
Abstract. The review deals with the macroscopic approach to
the s ± f exchange interaction of electrons in ordered and dis-
ordered magnets. Attention is focused on the exchange amplifi-
cation of spin waves in a crystal with antiferromagnetic order
under electron drift. Various accompanying effects as well as
the radioelectric effect due to s ± f exchange and magnetoplas-
ma phenomena, are treated. A microscopic theory is con-
structed to explain the amplification of spin waves in a
quantizing magnetic field.

1. Introduction

Many of the properties of condensed systems can be
described just in terms of a general phenomenological
model of the condensed state. The basic objective of the
review is to present in a systematic manner the most
important consequences resulting from a synthesis of the
two phenomenological models used in solid state physics,
viz., the model of mobile electrons as a solid state plasma and
that of the phenomenological magnetic medium, coupled by
strong exchange interaction. The solid state plasma model
allows the description of electrodynamic, magnetohydrody-
namic and magneto-optical phenomena related to a contin-
uous medium of mobile charge carriers in metals and
semiconductors [1 ë 3]. In the phenomenological model a
wide range of phenomena arising due to the high-frequency
and resonance properties of magnetic dielectrics is explained
on the basis of the symmetry properties and certain other
general concepts concerning the magnetic state [4 ë 6].

From the phenomenological viewpoint, the model which
describes the properties of a magnet having current carriers
(for instance, ferromagnetic and antiferromagnetic metals
and semiconductors) is represented by the localised magnetic
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moments of small magnets embedded in a medium of mobile
current carriers. The fundamental difficulty in this model is
the lack of a macroscopic analogue of exchange interaction
between current carriers and localised moments in these
media. One possible way of describing the physical properties
of magnetic semiconductors and metals is the microscopic
approach employing the s ± f exchange model [7, 8]. For
certain basic reasons many important properties are not
considered in this model. For instance, in the framework of
microscopic approach even such a simple task as the
description of the interaction between magnetisation oscilla-
tions and the electron conductivity encounters serious
obstacles. Indeed, scattering of spin waves by current
carriers whose interactions are described by the microscopic
s ± f exchange Hamiltonian can be evaluated in the micro-
scopic approach only if the electron gas is regarded as a
collisionless plasma. However, in a majority of real magne-
tically ordered crystals, the carrier mobility is as a rule rather
low, i.e., the free path length is very small. In such a situation
the collisionless limit is inapplicable to an overwhelming
number of spin waves and the interaction between spin
waves and current carriers is a phenomenon of collective
nature. Consequently, interpretation of the interaction of a
wave with current carriers as with a continuous medium (i.e.,
phenomenologically) requires the use of macroscopic
description of s ± f exchange.

These problems are given a consistent treatment in
Section 2. We define the generalised magnetic susceptibility
of a conducting isotropic antiferromagnet on the basis of
macroscopic hydrodynamic approach, asymptotically exact
in the limit kl5 1 (where k is the wave vector of the spin wave
and l is the electron free path). The use of the macroscopic
description for the s ± f exchange interaction in calculating the
magnetic susceptibility is necessitated by the introduction of
an effective field due to the s ± f exchange, in addition to the
effective field inherent in a crystal in the absence of current
carriers, into the Landau ±Lifshits equation for magnetisa-
tion. In such a formulation the approach developed in this
section may serve as a basis for explaining the processes in
which the classical description of the s ± f exchange interac-
tion is unavoidable. The results derived are equally applicable
to a wide range of phenomena in antiferromagnetic semi-
metals, degenerate and nondegenerate magnetic semiconduc-
tors whose properties are largely determined by the s ± f
exchange interaction.

In Section 3 we shall apply our results to one of still
unresolved problems Ð the amplification of spin waves.
Although the amplification of spin waves by a fast moving
stream of charged particles was predicted about thirty years
ago [9], nonetheless the problem is even today defying
practical realisation.

The central result of that section, an outcome of the
unification of two models, is that in ferromagnetic semicon-
ductors, on which all efforts were concentrated in an attempt
to realise spin wave amplification by electron drift, the
amplification coefficient due to s ± f exchange interaction
vanishes identically. Nonzero contribution in this case may
come only from the relativistic interaction of an electron
beam with magnetisation. Unlike in a ferromagnet, in an
antiferromagnet major contribution to spin wave amplifica-
tion coefficient is made by the s ± f exchange interaction. This
distinction is evident even from very general considerations
pertaining to the law of conservation of total magnetic
moment. The s ± f exchange interaction, by its nature, is

electrostatic; in other words, it is an interaction which
preserves the magnetic moment of a crystal. Consequently,
Cherenkov's radiation from a fast electron moving in a
ferromagnet is forbidden by the law of conservation. But in
an antiferromagnet the total number of magnons is not an
integral of motion because the magnet has two sublattices.
Consequently, if the Cherenkov condition is satisfied, an
electron moving in an antiferromagnet becomes a source for
magnon emission [10].

Using the general dispersion equation describing the
propagation of a spin wave in the presence of electron
drift that is derived from the expression for the generalised
susceptibility, in Sections 3.2 ± 3.4 we shall evaluate the
coefficient of spin wave amplification by electron drift in
an isotropic antiferromagnet for various configurations of
electric and magnetic fields. When there is no drift, these
results determine the contribution of s ± f exchange to spin
wave attenuation, the width of nonuniform antiferromag-
netic resonance, the threshold of parametric excitation of
spin waves, specific features of the exchange mechanism for
magnon relaxation in a superconducting antiferromagnet
and other allied effects stimulated by s ± f exchange. In this
section we shall also derive a dispersion equation for the
joint propagation of sound and spin waves coupled through
the conduction electrons in an antiferromagnet. Other
effects which owe their origin to such a coupling are also
discussed.

In Section 4 we shall study the amplification and
attenuation of spin waves in an anisotropic antiferro-
magnet. Most of the antiferromagnets are, as regards
magnetism, strongly anisotropic crystals. Depending on
the type of anisotropy and the orientation of the external
magnetic fields relative to the anisotropy axis, the magnon
frequency and the antiferromagnetic resonance frequency
vary. Accordingly, so do the conditions for the relaxation
and excitation of spin waves. As an example, an antiferro-
magnet with easy plane anisotropy is studied. The con-
tribution of s ± f exchange to relaxation of magnetic
moment in this case is found to be strongly anisotropic
with respect to the direction of the external magnetic field.
The spin wave amplification coefficient also exhibits a
corresponding anisotropy. These results may be used to
calculate different effects due to conduction electrons which
are regarded as collision plasma in a crystal with an
arbitrary anisotropy.

Section 5 deals with magnetoplasma phenomena in
antiferromagnetic semiconductors and metals. Several
important magnetoplasma phenomena do not yield to
interpretation in the framework of hydrodynamic descrip-
tion of electron liquid. For this purpose, in place of the
hydrodynamic description used in the previous sections, we
apply a more general approach based on kinetic equation.
In this approach the plasma subsystem is described fully in
terms of conductivity tensor (or dielectric permittivity
tensor) formalism; the results thus derived in the hydro-
dynamic limit kl5 1 pass into the results obtained in
Sections 2 ± 4.

The theory developed in Section 5 gives a regular method
for calculating various magnetoplasma effects under s ± f
exchange interaction between electrons and the magnetic
subsystem. Resonance effects in degenerate semiconductors
and semimetals are examined as an illustration. General
expressions are derived for the attenuation and amplification
of spin waves under cyclotron and geometric resonances.
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Conditions are found for the attenuation or amplification of
spin waves to be oscillating functions of the wave vector and
external magnetic field.

Section 6 is concerned with the generalisation of the
previous results for several types of current carriers. For a
particular case when a crystal has both conduction electrons
and holes (doped and proper semiconductors and semime-
tals), expressions are derived for the amplification and
attenuation of spin waves due to s ± f exchange. The results
are applied to study the case where there is totally no
polarisation of electron spin, i.e., the case of weak magnetic
fields. In the macroscopic description this corresponds to the
presence of two types of current carriers, viz., carriers with
spin oriented along and against the magnetic field direction.
Under these conditions the contribution of s ± f exchange to
the effects (discussed in the previous sections) is a linear
function of the magnetic field and vanishes when there is no
magnetic field.

Section 7 is devoted to s ± f exchange mechanism of the
amplification of spin waves in disordered magnets. For
various reasons this case is of special interest both from
theoretical and from practical points of view:

1) The conventional approach based on the solution of the
Landau ±Lifshits equations for the sublattices of a magneti-
cally ordered crystal is not applicable to this case.

2) Disordered state is typical of a vast majority of
conducting magnets having an extremely high carrier mobi-
lity.

In this section, amplification of spin waves in spin glasses
is examined as an example.

Section 8 studies the effect which is opposite to spin wave
amplification by a drifting electron stream, viz., the genera-
tion of a potential difference when a spinwave travels through
a specimen, entraining thereby the current carriers. An
essentially simplified condition for this effect to be observed
is that there should not be any need for creating drifting
carrier streams by means of an external electric field. Owing
to the high radioelectric effect induced by the s ± f exchange
interaction in antiferromagnets, this effect deserves special
study both from the viewpoint of practical use in VHF
electronics and as an efficient tool for detection of processes
related to electron ±magnon interaction in semiconductors
and semimetals.

Section 9Ð the concluding one Ð is devoted to quantum
mechanical interpretation of the amplification of spin waves
by Cherenkov electrons when kl4 1, a limit opposite to that
studied in the previous sections. This limiting case may hold
for the shortwave part in the magnon spectrum of crystals
having a high carrier mobility. For the case of an antiferro-
magnet with uniaxial anisotropy, expressions are derived for
the coefficient of spin wave amplification both in a quantizing
and in a nonquantizing magnetic field.

Figure 1 shows a schematic representation for various
types ofmagnetically ordered structures studied in the review.

2. Magnetic susceptibility

A wide range of phenomena occurring in conducting anti-
ferromagnets can be explained in terms of a simple two-
sublattice phenomenological model in which magnetic
moments of the sublattices are treated as classical vectors.
The general approach used below is based on the calculation
of generalised magnetic susceptibility which depends on the
wave frequency and wave vector.

2.1 Magnetic susceptibility of an antiferromagnet
in the absence of s ± f exchange
In what follows we need certain results concerning magnetic
susceptibility and spin wave spectrum in an isotropic anti-
ferromagnet that ensue from the phenomenological consid-
eration. In the macroscopic approach, the motions of
sublattice magnetisation M1 and M2 of an antiferromagnet
are described by the Landau ±Lifshits equations:

qM1

qt
� g�M1 �H1� ; qM2

qt
� g�M2 �H2� ; �1�

where g � 2m0=�h, m0 � e�h=2m0c is the Bohr magneton, H1

andH2 are the effective magnetic fields acting on the first and
second sublattice, respectively. Fields depend on the varia-
tions of the total energy functional F of the antiferromagnet
with respect to sublattice magnetisations:

H1 � ÿ dF
dM1

; H2 � ÿ dF
dM2

; �2�

where

F �
�
d0 M1 �M2 d

3r�
�
a12

qM1

qxi
� qM2

qxi
d3r

ÿ 1

2

�
H�m� � �M1 �M2� d3rÿ

�
H � �M1 �M2� d3r

� 1

2
a
��
qM1

qxi
� qM1

qxi
� qM2

qxi
� qM2

qxi

�
d3r �3�

is the total energy functional of infinite isotropic antiferro-
magnet. Here d0; a; and a12 are phenomenological constants,
H�m� is the magnetic field due to magnetisation of the
antiferromagnet and H is the external magnetic field. By
virtue of (2) and (3) the effective fields are

H1 � ÿd0�M1 �M2� � aH2M1 � a12H2M2 �H�H�m�;

H2 � ÿd0�M1 �M2� � aH2M2 � a12H2M1 �H�H�m�:�4�
Expanding H1 and H2 into series in small deviations of
magnetisationsm1,m2 and fields dH1; dH2 in the neighbour-

ba

c d

e f

Figure 1. Schematic representation of spin arrangement in certain mag-

nets: (a) ferromagnet; (b) antiferromagnet; (c) antiferromagnet in a

magnetic field, weak ferromagnet; (d) ferrimagnet; (e) amorphous ferro-

magnet; (f) spin glass.
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hood of equilibrium positions

H 0
1 � H 0

2 � ÿd0�M10 �M20� �H �5�
and replacing m�r; t� and H �m��r; t� by their Fourier compo-
nents, we get

m1�r; t� �
�

m1�k;o� exp
�
i�krÿ ot��d3k do ;

H�m��r; t� �
�

h�k;o� exp�i�krÿ ot�� d3kdo : �6�

Applying (4) ± (6), we obtain the Landau ±Lifshits equation
for the Fourier components of the deviations of the field and
magnetisation:

ÿ iom1 � g
�
M10 �

�
hÿ �d0 � ak2�m1 ÿ �d0 � a12k2�m2

��
;

ÿ iom2 � g
�
M20 �

�
hÿ �d0 � ak2�m2 ÿ �d0 � a12k2�m1

��
:

�7�
Solving the system (7) and introducing the magnetic

susceptibility tensor for an antiferromagnet

m�k;o� �m1�k;o� �m2�k;o� � ŵ�k;o�h�k;o� ; �8�

we obtain:

ŵ �
wxx wxy 0

wyx wyy 0

0 0 wzz

0BB@
1CCA ; �9�

where

wxx �
2a�A� B�
o2� ÿ o2

; wyy �
2a�A� B� � 2d�CÿD�

o2� ÿ o2
;

wzz �
2d�CÿD�
o2ÿ ÿ o2

; wxy � ÿ
2iao

o2� ÿ o2
;

wyz � 0 ; wzx � 0 ; wyx � ÿwxy ;
o2
� � �A� B�2 � C 2 ÿD2 ; �10�

A � ÿg�d0 � ak2�M0
H

Hc
; B � ÿg�d0 � a12k2�M0

H

Hc
;

C � ÿgM0�d0 � ak2�
���������������
1ÿH 2

H 2
c

s
;

D � ÿgM0�d0 � a12k2�
���������������
1ÿH 2

H 2
c

s
;

a � ÿgM0
H

Hc
; d � ÿgM0

���������������
1ÿH 2

H 2
c

s
: �11�

Here Hc � 2d0M0 stands for the sublattice collapse field of
antiferromagnet.

