60 years now. Unfortu-
nately, the proper realization of what has been achieved on
this way is lagging because of the physicists’ minds being all
too slow to recognize the principle of superposition of
quantum states as one of the fundamental principles of
reality. It indeed looks like [15] intuition needs some kind
of breakthrough which not only would affect the mathema-
tical formulations of the physical laws, but also the logical
and philosophical foundations of epistemology (Wissen-
shaftslehre) itself [16].
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2. Quantum Kinetic equation

Let us use the language of the theory of open systems to derive
the fundamental kinetic equation [9]. Suppose an external
medium acts on a quantum system (object) described by the
Hamiltonian Hs. We consider the medium to be a collection
(uniform flow) of identical physical subsystems with which
the object under study successively interacts, and we wish to
know how the state of the object evolves in response to this
sequence of interactions (Fig. 1). The dashed line in the figure
indicates that the states of the corresponding subsystems are
no longer statistically independent.

H,
4
d
7
Hinl //

H;

Figure 1.

We denote by H; the Hamiltonian of a single external
subsystem (flow representative) and by Hj, its interaction
with the object at collision, and we require [Hiy(, Hs+ H;| = 0
(energy conservation condition). In the special case of an
object interacting with thermal radiation, a suitably intro-
duced field oscillator plays the role of a flow representative. A
flow of an arbitrary physical nature but with equilibrium
statistical properties is also referred to as a thermostat.

Let p, and ¢ be the density operators for the initial states
of the object and a flow representative, respectively, it being
assumed that these state are statistically independent. In the
usual way [9], the density matrix of the object after the
interaction is written as

(nlp,|m) = Z<n, v|[UpgaU™|m,v) . (1)
;

Here and in what follows we employ Latin and Greek indices
for the basis states of the object and the flow representative,
respectively. The unitary evolution operator U acts in the
Hilbert space extended to include the states of both interact-
ing subsystems (direct product space [17]). Using the energy
representation for subsystem operators and the interaction
representation for the time evolution of states at collision we
should write

U = exp{iHinlc} (2)

where ¢ is the interaction time (we adopt the system of units
in which 7z = 1). When analyzing particular models, we shall
sometimes specify the evolution operator U directly without
explicitly writing out the corresponding Hi,.

We shall number by j the successive interactions of the
object with flow representatives, and denote by p; its density-
of-states operator after the j-th interaction. Assuming that the
initial mixed states of all the representatives are identical and
mutually independent, from (1) it follows

(nlpjilm)y = (n,mlp.q)(plp;la) , (3)

p.q

where we have defined

(n.m|p,q) =D (n,uU|p,v)(¥loli)(q, AU m, ). (4)

v, A

Eqn (3) is the quantum kinetic equation (generalized Marko-
vian chain) with the transition matrix (n, m| p, ¢) not necessa-
rily interpretable in terms of probability [18].

When applied to the spectroscopy of collisional relaxa-
tion, this equation will be used in the following way. We take
as our object a single molecule whose excitation by a resonant
electromagnetic field we wish to describe. Other molecules in
the gas volume will be treated as an external flow which
secures the relaxation of the object excitations. We shall
assume that the molecules in the flow are in equilibrium, thus
neglecting the small perturbing effect the field exerts on the
molecular states. As readily verified, only this approximation
allows one to employ a linear theory to treat the spectral
excitations of the molecule.

To pass to the kinetic equation in differential form, the
‘coarse-grain’ averaging idea [7] will be used. Assuming that
the molecule collides many times during the time d¢, and
denoting by 7t its characteristic time between the collisions,
Eqn (3) is rewritten as

%(n\p\w =7 <Z("»m|P,4)<P|P|CI> - <np|m>>4 (5)

P4q

To make the equation complete we must also add a
perturbation due to the exciting field, which we will represent
as a time-dependent operator V() acting on the states of the
object only. In principle, this last requirement is not ob-
ligatory because in the framework of the theory of open
systems any nonequilibrium influence may be described in
exactly the same way as are relaxational thermal collisions
(see, e.g., [8]). For most problems in atomic and molecular
spectroscopy, however, the classical field approximation
proves to be quite sufficient. With the above in mind we
finally write

%(n\p\m> =i(n|[p, V(1)]|m)

+ 7' 1> (nmlp,q) (plplg) — (nlplm)|. (6)

2

The discussion which follows will be concerned with the
meaning of this equation as applied to physical models
amenable to an exact quantum solution.

