
Abstract. The mutual complementarity of the Anderson site
representation and the Edwards wave approach is considered
within the framework of the quantum-statistical theory. The
former is used for the description of one-particle excitations.
Based on the permutational symmetry analysis of the wave
function, it is shown that the symmetry of the Anderson Ha-
miltonian exceeds that of the space of states. Transition to an
extended state is represented within the framework of the
quasi-averages theory as a phase transition of order 2� d,
where d! 0 is an addition caused by the appearance of a
logarithm. A study of the collective mode is possible within the
framework of the Edwards wave representation. The exam-
ination is reduced to determining the charge distribution auto-
correlation function which is expressed in terms of higher
correlators of current density and generalised force, using
the Mori technique. Dependences of the conductivity and po-
larizability on the level spread width and Fermi energy are
determined. The form of the frequency dependence of the
conductivity as well as the spatial dispersion pattern are
analyzed.

1. Introduction

It is now quite clear that a comprehensive description of the
localization of a quantum particle in a random field can be
accomplished in the framework of either field or statistical
approaches. The former is based on the Habbard±Stratono-
vich transformation which allows the exponent of the
quadratic form to be expressed through the exponent of the
linear one by integration over the effective field which is in
fact the subject matter of the subsequent discussion. The field
approach has recently been reviewed in [1] so that we shall
confine ourselves to the statistical theory arising from the

initial formulation of the problem by Anderson [2] and
bearing in mind that field variables represent a real fermion
rather than a fictitious field.

From the very beginning, the Anderson model has been
developed along two main lines. The first one is the site
(locator) representation made by Anderson [2] while the
second is the wave (propagator) representation of Edwards
[3]. Accordingly, the role of the initial (disordered) state in the
site representation is played by the localized one, and the
transition actually consists in the formation of the extended
state band. Conversely, Edwards' wave representation
assumes the extended state to be the initial one, while the
rearrangement of the system is associated with localization.

Methodologically, the theory of localization comprises
scaling theories [4 ± 6], the replica method [7, 8], the
supersymmetrical approach [9, 10], diagram techniques [11
± 15], and the mode-coupling technique [16, 17]. It also
examines effects of interaction between electrons on the
parameters of a system undergoing the Mott transition (see
[1, 15]). The majority of these works considered the
behaviour of collective excitations in the Edwards represen-
tation. Evidently, this can be accounted for by the fact that
the determination of major experimental quantities (e.g.,
conductivity and polarization) is most naturally achieved in
the framework of this approach.

Our reasoning is based on the dualism of the Anderson
model which allows for its description in terms of both site
and wave representations. The site representation is described
in Section 2 while Section 3 is devoted to the discussion of the
wave representation. The concluding Section 4 compares the
two approaches and considers ways and prospects of their
unification. To our knowledge, the problem of localization
has not till now been considered in this perspective.

Apart from dualism, a possibility to represent the
Anderson transition by a nonlinear s-model [7, 8] suggests
the presence of effective interaction in the one-particle
problem with the random potential. Hence, the question of
its nature is raised which is possible to address in two ways,
that is using the locator representation based on theAnderson
scheme or Edwards' propagator representation.

In the framework of the former approach, system
perturbation is associated with overlapping of wave func-
tions. It turns out (see Section 2) that the Anderson
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Hamiltonian is degenerate with respect to permutational
symmetry of the system's site wave function [18]. Removing
of this degeneracy reduces the one-particle problem to the site
analog of the BCS model in the theory of superconductivity.
Accordingly, ergodicity breaking in the Anderson transition
is described by analogy with a phase transition of the 2� d
order, where d! 0 is the addition caused by site resonance
and corresponding to the logarithmic singularity [19]. It is
shown in the end of Section 2 that the locator approach does
not only allows one-particle singularities to be represented
but also the collective mode of particle diffusion in the
randompotential to be described. A self-consistent considera-
tion of the two-particle Green function j�k; z� has demon-
strated [14] that in the limit of small values of the wave vector
k and collective excitation frequency z, it has a characteristic
singularity j / �z� iDk2�ÿ1 the pole of which is determined
by the diffusion coefficient D.

In the framework of the propagator approach, the
random potential plays the role of perturbation. A diagram-
matic investigation [11 ± 15] of the collective mode both
yielded the representation of the j�k; z� function diffusion
pole and provided evidence that zero values of the diffusion
coefficient are due to fan-shaped diagrams derived from
ladder ones by a turn of the hole propagator rather than to
the ladder sequence the terms of which cancel each other.
However, the approach [11 ± 15] describes only the weak
coupling �W5Wc� limit for systems of different dimension-
alities. Examination of the entire W interval for a three-
dimensional system is possible in the framework of the
equivalent mode-coupling technique [16, 17] discussed in
Section 3. This method is based on the Zwanzig ±Mori
technique where the electron density correlator j�z� is
expressed in the form of a second order chain fraction
whose kernel describes memory effects. The mode-coupling
approximation consists in that the memory functionM�z� is
expressed through an initial correlator j�z� in the form of the
linear relationship M�z� � lj�z�, where the effective cou-
pling constant l /W2 is determined by the energy level
spread width W, the linearity of the relation M / j being
due to the absence of interaction. A self-consistent study of
the system [17] indicates that, in the static limit z! 0,
frequency dependences D�z�, g�z� of the diffusion coefficient
and compressibility factor have the form D�z� � const � D,
g�z� � i�n=m�D=z in the extended state and g�z� � const � g,
D�z� � ÿi�m=n� qz in the localized one (here, m, n are the
particle mass and volume concentration, respectively). Static
constants D, g near the critical level spread Wc exhibit the
root-like behaviour.

2. The Anderson site representation

Let us consider a gas of noninteracting fermions at zero
temperature. Let us further assume, for certainty, that it is a
three-dimensional gas of electrons with charge e � 1, number
density n, and mass m.