In the longwave limit (k! 0) expression (10) takes the
form:

wxx �
o2
�

o2� ÿ o2
w0 ; wyy �

o2
� � o2

ÿ
o2� ÿ o2

w0 ;

wzz �
o2
ÿ

o2ÿ ÿ o2
w0 ; wxy � ÿ

ioo�
o2� ÿ o2

w0 ; �12�

o2
� � �gH�2 ; w0 �

1

d0
;

o2
ÿ � 2�gM0�2d0�aÿ a12�k2

�
1ÿH 2

H 2
c

�
:

The spin wave spectrum is determined from the dispersion
equation [4]:

k2 � 4pki kj wij�k;o� � 0 ; �13�

and as w0 is small, the spectrum also depends on the poles of
the tensor ŵ. Thus, the frequencies o� and oÿ define two
branches (o� is the optical branch and oÿ is the acoustic
branch) of the excitations of antiferromagnet.

2.2 Landau ±Lifshits equation for an antiferromagnet
in the presence of s ± f exchange
Regarding the spin of amagnetic atomas a classical vector, let
us express the Hamiltonian of exchange interaction of
conduction electrons with the magnetic subsystem of anti-
ferromagnet as follows:

Hint � ÿA

2
�S1 � S2� � lz ; �14�

whereS1 andS2 are the spin ofmagnetic atoms in the first and
second sublattices, respectively,A is the s ± f exchange integral
and lz is a unit vector along the z-axis. Therefore the total
energy functional ~F, in the presence of conduction electrons
in an antiferromagnet, assumes the form:

~F � Fÿ A

2

�
�Sz

1 � Sz
2 �n�r� d3r ; �15�

where n�r� is the electron concentration in the conduction
band. Here it is assumed that all electron spins are polarised.
For this it is necessary that

1

2
A�Sz

1 � Sz
2 � > e ;

where e � eF is the Fermi energy of a degenerate electron gas
and e � kBT is that of a nondegenerate electron gas (kB is the
Boltzmann constant). By virtue of the relation between
sublattice magnetisation and magnetic atom spin:
M1 � �2m0=a3�S1 (where a is the lattice constant), we obtain
the effective magnetic fields:

~H1 � H1 �H1; sÿf ; H1; sÿf � A

4m0
a3n�r�lz : �16�

Hence, in the presence of s ± f exchange, the Landau ±Lifshits
equations take the form:

qM1

qt
� g
ÿ
M1 �H1

�� g
ÿ
M1 � Asn�r�lz

�
;

qM2

qt
� g
ÿ
M2 �H2

�� g
ÿ
M2 � Asn�r�lz

�
;

As � A

4m0
a3 : �17�

Expressions (16) and (17) demonstrate that the s ± f
exchange contribution can be regarded as an additional
magnetic field with H replaced by H� Asn�r; t�lz in Eqns
(1). Linearising the additional terms in (17) near the
equilibrium values of magnetisation and concentration, we
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obtain

g
�
M1 � Asn�r�lz

� � g
�
M10 � Asn0lz

�
� g
�
M 0

1 � Asn1lz
�� g

�
m1 � Asn0lz

�
: �18�

From (17) and (18) it follows that the first term on the right-
hand side of (18) contributes into the equilibrium magnetic
field:

~H 0
1 � ÿd0�M2 �M1� �H 0

1 � gAsn0lz : �19�
Owing to the last term on the right-hand side of (18), the
magnon frequencies o� and the magnetic field H suffer
renormalisation and H is to be substituted for H� gAsn0lz
in (10) and (12). Hence, in particular, it follows that if
conduction electrons are present in an isotropic antiferro-
magnet, weak ferromagnetism arises for any arbitrarily low
carrier concentration. Another important conclusion follows
from the type of the renormalised magnon frequencies o�
(12) which contain the renormalised field. Expressions (17)
and (18) show that o� > 0 for any current carrier concentra-
tion right up to the critical value ncr � Hc=gAs at which the
sublattices of the antiferromagnet collapse if there is no
external magnetic field. Thus, the uniform state of magnetisa-
tion and carrier concentration proves to be stable to longwave
fluctuations. At subcritical concentrations n1 < ncr a nonuni-
form equilibrium distribution may in general arise in an
antiferromagnet in a sufficiently weak external magnetic
field H5Hc [8]. Such nonuniform states are always sepa-
rated, as noticed in Ref. [11], from the uniform states by a
potential barrier due to the short-range nature of the s ± f
exchange interaction. As a result, a uniform state can be
unstable only to shortwave fluctuations. But the initial model
(15) used in Ref. [8] to analyze this situation is no longer
adequate. Hence, in what follows, we only study equilibrium
distributions of magnetisations and current carriers over the
whole range of variation of the magnetic field.

By virtue of these remarks, it is sufficient to retain only the
second term on the right-hand side of the linearised Landau ±
Lifshits equation (18), after renormalising the frequency and
field appropriately. We find that the second term in (18),

g
�
M10 � Asn1�r; t�lz

�
; �20�

vanishes identically for a ferromagnet because
M 0

1 �M0 k lz, but for an antiferromagnet it vanishes only if
H5Hc. In Section 3 we shall show that at zero lattice
temperature this is a consequence of the law of the total
magnon number conservation under ferromagnetic ordering.

Expanding the deviation of the carrier concentration
n1�r; t� from its equilibrium value in the Fourier series

n1�r; t� �
X

n 0�k;o� exp�i�krÿ ot�� ; �21�

we obtain, instead of (17), a system of equations for the
Fourier components of the field and carrier concentration:

ÿ iom1 � g
�
M10 �

�
h� Asn

0lz ÿ �d0 � ak2�m1

ÿ �d0 � a12k2�m2

��
;

ÿ iom2 � g
�
M20 �

�
h� Asn

0lz ÿ �d0 � ak2�m2

ÿ �d0 � a12k2�m1

��
; �22�

with due regard for the remarks made above.

2.3 Hydrodynamic theory of magnetic susceptibility
in the presence of s ± f exchange
In the macroscopic model of s ± f exchange interaction of
conduction electrons with spin waves, we assume that a force,

ÿ q
qz

Hint ;

acts on an electron when a spin wave propagates in the crystal
along the z-axis, where Hint is the Hamiltonian of s ± f
exchange interaction. This force can be regarded as an
external one (or an ems) and, according to (14), characterised
by the electric field strength:

Ez � ÿAs

e

�
qMz

1

qz
� qM

z
2

qz

�
; �23�

where e is the electron charge. Hence the electrostatic
induction D is

Dz � eEz � Ase
e

�
qSz

1

qz
� qS

z
2

qz

�
; �24�

where e is the dielectric permittivity of the crystal. To obtain a
closed system of equations we have to supplement (23) and
(24) with Maxwell's equations and equations of hydrody-
namics for electron liquid in a medium:

rotH �m� � 0 ; �25�
divH �m� � ÿ4pdiv�M1 �M2� ; �26�
divD � en1 ; �27�
dv

dt
� ÿ e

m

�
E� 1

c
v�B

�
ÿ nv� T

m

1

r
Hrr ; �28�

div j� qr
qt
� 0 ; �29�

where r � ÿen and j � ÿrv are the charge density and
current, respectively. Equations (25) and (26) describe the
magnetisation oscillations of a crystal in magnetostatic
approximation. If there are no conduction electrons, Eqns
(25) and (26), together with the Landau ±Lifshits equations,
yield the dispersion equation (13) for spin waves in magneto-
static approximation. Equation (28) gives the drift velocity of
electrons in amagnetic field with due regard for collisions (n is
the electron collision frequency) and for the contribution of
the intrinsic pressure tensor (the last term on the right-hand
side of (28)). The equation of continuity (29) is the closure of
the system consisting of Eqns (17), (24) and (25) ± (29).

Substituting the Fourier components (6) and (21) into
(25) ± (29), and using the expression

v�r; t� � v0 �
�

v 0�k;o� exp�i�krÿ ot��do d3k �30�

for the velocity (v0 is the carrier drift velocity), we find from
(29) the deviation of the equilibrium concentration

n 0�k;o� � v
0�k;o�n0k
oÿ kv0

: �31�

Let us consider the motion of electrons in the spin wave
propagation direction, paying attention to scattering and
diffusion. For a nonzero Fourier component of the field E 0z
Eqn (28) gives a relation between the components of E 0z and
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v 0�k;o�:

v 0z�k;o� � i
e

m

E 0z
L�o; k� ;

L�o; k� � kv0 ÿ oÿ in� Dnk2

oÿ kv0

� o2
c sin

2 y�ku0 ÿ oÿ in�
o2
c cos

2 yÿ �kv0 ÿ oÿ in�2 ; �32�

where y is the angle between the directions of the magnetic
field and electron drift velocity, D � kBT=mn is the electron
diffusion coefficient and oc � eH=mc is the cyclotron fre-
quency.

From the relation between D�k;o� and n 0�k;o�
ikD�k;o� � ÿen 0�k;o� ; �33�

which follows from (27), and the relation between D and
m1�k;o� and m2�k;o� (which follows from (24)), we get

D�k;o� � eE�k;o� � ik
As

e

�
m1�k;o� �m2�k;o�

�
: �34�

From (31) ± (34), we find that

n 0�k;o� � k2
�
m1�k;o� �m2�k;o�

�
Asn0�

noR � �oÿ kv0�L�o; k�
�
m

; �35�

where oR � e2n=emn is the dielectric relaxation frequency.
Substituting (35) into (22), we get a system whose solution

yields the magnetic susceptibility tensor ŵF which, in struc-
ture, coincides with the susceptibility (9) introduced for an
antiferromagnet in the absence of conduction electrons with
components wxx; wyy; wyx (10) and with wzz of the form:

wzz �
2d�CÿD�

o2ÿ ÿ o2 � 2F�CÿD� ; �36�

where

F � gM0

���������������
1ÿH 2

H 2
c

s
k2A2

sn0�
noR � �oÿ kv0�L�o; k�

�
m
: �37�

In the longwave limit k! 0, using the definition (37), we
can write the components of the generalised susceptibility
tensor as

wzz �
o2
ÿ

o2ÿ ÿ o2 � 2F�CÿD� w0 ;

2F�CÿD� � Fvsk
2

���������������
aÿ a12
2d0

r
; �38�

where vs is the velocity of spin waves.
Formulas (36) and (38) completely determine the mag-

netic susceptibility tensor of an antiferromagnet in the
presence of electron drift. If k � 0, i.e., if there is no spatial
distribution, Eqn (38) shows that the magnetic susceptibility
is of the same type as in the absence of current carriers, the
only difference being that (36) and (38) contain renormalised
frequencies and field (Section 2.2). This conclusion is general
and does not depend on the model chosen (in our case, an
isotropic antiferromagnet).

2.4 Susceptibility tensor vF(k;x): its properties and
applications
The susceptibility tensor ŵF�k;o� is one the fundamental
quantities which determine the properties of a medium. Its
components ŵF�k;o� given by (36) and (38) satisfy the
Kramers ±Kronig relations and are particularly useful in
determining the contribution of the current carriers to
attenuation, static susceptibility and certain other quantities
important from practical viewpoint. The knowledge of the
susceptibility tensor ŵF�k;o� gives full information about the
spectral distribution of magnetic moment density fluctua-
tions [4] which is useful in finding the contribution of current
carriers to the temperature dependence of equilibrium mag-
netisation. The magnetic moment correlation functions
determine the cross-section ds of neutron scattering. As in
the case of neutron scattering, a knowledge of magnetic
moment correlators is sufficient for uniquely determining
the scattering of light by magnetisation oscillations in an
antiferromagnet. In all cases Eqns (36) and (38) give the
contribution of current carriers to the effects discussed above.

The expressions of generalised susceptibility (36) and (38)
can be used to describe a variety of media, e.g., antiferromag-
netic metals, degenerate and nondegenerate magnetic semi-
conductors in which s ± f exchange interaction cannot be
disregarded. Indeed, Eqns (36) and (38) govern the electro-
dynamics of suchmedia when dispersion plays a decisive part.
The dispersion equation

det

����o2

c2
eil mFlj ÿ k2dij � kikj

���� � 0 �39�

gives all possible branches of electromagnetic waves in these
media: dielectric permittivity ê and magnetic permeability m̂
are the only parameters that are contained in (39). We shall
apply these results in the next section to study the influence of
electron drift on the spin wave spectrum.

3. s ± f exchange amplification of spin waves
in magnetically ordered crystals

3.1 Amplification of spin waves in antiferromagnets
and ferromagnets: qualitative differences
Amplification of spin waves in magnetically ordered crystals
by a stream of drifting electrons has since long been attracting
the attention of researchers. The ability of electronsmoving at
a velocity greater than the phase velocity of spin waves to
amplify spin waves was first noticed in Ref. [9]. That in a
ferromagnetic semiconductor spin waves could be amplified
by conduction electrons was theoretically studied inRefs [12 ±
18]. Though attempts made to detect amplification in
laboratory do not unambiguously demonstrate the existence
of amplification, they give enough grounds for believing that
it could be implemented in practice. Thus, attenuation of
VHF signals in the ferromagnet CdCr2Se4 was found to be
moderated under the action of current carrier drift in a strong
electric field [19]. Subsequently, efforts were made to amplify
magnetostatic waves in ferrite-semiconductor sandwich sys-
tems: electric field was also found to reduce the attenuation
effect [20 ± 22]. However, to date there is no reliable experi-
mental evidence to confirm the existence of spin wave
amplification by current carrier.