3. Collisions of two-level atoms

A system with two energy levels is perhaps the most
traditional quantum transition model in theoretical spectro-
scopy. Most commonly the model involves equations with
phenomenologically introduced longitudinal 7 and trans-
verse T, relaxation times [1], and we shall show below that
using Eqn (5) to simulate open system relaxation proves to be
fully consistent with this semiempirical approach.

Consider a collision of two identical atoms, each having
only two nondegenerate energy levels E; and E,. The
extended system containing two above atoms has three levels:
2F,, E| + E; and 2E,, one of these being doubly degenerate
(Fig. 2). Clearly, owing to the conservation of energy at
collision, the quantum amplitudes are zero for all the
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Figure 2.

transitions except |1,2) < |2,1). The nonzero amplitudes
can, with no loss of generality, be expressed with the help of
a unitary matrix

(1,21U11,2) (1,2|U]2,1) a b 7
2,11U1,2) (2,1|U]2,1) )] \ =b a
and the identity (to within an unimportant phase) transfor-
mation for the nondegenerate singlet states

(1L,1U1,1) = (2,2|U]2,2) = 1. (8)

To be fully rigorous and general, we should, at this stage,
take a unitary matrix of the basis representation of the
complex-element group SU(2) to represent the right-hand
side of (7). A more elaborate analysis shows, however, that
again due to the irrelevance of quantum state phases, a and b
can be chosen to be purely real as well as obeying the
condition @*> + b*> = 1. Thus, in the present model a single
parameter b is sufficient to describe the full extent of the
transformation the wave functions undergo in a collision act.

We next calculate the relaxation rate of the off-diagonal
density matrix element (1]p|2). According to (5) and (6), this
requires that we find the kinetic coefficient (17 2|1, 2):

(1,21,2) = (1, 1{U]1, 1)e1 (2, 1{U (2, 1)
+ <1,2|U\1,2>02<2,2|U+|2,2>
=a(or +02) = (1 —b*)'2. 9)
In accord with the above discussion, the state <,u|o*|v> of
the external atom (a flow representative) is taken to be

diagonal in the energy representation with the Gibbs eigen-
values

1 E
o‘lz—zexp<—%>, o1+oy=1, (10)
where O is the gas temperature.
Substituting (9) into (5) yields
d _
E<1\p\2>:7(17a)1 H1p|2). (11)

It is readily verified that all the other elements (1,2|p,¢) in
the relaxation equation for (1|p|2) are zero.

Let us find the relaxation coefficients for the diagonal
elements (1]p[1) and (2|p|2). We write

(1,111,1) = (1, 1|U|1, 1Yo {1, 1{U |1, 1)

+(1,2|U|1,2)0>(1,2|U"(1,2) = a1 + d’0> . (12)

Calculations go through exactly as before to give

(1,12,2) = b%0y , (13)
(2,2/1,1) = Pos, (14)
(2,22,2) = @’cy + 05 (15)

As customary, it is convenient to introduce the difference
between the relative populations, r= (1|p[1) — (2|p|2).
Then, substituting the model results (12)—(15) into (5) we
arrive at

d "
?,t: —bt(r—rp), (16)
where ry = o1 — o5 is the equilibrium difference.

Comparing (11) and (16) with the conventional form of
the relaxation equations [1] makes it possible to write down
the longitudinal and transverse relaxation times for our

model:

T

T

Of particular interest is the limiting case |h| < 1. Setting
(1= b*)"? ~ 1 — b?/2 (which corresponds to the first-order
perturbation theory) it is found that for ‘weak’ collisions our
model yields 7> = 2T7. The physical meaning of this result is
quite transparent: the ‘longitudinal’ coefficient characterizes
the energy relaxation of the system, whereas the attenuation
of the off-diagonal elements describes relaxation of the
polarization amplitude (see, e.g., [19], p. 111). Notice that
this is exactly the energy-to-polarization relaxation rate ratio
typical of a classical system of weakly viscous charged
particles.

Despite its extreme simplicity, the model under discussion
enables some practically-interesting conclusions to be made.
According to familiar gas-kinetic rules, as the temperature &
increases, the free-running time 7 decreases as @ ~'/2. There-
fore if, for a fixed gas density (a hermetic vessel containing an
atomic vapor), a temperature increase is found to cause a
faster decrease in the characteristic relaxation time (as very
accurately measured from spectral line broadening [20]), then
the only possible explanation is a change in the parameter b,
which is evidence of an enhanced wave function transforma-
tion occurring at collisions. This, in turn, yields useful
information on subtleties of the collisional processes in-
volved.