To begin with, there is a qualitative solution to the
problem. Let N0 impurity atoms be placed in sites rl of a
regular lattice and have the energy levels ei distributed as
Pi � P �ei�, where the function P�e� is dome-shaped, with the
width W and a value �e � Nÿ10

P
i ei e in the centre of the

cupola. On overlapping site wave functions jl
i�r� �

jei�rÿ rl� with the overlap integral Jlmij �
�
jl�
i �r�jm

j �r� dr,
the spectrum En of the system does not come to the initial set
ei, and the distribution function g � g�En� does not coincide

with the distribution Pi �e� of isolated levels. In the absence of
overlapping �Jlmij � 0�, the wave function FE�r� of the one-
electron state E � En has the form

FE�r� �
X
i

aiE j
l
i �r� �1�

and the localized site is realized in which an electron initially
placed at the site l remains there infinitely long. This means
that of all the coefficients in (1), there is only one nonzero
coefficient aiE � dEei . Overlapping of the wave functionsjl

i �r�
leads to qualitative rearrangement of the system. To clarify
the situation, let us consider two neighbour sites r1 and r2
with levels e1, e2 and the overlap integral J1212 � J. The states of
an electron at these sites are defined by the wave functions

F0 � uj1 ÿ vj2 ;
F1 � uj2 � vj1 ;
u2

v2

�
� 1

2

�
1� e1 ÿ e2

E

�
;

E � � e1 ÿ e2� �2�J 2 e1 � e2� �2�1=2 ; �2�
with the corresponding energies E0;1 � �1=2�

��e1 � e2� � E�
(here, notations u � a1E0

� a2E1
, v � ÿa2E0

� a1E0
; j1 � jl

1�r�,
j2 � jl

2�r�, l � 1; 2� are introduced, for brevity). At
j�e1 ÿ e2�=Jj4 1, the overlapping of site functions is negligi-
ble, and the electronic states on the pair are reduced to the
states at isolated sites. In the opposite case of
j�e1 ÿ e2�=Jj4 1, the site representation has no sense, and
one can speak only of states on a pair of bound sites (PBS).
For an isolated PBS, the low-energy state E0 is realized with
the wave function F0.

This problem shows that the presence of PBS causes a
dramatic change in the system. It leads to ei splitting into two
levels En �n � 0; 1� and separation of the corresponding
constituent Fn�E; r� from the one-electron function (1),
whereas in the absence of PBS, only one ei value is valid for
each site. Clustering ofN PBS is responsible for the increased
number of terms in (1) entering the cluster constituent
Fn�E; r� from 2 to 2N ; for N 4 1, the site states jl

i �r�
undergo rearrangement to the Bloch states
jk�r� � exp�ikr�. As a result, the state wave function takes
the form

FE�r� �
X
c

X
k

bk
nc �E�jk�r� �

X
i

0
aiE j

l
i �r�

� Fn�E; r� � F0E�r�; �3�
where summation over c is performed forNc clusters while the
wave vector k runs through N c values corresponding to the
number of PBS in a given cluster c; the prime implies that
summation over i is carried out only for unbound sites. In
accordance with (3), the distribution function for electronic
states g�E� � � jFE�r�j2 dr is written as

g�E� � 2S �E� � AP �eÿ �e�; �4�

where the dependence 2S �E� �Pn

� jFn�E; r�j2 dr describes
the distribution of PBS, and P�eÿ �e�Ð that of isolated sites;
coefficientA and the form of dependence S�E� are determined
by the relation between the level spread width and the
characteristic value I � J�e of the overlap integral measured
in energy units. AtW4 jIj, when the number of PBS is small
and they are as a rule isolated, A � 1, S�E� � BP�eÿ �e�,
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where the coefficient B � Nc=N0 determined by the finite
number of PBS Nc is infinitesimal in the macroscopical limit
N0 !1. Therefore, at W4 jIj, the state distribution
g�e� � P �eÿ �e� is largely given by the superposition of the
site states (1); accordingly, the ground state energy is
determined by the sum of ei levels and is approximately
equal to �eN0. The number of PBS increases with decreasing
level spreading, and they form bound clusters of which the
optimal one containsN c PBS, has energyEc, and is contained
in the volumeNc times. The formation of PBS clusters results
in a difference between distributions 2S �E� and P�eÿ �e�, that
is in the precipitation of maxima S�E� � N =N0, N � N cNc

at E � Ec, with the ground state energy being reduced by
� jIjN which is negligible as compared with the macroscopic
value�eN0. AsW further decreases, the numberN c of PBS in a
cluster and the number of clustersNc corresponding to energy
Ec increase while the total number of PBS in themN � N cNc

is a finite part of the site number N0: 2N =N0 ! Z2 6� 0 at
N0 !1. At so doing the maximum of dependence S�E�
becomes higher and narrower and assumes the form
2S�E� � Z2d�Eÿ Ec� at the critical level spreading Wc. The
appearance of the d-shaped peak suggests the onset of the
Bose-Einstein PBS condensation and, consequently, the
transition into an extended state, the formation of which
results in a decrease of the ground state energy by the
macroscopic value � jI j N � jI j Z2N0=2.

The PBS introduced above are the composite Bose-
particles formed by two fermions. When level spreading is
large and the number of PBS is small they may be regarded as
structureless bosons acted upon by repulsive forces (indeed, it
is disadvantageous for PBS in the localized state to bind in an
infinite cluster which can be interpreted as their effective
repulsion). At a finite number of PBS, the behaviour of the
system is governed by the optimal cluster (or, in other words,
by the most probable Green function used by Anderson [2]).
Therefore, in an approach that assumes the localized state to
be the initial (disordered) one must use the site Anderson
Hamiltonian [2]. It is exactly this version that is presented
below.

If the extended state is assumed to be the initial one, it is
advantageous for PBS to form an infinite cluster, because of
attractive forces between them.However, this does not lead to
instability of the system's ground state since PBS density is so
high that their structure is exposed and, in agreement with the
Pauli principle for fermions whereof PBS consist, the recipro-
cal repulsion equilibrating `Bose attraction' between them
becomes apparent{ Formally, this can be taken into account
[7] by substituting anticommuting fields for commuting
ones. For this purpose, Edwards' approach [3] based on the
wave representation is normally used.