The basic difficulty in creating conditions favourable for
the observation of amplification in ferromagnets is that in
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these crystals magnons are mainly generated through relati-
vistic interaction of current carriers with the magnetic
moment of the crystal:

H � ÿ e

mc
A�r� � P̂ ; �40�

where A�r� is the vector potential due to magnetisation
oscillators, P̂ and m are the momentum and effective mass
of the carrier, respectively. As a result, in order to observe
perceptible amplification we require a beam of electrons
moving with velocities comparable to the velocity of light [4]
(as a rule, only the electrons moving in vacuum over the
surface of a ferromagnetic metal are considered). The
essential limitation on the magnitude of spin wave amplifica-
tion coefficient (disregarding for a moment the technical
difficulties) is the constraint on the density of electrons in
the beam. Even a concentration n � 1010 cmÿ3 is rather
difficult to attain in laboratory. So, an idea was advanced in
Refs [12 ±14] to amplify spin waves in a ferromagnetic
semiconductor with the help of conduction electrons. It was
believed that it would be possible to enhance greatly the
concentration of current carriers responsible for amplifica-
tion. Unfortunately, the trouble is that it is impossible to
create an electron stream drifting with a sufficiently high
velocity (even a velocity three to four orders less than the
velocity of light is rather difficult to attain in laboratory).
Consequently, in this case, too, the coefficient of amplifica-
tion of spin waves in a ferromagnetic semiconductor is small
(practical attempt at amplification was made in Ref. [19]).

Microscopic approach to the problem has revealed, as
demonstrated first in Ref. [10], that spin waves are generated
by conduction electrons rather differently in antiferromag-
nets than in ferromagnets. According to Ref. [10], in anti-
ferromagnets amplification is effected not through relativistic
interaction (40), but essentially via strong exchange interac-
tion of conduction electrons with the spins of magnetic
sublattices. This gives an amplification coefficient larger by
several orders of magnitude than in the case of relativistic
mechanism and, consequently, provides a way for the
practical realisation of amplification in antiferromagnetic
crystals. This qualitative distinction of antiferromagnets
from ferromagnets can be interpreted on the following
considerations. Both in antiferromagnets and in ferromagnets
the interaction of current carriers with the spin of magnetic
atoms is described by the Hamiltonian of the s ± f exchange:

H � ÿAsM
z
r s

z
r ; �41�

where As is the s ± f exchange constant (17), Mz
r is the

magnetisation of the crystal and szr is the electron spin.
While in an antiferromagnet a spin density wave may be
generated without any change in the total momentum of the
system (Fig. 2), in a ferromagnet the presence of this wave is
necessarily related to the violation of the total momentum of
the system. Since the interaction (41) conserves the total
momentum, such a process is forbidden in a ferromagnet.{

In antiferromagnet, for the electron with spin sz directed
along the axis the part of wave �a; b� in Fig. 2 is attractive
because it corresponds to the electron energy gain (41). At the
same time the part �b; c� is repulsive. In essence, the
considered situation in antiferromagnet is analogous to the
case of interaction between conductivity electrons and elastic
waves: the role of deformation potential in antiferromagnet
plays the s ± f exchange constant A and the role of elastic
deformation plays the deviation ofmagneticmomentMz

r [26].
Spin wave amplification in this case occurs if condition v > vs
is fulfilled.

3.2 Amplification of spin waves in a longitudinal field
We shall apply the results of Section 2 to calculate the
coefficient of spin wave amplification by electron drift.
Substituting (36) into (13), we obtain a dispersion equation
for the oscillations of magnetisation of an antiferromagnet in
the presence of s ± f exchange:

�o2
� ÿ o2���o2

ÿ ÿ o2� � 2F�CÿD�� � 0 : �42�

This expression shows that the influence of s ± f exchange on
the optical branch consists only in frequency renormalisation
(Section 2.2) and that s ± f exchange does not contribute to
attenuation. It is easy to understand the physical reason for
this conclusion. In an isotropic antiferromagnet the o�
branch corresponds to coherent rotation of sublattice magne-
tisation vectors (without any change in the angle between
sublattice magnetisation). The total magnetisation in such a
case exhibits circular oscillations in a plane perpendicular to
the z-axis (see Fig. 2), i.e., the projection Mz remains
unchanged in magnitude and the electric field Ez, according
to (23), vanishes. Therefore, oscillations of this type do not
affect the motion of current carriers. On the contrary,
sublattice magnetisation oscillations for the oÿ branch are
in antiphase (with a change in the angle between magnetisa-
tion directions) so that the total magnetisation periodically
varies along the z-axis, exerting thereby influence on the
motion of current carriers (see Fig. 2).

Nowwe consider a case when themagnetic field is directed
along the current carrier drift direction. Using the expressions
for C and D in (11) and for F in (37), we obtain from (42) in
longwave approximation a dispersion equation for an anti-
ferromagnet containing drifting electrons:

�o2 ÿ v2sk2�
�
noR � �oÿ kv0��kv0 ÿ oÿ in� �Dnk2

�
� ÿ ~Ak4vsn ; �43�

{ In Refs [23, 24] the s ± f exchange has been found to make nonzero

contribution to spin wave amplification coefficient in ferromagnets. The

reason is in discarding the terms of second order in magnon operators of

the s ± f exchange Hamiltonian that totally cancel the contribution to

amplification from the terms linear in magnon operators (at zero lattice

temperature). A consistent microscopic approach for antiferromagnets is

given in Section 9 of Ref. [25].

cba

v

vs

r�z�

Figure 2. Broken arrows show the deviations of spins of magnetic atoms in

an antiferromagnet such that the total variation of magnetic moment

DMr � 0. Shaded areas represent the electron clusters formed as a result of

grouping of current carriers.
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where

~A � gM0

���������������
1ÿH 2

H 2
c

s
oR

e
4e2

�
a3

2m0

�2

A2

���������������
aÿ a12
2d0

r
; �44�

vs � gM0

�����������������������������������������������
2d0�aÿ a12�

�
1ÿH 2

H 2
c

�s
; �45�

vs is the phase velocity of spin waves for the oÿ branch
introduced in correspondence with the expression for oÿ in
the longwave approximation (12).

Equation (43) holds asymptotically exact only in the limit
of frequent collisions n4o, oÿ kv0, i.e., only if the hydro-
dynamic description is valid in our approach. In this limit Eqn
(43) reduces to

�o2 ÿ k2v2s �
�
oR ÿ i�oÿ kv0 � iDk2�� � ÿ ~Ak4vs : �46�

Putting

kvs
o
� 1� ia ; �47�

from (46) and (47) we obtain the attenuation of spin waves:

Re a � ÿ 1
2

~Ago=v3s
�oR=o�2�1� o2=oRoD�2 � g2

; oD � v
2
s

D
;

�48�
where g � v0=vs ÿ 1 and oD is the diffusion frequency.
According to [4], we have����������������

aÿ a12
2d0

r
� a : �49�

Using (44), (49) and the relations g � 2m0=�h, M0 � 2m0S=a
3,

let us represent (48) as follows

Re a�o� � ÿ 4o3a3=v3s �v0=vs ÿ 1�QoR=o

�oR=o�2�1� o2=oRoD�2 � �v0=vs ÿ 1�2 ;

�50�

where

Q � 1

32

A2S

�ho
ea
e2

�������������������
1ÿH 2

H 2
c

:

s

Expressions (48) and (50) resemble the formulas for sound
amplification [2] and were derived for spin waves first in Refs
[26 ± 28].

If v0 < vs, Eqns (48) and (50) give the attenuation of spin
waves due to the interaction with conduction electrons via s ±
f exchange mechanism. In those cases where the s ± f mechan-
ism prevails over relaxation mechanisms (say, magnon ±
magnon or magnon ± phonon interaction) it determines such
parameters like antiferromagnetic resonance line width,
parametric spin wave excitation threshold, full width of
scattered neutron intensity and many others.

Formulas (48) and (50) show that for v05 vs spin waves
experience amplification instead of attenuation. For a fixed
drift velocity v0, amplification per unit length ao=vs steadily
increases with the wave frequency. For a fixed frequency, the
amplification coefficient is maximum when the drift velocity
is

vmax � vs
�
1� oR

o
� o
oD

�
: �51�

Figure 3 shows spin wave amplification as a function of
the drift velocity. From (50) and (51), we obtain themaximum
of the amplification coefficient:

amax�o� � Q
o3a3

v3s

�
1� o2

oRoD

�ÿ1
: �52�

The values of the frequencies oR and oD characteristic of
solids to be substituted in (52) are equal to 108ÿ1011 sÿ1 and
107ÿ1010 sÿ1, respectively. Substituting these values into (51),
we find that in real conditions vmax as a rule is far greater than
the spin wave phase velocity: vmax4 vs. This is the reasonwhy
the amplification cannot be easily realised at vmax in practice;
inmost of the antiferromagnets vs > 106 cm sÿ1. This obstacle
can however be overcome by applying a transverse magnetic
field (Section 3.3) in place of a longitudinal field.

Expressions (48) and (50) show in addition that at low
carrier concentrations the amplification coefficient a is
proportional to n0. So, for every frequency o, there is an
intermediate concentration n�o; v0� at which the amplifica-
tion coefficient a is maximum.

For A � 0:5 eV, S � 2, o � 1011 sÿ1, e � 20, a � 3�
10ÿ8 cm, and o2 � oRoD, Eqn (52) gives a � 0:1, in other
words, maximum amplification coefficient for an antiferro-
magnet is far greater than the characteristic magnitude of spin
wave attenuation for a magnetically ordered crystal
�Y � 10ÿ2ÿ10ÿ3�.

3.3 Amplification of spin waves in crossed fields
If there is a component of the magnetic fieldH perpendicular
to the electric field E, it is easier to create conditions for the
observation of spin wave amplification in antiferromagnets.
Under such conditions the magnetic field plays a dual role. If
there is no magnetic field or if the magnetic and electric fields
are parallel, the drift velocity of current carriers is wholly
determined by the carrier mobility and the electric field
strength: v � uE. As mentioned in the Introduction, in a
majority of antiferromagnets the carrier mobility is low
(u < 102 cm2 Vÿ1 sÿ1), so an electric field of sufficiently high
intensity (right up to its breakdown value) is needed to
produce the critical velocity (v > 106 cm sÿ1) at which
amplification is possible. On the other hand, in crossed
electric and magnetic fields the drift velocity, if oc=n4 1,
does not generally depend on the electron mobility and is
equal to

v � c
E�H

H 2
�53�

Re a

v1

vs

v2

Y

v

Figure 3. Spin wave amplification coefficient versus drift velocity of

conduction electrons. The Re a�v� plot passes through zero for v0 � vs
�Y � 0� and v0 � v1 �Y 6� 0�, where Y is the lattice absorption coefficient

for spin waves (Section 3.4).
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(depending on the effective electron mass, the value of oc for
H � 103 Oe is from 1010 to 1012 sÿ1).

Therefore, in semiconductors with a low mobility, a large
drift velocity can be obtained in a perpendicular magnetic
field, provided its intensity is high enough.

A nonquantizing field is studied on the same lines as the
previous case of longitudinal field. If the magnetic field is not
directed along E, in longwave approximation the dispersion
equation (42) takes the form:

�o2 ÿ v2sk2�
�
noR � �oÿ kv0�L�o; k�

� � ÿ ~Ak4vs : �54�

In the limit of frequent collisions, (32) yields

L�o; k� � ÿin� Dnk2

oÿ kv0
ÿ i

no2
c sin

2 y
o2
c cos

2 y� n2 : �55�

Substituting (55) into (54), we obtain the dispersion equation:

�o2 ÿ v2sk2�
�
n
�
oR

x

�
ÿ in�oÿ kv0� � nk2

�
D

x

��
� ÿk4vs

~A

x
; �56�

x �
�
1� o

2
c

n2

��
1� o

2
c cos

2 y
n2

�ÿ1
: �57�

In deriving the amplification coefficient with the help of (56),
we arrive at (50) containing, in place of oR and oD, the
frequencies o0R � oR=x and o0D � oDx, respectively. For a
parallel field, we have x � 1, i.e., the result obtained earlier in
Section 3.2. In a perpendicular field

x � 1� o
2
c

n2
: �58�

Thus, the other important part played by a transverse
magnetic field lies in reducing the maximum drift velocity
vmax (51) at which amplification is maximum.

3.4 Attenuation of spin waves: its effects
In the preceding sections we studied the amplification of spin
waves, disregarding the relaxation of spin waves. In the
macroscopic antiferromagnet model, allowance for relaxa-
tion can be made by adding terms describing attenuation to
the equation of motion of magnetisations (1):

ÿg l
M0

ÿ
Mj � �Mj �H�� ; �59�

where Mj is the magnetisation of the j-th sublattice of the
antiferromagnet. Expression (59) corresponds to the
Landau ± Lifshits absorption which phenomenologically
accounts for the scattering of spin waves by lattice vibrations,
defects, impurities etc. So, the Landau ±Lifshits equations, in
the presence of s ± f exchange and spin wave attenuation,
assume the form:

qMj

qt
� g�Mj �Hj� � g

ÿ
Mj � Asn�r�lz

�
ÿ g

l
M0

ÿ
Mj � �Mj �Hj�

�
: �60�

Linearising (60) and confining ourselves to the case
H=Hc5 1, from (60) we obtain, by virtue of the results

found in Section 2.3, the following expressions for the
components of the generalised susceptibility tensor in the
longwave approximation:

wxx � w0
o2
� � 2ioY

o2� ÿ o2 ÿ 2ioY
;

wyy � w0
o2
� � o2

ÿ
o2� ÿ o2 ÿ 2ioY

;

wzz � w0
o2
ÿ � 2ioY

o2ÿ ÿ o2 ÿ 2ioY� 2F�CÿD� ;

wxy �
ÿoo�

o2� ÿ o2 ÿ 2ioY
; �61�

wyx � ÿwxy ; wxz � wzx � 0 ; Y � glM0d0 : �62�

In the absence of s ± f exchange, Eqns (61) give the
attenuating branches of spin waves: o� ÿ iY. In the presence
of s ± f exchange, the high-frequency branch is always a
decaying one. Substituting (61) into (13), we obtain the
condition for the amplification of the low-frequency branch:

ÿRe a�o� > Y

o
; �63�

where a�o� is given by (48). By virtue of the definition (61),
inequality (63) takes the form:

ÿRe a�o� > gM0ld0
o

: �64�

The factor l is related to the width of the antiferromagnetic
resonance line as follows [5]:

Do � loE ; �65�

where oE is the frequency corresponding to the exchange
field. For instance, for an antiferromagnet withHE � 105 Oe,
DH � 10 Oe, the formula gives l � 10ÿ4. For d0 � 100 and a
frequency of gM0=o � 0:1 (i.e., for o � 1011 sÿ1), Eqn (64)
yields an amplification coefficient of jaj > 10ÿ3.