Finally, if the ratio T,/T) is found to differ from 2, this
means that either we have entered the ‘strong’ collision regime
or, alternatively, the two-level approximation is inapplicable
to the particular spectroscopic object at hand.

4. Relaxation in a thermal field

In a second model we wish to consider, an elementary
relaxation act of a (two-level) system presents its interaction
with a thermal oscillator. This example corresponds to atomic
collisions with thermal collective excitations (phonon field) in
a solid and also to relaxation via interaction with equilibrium
radiation [21].

Thus, we again consider a two-level object with energies
E, and E,, and analyze, this time, its interaction with a
quantum oscillator of the frequency w = E, — E; (in our
system of units =1 and frequency has the dimension of
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energy). In the usual way, we introduce the oscillator
Hamiltonian H; and its eigenvectors |v), i.e

oD o>+ o

where a is the photon annihilation operator. Let us next write
down the matrix of the dipole interaction between the object
and the oscillator. In the energy representation only the
elements

(Lv|Hin2,v = 1) =93/

(18)

(19)

and their complex conjugates are nonzero. Here the values
n = 1,2 correspond to energies E;, E, of the object, and the
constant y is determined by the off-diagonal element of the
dipole moment.

The dipole interaction between a two-level system and a
quantum oscillator lends itself to an exact solution [22]. The
nonzero elements of the unitary evolution matrix are

( (Lv|UlL,y)  (1,v|UJ2,v — 1>>
(

20U, v+1) (2,v|U[2,v)

B cos(ay/v) isin(o/v) 0
a (isin(oc\/erl) cos(oc\/v+1))’ 20

where o = yt.. As before, it is assumed that a flow representa-
tive (in this case, an oscillator) is in a Gibbs state

(ulolv) = 0vdy = [1 — exp(=B)] exp(—pv)d, (1)

where f = w/6.
Evaluating the ‘transverse’ relaxation coefficient we find

= Z(l u U1, v)e,(2,9| U2, 1)

v

(1,2]1,2) =

o0

Z , cos(ay/v) cos(av/v + 1),

v=0

(22)

which in conventional small-perturbation approximation
o+/v < 1 becomes

(1,2\1,2)217052(\7+%>, (23)
where
V= Zva‘, = [exp(B 1]71 . (24)

The small perturbation condition can be fulfilled for all v
values of interest if the temperature @ is not too high, namely

o?/B < 1.
Substitution of (23) into (5) now gives

2,-1 (V +%> (1]p|2) .

Thus we find that the relaxation rate of an off-diagonal
element for the object density matrix is proportional to the
mean energy of the thermal oscillator (as defined including
the vacuum fluctuations).

o) = (25)

In this approximation the ‘longitudinal’ coefficients can
be expressed as

(L,11,1) =1 —o*v, (26)
(1,1]2,2) = (27)
(2,2]1,1) = (28)
(2,22,2) = v+ 1). (29)
We again introduce the difference r = (1|p|1) — (2|p|2), for
which, using the basis equation (5), we obtain
d
e 2 24 D —1y) (30)
dt
where
1 p
To 2v+1—tanh§. (31)

Comparing (30) and (25) we see that this model also yields
T, = 2T, for the extreme case of weak relaxational perturba-
tions.

The numerical values of 7> and T} for atomic relaxation in
an equlhbrlum radiation field are obtained by setting a?t~! =
20 [(1]d|2) | /3c3, where (1|d|2) is the dipole-moment matrix
element. The justification of this statement can be obtained in
a variety of ways (see, for example, [23]) and is not considered
here.

5. Entropy increase

Study of simple models helps to shed a new light on the age-
old problem of statistical physics, heat flow from a hot to a
cold body. For this purpose, let us consider once again a
single act of interaction between a two-level atom and a
thermal oscillator. Although the essence of the matter can,
needless to say, be understood with other models — by
considering interatomic collisions, for example — it is
preferable to model the interaction of subsystems of different
physical nature when a question of such generality is
discussed.

Thus, let the statistically independent, initial mixed states
of the atom and the oscillator are described by Gibbs density
operators with different temperatures @, and @;:

<n|p|m> = [1 + eXp(_ﬁs)]_l exp(—%’i) Onm (32)
<V|‘7‘//‘> = [l - eXp(_ﬁt)] exp(—fv)op » (33)

where again n=1,2; E, — E; = w; f; = 0/0O, . Without
any loss of generality, here and in what follows we set E; = 0.

We next apply the transformation (20) to these states and
evaluate the energy transfer in the interaction act within the
approximation o® < 1, to obtain

Hl> = Z EnApn

n=12

<tanh by coth % — 1) .