According to [2, 12], the description of the Anderson
transition requires summation of infinite series of diverging
terms which arise from ergodicity breaking. In the framework
of the Edwards approach, this difficulty will be resolved (see
Section 3) by the initial alteration of the pole structure of the

relaxation function followed by a procedure of self-consisting
based on the mode-coupling technique [16]. This provides,
from the very beginning, the possibility to rearrange the
system's phase space. There was a similar situation in the
theory of superconductivity where the restructuring of the
ground state is possible due to the presence of Cooper pairs
[20]. This implies that the Anderson Hamiltonian which acts
in the space of site wave functions must also be replaced by a
certain effective Hamiltonian defined on functions corre-
sponding to the stable ground state. Such a Hamiltonian
was first proposed in [18], and the consistent solution was
obtained in [19].

The above qualitative picture of the Anderson transition
shows that delocalization of the electron state E is associated
with the partition (3) of the corresponding wave function
FE�r� into constituents Fn�E; r�, FE�r� of bound and
unbound sites, respectively. The former constituent repre-
sents the superposition of the quasi-Bloch states jk�r� and
the latter Ð that of the site states jl

i�r�. At a given number
of PBS N , the fraction of the quasi-Bloch states has the
order 2N =N0 � Z2 while that of the site states, the order
1ÿ 2N =N0 � 1ÿ Z2. A characteristic feature of the consti-
tuent F0E�r� �

P0
i a

i
E j

l
i �r� is the presence of the free (non-

summable) index l on the state functions jl
i�r�. From the

physical point of view, this means that a set of ei levels can be
ambiguously distributed over sites rl, which accounts for the
symmetry of an unbound site system relative to the G0 group
consisting of N0!, N0 � N0 ÿ 2N � N0�1ÿ Z2� permutations
of sites rl over levels ei. A set of F0E�r� functions correspond-
ing to different arrangements of rl over ei provides the basis
for group G 0. In the absence of overlapping, the group G 0 is
reduced to the complete group G of N0! permutations while
the configuration space of the system is determined by a set
of N0! functions (1). Binding of 2N � Z2N0 sites in a cluster
leads to the reduction of the complete group G to its
subgroup G 0 the power of which is given by the parameter
Z: at Z � 0 in the macroscopic approximation (i.e. up to
terms Nÿ10 ! 0), groups G 0 and G coincide, while at Z � 1
the group G 0 is reduced to an unit element. Parameter Z
which takes values of Z � 0 and 0 < Z4 1 in localized and
extended states, respectively, corresponds to the usual
definition of the order parameter in the theory of phase
transitions. The localized state characterized by the complete
group G is highly symmetrical and corresponds to a
disordered phase �Z � 0�, while the low-symmetry extended
state given by the subgroup G 0 corresponds to an ordered
phase �Z 6� 0�.

Thus, overlapping of site wave functions leads to the
decomposition of the entire configuration space fFg com-
prised by N0! permutations of sites l in (1) into subspaces
fFng, fF0g, which correspond to bound and unbound sites,
respectively. Characteristically, in the former subspace, a
system may be in states n � 0; 1 though the state F0

corresponding to the lowest energy E0 is more likely. The
one-electron Hamiltonian of the problem

H �
X
i

ei c
�i
l c

i
m �

X
l 6�m

Ilmij c
�i
l c

j
m � H0 � V �5�

is symmetrical with respect to permutations of the complete
group{ In fact, this is familiar situation in the theory of phase

{Of course, PBS in extended states should not be unerstood literally, i.e. as
certain quasi-molecules composed of two resonance sites. Indeed, the

overlap integral for the sites contained in a PBS is of the same order as that

for neighbour sites belonging to different PBS whereas in a real molecule

the binding energy of its constituents greatly exceeds the energy of

interaction between molecules. It is therefore necessary to represent the

entire set of bound sites in which they continuosly undergo binding in

different combinations to give rise to PBS complexes playing the role of

quasi-particles (obeying Bose statistics).

{ Interestingly, in a one-level termH0, sites l,m are subject to permutations

over fixed levels i, while in the interstice term V, permutations of levels i, j

are over sites l, m.
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transitions where the symmetry of the configuration space of
a system with given boundary conditions is lower than the
symmetry of the Hamiltonian. In order to remove such
degeneration, one should take into account that the equili-
brium state of a system is realized on the subspace
fF0g 
 fF0g rather than on the entire space fFg. Therefore,
the effective Hamiltonian defined on the appropriate basis
needs to be resolved from (5). In the two-level approximation
implying the presence of two possible statesFn, n � 0; 1, this is
accomplished by the introduction of projection operators

jF0i � P jFi; jF1i � QjFi; P�Q � 1: �6�

Assuming jI lmij j5W, the operatorV in (5) may be regarded as
a perturbation{ and then the effective Hamiltonian is
expressed in the form of the following series [21]

Heff � PH0P�
X1
n�0

PV

�
QV

E0 ÿH0

�n

P; �7�

where E0 is the energy of the system in the state F0. Hence,
taking into account only the overlap of the z nearest
neighbours, the following relationship is true [18]

H0 �
X
l

�el ÿ l� a�l al ÿ
V

N0

X
lm

a�l b
�
�l
b �mam �8�

for the HamiltonianH 0 � Heff ÿ lN0 written with regard for
the shift E � lÿ �e from the band centre, with an accuracy up
to �zI=W�25 1. Here, the overlap integral I � Ilmij is assumed
to be independent of l, m, i, j; l is the chemical potential of
localized particles (not to be confused with the Fermi energy
m); V � N0�zI�2=�E1 ÿ E0� is the effective coupling constant;
E1 is the system energy in the state F1; operators a

�
l , al of

creation and annihilation of particles in the state F0, and
operators b�l , bl of the corresponding antiparticles in the state
F1 are defined by the equalities

a�l �
X
i

Pi c
i�
l ; al �

X
i

ci
lPi;

b�l �
X
i

ci
l Qi; bl �

X
i

Qi c
i�
l ; �9�

where Pi, Qi are the projection operators at the level i
appearing in the form of products in the complete operators
P, Q; operators at the `site' �l adjacent to the given one l have
the form b�l � zÿ1