3.5 Electron heating: its effect
In the preceding sections we assumed that the electron and
lattice temperatures are the same. But in reality, even a
relatively low-strength electric field needed to induce the
drift would result in a strong heating of the current carriers.
Supposing that in an antiferromagnet electrons are scattered
basically bymagnons, we find that the electron temperature is
related to mobility as follows:

Te / uÿ2 : �66�

This temperature dependence Te�u� has a similar form for
electron scattering on acoustic phonons and magnons. From
(66) it follows that in a magnetic semiconductor with a low
mobility placed in an electric field of a strength usually used in
the laboratory, electron heatingmay be quite perceptible. The
actual electron temperature may exceed by one order or more
the lattice temperature.

If electron heating is taken into account, in (48) and (50)
we have to substitute oD�T� for oD�Te�:

oD�Te� � oD�T� T
Te

; �67�
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whereTe is the electron temperature. From (48), (50) and (67),
we find that electron heating results in a reduced amplifica-
tion coefficient; in the limit of strong heating we may take

a�Te� / Tÿ2e : �68�

Physically, electron heating diminishes the spin wave ampli-
fication coefficient exactly in the same way the electron drift
suppresses sound amplification. In our case, for electrons, the
spin density wave (see Fig. 2) is a periodic sequence of
potential wells such that the ratio of the potential well depth
to the electron energy decreases rapidly with increasing
electron energy due to heating. Consequently, lesser influence
is exerted on themotion of electrons. This fact has to be taken
into account in experimentally studying amplification, parti-
cularly, by using crystals with a sufficiently high electron
mobility and quite strong magnetic fields for suppressing the
dielectric heating effects.

3.6 Antiferromagnetic resonance in superconducting
antiferromagnets: specific features
Antiferromagnetism and superconductivity are typical of
many conducting antiferromagnets, say, of triborides
ReRh4B4 (where Re stands for Nd, Tm or Sm),
chalcogenides ReMo6S8 (Tb, Dy, Cd, or Nd,) [29] as
well as of high-temperature superconducting antiferro-
magnets YBa2Cu3O7ÿx and La2ÿySryCuO4.

Study of the antiferromagnetic resonance in these crystals
is a direct method for investigating the interaction of current
carriers with spin waves. Of special interest is the case when
conduction electrons make the major contribution to the
width of antiferromagnetic resonance line. Here, if TN > Tc

(i.e., transition into antiferromagnetic phase takes place at a
far higher temperature than that of transition into the
superconducting phase), the line width in the temperature
range �Tc; TN� is determined by the contribution of conduct-
ing electrons. In the superconducting phase the contribution
of s ± f exchange to the total line width vanishes in the
temperature range �0; Tc� if electrons are paired with unlike
spins. When electrons make a prevailing contribution to the
absorption, the antiferromagnetic resonance line width
should suffer a sharp reduction.

If Tc > TN a similar effect should be observed in a
magnetic field in the range �0; Tc�. Even a relatively weak
magnetic field destroys singlet superconductivity (due to the
generation of the Zeeman s ± f exchange splitting induced in
the spin-flop phase by the magnetic field) as a result of steep
broadening of the antiferromagnetic resonance line.

This effect may not be present in high-temperature super-
conducting antiferromagnets if electron pairing is caused by
s ± f exchange and the s ± f exchange integrals for oppositely
directed spins of the electrons in a pair have unlike signs.

3.7 Propagation of sound in conducting magnets
The propagation of spin and sound waves which interact with
the conduction electrons in an isotropic antiferromagnet via
s ± f exchange and deformation potential mechanisms is
described by the following equations:

qM1

qt
� g�M1 �H1� ; �69�

qM2

qt
� g�M2 �H2� ; �70�

rotH �m� � 0 ; �71�
divH �m� � ÿ4pdiv �M1 �M2� ; �72�
divD � ÿen1 ; �73�
dv

dt
� ÿ e

m

�
E� 1

2
v�B

�
ÿ nv� T

m

1

n0
Hrn1 ; �74�

div jÿ e
qn1
qt
� 0 ; �75�

r
q2uz
qt 2
� qTzz

qz
; �76�

Tzz � l quqz ÿ G
e
e

qEz

qz
; �77�

Dz � eEz ÿ Ge
e

q2uz
qz2
� Ae
2e

�
qSz

1

qz
� qS

z
2

qz

�
; �78�

where r is the crystal density, l is the elasticity constant, Tzz is
the elastic stress tensor and G is the deformation potential
constant. The sound and spin waves are assumed to propa-
gate along the z-axis. Equations (69) ± (75) and relation (78)
(forG � 0) which govern the propagation of spin waves in the
presence of s ± f exchange interaction have already been
studied in the preceding sections. Equations (73) ± (77) and
relation (78) (for A � 0) govern the propagation of sound
waves interacting with the electron subsystem via deforma-
tion potential [2]. For an isotropic antiferromagnet the
effective magnetic fields in (69) and (70) are given by
expressions (4). Expanding the displacement u in the Fourier
series with the help of the results of Section 2, we obtain from
(69) ± (78) a dispersion equation for coupled spin and sound
waves:

�a2k2 ÿ o2�
n
�o2 ÿ k2v2s �

�
oR ÿ i�oÿ kv0� �Dk2

�
� ~Ak4vs

o
� �o2 ÿ k2v2s ��oÿ kv0 � iDk2� i ~G�k�

ÿ ~Ak4vs ~G�k� ; �79�

~G�k� � G 2e
le2

a2k4 ; �80�

where a is the velocity of sound.Without going into a detailed
analysis, we only mention that the dispersion equation (79)
describes the coupled oscillations of sound and spin waves. In
the absence of synchronism between sound and spin waves,
this coupling leads to renormalisation of the sound velocity
and, in particular to its dependence on the longitudinal
magnetic field (in a nonmagnetic semiconductor or a metal
the sound velocity is independent of the longitudinal mag-
netic field [2, 30, 31]). Accordingly, the sound absorption
coefficient suffers renormalisation and becomes dependent
on the magnetic field. From (79) we also find that the s ± f
exchange inhibits sound absorption for a > vs and enhances it
for vs < a. On the contrary, for the spin wave branch, when
the contribution of sound vibrations is taken into account,
absorption coefficient increases for a > vs and decreases for
vs > a. When the Cherenkov condition holds, what has been
said above applies to amplification rather than to attenuation
of the corresponding branch.

If the synchronism condition, a � vs, holds, the branches
of Eqn (79) can no longer be regarded as modified by the
interaction of spin and sound waves. In the neighbourhood of
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the synchronism point, excitation of a soundwave leads to the
generation of an equally intensive spin wave and vice versa. In
reality, this effect resembles magneto-acoustic resonance [4]
and is induced, not by magnetoelastic interaction, but by the
interaction between magnetic and elastic oscillations via
conduction electrons.

To make allowance for the magnetoelastic interaction, we
have to replace the functional ~F (15) by F

�
[32]:

F
�� ~F�

�
Fik�M1;M2�uik dv ; �81�

Fik�M1;M2� � d1�M1iM1k �M2iM2k�
� d2�Mi1M2k �M1kM2i�
� dik

�
d3�M1 �M2� � d4�M 2

1 �M 2
2 �
�
;�82�

where d1; d2; d3, and d4 are phenomenological constants of a
medium with isotropic magnetostriction properties which are
independent of M 2

1 ; M
2
2 , and M1 �M2. Accordingly, Eqns

(69) ± (78) have to be modified. Magnetoelastic interaction, if
taken into account, gives rise to several additional effects, for
instance, low-frequency quasiacoustic branches and allied
phenomena.

3.8 Nonexchange mechanisms of spin wave amplification
We shall discuss the contribution made by other mechanisms
to spin wave attenuation and their interaction with the
electron subsystem of a crystal. According to Section 3.1,
the relativistic interaction (40) is one of the basic mechanisms
for the attenuation of spin waves in a ferromagnet. Its
contribution to spin wave attenuation was studied (beginning
with Ref. [9]) by several authors [12 ± 17]. The contribution of
the relativistic interaction in the case of an antiferromagnet is
considered in Ref. [12].

In the macroscopic approach the spin wave attenuation
due to (40) is calculated by jointly solving Maxwell's
equations, equations of motion for the current carrier and
the Landau ±Lifshits equations.

The motion of current carriers under the action of spin
wave with a vector potential A (40) is described by the
equation:

m
dv1

dt
� ÿee� e

c
v0 � b ; �83�

e � ÿ 1
c

qA
qt

;
�84�

b � rotA ; �85�

where e and b given by Eqns (84) and (85), respectively, are
the variable electric field and induction due to the spin wave.
Equations (84) and (85) can be rewritten as

rot e � ÿ 1
c

qb
qt

; �86�

roth � 1

c

qd
qt

; �87�

b � m̂h ; d � ê e ; �88�

where m̂�o; k� and ê�o; k� are the magnetic permeability and
dielectric permittivity tensor which are to be computed. The
dielectric permittivity tensor is found from a joint solution of

the equation of motion (83) [after substituting b from (86)]
and the equation of continuity of current:

qr
qt
� div j � 0 : �89�

The tensor ê�o; k� takes the simplest form when the quasi-
neutrality condition is satisfied, i.e., when div j � 0. In this
case the joint solution of (83), (86) and (89) gives the following
expression for eik:

eik � e0dik � 4p
o

isik ; �90�

sik � s0
�
1ÿ k � v0

o

�
Sik ;

Ŝ �

k2z
k2

0 ÿ kxkz
k2

0 1 0

ÿ kxkz
k2

0
k2x
k2

0BBBBB@

1CCCCCA ;

where s0 � e2n =mn. For a uniaxial antiferromagnet consid-
ered below, the magnetic susceptibility tensor is of the form
[12]:

m̂ �
mxx 0 0

0 myy 0

0 0 mzz

0BB@
1CCA ; �91�

mxx �
O2
2 ÿ o2

O2
1 ÿ o2

; mzz � 1 ; mxx � myy ;

O2
1 � 2�gM0�2d0

�
b� �aÿ a12�k2

�
;

O2
2 � O2

1 � 8p �gM0�2
�
b� �aÿ a12�k2

�
: �92�

Substituting (90), (91) and (92) into (86) ± (88), we obtain the
dispersion equation:�

k2z
mxx
� k2x
mzz
ÿ o

2

c2
ezz

��
1

mxx
�exxk2x � ezzk2z � 2ezxkxkz�

ÿ o
2

c2
�ezzexx ÿ e2zx�

�
� 0 : �93�

In the low-frequency limit we have 4ps0o=c2k25 1 and
4ps0=o4 e0. Hence from (93) we find the spin wave attenua-
tion coefficient for the first branch of the antiferromagnet

a1�o� � ÿ v
2
s

c2
e0
oMoR

o2

�
b� �aÿ a12�k2

��
1ÿ kv0

o1

�
kz
k
;

�94�
oM � 4pgM0 ;

o2
1 � O2

1 � 8p�gM0�2
�
b� �aÿ a12�k2

�
sin y; sin y � kx

k
;

and for the second branch of the antiferromagnet

a2�o� � ÿ v
2
s

c2
e0
oRoM

o2

�
b� �aÿ a12�k2

��
1ÿ k � v0

O1

�
:�95�
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The formulas (94) and (95) were first derived in Ref. [12]. If
the Cherenkov condition holds, they describe the spin wave
amplification due to the relativistic interaction (40).

Comparing the relativistic mechanism (94) and (95) with
the exchange mechanism (48) and (50) in the region where the
dispersion of spin wave is important �ak24 b�, we find
arel=asÿf � 10ÿ8 for d0 � 100. In the region of small k
(k < 100 cmÿ1), arel is comparable to, and may even exceed,
asÿf. In this case (of small k), the obstacle in the way of spin
wave amplification is that the necessary drift velocity cannot
be created.

Besides the exchange and relativistic mechanisms, in
magnetic semiconductors or metals there exists the s ± f dipole
mechanism of interaction of conduction electrons with the
magnetic subsystem:

Hint � ÿ2m0S �H �m� ; �96�

where H �m� is the field generated by the spin wave. The
contribution of (96) to spin wave amplification was studied in
Ref. [33]. As a rule, it is three or four orders of magnitude less
than that of the exchange mechanism. A magnetoelastic
mechanism is also considered inRef. [34] for the amplification
of spin waves in an easy plane antiferromagnet. The
amplification coefficient a in this case is � 10ÿ4, i.e., several
orders of magnitude less than for the exchange amplification.

4. Amplification of spin waves in anisotropic
antiferromagnets: a macroscopic theory

A majority of magnetically ordered crystals exhibit magnetic
anisotropy which exerts perceptible influence on their mag-
netic properties. The anisotropy± related properties may play
a key role in studying the influence of current carriers on the
propagation of spin waves in these crystals. In this section we
shall examine an s ± f exchange mechanism for the amplifica-
tion of spin waves in easy plane antiferromagnets.