A(H,) = —

l\)\'—‘
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Likewise, the entropy changes are found to be

AS, = A(— > b, lnpn> =S/ -8

_ oczﬁs{ lexp(B,) — 1] tanh % — [exp(By) + 1]71}7
(35)

AS, = A(— > ayln m) =5/ -5

= fxzﬂt{ lexp(B) +1] " = [exp(B) — 1] tanh %}
(36)

with AS = ASs + AS;. Notice that the sum of the resulting
subsystem entropies, S; + .S/, is no longer equal to the
quantum entropy of the complete system, which entropy
does not change due to the system being closed. The
subsystems simply lose their statistical independence when
interacting.

Comparing (35) and (36) with (34) we write

s (g - L)

(37)
It is of fundamental importance that AS is always negative.
This is precisely the reason why a spontaneous energy transfer
is invariably directed toward the colder object, no matter
what the nature of the interacting bodies.

The inequality AS > 0 is readily verified in our model
also, but it has a much more general importance. It is proved
perfectly rigorously for subsystems of any physical nature and
in any initial states, provided only that they are statistically
independent prior to the interaction. A similar fundamental
inequality for entropies of classical distribution functions has
been proved by Shannon in his pioneering work on the theory
of information [24]. A proper extension to quantum entropies
is obtained by application of recently famous O Klein’s
lemma (see [9, 25]). It is now unambigously clear that the
inequality AS >0 as obtained above is just the logical
equivalent of the second law of thermodynamics in rigorous
quantum theory.

A fairly high level of universality also turns out to be
exhibited by expression (37). Consider a physical object which
possesses an arbitrary energy spectrum E, (it does not matter
if some of these energies are identical) and interacts with its
environment. It is readily shown that if [Hi, Hs + Hy] =0
then the interaction does not violate the initial stationarity
property [p, Hs] = [0, H] = 0 of the subsystem states. If the
initial mixed state of the object is a Gibbsian one at a
temperature of @ and if the density-matrix eigenvalue
changes Ap, due to interaction with the environment are
small, we may write

ASS = Z(Apn) In Pn = @71 ZE”API‘I :
n

n

(38)

Itis perfectly obvious that, up to notation, this is equivalent to
the differential definition of entropy as used in thermody-
namics [26]. From this, making use of the inequality AS > 0
and the energy conservation law, the whole of the theory of
quasiequilibrium processes can be constructed in a purely
axiomatic way.

Thus, we cannot perceive seriously publications, appear-
ing sometimes even in our days, which question the statistical
justifications of thermodynamics.

6. Conclusions

Hopefully we have demonstrated convincingly enough the
efficiency of the quantum theory of open systems as a tool for
describing irreversible relaxation processes. Further work
along these lines can only be concerned with improving
physical models and overcoming mathematical difficulties
which will inevitably arise. There exists, however, a great
weakness in the above logical scheme which certainly is worth
discussing, if only in brief.

The weakness in question is the ‘coarse-grain’ averaging
we used in modelling relaxation process. Let alone the gross
simplification caused by the neglect of the natural dissim-
ilarity of individual interaction acts, a consistent quantum
theory should hardly at all involve collisions lasting a definite
period of time. In fact, if Hi, is introduced more properly into
the Hamiltonian then, with the energy representation so
improved, it will no longer be possible to treat the molecule-
flow interaction as a sequence of any kind of individual acts.

It appears that the reason runs deep and the problem
cannot be resolved by any formal treatment. The point is that
in developing a consistent quantum-mechanical approach we
are still unable to get rid of the classical time #, along whose
metaphysical axis we locate the quantum processes being
considered. A more reasonable approach would be to treat
time as a certain internal parameter for a set of specifically
quantum events, but at present this is beyond our reach. We
will restrict ourselves to the following preliminary remarks in
this connection.

It is conceivable that rather than the variable ¢ labelling
unitary rotations, in a more mature theory the transforma-
tions themselves, or more precisely the hierarchy of the
extensions of the groups for which these transformations are
representations, will play a primary part. The parameteriza-
tion of time in this hierarchy on the basis of the unitary space
metric is a cardinal problem, and some approaches can
already be suggested.

Itis not within the scope, and inconsistent with the aim, of
the present paper to discuss the above ideas in any detail.
Besides, being as they are too exotic for the modern scientific
mind, there is a danger that discussing them will prevent the
reader from grasping the bulk material of the paper. It is our
firm believe, however, that sooner or later such a discussion
will be not undesirable and indeed necessary.
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