P
m bl�m, where summation is performed

over the nearest neighbours.
Therefore, spontaneous symmetry violation with respect

to permutations of ei levels over sites ri, which consists in the
transition from group G in the localized state to its subgroup
G 0 in the extended one, leads to the problem of an effective
system of interacting particles and antiparticles of the Fermi
type{. The nature of this interaction does not depend on the
sign of the overlap integral and is given only by the sign of the
difference DE � E1 ÿ E0 > 0 between the system energies in
states F1 and F0. Notice that the appearance of the effective

interaction in systems which originally contain only over-
lapping wave functions is intrinsic not only in the Anderson
model but also in the spin glass model. Analysis of the latter
model [23] is possible by the replica method in which an
effective interaction results from averaging over the random
overlap-integral distribution (with the value of interaction
being proportional to the square of its dispersion). It is
worthwhile to emphasize that in the replica method, an
effective interaction is the result of a mathematical trick and
has no concrete physical sense. In the approach being
considered, such an interaction shows exchange character
and results from permutational symmetry violation in the
system.

Turning to the formalism based on the effective Hamilto-
nian (8), it is worth noting that it coincides with the model
BCS Hamiltonian in terms of form, with the sole exception
that the site representation is used instead of the momentum
one and the part of electrons with opposite momenta and
spins is played by particles and antiparticles at the `neigh-
bouring' sites. Similar to [24], it is possible to demonstrate
that atN0 !1, the behaviour of the system is asymptotically
defined by the approximating Hamiltonian which takes, in
the self-consistent field representation, the form

H �
X
l

�el ÿ l� a�l al ÿ
V

2

X
l

Z�b�l al � Za�l b��l
� �

� V

4
jZj2N0:

�10�

Anomalous quasi-averages

Z � 2

N0

X
l

hb�l ali �
2

N0

X
il

hQi c
i�
�l
ci
l Pii;

Z� � 2

N0

X
l

ha�l b��l i �
2

N0

X
il

hPi c
i�
l c

i
�l Qii; �11�

that define the amplitude of particle transition from state F0

at the site l to state F1 at the `neighbouring' site �l (and vice
versa for Z�) represent the order parameter corresponding to
the extended state. Up to the factor �N0=2�1=2, the values of
Z�, Z coincide with the condensate part of the PBS operators
C�l � a�l b

�
�l
, Cl � b�l al, which define the collective excitation

mode at a zero quasi-momentum:



C�k � 0�� � � 2

N0

�1=2X
l

hb�l ali;



C��k � 0�� � � 2

N0

�1=2X
l

ha�l b��l i: �12�

Hence, the Bose-condensation of N PBS implying

C�k � 0�� � N 1=2

leads to the ordering
Z � N0=2� �ÿ1=2
C�k � 0�� � 2N =N0� �1=2. The PBS distribu-
tion function over quasi-momenta

N0

2
S�k� � 
C��k�C�k�� � ���
C�k�����2 �13�

acquires a d-shaped peak S�0� � 2N =N0 � Z2 in height.
Characteristically, the given singularity specifically arises in
a two-particle, but not one-particle, Green function asso-
ciated with the PBS distribution. This agrees with the results
of the scaling theory [25] according to which the critical
behaviour near the mobility threshold Ec is exhibited by
tensor Qik

ab � ji
aj

k
b, which is due to spontaneous symmetry

violation (transition from the group O�2n� to the non-

{ The mutual complementarity of the Anderson and Edwards representa-
tions is apparent from the fact that the role of perturbation in [17] is played

by a potential energy of carriers and in (5) Ð by the hopping energy.

{ In principle, such a situation is not new: for example, spontaneous

symmetry violation in the Higgs model [22] gives rise to vector field mass.

In our case, lowered permutational symmetry leads to exchange

interaction.
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compact group O�n; n�) rather than by field variables ji
a

(i � 1, 2; a � 1, . . ., n, n! 0 is the replica space size)
themselves. Corresponding to this tensor is the definition of
the order parameter (11) in the form of the average over a pair
of operators al, bl.

Diagonalization of the Hamiltonian (10) is accomplished
by the transformation

al� � ul al ÿ vl b��l ; alÿ � ul bl � vl a��l ; �14�

where u2l � v2l � 1. This yields

H � U� 1

2

X
l

El a�l�al� � a��lÿa�lÿ
� �

� 1

2

X
l

�el ÿ l��a�l�al� ÿ a��lÿa�lÿ�; �15�

where

U � N0

2

�
V

2
jZj2 ÿ 1

N0

X
l

�
El ÿ �el ÿ l�

��
;

El �
����������������������������
�el ÿ l�2 � D2

q
; D � VZ; Z � Z�;

u2l
v2l

�
� 1

2

�
1� el ÿ l

El

�
: �16�

The quantity U represents the energy of the ground state
whose wave function is

jC0i �
Y
l

�ul � vl a�l b��l � j0i; �17�

where j0i is the wave function of Fermi vacuum. When
excitations defined by operators al�, a�lÿ do not coincide,
they are described by the gapless dispersion laws
E���l � �1=2��El � �el ÿ l��, and the phase transition is impos-
sible. In order to realize it in the framework of the developed
scheme, it is necessary to postulate coincident behaviour of
elementary excitations in states F0 and F1 (physically, this
means that excitation at site l in the stateF0 leads to excitation
at the `neighbouring' site �l in the state F1). Then, energy El of
elementary excitations defined by the operator al � al� � a�lÿ
is characterized by the gap width D proportional to the order
parameter Z.

To further develop the theory, it is necessary to specify
the averaging procedure



f �el�

� �Pwl f �el� by setting the
probability wl to have the energy el at the site rl. In other
words, a statistical theory for the el level distribution is
needed. It can be built up by analogy with the corresponding
theory of thermodynamic systems [26] with the temperature
W=2.