4.1 Amplification of spin waves in an easy plane
antiferromagnet in a magnetic field parallel to the
anisotropy axis
The total energy functional of a uniaxial antiferromagnet,
according to Ref. [4], is

~F � Fÿ b
2

���M1 � n�2 � �M2 � n�2
�
d3r

ÿ b 0
�
�M1 � n��M2 � n� d3r ; �97�

where F is the isotropic part of the total energy functional (3)
and n is a unit vector along the anisotropy axis. Let us
consider a case where the external magnetic field is parallel
to the anisotropy axis: nkH. According to (97), the effective
field for an easy plane antiferromagnet �bÿ b 0 < 0� is

~H1 � H1 � b�M10 � n�n� b 0�M20 � n�n ;
~H2 � H2 � b�M20 � n�n� b 0�M10 � n�n ; �98�

where H1 and H2 are the effective fields in the absence of
anisotropy (4). Applying (98) and the results of Section 2.2,
we find that the Landau ±Lifshits equations for the Fourier
components of magnetisation deviations, when anisotropy

and s ± f exchange are taken into account, assume the form:

ÿiom1 � g
�
M10 �

�
h� Asn

0 lz ÿ �d0 � ak2�m1

ÿ �d0 � a12k2�m2

��
� g
�
M10 �

�
b�m1 � n�n� b 0�m2 � n�n

��
;

ÿiom2 � g
�
M20 �

�
h� Asn

0 lz ÿ �d0 � ak2�m2

ÿ �d0 � a12k2�m1

��
� g
�
M20 �

�
b�m2 � n�n� b 0�m1 � n�n

��
:�99�

Solving the system (99) under the assumption that there is no
s ± f exchange, we obtain the susceptibility tensor: its structure
and form are given in Ref. [4]. For As � 0 we obtain the
frequencies of spin wave branches for an antiferromagnet:

o2
� � �A� B�2 � C 2 ÿD2 � �Dÿ C��E 0 ÿ E� ;

o2
ÿ � �Aÿ B�2 � C 2 ÿD2 � �CÿD��E 0 � E� ; �100�

where A; B; C, and D are given by (11);

E � gM0

���������������
1ÿH 2

H 2
c

s
b ; E 0 � gM0

���������������
1ÿH 2

H 2
c

s
b 0 :

In the presence of s ± f exchange between conduction electrons
and magnetisations, expression (99) yields the dispersion
equation:

�o2 ÿ o2
��
�
o2 ÿ o2

ÿ ÿ 2F�CÿD�� � 0 ; �101�

where F is given by (37). Equation (101) shows that for the
case under study electrons interact only with the low
frequency branch oÿ. Equation (101) coincides, in structure,
with (43). In the long-wave approximation, from (100) we
find that

oÿ � gM0

��������������������������������������������������������������������������
�2d0 ÿ bÿ b 0��aÿ a12�k2

�
1ÿH 2

H 2
c

�s
: �102�

Expression (102) differs from Eqn (12) for the isotropic
case in that it contains 2d0 ÿ bÿ b 0 in place of 2d0. Thus,
except for this unimportant substitution of 2d0 for
2d0 ÿ bÿ b 0, all the conclusions derived for the amplification
coefficient for an isotropic antiferromagnet (Section 3) also
hold for an easy plane antiferromagnet placed in a magnetic
field parallel to the anisotropy axis.

If the anisotropy in the basal plane of an easy plane
antiferromagnet is taken into account, the situation is quite
different. In particular, this gives rise to a finite energy gap in
the spectrum (102) for k � 0.

For an arbitrary direction of the magnetic field the spin
wave spectrum was calculated in Ref. [34] under the assump-
tion that there is anisotropy in the basal plane. This was done
with the help of the following functional:

~F � Fÿ b
2

���Mz
1 �2 � �Mz

2 �2
�
d3r� b

�
Mz

1M
z
2 d

3r

ÿ K1

2

��
M

y
1 ÿM

y
2

�2
d3r ; �103�
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where K1 is the intraplane anisotropy constant. Using (103),
the expression for the generalised susceptibility tensor wij was
derived:

ŵ�o; 0� �M0

D

�

B2D2 ÿD2C2 i
o
g
D2 cos y ÿ o

g

� �2

D sin y

ÿ i
o
g
D2 cos y B1D2 cos2 y

i

2

o
g
B1D sin 2y

ÿ o
g

� �2

D sin y ÿ i

2

o
g
B1D sin2 y �C1D1ÿ B1D

2� sin2 y

0BBBBBBBB@

1CCCCCCCCA
;

�104�
where

B1 � Hc �Ha sin
2 y ;

B2 � Hc cos
2 y�HA sin

2 y cos2 j�Ha sin
2 y ;

C1 � HA sin
2 j�Ha sin

2 y ; C2 � Hc sin
2 yÿHa cos 2y ;

D � 1

2
HA sin 2j sin y ; D1 � B1B2 ÿ

�
o
g

�2

;

D2 � C1C2 ÿ
�
o
g

�2

; D � �o2
ÿ ÿ o2��o2

� ÿ o2� ; �105�

and the frequencies oÿ and o� in (105) obey the equation:�
o
g

�4

ÿ
�
o
g

�2

�B1B2 � C1C2� � B1C2�B2C1 ÿD2� � 0 ;

�106�
where j is the angle between the magnetic field and the
anisotropy axis, 2y is the angle between the sublattice
magnetic moments H 2

A � b2M2
0 and Ha � K1M0. Figures 4

and 5 drawn from Ref. [34] give the experimental and
calculated spectra of EuTe for certain directions. For j � 0,

(104) and (105) yield

oÿ � g
������������
HcHa

p �
1ÿ

�
H

Hc

�2�
;

o� � g
�������������������������
HcHA �H 2

p
: �107�

Thus, in the presence of anisotropy in the basal plane, as
already mentioned, an energy gap arises even if the magnetic
field is parallel to the anisotropy axis. In EuTe this gap is,
according to Ref. [34], very small (oÿ5o�) because
Ha � 8 Oe (while HA � 10 kOe). Nevertheless, if
k < 100 cmÿ1, the phase velocity vs of spin waves along the
magnetic field parallel to the anisotropy axis is, because of the
gap, greater than 107 cm sÿ1.

According to Section 2, in the presence of conduction
electrons, Eqn (107) contains, in place of themagnetic fieldH,
the renormalised field:

H! H� gAsn0 : �108�

So, current carrier contribute to the uniform antiferromag-
netic resonance of both branches of the antiferromagnet. The
measurement of carrier concentration dependence on the
resonance frequency gives, on one hand, an independent
way for determining the parameters responsible for the
magnetic properties (s ± f exchange integral) and, on the
other hand, a method for determining the semiconductor
properties of magnets (concentration).

4.2 Amplification of spin waves in an easy plane
antiferromagnet in a magnetic field perpendicular
to the anisotropy axis
For an easy plane antiferromagnet in an external magnetic
field perpendicular to the anisotropy axis, the equilibrium
effective fields are given by the same formulas as for an
isotropic antiferromagnet (5). In the presence of s ± f
exchange, the Landau ±Lifshits equations are of the type
(99) and for the field geometry under consideration, fromEqn
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Figure 4.Calculated antiferromagnetic resonance spectrum. (a) hf branch,
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(99) we get the projections of the components of deviations:

�o2 ÿ o2
��
�
o2
ÿ ÿ o2 � 2F�E 0 ÿ E�� � 0 ; �109�

where

o� � gM0

���������������������������������������������������
2d0�aÿ a12�k2 �

�
H

M0

�2
s

;

oÿ � gM0

���������������������������������������������������
2d0�aÿ a12�k2 �

�
H1

M0

�2
s

;

H1 �M0

������������������������
2d0�bÿ b 0�

p
: �110�

Moreover, in deriving (109), only the zero order terms were
retained in the expansion in k of the term � F.

From (110) it is clear that the high-frequency branch is
amplified if H < H1, whereas the low-frequency branch is
amplified if H > H1. If the drift takes place along the
magnetic field, the dispersion equation (110), by virtue of
(37) for F, takes the form:

�o2 ÿ v2sk2�
�
oR ÿ i�oÿ kv0 � iDk2�� � A

�
k2�E 0 ÿ E� ;

�111�
where

A
�
� gM0oR

A2
s e
e2

; vs � oÿ
k
: �112�

From (111) we obtain the coefficient of spin wave attenuation
in an easy plane antiferromagnet

Re a�o� � ÿ 1
2

A
�
�Eÿ E 0�g=v2so

�oR=o�2�1� o2=oRoD�2 � g2
: �113�

It follows from (113) that for v > vs attenuation is super-
seded by amplification. But, unlike in an isotropic case or in
the case of easy plane antiferromagnet placed in a magnetic
field parallel to the anisotropy axis (in the absence of
anisotropy in the basal plane), the amplification in a
perpendicular magnetic field is possible only for finite k
�vs !1, k! 0�. It is therefore desirable to compare the
amplification coefficients for an isotropic antiferromagnet
aisotr (48) and for an easy plane antiferromagnet aanisotr (113).
For identical drift velocities and wave frequencies, from (113)
and (48), we obtain the ratio

aanisotr
aisotr

� 1

ka

��������������
bÿ b 0
d0

s
:

So, depending on the values of the parameters, the ratio of
amplification coefficient for an anisotropic antiferromagnet
to the amplification coefficient for an isotropic one may take
a wide range of values.

From (113) it is clear that for a fixed wave frequency,
amplification is maximum at the same drift velocity as for an
isotropic antiferromagnet (51).Maximum amplification coef-
ficient is

amax�o� � 1

4

A
�
�Eÿ E 0�=v2so

�oR=o��1� o2=oRoD� : �114�

In case drift takes place in a direction other than the field
direction, the results obtained for an isotropic antiferro-
magnet are equally applicable to an easy plane antiferro-
magnet: in Eqns (113) and (114) we have to substitute, in place
of oR and oD, the expressions oR=x and oDx, respectively.

Expressions (113) and (114) are helpful in evaluating
amplification in magnetic semiconductors whose electric
and magnetic properties have at present been studied quite
thoroughly: for example, for EuTe considered in the previous
section. Current carrier mobility measured at T4TN is
u � 100 cm2 Vÿ1 sÿ1 [35] (i.e., the hydrodynamic approxima-
tion is applicable). And the anisotropy field is HA � 10 kOe
[34]. We shall evaluate the amplification coefficient for a spin
wave of wavelength k � 105 cmÿ1 (spin waves of such a
wavelength are usually used in experiments on inelastic
scattering of light in EuTe [34, 36]). For such a wave, from
(109) we obtain a phase velocity vs � 106 cm sÿ1. In order to
evaluate the maximum amplification coefficient for a mag-
netic field perpendicular to the anisotropy axis, let us express
(114) as follows:

Re amax � 1

2

~Qg
1� o2=oRoD

; �115�

~Q � 1

8

ea
e2

A2S

�h

a2

v 2s
�Eÿ E 0� : �116�

For EuTe taking e � 20, a � 3� 10ÿ8 cm, o2 � oRoD (for
the low-frequency branch o � 1011 sÿ1), from (115) we find
that Re amax � 10ÿ2. The obtained results where also con-
firmed in Ref. [37].

5. Magnetoplasma effects in s ± f exchange
amplification of spin waves

In this section we shall study the dispersion equations
describing the propagation of spin waves in conducting
crystals in which the interaction of spinwaves with the current
carriers is wholly determined by the complex conductivity
tensor sij�o; k� of plasma carriers. This approach allows us to
obtain not only the results that are based on simple
hydrodynamic description of a charged liquid [Eqns (28)
and (29)] considered above but also those based on the
kinetic equation. This makes it possible to study a wider
range of magnetoplasma effects accompanying electron
amplification (attenuation) of spin waves in the presence of
s ± f exchange.

5.1 Magnetic susceptibility tensor and conductivity
Since everywhere above we discarded the coupling between
spin waves and electromagnetic waves, the knowledge of the
longitudinal component alone

sk�o; k� � ki kj
k2

sij�o; k�

of the tensor sij�o; k� was adequate for investigating spin
wave amplification. Thus, for longitudinal waves, we have

j��o; k� � s��o; k�E� ;

E��z; t� � E� exp�ÿiot� ikz� ; E� k k : �117�
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This equation together with the equation of continuity (29)
yields

ks��o; k�E� � or1�o; k� ; �118�

where r1�o; k�, by virtue of (34), is given by the Poisson
equation (27):

r1�o; k� � ik
n
eE� � ik

�
m1�k;o� �m2�k;o�

�oAse
e
: �119�

From (118) and (119) we find the equation for the non-
equilibrium correction to the current carrier concentration

n1�o; k� �
k2s�

�
m1�k;o� �m2�k;o�

�
As=e

2

ÿio� s�=e : �120�

Substituting (120) into the Landau ±Lifshits equation (22),
we obtain the magnetic susceptibility tensor (36) in which F
stands for the expression:

F � gM0

���������������
1ÿH 2

H 2
c

s
k2s�A2

s=e
2

ÿio� s�=e : �121�

If the type of the longitudinal conductivity s� of the
medium is known, then (36) and (121) completely determine
the magnetic tensor. For instance, in the simple case
considered above in which the electron or hole plasma can
be described by the hydrodynamic equations (28) and (29) for
a charged liquid,

qv
qt
� �v � HH�v � ÿ e

m
Eÿ nv� T

m

1

r
Hrr ; �122�

qr
qt
� div j � 0 ; �123�

the longitudinal conductivity of the medium is of the form:

s��o; k� � s0
�
1ÿ k � v0

o
� i

k2v2T
on

�ÿ1
; �124�

where vT �
����������
T=m

p
is the thermal velocity. Substituting (124)

into (121), we obtain an expression which coincides with (37)
in the frequent collision limit (i.e., when the hydrodynamic
description holds).

We shall consider some practically important cases whose
description is based on kinetic approach for conductivity
calculations.

5.2 Results of kinetic approach
To calculate the conductivity of a medium under electron
drift, we use the kinetic equation for the electron gas
distribution function:

qf
qt
� v � qf

qr
� F

m
� qf
qv
� I� f � ; �125�

F � ÿe
�

Ed �E� � v

c
�H

�
;

whereEd is the constant field responsible for the electron drift
and E� is the wave field. The collision integral is expressed
through the relaxation time:

I� f � � ÿ fÿ f0
t

; �126�

where f0 is the symmetric electron distribution function. Let
us consider the case of crossed electric and magnetic fields for
the geometry studied in Section 3.3.

The solution to Eqns (125) and (126) in the linear field
approximation is presented in Ref. [38]. In particular, if the
wavelength of spin waves is of the same order of magnitude as
the Larmor radius, the geometric resonance arises. In this
case, i.e., if T5 eF and krL � 1, where rL � vF=oc, from
(125), (126) we obtain the longitudinal conductivity:

s��o; k� � 3s0
�kl�2

l
�
1ÿ g0�krL�

�
1ÿ kvd=oÿ �i=ot�

�
1ÿ g0�krL�

� ;
l � 1� iot

�
1ÿ kvd

o

�
;

g0�x� �
�p=2
0

J 20 �x sin y� sin y dy : �127�

The function s��o; k� has resonant peaks due to the oscilla-
tions of the function g0�x � krL�. The conductivity oscilla-
tions are responsible for the resonance behaviour of the
magnetic susceptibility (121), (36) and, as a consequence, for
the resonance variations in the amplification and attenuation
of spin waves.