The Anderson model [2] assumes that levels N0 of
impurity atoms are equidistantly distributed over the W
interval so that the distance between them is
D �W=N0 � const. However, dependence D�N0� ensuing
from general statistical considerations (see paragraph 7 in
Ref. [26]) must have the form

D �W exp�ÿsN0�; �18�
where s is the entropy per impurity atom. ForD�N0� to have a
realistic form, the equidistance condition must be cancelled.
Let us characterize nonuniformity of the level distribution by

constant W � 2� d lnD�e�= de�ÿ1. Then, level density
P�e� / 1=D�e� / exp�ÿ2e=W� falls down with increasing e
atW > 0 and grows atW < 0. Taking the most natural and
simple form of the symmetric distribution

P�e� � 1

W
exp

�
ÿ 2jeÿ �ej

W

�
; �19�

whereW5 0 plays the role of the level spread width, one has
P�e� � d�eÿ �e� atW � 0.

Dependence (18) may be used to find the probability
wl / expS�el� to have the energy el (S � sN0 is the total
entropy):

wl � const � exp
�
ÿ 2el
W

�
: �20�

Formally, statistics given by the distribution function (20)
coincides with the statistics of a thermodynamic system with
the temperature W. Bearing in mind this coincidence, it is
possible to develop a statistical theory for the random systems
considered by analogy with the corresponding theory of
thermodynamic systems, where the dependence (20) plays
the role of the Gibbs distribution. Specifically, for the
distribution function nl � ha�l ali of elementary excitations
with the energy El � ��el ÿ l�2 � D2�1=2, the following relation
can be obtained in the usual way [26]:

nl �
�
1� exp

2El
W

�ÿ1
: �21�

EqualityW � 0 corresponds to the ground state where nl � 0.
In the opposite case of W � 1, elementary excitations
occupy their bands by half (nl � 1=2) and coincide with
particles and antiparticles given by operators al, b�l. Finally,
at small values ofW�exp�2D=W�4 1�, equality (21) takes the
form of the Boltzmann distribution. The distribution func-
tions nl � ha�l ali, pl � hb�l bli of interacting particles and
antiparticles are related to nl by the formula

2nl � 2p�l � 1ÿ el ÿ l
E
�1ÿ 2nl� �22�

arising from (14). As expected, the identityX
i

hci�
l c

i
mi � ha�l ami � hblb�mi � hbl ami � ha�l b�mi �23�

following from the relation Pi �Qi � 1 yields
Nl �

P
ihci�

l c
i
li � 1 for the number of levels at a given site.

Transition from site functions thus found to corresponding
energy distributions is accomplished with the help of
multiplication by the level densityP�e� given by equality (19).

The gap width equation can be obtained by substituting
inverse equalities (14) into definition (11):

V

W

�1
ÿ1

tanh
� ���������������������������
�xÿ e�2 � d2

q
=2
�
exp�ÿjxj����������������������������

�xÿ e�2 � d2
q dx � 1: �24�

Here, the transition
P

l . . .! N0

�
. . .P�e� de was used,

d � 2D=W, e � 2E=W, E � lÿ �e being the shift from the
band centre. Unlike the situation in the BCS model, the
interaction parameter V � ND20=DE, where D0 � zjIj, is not
constant, and its value is determined by the energy difference
DE between states F1 and F0 of the system. For an isolated
PBS, it equals El while in the presence of the macroscopic
delocalized phase DE �Pl El. Hence, for V it follows
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Vÿ1 � W

�2D0�2
�1
ÿ1

���������������������������
�xÿ e�2 � d2

q
exp�ÿjxj� dx: �25�

During transition to the extended state, the total energy
jump of a system DF � Fd ÿ Fl (an analog of the thermo-
dynamic potential) is described by the formula

DF � ÿN0

4

�V
0

D2

V2
dV; �26�

which follows from equalities � dF= dV�W; l � hqH=qVi
� qU=qV. In compliance with (26), delocalization is asso-
ciated with a decrease in F, as is usual in a transition to the
low-symmetry phase.

The elementary excitation energy Eex �
P

l Elnl has the
form

Eex � N0

4

�1
ÿ1

���������������������������
�xÿ e�2 � d2

q
1� exp

���������������������������
�xÿ e�2 � d2

q exp�ÿjxj� dx: �27�

The ground state of a systemdefined bywave function (17)
is realized at W � 0, when all the levels coincide
�P�e� � d�eÿ �e��, and elementary excitations are absent
�nl � 0�. At the band centre (E � 0), the order parameter
and the gap width take maximal values Z � 1,D � 1 while the
ground state energy and the total energy jump of the system
are minimal: U � DF � ÿN0=4; the interaction parameter is
V � 1 (here and henceforth, quantities having energy dimen-
sion are given in units of D0 � zjIj, if not stated otherwise).
The states F0 and F1 are half occupied by particles and
antiparticles (nl � p�l � 1=2). Following a shift from the
band centre by E, D2 � Z2 � 1ÿ E2, V � 1, DF � ÿ�N0=4��
�1ÿ E2�, and nl � p�l � �1� E�=2. Therefore, with growingE,
the order parameter, the gap width, and the absolute value of
the change in the total energy of the system decrease
monotonically on delocalization and vanish at the boundary
value of Ec � 1. Accordingly, the number of particles and
antiparticles increases to the maximum value nl � p�l � 1.

It is easy to see that the ground state of a random system as
described above corresponds to the usual spread of coincident
energy levels el � �e into the extended state band as wide as
2Ec � 2zjIj (in conventional units). The density of extended
states normalized to unity is proportional to the order
parameter:

g�E� � 2

p
Z�E� � 2

p

���������������
1ÿ E 2
p

: �28�

Level spreading is accompanied by elementary excitations
the number of which is nl � exp�ÿ2=W�5 1. Up to the first-
order nonvanishing terms inW5 1, one has

D2 � Z2 � �1ÿ E 2� ÿW 2

2
; V � 1 ;

DF � ÿN0

4

�
�1ÿ E 2� ÿW 2

2

�
;

Eex � N0 exp

�
ÿ 2

W

�
; Ec � 1�W 2

4
;

2nl � 2p�l

� �1� E� ÿ �1ÿ E 2��el ÿ �e� at jel ÿ �ej4 W

2
;

1� E at jel ÿ �ej4W :

8<: �29�

The power-like dependence of D, Z, jDFj on the level spread
width W (unlike the exponential one normally observed in
phase transitions) is due to the dependence of the interaction
parameter V on the excitation spectrum. It follows from (29)
that, at small spreading, this dependence is apparent only
with growing distance from the band centre �E 6� 0�. For
small shifts �E < Ecr�, level spreading leads to a decrease inD,
Z, jDFj, the difference of the interaction parameterV�W� from
unity being responsible for the difference in the boundary
values of Ecr for the dependences Z�W� �Ecr � �51=2 ÿ 1�=2�
and D�W�, DF�W��Ecr � 2ÿ1=2�. At Ecr < E < 1, small
spread width results in a square-law increase of D, Z, jDFj
quantities, which becomes linear at the point where E � 1.
For E > 1, Z, D are nonvanishing only at W >W0, where Z,
D / ������������������

WÿW0

p
(for Z�W�, W 2

0 � 2�1ÿ Eÿ2�5 1 while for
D�W�, W 2

0 � 2�E2 ÿ 1�5 1); this yields a region with the
positive derivative in the dependence Ec�W� (Fig. 1).

In accordance with (27), the excitation energy Eex and the
quantityCex � dEex= dW, which governs its rise with increas-
ing level spreading (an analog of heat capacity in thermo-
dynamics) have the forms

Eex � N0�1ÿ E 2�ÿ1 exp
�
ÿ 2

W

�
;

Cex � 2N0�1ÿ E 2�ÿ1Wÿ2 exp
�
ÿ 2

W

�
;

W5 1; E < 1: �30�
A shift from the band centre leads to a power-like growth of
Eex,Cex, whose exponential smallness is due to the presence of
gap.

At arbitrary level spread width W and the shift from the
band centre E, both the gap width D and the interaction
parameter V (hence, the order parameter Z � D=V) may be
only found from the numerical solution of Eqns (24), (25).
The forms of the resulting dependences are shown in Figs 1, 2.
Their characteristic features are the vanishing D, Z and the
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Figure 1.Gap width D in the single excitation spectrum (solid lines; figures

indicate shifts E from the band centre), maximum shift Ec from the band

centre in the extended state (dashed line), order parameter Z at E � 0 (dot-

and-dash line), and squared gap width D2 at E � 0 (dotted line) as

functions of the level spread widthW.
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cusp of the dependence V�W� at the critical spread widthWc,
the maximum value of which (in conventional units) equals

Wc 0 � 2

��������
ln
p
2

r
zjI j � 1:344zjI j �31�

and is attained at E � 0. The value ofWc 0=zjI j thus obtained
is rather close to 3.3 found in the framework of the Edwards
approach [13] and also to 2.4 and 1.8 obtained in the coherent
potential [2] and locator [14] approximations, respectively.
Unlike temperature dependence of the critical field normally
observed in phase transitions, the dependence Ec�W� of the
extended state band width on level spreading in the present
case (the dashed line in Fig. 1) does not decrease mono-
tonically; rather, the spreading slightly widens the band at
W <Wm � 0:35 (for W 25 1, see (29)) and quickly narrows
it at 05 �Wc 0 ÿW�=Wc 05 1:

Ec � 2ÿ1=2W2
c 0

�
1ÿ W

Wc 0

�1=2

� 1:277

�
1ÿ W

Wc 0

�1=2

: �32�

Nonmonotonical nature of the dependence Ec�W� has been
first reported in [27].

It follows from (25) that a rise in the interaction parameter
is due to a decrease of elementary excitation energy with
increasing level spreading (owing to a fall of d � 2D=W);
reduction of this parameter is associated with a trivial rise of
the integral in the right-hand side of (25) which occurs as the
shift from the band centre grows (the former factor prevails at
W <Wc and the latter, at W >Wc). At the band centre
(E � 0), the level spreading W <Wc leads to a slow growth
of the interaction parameter from V0 � 1. In the case of the
finite shift E < 1, V�W� first decreases with a power greater
than two (see (29)) and increases afterwards (Fig. 2). At
1 < E < Em, Em � 1:02 and the value of V � Eÿ1 is constant
in the range 04W <W0, whereW

2
0 � 2�E 2 ÿ 1�; while there

is a cusp at point W �W0 after which V first shows a slight
decrease and then rises. In the vicinity of the critical spreading
�05 �Wc 0 ÿW�=Wc 05 1; �E=Wc 0�25 1� one finds

V � 2

Wc0

�
1ÿWc 0 ÿW

Wc 0
ÿ 2

�
E

Wc 0

�2�
: �33�

Above the critical point (W >Wc) it follows that

Vÿ1 � E�W

2
exp

�
ÿ 2E
W

�
: �34�

A jump of the derivative dV= dW at W �Wc caused by the
spectrum rearrangement reaches its maximum 4=Wc 0 �
2:214 at E � 0 but vanishes with growing E.

As is typical of phase transitions, the gap width at the
band centre (E � 0) decreases monotonically with level
spreading W, which plays the role of temperature in our
model. However, the initial portion of the dependence D�W�
becomes flatter at the shift E 6� 0 and, starting from
Ecr � 2ÿ1=2, the gap first widens and then narrows (solid
curves in Fig. 1). At greater shifts �1 < E < Em, Em � 1:02),
the picture is qualitatively different from the usual one: the
gap opens at W0 � 21=2�E 2 ÿ 1�1=2 but not due to zero
spreading. This difference can be accounted for by the
dependence of the interaction parameter on the system's
spectrum and is most conspicuous at small W and near the
critical point. By excluding parameter V from (24), (25), one
has at the band centre, up to the first-order nonvanishing
terms in D=Wc 05 1:�

Wc 0

W

�2

�
�1
0

���������������
x2 � d2

p
exp�ÿx� dx

� p
2
d
�
H1�d� ÿ Y1�d�

�
; �35�

whereH1�d� is the Struve function, Y1�d� is the second-order
Bessel function [28]. At d5 1, H1�d� � �2=3p�d2,
Y1�d� � ÿ2=pd� �d=p� ln�d=2�, and it follows from (35) that�

D
Wc 0

�2

ln

�
D
W

�
�Wc 0 ÿW

Wc 0
: �36�

Therefore, in the system under consideration, the decrease of
D nearWc is slower than in an ordinary second-order phase
transition without a logarithm in such formula as (36): in the
former case, the rate of the dD2= dW fall is constant, whereas
in the latter, dD2= dW �Wc 0= ln�D=Wc 0� and slowly tends to
zero at W!Wc 0. This difference does not affect the
graphical pattern of the dependence D�W�. For comparison,
the dependence D2�W� corresponding to E � 0 is plotted in
Fig. 1 (dotted line), which is tangential to the abscissa at
W �Wc.