If the electrons in amagnetic field spinwith a frequencyoc

same as the wave frequency o, cyclotron resonance arises.
Owing to electron drift, the resonance cyclotron attenuation
condition is of the type oc � o 0, where o 0 � o�1ÿ vd=vF� is
the Doppler shifted wave frequency.

Near the cyclotron resonance krL � vFo=vsoc; since vs is
of the order of the spin wave velocity �vF4 vs�, we find
krL4 1.Under this condition, from (125) and (126) we obtain
the following expression for conductivity:

s��o; k� � 3p
2
s0

ot

�kl�3
�
1ÿ kvd

o

�
coth

pl
oct

: �128�

As distinguished from geometric resonance, cyclotron reso-
nance is possible even in nondegenerate semiconductors
because the electron spin frequency in a magnetic field does
not depend on the electron velocity. Therefore the expression
(128) is of the same form as before, except for the difference
that here 3p=2 is to be substituted for 2

���
p
p

and the free path
length l � vFt is to be interpreted as l � vT t, where vT is the
thermal velocity of electrons.

Depending on the magnetic field, the real part of the
conductivity (128) suffers a series of resonances (Fig. 6) [38]
whose locations are defined by the condition:

no0 � n

�
1ÿ vd

vs

�
o � oc �n � 1; 2; 3; . . .� : �129�

This is responsible for the oscillatory character of the
magnetic susceptibility and the specific behaviour of the
attenuation (amplification) of spin waves (Section 5.3).

In a strong magnetic field where Landau quantization is
possible, attenuation (amplification) of spin waves may
exhibit oscillatory behaviour, depending on the magnetic
field strength. The case of quantizing fields is discussed in
Section 9.

5.3 Resonance effects
Substituting (127) into (120) and (121), we find that the spin
wave amplification coefficient experiences oscillations under
geometric resonance.
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As already mentioned, from the practical point of view, it
is easier to realise the cyclotron resonance. Substituting (120)
into (22), we obtain the amplification coefficient:

a � ÿ p
4e2

o
v3s�h

A2Sa4

���������������
1ÿH 2

H 2
c

s
e20��e�o; k���2 Re s� : �130�

Using (130) and (128) for the amplification coefficient under
cyclotron resonance, we obtain

a � ÿ p
96

�
1ÿ vD

vs

�
o2
pA

2Sa4

e2v2sv
2
F�h

�
1ÿH 2

H 2
c

�
� krD

1� �e0=3�k2r2D
Re

�
cot

pl
oct

�
; �131�

where rD is the Debye radius, op is the plasma frequency.
For vD > vs, Eqn (131) shows that the spin waves experience
resonance amplification provided no�1ÿ vD=vs� � oc.
Accordingly, for vD < vs, spin waves suffer resonance
attenuation.

In the strong degeneration limit, which holds for magne-
tically ordered metals, the main obstacle for spin wave
amplification is that a sufficiently high drift velocity cannot
be easily created because this would require a strong electric
field to be applied to the metal. The result obtained here for
the spin wave attenuation coefficient may play a key role in
experimental investigation of antiferromagnetic resonance in
metals and semiconductors. As a result of the skin effect, the
electromagnetic field penetrates into the metal to the depth of
the skin layer. Consequently, the resonance phenomena
related to spin wave attenuation would be manifested in the
special behaviour of surface impedance which determines the
reflection and attenuation of electromagnetic waves in a
metal. Thus, oscillations in attenuation (131) lead to oscilla-
tions in the half-width; and the location and the shape of the
curve of electromagnetic wave absorption under antiferro-
magnetic resonance can be detected in experiments. Magnetic
susceptibility (38) shows that the s ± f exchange contribution
to susceptibility is wholly dependent on the dispersion of
susceptibility. We know, that under magnetic resonance
conditions in a metal, dispersion may play a decisive role in
the formation of the shape and position of electromagnetic

wave absorption curve [39]. Under these conditions, anti-
ferromagnetic metals may exhibit radioelectric effect (radio-
electric current, Section 8), particularly, oscillations of radio-
electric current as demonstrated in Section 8.

6. Multiple-carrier theory

In the previous sections we studied magnetically ordered
crystals having only one type of carriers. In this section we
shall extend the results to a crystal with several types of
carriers.

6.1 Two types of carriers
Now we take up the most important case, namely, a crystal
containing carriers of unlike sings Ð electrons and holes Ð
which interact with the crystal magnetisation via s ± f
exchange mechanism. The total energy functional of an
antiferromagnet containing electrons and holes is

~F � Fÿ Ae

2

�
�Sz

1 � Sz
2 �ne�r� d3rÿ

Ah

2

�
�Sz

1 � Sz
2 �nh�r� d3r ;

�132�

where ne�r� and nh�r� are the concentration of electrons and
holes, respectively, and Ae and Ah are the corresponding
constants.

In order to generalise the expressions for magnetic
susceptibility (36) and (38) to the case of two (or several)
different types of carriers, we shall regard the force acting on
electrons and holes due to spin waves as an additional electric
field in the expression for current. By virtue of (132), the
complete system of equations describing the interaction of
electrons and holes with a spin wave takes the form:

ÿiom1 � g
�
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�
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sn
0
e lz � Ah

s n
0
h lz
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h lz
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; �133�
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�
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s
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�
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Ae;h
s � Ae;h a3

4m0
; ikeE� � ÿjejn 0e � jejn 0h : �135�

Equation (133) is a generalisation of (22) to the case of two
types of carriers. Equations (134) are the equations of
continuity for electron and hole currents, respectively, and
in the framework of our approach, by what has been said
above, the expressions for currents take the form:

je � se
�
E� ÿ Ae

s

jej �m1 �m2� ik
�
;

jh � sh
�
E� ÿ Ah

s

jej �m1 �m2� ik
�
: �136�

Finally, Eqn (135) is the Poisson equation for two types of
carriers. Eliminating the field E� from (134) and (135) we

0 1 2 3

10

8

6

4

2

o=oc

Re s11
s0

� 107

Figure 6. Conductivity versus the ratio o=oc under cyclotron resonance.
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obtain the nonequilibrium correction to the concentration of
electrons due to their interaction with a spin waves:

n 0e � k2�m1 �m2�ÿsesh=e� Ae
s � Ah

s � ioseAe
s

�ioe2=e��se � sh� � o2e2
�137�

and a similar expression for the correction to hole concentra-
tion n 0h is obtained on substituting e for h in (137). Substitut-
ing (137) into (133), we obtain a dispersion equation resem-
bling (42) with the difference that F is here equal to

F � gM0
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H 2
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s
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�ÿ1
: �138�

The expressions (36), (38) and (138) completely define the
magnetic susceptibility tensor of an antiferromagnet contain-
ing two types of carriers.

Putting kvs=o � 1� ia, from (42) and (138), we obtain a
general expression for the spin wave attenuation coefficient:
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where

e�o; k� � eÿ 1

io
�se � sh� ; �140�

P1 � vs
���������������
aÿ a12
2s0

r
gM0

���������������
1ÿH 2

H 2
c

s
1

e2

�
a3

4m0

�2
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The expressions (139) ± (141) show that, if there are two
types of carriers, the expression (139) for spin wave attenua-
tion when Ah � 0, i.e., when only electrons interact with the
spin wave, differs from the expression derived earlier for one
type of carrier. The reason for this is that, when electrons
interact with a spin wave, the local electron density is
perturbed and, consequently, an electric field is generated
with which the holes interact.

If there is no magnetic field, it is much more difficult to
create conditions for the amplification of spin waves in a
crystal with two types of carriers than in a crystal with only
one type of carrier because electrons and holes move in
opposite directions under the action of the drifting electric
field. Hence, when there are two types of carriers, holes
influence substantially the conditions for the amplification
of spin waves. However, amplification is possible only if the
electron part of the amplification is greater than the attenua-
tion due to holes. Finally, we may note that in the low-
frequency limit, i.e., if jsj4o, from (139) ± (141) follows

the spin wave attenuation coefficient:
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6.2 Amplification of spin waves in crossed fields
As mentioned in the previous section, in the absence of a
magnetic field, it is far more difficult to observe amplification
in a system with two types of carriers than in a system with
only one type of carrier. Here, in full analogy with sound
amplification [38], in order to attain amplification in a two-
carrier system due both to electrons and holes, crossed electric
and magnetic field have to be applied in such a way that
electrons and holes drift in the direction of spin wave. The
magnetic field should be strong enough both for electrons and
for holes:

oe;h
c te; h4 1 : �143�

If this condition is satisfied, the electron and hole conductiv-
ities are given by the expression:
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In what follows we shall restrict ourselves to proper semi-
conductors and semimetals in which the current carriers occur
in equal concentrations and use the low-frequency limit:��se; h�o; k���4oe : �146�

If the condition (146) is satisfied, then the spin wave
amplification coefficient is given by (142). Substituting (145)
into (142), we obtain the amplification coefficient for a
degenerate case:
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where pF is the Fermi momentum for equal concentrations of
electrons and holes. Accordingly, for a nondegenerate case
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6.3 Amplification of spin waves in a weak magnetic field
The approach developed in this section can be used to study
the case of one carrier in a weak magnetic field, i.e., when

A

2
�Sz

1 � Sz
2 � < e ; �149�

where e � kBT for a nondegenerate semiconductor and e � eF
for a degenerate semiconductor. Condition (149) is of special
interest because in many cases a strong magnetic field is
needed (as a rule, H4 10 kOe) for the opposite of inequality
(149) to hold. This complicates the experimental conditions.

In the macroscopic approach considered here, the results
are generalised to the case of a semiconductor containing
electrons with opposite spin projections on the magnetic field
direction by modifying the expression for the total energy:
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�
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2 �n"�r� d3rÿ

A#
2

�
�Sz

1 � Sz
2 �n#�r� d3r ;

�150�

where n" and n# are the concentrations of electrons with spin
projections along and against the magnetic field, respectively.

So, if the inequality (149) is satisfied, a one-carrier system
can be regarded as a particular case of two-carrier systemwith
concentrations n" and n#, respectively, and in contrast to
electron ± hole plasma, with charges of the same sign.

Accordingly, Eqns (133) ± (135) assume the form:
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Solving the system (151) ± (153), we obtain the dispersion
equation (42) in which F is equal to
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Now putting A" � ÿA# � A, we obtain, in place of (154), the
following expression:
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Thus, we obtain the spin wave amplification coefficient
containing, in place of ~A in (48), the factor A

�
which is related

to ~A as follows:

A
�
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n0" ÿ n0#
n0" � n0#

; �156�

where n0" and n
0
# are the equilibrium concentrations of current

carriers with a spin along and against the magnetic field,
respectively. In the weak magnetic field limit, the ratio (156)
can be represented as

A
�
� ~A tanh
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2HcT
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for a nondegenerate semiconductor and as

A
�
� ~A
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eF

H

Hc

�
ASH
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5 eF

�
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for a degenerate semiconductor.
From (157) and (158) it follows that the amplification

coefficient is zero when there is no external magnetic field
and, consequently, electrons make zero contribution to the
magnetic susceptibility (36) and (38).

7. Amplification of spin waves in disordered
magnets

Amorphous ferromagnets (Fig. 1e), spin glasses (Fig. 1f),
disordered ferromagnets and antiferromagnets all come
under disorderedmagnets. Amorphousmagnet is a stochastic
system whose parameters are random coordinate functions.
Typically, an amorphous magnet has structural and chemical
disorders [40].

7.1 General remarks
Several conclusion concerning the contribution of s ± f
exchange to spin wave attenuation in disordered magnets
directly follow from the law of conservation of momentum
(Section 3). Thus, the requirement of conservation of total
momentum implies that the contribution of s ± f exchange to
spin wave attenuation (amplification) in amorphous ferro-
magnet (Fig. 1e) vanishes identically as a consequence of total
oriented orderedness of magnetic moments. A similar con-
clusion can also be drawn for the case in which spin waves are
generated by the variations in the modulus of magnetisation
of an amorphous ferromagnet due to the fluctuations in the
density of the magnet material.

The picture is entirely different for disordered ferro-
magnets or antiferromagnets. The law of conservation of
total momentum does not forbid the excitation of spin density
waves in these magnets as a result of s ± f exchange. The basic
difficulty in the way of resolving these equations is rather
pronounced in the case of spin glass (Fig. 1f).When there is no
magnetic field, the total magnetic moment in this system is
zero. Contrary to the case of isotropic or anisotropic
antiferromagnets, the procedure developed here for calculat-
ing the s ± f exchange induced effects (applicable to any system
with a finite number of sublattices) is altogether unsuitable
for spin glass which cannot be described with the help of a
finite number of sublattices.

However, we can take recourse to the general phenomen-
ological theory which does not need the use of model
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representations for sublattices whose motion is described by
the Landau ±Lifshits equations. Such a consistent exposition
based only on the general concepts of symmetry of the state of
a magnet is presented in detail in Ref. [41]. Here the dynamic
equations describing the oscillations of magnetisation are
represented in the form of the Lagrange equations with a
Lagrangian density derived from the invariance of the energy
of a magnet to symmetry transformations. We shall apply
such an approach to calculate the spectrum of spin waves in a
spin glass in the presence of s ± f exchange.

7.2 Spin glass in the absence of current carriers
According to Ref. [41], the dynamics of a spin glass can be
described by the Lagrangian:

L0 � a

2
gab�f�

�
1

c2
_fa _f b ÿ qf

a

qxi

qfb

qxi

�
; �159�

where fa �a � 1; 2; 3� are the parameters which parametrise
the group of spin rotations of a spin glass and gab is a metric
tensor of the type:

gab � dab
1� f2 ÿ

fafb

�1� f2�2 ; fa � naf ; �160�

na are the components of the unit vector along the rotation
axis and a and c are phenomenological constants.