The Z�W� dependence differs from D�W� due to a
change in V with level spreading (cf. dot-and-dash and
solid curves corresponding to E � 0 in Fig. 1). At W 25 1,
the order parameter is defined by equality (29); at E � 0, in
the vicinity of the critical point �0 < �Wc 0 ÿW�=Wc 05 1�
we arrive at�

Z
0:903

�2

ln

�
Z

0:903

�
�Wc 0 ÿW

Wc 0
: �37�

A change in the total energy DF � Fd ÿ Fl caused by
delocalization is minimal (ÿ�N0z=4�jIj, in conventional
units) for a regular system (W � 0) at the band centre
E � 0. The DF change being accounted for by the
dependence D�W�, its value can either increase or decrease
with a level spreading and remains negative below the
critical point Wc. This reflects the aforementioned instabil-
ity of the localized state due to the presence of PBS. Near
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Figure 2.The effective interaction parameterV as a function of level spread

widthW (figures on the lines indicate shifts E from the band centre).
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Wc 0, one arrives at the expression

DF � N

2

�
Wc 0

2

�3� D
Wc 0

�4

ln

�
D

Wc 0

�
� 0:228N0Z4 ln�1:107Z�; �38�

which differs from the ordinary one in that it contains a
logarithm. This fact is of paramount importance in the sense
that the difference between `spreading capacities'
DC � ÿWq2DF=qW 2 vanishes at the critical point according
to equality

DC � ÿ�N0=2��Wc 0=2�2
ln�D=Wc 0� � ÿ0:226 N0

ln�1:107Z� ; �39�

while its derivative with respect toW tends toward ÿ1. This
fact can be conventionally interpreted by relating the transi-
tion into the extended state to the 2� d-order, where d! 0 is
the addition due to logarithm. It arises from the dependence
of the effective interaction parameter on the spectrum of the
system.

Similar to the transition into a spin glass, the above
singularity can be perceived as a cusp of the dependence
C�W� at W �Wc. However, in spin glasses, a jump of the
derivative dC= dT at the cusp is finite [23], whereas in our case
D� dC= dW� � ÿ1, and in the experiment this cusp may be
interpreted as a jump of the quantity itself rather than that of
its derivative.

The analytical expression for the total energy of elemen-
tary excitations Eex may be obtained only in the limiting cases.
AtW25 1, one has (29), while atW5Wc0, E � 0, it follows

Eex � p
2 ÿ 9

24
N0W � 0:036N0W: �40�

Accordingly, for the `spreading capacity' Cex � dEex= dW,
we get Cex � 0:036N0.

The above discussion has demonstrated that the shift E
from the band centre plays the part of a field conjugate to the
order parameter, whose nonzero values are realized when E
does not exceed the critical value Ec (see the dashed line in
Fig. 1). The self-consistent field approximation used here is in
line with the mean-field theory, which is known to be
essentially reduced to the Landau phenomenological theory.
Therefore, the standard phase-transition theory [26] may be
used to examine behaviour of physical quantities on deloca-
lization, with the sole difference that the expansion is carried
out in Z2 ln Z rather than in Z2. The comparison with the data
obtained allows the microscopical sense of phenomenological
parameters to be elucidated.

Thus, the theory of delocalization can be constructed in
analogy to the microscopic theory of superconductivity [20],
where the role of the order parameter is played by the square
root of the ratio of bound to total site numbers and the role of
its conjugate field, by a shift from the band centre. A
significant difference from the BCS theory is due to the
dependence of the effective PBS interaction parameter on
the system spectrum. This results in the anomalous behaviour
of the order parameter near the critical level spreading which
can be expressed by referring the transition into the extended
state to the 2� d-order, where d! 0 is the addition caused by
the presence of the logarithmic multiplier. The total energy of
the system is then a nonanalytical function of the order
parameter and cannot be expanded in its powers (see (38)).

The major requisites that facilitated the further develop-
ment of the present theory were taking into consideration the
rearrangement of the system ground state and ignoring the
tacitly implied constant probability of level occupation. The
former allowed the Hamiltonian for the problem to bring to
the BCS form, and the latter Ð to reduce averaging to the
procedure of the type used in statistical physics. Certainly, for
level distribution density, it is possible to use, instead of (19),
any other one-parametric function determining the dome-
shaped curve. However, the form (20) of the level occupation
probability is essential in the sense that it is (20) that allows for
the use of the conventional apparatus of quantum statistics.
Our choice of function (19) for the level distribution density
which coincides, in terms of the form, with the probability of
level occupation (20) can be accounted for by the fact that
both these functions are inversely proportional to the distance
between levels.

We have used above the simplest method of quasi-
averages [24]. Of course, the described picture of one-particle
excitations can be obtained in the framework of Green's
formalism as well [29]. The advantage of this formalism is in
the possibility not only to describe unit excitations but also to
represent the behaviour of the collective diffusion mode.
Below, there is a brief description of the scheme of such
representation using the locator approach [14].