The dynamic equations which correspond to (159) are

�f a ÿ c2Dfa � Gabg
�

_f b _f g ÿ c2
qfb

qxi

qfg

qxi

�
� 0 ; �161�

where Gabg is the Christoffel symbol corresponding to the
metric gab. Linearised equations (161) give the spectrum of
spin waves in the absence of conduction electrons:

o � ck : �162�

7.3 The s ± f exchange mechanism for the amplification
of spin waves in spin glass
In a most general form the Lagrangian for the system of
conduction electrons in an isotropic spin glass is

L � L0 � L1 ; �163�

L1 �MaHa ; �164�

Ma � ag
2c2

_fa � eabgfb _fg
1� f2 ; �165�

Ha � A1

�
tr �ŝar̂� dP ; �166�

where Ma is the magnetisation of the spin glass, eabg is the
antisymmetric unit tensor, ŝa is the Pauli matrix, r̂ is the
matrix of electron distribution function for the conduction
band and g is the gyromagnetic ratio. The quantity Ha given
by (166) has the meaning of effective magnetic field induced
by the conduction electrons (A1 is the effective constant of
s ± f exchange). In (166) integration is taken over electron
pulses. The relations (159), (160) and (163) ± (166) define the
dynamics of spin glass in the presence of conduction
electrons. To make the system closed, we have to add the

following Maxwell's equations:
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and the equation of motion for the density matrix:
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where ê�k; r� is the electron energy operator and I is the
collision integral. Equations (167) ± (170) determine the elec-
trodynamics of a Fermi liquid containing spinning particles.

In applying the macroscopic description to the s ± f
exchange interaction of conduction electrons, we shall
assume that when a spin wave travels, electrons are acted
upon by a force comparable with the strength of the field
generated:

ea � 1

e

q
qxa

Hint ; �171�

Da � eEa � e
e

q
qxa

Hint ; �172�

Hint � A1naMa : �173�

The systems (167) ± (170) and (171) ± (173) wholly determine
the dynamics of electrons and ofmagnetic moments related to
s ± f exchange in hydrodynamic approximation.

It is a simple matter to evaluate the spin wave attenuation
coefficient if we assume that the matrix r̂ contains only one
nonzero component corresponding to the `upward' spin. In
this case (170) yields the following equations of hydrody-
namics:

_va � ÿ e

m
E a ÿ van ; �174�

va � tr

�
dP r̂va ; �175�

qj a

qxa
� tr

�
dP _̂r � 0 : �176�

For the sake of simplicity, the contribution of the internal
pressure tensor is omitted in (174). For small deviations from
the equilibrium values of the quantities

dM; dr̂; df; dv � exp�ikrÿ iot�

contained in (167) ± (170) and (174) ± (176), we obtain the
dispersion equation:

�o2 ÿ k2c2��noR � �oÿ kv0��kv0 ÿ oÿ in�� � k2o2G0 ;
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From (177) and (178) we obtain the spin wave attenuation
coefficient:

a�o� � G0o�v0=cÿ 1�
nc2
�
o2
R=o2 � �v0=cÿ 1�2� : �179�

This expression shows that for a velocity v0 greater than the
phase velocity c of the spin waves in a spin glass, the spin
waves experience amplification rather than suffer attenua-
tion.

The foregoing results demonstrate that the spin wave
amplification coefficient (179) for the spin glass is of the
same order of magnitude as for isotropic antiferromagnets.
Consequently, we can list a whole class ofmaterials promising
from the viewpoint of amplification of spin waves in them Ð
the so-called semimagnetic semiconductors of the general
formulaAxB1ÿxC,whereA stands forMn, Fe orNi, B forHg,
Cd or Zn and C is Te, Se or S.

Semimagnetic semiconductors are superior to ordinary
magnetic semiconductors in that they have a high current
carrier mobility and, consequently, Cherenkov's radiation
may be realised in them. For instance, in MnxHg1ÿxTe or
MnxCd1ÿxTe the mobility u is as high as 105 cm2 Vÿ1 sÿ1 [42,
43]. What is important is that in the region x � 0:1 these
semiconductors have as a rule the magnetic structure of spin
glass and their electron properties are controllable [42, 43].
Consequently, they are expected to find application in spin
wave amplification.

From the application viewpoint, one- and two-dimen-
sional magnets, many of which are either antiferromagnets
or spin glasses, have a bright future. By way of example,
we may mention here quasi-one-dimensional antiferro-
magnet �CH3�4NMnCl3 [44].

We may anticipate that these systems will exhibit strong
anisotropic properties (for the phenomena associated with
radioelectric effect, see Section 8).

8. Radioelectric effect in antiferromagnets

In Sections 3 and 4we examined the amplification and drag of
bulk spin waves by electron drift in antiferromagnets caused
by the s ± f exchange interaction between electron stream and
magnetisation. One of the stringent constraint essential for
amplification is that the Cherenkov condition should be
satisfied. Therefore, of special interest are the effects related
to the identification of the interaction of electrons with spin
waves not governed by the Cherenkov condition. An example
of such an effect is the opposite of what was studied in
Sections 3 and 4, i.e., the drag of current carriers by a spin
wave.

For the drag of electrons by photons (radioelectric effect)
to be observed in ordinary nonmagnetic crystals, the effect
being weak, the radiation source is to be sufficiently powerful
[45]. But the situation is quite different in magnetically
ordered crystals where themajor contribution to radioelectric
effect comes from the drag of current carriers by a spin wave
excited by an external magnetic field. The effect should be
conspicuous particularly in antiferromagnets. In Sections 3
and 4 we have demonstrated that the coefficient of spin wave
amplification due to s ± f exchange interaction is several
orders of magnitude greater in an antiferromagnet than in a
ferromagnet.

In an antiferromagnet the magnitude of the effect can be
evaluated from the balance between the momentum trans-

ferred to current carriers by the spin wave and the corre-
sponding electric field E generated:

E � I

nevs
Im k ; �180�

where I is the density of the energy stream entrained by the
spin wave and n is the current carrier concentration.

Relation (180) resembles the expression derived for sound
[46]. It also holds for anisotropic antiferromagnets; however,
the phase velocity of the spinwave here depends on the angle y
between themagnetic field and the anisotropy axis: vs � vs�y�
(for uniaxial antiferromagnets).

What is more important from the viewpoint of practical
realisation of the effect is the dependence of the phase velocity
on the wave vector vs � vs�y;k�. Owing to the energy gap in
the spectrum of an anisotropic antiferromagnet, the phase
velocity vs tends to infinity as the wave vector k tends to zero.
Hence, under uniform antiferromagnetic resonance (k! 0),
the s ± f exchange induced radioelectric effect (180) vanishes.
In reality, under uniform resonance, electromagnetic waves
excite spin waves with a k < 102 cmÿ1. According to Section
4.1, under this condition, radioelectric effect should easily be
observed under uniform resonance if the wave vector is
properly chosen. For an easy plane antiferromagnet of the
type EuTe, this direction is along the anisotropy axis (because
of the anisotropy in the basal plane, the phase velocity vs is of
the order of 107 cm sÿ1 for a wave vector of k � 102 cmÿ1).

To observe the radioelectric effect in general, spin waves
with a large wave vector k have to be excited. Various
methods may be used for this purpose, say, parametric
excitation under longitudinal or transverse pumping [47 ±
50], generation of spin waves in a nonuniform constant
magnetic field [51 ± 53], creation of various types of magnetic
`pockets' and many other methods.

Let us now evaluate the potential differenceU arising in a
crystal when a spin wave passes:

U �
�
E�z� dz � uI

s0vs

Im k

Im k� Yvÿ1s
: �181�

For instance, in EuTe for a wave vector k > 105 cmÿ1, the
phase velocity vs is � 105ÿ106 cm sÿ1. For a
u � 102 cm2 Vÿ1 sÿ1, s � 10ÿ4 Oÿ1 cmÿ1, Im k � Y=vs,
I � 1 W cmÿ2, the spin wave generates a potential difference
of U � 1ÿ10 V. These values are in agreement with those
obtained in an experiment on acoustoelectric effect in
cadmium sulfide [46] with a current carrier concentration
stimulated by light (as a rule, n � 1013ÿ1014 cmÿ3). Just like
in the case of acoustoelectric effect, transverse radioelectric
effect is also possible in a transverse external magnetic field. If
the strength of the external electric field is close to its
threshold value (when vs � vd), the sign of the radioelectric
effect is reversed. This phenomenon may be utilised to detect
spin wave amplification.

If a crystal contains carriers of unlike signs, then the
radioelectric effect is moderated. If there is no additional
scattering mechanism (other than the scattering of magnons
by electrons), with electrons and holes present in equal
concentrations, the radioelectric effect altogether vanishes
due to total compensation. In this case, nonzero effect can
nonetheless be stimulated by directing the external magnetic
field normal to the direction of spin wave propagation.

To conclude we may note that the effects associated with
the drag of current carriers by spin waves were observed
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repeatedly in ferromagnets [54 ± 58] (magnetoelectric or
resonance galvanomagnetic effect). This phenomenon was
also observed in hybrid systems like ferrite semiconductors
[59]. In all the cases listed above radioelectric effect owes its
origin to induced (relativistic) interaction. As applied to
antiferromagnets, this question is examined theoretically in
Ref. [60].

9. Quantum theory of spin wave amplification

In the previous sections we used the macroscopic approach to
describe the interaction of spin waves with the current carriers
in magnetically ordered crystals.

In this section we shall apply the quantum mechanical
approach to study the spins of magnetic atoms. By way of
example we shall discuss the Cherenkov amplification of spin
waves in an antiferromagnet with easy axis anisotropy.

9.1 Hamiltonian of s ± f exchange in an antiferromagnet
In the most general form the Hamiltonian describing the
motion of conduction electrons in an anisotropic antiferro-
magnet placed in a magnetic field is [7]:

H � He �Hint �HM ; �182�

He � 1

2m

�
P̂� e

c
A

�2

;

Hint � ÿ
X
m;m 0

A�Rm ÿ Rm 0 ��Sm; sm 0 � ;

HM � ÿ 1
2

X
i;m1 6�m 01

I im1m
0
1
Si
m1
Si
m 0
1
ÿ 1

2

X
i;m2 6�m 02

I im2m
0
2
Si
m2
Si
m 0
2

ÿ
X

i;m1;m2

I im1m2
Si
m1
Si
m2
ÿ
X
i;m1

Si
m1
Hi ÿ

X
i;m2

Si
m2
Hi ;

where He describes the motion of an electron in a magnetic
field with a vector potential A, Hint corresponds to the
interaction of a conduction electron with the magnetic
subsystem of a crystal having an s ± f exchange constant
which, in the sequel, is always assumed equal to
Amm 0 � Admm 0 , and HM is the exchange Hamiltonian of the
anisotropic antiferromagnet placed in amagnetic fieldH (H is
expressed in energy units). For a uniaxial antiferromagnet
with anisotropy axis along the y-axis, the exchange integral
takes the form

I xmm 0 � I zmm 0 � Imm 0 ; I
y
mm 0 � Imm 0 � DImm 0 : �183�

Confining ourselves to a case where interaction takes place
only between two equivalent sublattices, let us introduce the
notation:X

m1;m2

Im1m2
S 2 � NJ12 ;

X
m1;m2

DIm1m2
S 2 � NDJ12 ; �184�

where N is the number of magnetic atoms in the sublattice.
First consider the case when the external magnetic fieldH

is directed along the z-axis, i.e., perpendicular to the aniso-
tropy axis. So the magnetisation vector of the antiferro-
magnet is directed along the field �DJ12 < 0� everywhere in
the range of variation of H. Assuming the field be strong
enough so that the electron spin is completely polarised in the

field direction, and using the magnon production and
annihilation operators x� and x, and electron production
and annihilation operators a� and a in HM and Hint, we
obtain in place of (182) the following

~H � ~He � ~H
�1�
int � ~H

�2�
int � ~HM ; �185�

~He �
X
a

eaa�a aa ; ~HM �
X
j; q

�hoqjx
�
qjxqj ;

~H
�1�
int �

X
aa 0q

A�j��aa 0q�a�a aa�x�ÿqjxqj� ;

~H
�2�
int �

X
aa 0qq 0j

B�j��aa 0qq 0�a�a aa 0x�ÿqjxq 0j

�
X
aa 0qq 0j

C�j��aa 0qq 0�a�a aa 0 �x�ÿqjx�ÿq 0 j � xqjxq 0j� ;

where the subscript j � 1; 2 corresponds to the two branches
of magnons in the anisotropic antiferromagnet. The matrix
elements A, B and C are

A�j��a; a 0; q� � Qq



a
��exp�iqr���a 0�dj; 2 ;

B�j��a; a 0; q; q 0� � G�j�qq 0


a
��exp�i�q� q 0�r���a 0� ;

C �j��a; a 0; q; q 0� � Z
�j�
qq 0


a
��exp�i�q� q 0�r���a 0� : �186�

The index a in (185) and (186) enumerates the eigenfunctions
of the kinetic energy operator of an electron in the magnetic
field ~He with eigenvalues

ePz; n �
P 2
z

2m
� hoc

�
n� 1

2

�
and includes the quantum numbers n, Pz and Py, where n is
the number of the Landau level and Pz and Py are the
components of electron momentum along z- and y-axis,
respectively (calibration: Ax � 0, Ay � Hx and Az � 0). For
this case the matrix elements Q; G, and Z in (186) (j � 2) are
of the form:

Qq � A�SH11�1=2
�
1ÿH 2

H 2
E

�3=4

�
(
4N

�
HE

�
1ÿH 2

H 2
E

�
� 2Ha

�1=2)ÿ1
;

Gqq 0 � AH

�
HE

�
1ÿH 2

H 2
E

�
ÿHa

�
�
�
8NHEH11

�
1ÿH 2

H 2
E

��ÿ1=2
;

Zqq 0 � ÿAH
�
HE

�
1ÿH 2

H 2
E

�
�Ha

�
�
�
16NHEH11

�
1ÿH 2

H 2
E

��ÿ1=2
;

H11 � �HEHa�1=2 ; �187�
where Ha is the anisotropy field and HE is the exchange field
for sublattice collapse. Using the longwave approximation, in
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(187) we have written only the main terms of the expansion
over the wave vector of magnetisation oscillations. In this
approximation, for the framework of our geometry, the
magnon frequencies are expressed as follows:

oq1 � g
����������������������
H 2 �H 2

EA

q
; �188�

oq2 � gHEA

���������������
1ÿH 2

H 2
E

s
; �189�

HEA � H11 :

The fields Ha and HE contained in (187) and (189) are
expressed through exchange integrals (184) and if
jDJ12j5 jJ12j, they take the form

HE � 4jJ12j ; Ha � 2jJ12j :

9.2 Spin wave amplification coefficient in a magnetic field
The kinetic equation for the magnon distribution function
describing one- and two-magnon emission and absorption
processes, which correspond to the Hamiltonian (185), has
the form:

qm�j�q
qt
� 2p

�h

X
a; a 0

��A�j��a; a 0; q���2��m�j�q � 1� fa 0 �1ÿ fa�

ÿm�j�q fa�1ÿ fa 0 �
�
d�ea 0 ÿ ea ÿ oqj�

ÿ 2p
�h

X
aa 0q 0

��B�j��a 0; a;ÿq 0; q���2� fam�j�q ÿm
�j�
q 0 fa 0

ÿ fa 0 fa�m�j�q ÿm
�j�
q 0 � � �fa ÿ fa 0 �m�j�q 0m�j�q

�
� d�ea ÿ ea 0 � oqj ÿ oq 0j�

� 8p
�h

X
aa 0q 0

��C�j��a; a 0;ÿq;ÿq 0���2
� ��m�j�q �m

�j�
q 0 � 1� fa�1ÿ fa 0 � � �fa ÿ fa 0 �m�j�q m

�j�
q 0
�

� d�ea ÿ ea 0 ÿ oqj ÿ oq 0j� � Idfm�j�q g ; �190�

where m
�j�
q and fa are the magnon and electron distribution

functions; Idfm�j�q g is the collision integral which includes all
other (except the electron ±magnon) scattering mechanisms.

Let us consider the deviation of m
�1�
qz j

from the stationary
magnon distribution ~mj

q established as a result of the drift of
electrons having the distribution function

~fa �
�
exp b

�
en � 1

2m
�Pz ÿmvD�2 ÿ m

�
� 1

�ÿ1
; �191�

where vD is the electron drift velocity along the z-axis and m is
the chemical potential. Taking m

�j�
q � ~m

�j�
q �m

�1�
qj and fa �

� ~fa, from (191) we obtain the following equation for m
�1�
qz j
:

qm�1�qz j
qt
� R

�j�
1 �qz�m�1�qz j � R

�j�
2 �qz�m�1�qz j � Idfm�j�q g ; �192�

R
�j�
1 �q� �

2p
�h

X
a; a 0

��A�j��a; a 0; q���2� ~fa 0 ÿ ~fa�d�ea 0 ÿ ea ÿ oqj� ;

�193�

R
�j�
2 �q� � ÿ

8p
�h

X
aa 0q 0

��C�j��a 0a;ÿq;ÿq 0���2� ~fa�1ÿ ~fa 0 �

� ~m
�j�
q 0 � ~fa ÿ ~fa 0 �

�
d�ea ÿ ea 0 ÿ oqj ÿ oq 0j� : �194�

In deriving (192) and (193) due consideration is paid to the
fact that, since we are using the longwave approximation
oqj � o0j, the term � jBj2 on the right-hand side of (190)
makes zero contribution to the collision integral in the
quantizing magnetic field approximation (considered below)
because simultaneous production and annihilation of mag-
nons with an energy o0j do not alter the stationary distribu-
tion. The quantity R�j��q� � R

�j�
1 � R

�j�
2 introduced in (192)

determines the spin wave amplification coefficient for the j-th
branch. For an external magnetic field of arbitrary strength,
the matrix elements



a
��exp�iqr���a 0� in (186) and (193) are of

the form:

a
��exp�iqr���a 0� � dpya 0; pya�qydpza 0; pza�qz ���������

n!n0!
p

� exp

�
ÿ q2?%

2
0

4

��
q2?%

2
0

2

�jn 0ÿnj=2
Ljn

0ÿnj
n

�
q2?%

2
0

2

�
; �195�

where q2? � q2x � q2y, L
jn 0ÿnj
n is the generalised Laguerre poly-

nomial and %0 � �2m0c�h=eH�1=2 is the magnetic length.

9.3 Spin wave amplification coefficient in ultraquantum
limit
We shall now study the amplification of the low-frequency
branch (j � 2). In the quantum limit, where the cyclotron
frequency �hoc is greater than �ho0 and T, we can restrict
ourselves to the first Landau level approximation in (192) and
(195). Here putting n � n 0 � 0, from (186) and (195) we
obtain��A�2��aa 0qz���2 � Q2dqz; p 0zÿpzdp 0x; px ; �196���C�2��aa 0;ÿqÿ qz�

��2
� Z 2 exp

�
q2?%

2
0

2

�
dp 0zÿpz;ÿqzÿq 0zdp 0xÿpx ;ÿq 0x ; �197�

where Qq � Q and Z
�2�
qq 0 � Z do not depend on either q or q 0.

Substituting (196) into (193) and taking into account that
summation over px gives rise to a factor LxLymoc=2p�h, we
obtain

R1�qz� � Q2Vmoc

2p�h4jqzj
D ; �198�

D � f 0
�
pz � mo02

qz
ÿ pD � �hqz

2

�
ÿ f 0

�
pz � mo02

qz
ÿ pD ÿ �hqz

2

�
; �199�

where f 0 is the equilibrium electron distribution function and
V is the volume of the system. If the wave vector obeys the
condition �h2a2z=8mT5 1, we obtain, in place of (199), the
following expression for nondegenerate electron gas:

D � exp

�
mÿ hoc

T

�
ho02

T

�
1ÿ qzvD

o02

�

� exp

�
ÿo

2
02m

2q2zT

�
1ÿ qzvD

o02

�2�
: �200�
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As regards R2 we may note the following: owing to the term
Idfmqg contained in (194), the stationary magnon distribu-
tion function is not known in a general form. It can therefore
be assessed only approximately. Assuming that under elec-
tron drift the quantity ~mq differs little from its equilibrium
value, i.e., taking ~mq � m0

q andmv
2
D=25T, by virtue of (197),

from (194) we obtain

R2�qz� � ÿoc

p3
mV 2Z 2

%20�h
4

exp

�
mÿ hoc

2

�
K0

�
ho02

T

�
; �201�

where K0�x� is the McDonald function. From (198) ± (201),
we find that R1�qz� < 0 if o02 ÿ qzvD > 0 and R1�qz� > 0 if
o02 ÿ qzvD < 0. On the contrary, for the case under con-
sideration R2�qz� is always negative. Hence the high-fre-
quency branch is a damped one under our assumptions.
Therefore for the amplification of spin waves it is necessary
that

L �
��R1�qz�

����R2�qz�
�� > 1 �202�

for o02 ÿ qzvD < 0.
In a particular case of practical importance, H 2=H 2

E5 1
(the typical value of HE in an antiferromagnet is � 106ÿ
107 Oe), assuming qzvD > o02 and using (198) ± (201) and
Eqns (187) for Q and Z , we obtain

L � 4p2S
K0�o02=T�

�hvD
aT

�
%0
a

�2 H 2
k

H 3
; �203�

where a is the lattice constant. The strength of the magnetic
field in (202) and (203) is bounded below by the condition
H4Hk �oc4o0�. For instance, for T � 20 K,
Hk � 5� 104 Oe, H � 5� 105 Oe, v � 106 cm sÿ1,
a � 3� 10ÿ8 cm, o0 � 10ÿ3 eV, and S � 2 we have L � 20,
i.e. the criterion of amplification (202) is easily satisfied. In
practice, a more strong restriction on spin wave amplification
is posed by the condition

Z > g ; �204�

where Z � �R1 � R2�=o02 is the increment of spin wave
amplification, and g is the attenuation decrement determined
by the collision integral Idfmqg � gmq. Using the same values
for the parameters we chose in finding L, and taking
HE � 106 Oe, A � 0:5 eV and a current carrier concentration
n � 5� 1017 cmÿ3, we find that Z � R1=o02 � 10ÿ1, i.e., it is
one order of magnitude greater than the attenuation decre-
ment used in estimating the spin wave attenuation in yttrium
ferrite, viz., g � 10ÿ2ÿ10ÿ3 [4].

9.4 Amplification of spin waves in a nonquantizing field
For a nonquantizing magnetic field the kinetic equation (190)
for the magnon distribution function R1�q� yields

R1 � 2p
�h

X
k; k 0

��A�k; k 0; q���2� ~fk ÿ ~fk 0 �d�ek ÿ ek 0 ÿ oq� ;

A�k; k 0; q� � Qq



kj exp�iqr���k 0� : �205�

The matrix elements A�k; k 0; q� for a wave function in the
nonquantizing magnetic field limit are

A�k; k 0; q� � Qq dk 0; kÿq : �206�

Now from (205) and (206) it follows that

R1 � Q

p

�
ma2

�h2

�2
1

qa
�qvD ÿ o0� exp

�
ÿ
�

�hq

2
�mo0

q

�2
1

2mT

�
:

�207�
To estimate the contribution of the quadratic part of the
Hamiltonian (185) to the total amplification coefficient, let us
consider the contribution from the term � jcj2 to the kinetic
equation (190):

R2 � 8p
�h

X
k; k 0; q

��C�k 0; k;ÿq;ÿq 0���2� ~fk�1ÿ ~fk 0 �

� ~mq 0 � ~fk ÿ ~fk 0 �
�
d�ek ÿ ek 0 ÿ oq ÿ oq 0 � : �208�

The matrix elements C�k; k 0; q; q 0� for a wave function in
the nonquantizing magnetic field limit are

C�k; k 0; q; q 0� � Zdk 0; kÿqÿq 0 : �209�

Applying the same assumptions as in Section 9.3 for the
magnon distribution function and using the relations (208)
and (209), we find that

R2 � 32G�3=2�
p3

���
p
p Z 2T 2

�h

�
ma2

�h2

�3 o0

T
K1

�
o0

T

�
: �210�

where K1�x� is the modified Bessel function and G�x� is the
gamma-function. The spin wave amplification condition
requires that R1 > R2 and that (204) be satisfied. Just as in
the case of a quantizing magnetic field, comparing the
contributions (207) and (210), we find that R1 > R2 for a
wide range of variations of the parameters contained in
(207) ± (210).

The results derived in Section 9.3 and in this section state
the condition for the amplification of spin waves in an easy
axis antiferromagnet. Here we underline that in the collision-
less limit ql4 1 studied in this section, an antiferromagnet is
supposed to have a sufficiently high mobility for the current
carriers (say, Hg1ÿxMnxTe in the antiferromagnetic phase). If
there is a sufficiently slow electromagnetic wave in the crystal
(for example, in an antiferromagnet with high dielectric
permittivity e � 104 as in a segnetomagnet), these result also
determine the condition for the amplification of electromag-
netic waves.

An amplified spin wave should be converted into an
electromagnetic wave near the antiferromagnetic resonance
which, for the case under consideration, takes places on both
the branches of magnetisation oscillations of the antiferro-
magnet. In this case the electromagnetic wave with a
component along the magnetic field experiences amplifica-
tion. And the electromagnetic wave with a component normal
to the magnetic field interacts with the first resonance branch,
which results in the usual wave absorption phenomenon
under antiferromagnetic resonance. The same situation
holds also for the amplification in all other cases when the
antiferromagnetism vector is normal to the magnetic field:
only the wave with a longitudinal magnetic component
experiences amplification.

Let us also note the qualitative differences between the
conditions for spin wave amplification in collision and
collisionless limits. In the collision limit ql5 1 when the spin
waves are generated in a finite specimen, theymight be excited
during multiple reflections from the specimen boundary, in
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other words, by the multi-path mechanism. On the other
hand, in the collisionless limit, only the one-path mechanism
is possible, i.e., spin wave is amplified only as it passes
through the specimen. If this condition is not satisfied, the
only consequence is the absorption of spin waves. In the
collisionless limit the multi-path amplification mechanism
can be realised only with the help of a pulsating drifting
electric field which should be reversed at each reflection of the
spin wave from the specimen boundary.

10. Concluding remarks

The macroscopic formalism developed to describe the s ± f
exchange interaction between the electron and magnetic
subsystems of a crystal is a convenient tool for evaluating
various effects accompanying this interaction. An interesting
application of this interaction seems to be the spin wave
amplification by electron drift. The theoretical principles
derived in this review may form a basis for practical
realisation of spin wave amplification in antiferromagnets
and ferrimagnets [61]. An important application of spin wave
amplification is the creation of electromagnetic wave ampli-
fiers. This seems to have a promising future as the character-
istic spin wave frequencies in many antiferromagnets and
ferromagnets lie in the longwave range 1013ÿ1014 Hz Ð still
unexplored area in modern radio engineering. The advantage
of this amplifier is that the frequency can easily be tuned by
simple variation of the external magnetic field.

The reverse effect (Section 9) seems to have a wide range
of promising potentialities. This effect may be used for the
development of various information processing systems,
delay lines, new microwave circuits etc. Aside from practical
implications, the study of different effects related to spin wave
amplification is of general theoretical interest. This would
promote the development of new methods of spin wave
generation (since the exchange amplification is strong in the
high frequency range, a key role would be played by short-
wave magnon generation techniques) and methods of the
detection of spin wave amplification. Detection of spin wave
amplification and magnon heating under electron drift may
be based on the following:

(a) scattering of neutrons by spin waves;
(b) Mandelstam ±Brillouin scattering of electromagnetic

waves by spin waves;
(c) oscillations and non-Ohmic behaviour of current

during spin wave generation;
(d) relaxation of nuclear spin waves by electron beams;
(e) second sound in magnon gas, and many other

phenomena.
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