It is known [29] that this scheme is based on the Green
function of electronG and the vertex function G related to the
Green's function of collective excitations j by the expression
G � ÿ2pij. The former obeys theDyson equation which has,
in the framework of the locator approach, the form
Gÿ1 � G0 ÿ D0, where D0 � zjIj, G0 is the locator at I � 0,
and the overlap integral I plays a part of perturbation. An
essential thing about this approximation is the applicability of
the above equation to Green's function hGi averaged over
level spread and to the average locator s � hG0i: hGiÿ1 �
sÿ1 ÿ D0. Moreover, an effective interactor U � D0 � D20hGi
is introduced which, unlike the previously used potential V,
contains the first-order term in the overlap integral I. Also,
the Dyson equation Uÿ1 � Dÿ10 ÿ s corresponds to this
interactor. The two-particle Green's function [7 ± 15]

j�E; k; z� � ÿ 1

2pi

X
k0k00



GR�k0�;k00�;E� z�GA�k0ÿ;k00ÿ;E��

�41�
has, in the ladder approximation, the form [14]

j�E; k; z� � ÿ 1

2pi

�
gÿ1 ÿ

X
k0

UR�k0�;E� z�GA�k0ÿ;E�
�ÿ1

;

�42�
where k0� � k0 � k=2, g is the irreducible four-tail function,
and indices R, A of the retarded and advanced functions
correspond to the choice of components n � 0; 1 from
different subspaces of the system's states. This leads (taking
into consideration the Dyson equation and the Ward identity
[14]

sRk��E� z� ÿ sAkÿ�E�

� g
X
k0

�
UR�k0�;E� z� ÿUA�k0ÿ;E�

�ÿ ~gz; �43�

where the irreducible vertex ~g has, unlike g, two coinciding
tails, which correspond to identical sites) to the usual
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expression for the two-particle Green's function [7 ± 15]

j�k; z� � ÿ w�k�
z� iD�k; z�k2

; �44�

where w�k� is the thermodynamic susceptibility equal, in the
hydrodynamic limit k � 0, to the state density g�E� at the E
level, and D�k; z� is the dispersing diffusion coefficient which
takes, at k � 0, the value of [14]

D � 1

pg

X
k0

�
k0

m
Im


GA

k0
��2

; �45�

here k0 is the projection ofk0 ontok, andm is the particlemass.

3. The Edwards wave representation

In this section, the uniform extended state is assumed to be the
initial (disordered) one. Therefore, quantities taken in the
wave representation will be considered. A set of such
quantities is reducible to the electron density operator

rk �
X
k0
rk0

k ; rk0
k � c�k0ÿk=2 ck0�k=2 ; �46�

the longitudinal component of the current

jk �
X
k0

jk
0

k ; jk
0

k �
kk0

km
rk0

k ; �47�

and the effective force

fk �
X
k0

fk0
k ; fk0

k �
X
k00
ekÿk00

�
rk0��kÿk00�=2

k00 ÿ rk0ÿ�kÿk00�=2
k00

�
;

�48�

expressions for which can be obtained from equations of
continuity and motion. Here, c�k ;ck are the operators of
creation and annihilation for electrons in the state jki, and ek
are the corresponding energy levels (of random nature, in
accordance with the Anderson model [2]). The Anderson
Hamiltonian written with regard for the conditionX

k

nk � N0; nk �


c�kck

� �49�

of conserving the number of electrons N0 has the form

H �
X

k

�Ik ÿ m�c�kck �
X

k

e�krk � H0 � V; �50�

where Ik is the Fourier transform of the overlap integral for
site electronic states, m is the Lagrange factor taking into
account the condition (49). Evidently,

Ik � �mÿ eF� � k2

2m
; �51�

hence, m � eF, because the overlap integral tends to zero at
large distances and, therefore, limk!0 Ik � 0.

Let us follow the GoÈ tze's scheme [16,17] based on the
Zwanzig ±Mori technique [30]. Themain object studied in the
framework of this scheme is the relaxation function

jk�t� �



rk�t�jrk

�� � ��1
t


�
r�k �t0�; rk�0�

��
dt0 : �52�

It is related to the ordinary susceptibility

wk�t� � iy�t�
�r�k �t�; rk�0�
�� � ÿGR

k �t� �53�
reduced to the retarded Green function GR

k �t�, where y�t� � 1
at t > 0 and y�t� � 0 at t < 0, by the following expression

jk�z� � zÿ1
�
wk�z� ÿ wk

�
; wk � wk�i0� : �54�

Here and henceforth, time jk�t� and frequency jk�z�
dependences are interrelated by the standard Laplace trans-
formation.

Turning to the direct representation of the localization
process, we shall first describe, in the zero approximation, the
behaviour of free delocalized electrons, for which the random
potential ek � 0. In the context of the linear response theory,
definition (52) leads to [17, 31]

jk0k00�0�
k �z� � 

rk0

k �z�jrk00
k �z�

�� � ÿgk0k00�0�
k

�
z� kk0

m

�ÿ1
;

�55�

where the static susceptibility gk0k00
k � 
rk0

k jrk00
k

� � jk0k00
k �t � 0�

is given in the zero approximation by the expression

g
k0k00�0�
k � ÿdk0k00

�
kk0

m

�ÿ1�
n0

�
k0 � k

2

�
ÿ n0

�
k0 ÿ k

2

��
;

�56�

with n0�k� � y�eF ÿ k2=2m� being the Fermi step. Let us
introduce the dimensionless frequency z � z=D0, the wave-
number K � k=kD, and the Fermi energy EF � eF=D0
expressed in the units of energy D0 � k2D=2m and the Debye
wavenumber kD. Then, the total compressibility gk �P

k0k00 g
k0k00
k assumes the canonical form [31]

g
�0�
k � gFw

�
K

2E
1=2
F

�
; w�x� � 1

2
� 1

4x
�1ÿ x2� ln

����1� x

1ÿ x

���� :
�57�

Summation of (55) over k0, k00 leads to a (54)-like expression
for the zero relaxation function j�0�k �z�, where the role of the
dynamic susceptibility wk�z� is played by the generalized
compressibility

g
�0�
k �z� � gFw

�
K

2E
1=2
F

;
z

4EF

�
;

expressed through the Lindhard function [31]

w�x; y� � 1

2
� 1

8x

��
1ÿ

�
xÿ y

x

�2�
ln

����x� 1ÿ y=x

xÿ 1ÿ y=x

����
�
�
1ÿ

�
x� y

x

�2�
ln

����x� 1� y=x

xÿ 1� y=x

����� : �58�

Here is the long-wave limit of expression (58) to be used
below:

w�x; y� � ÿ 1
3

�
x

y

�2�
1�

�
x

y

�2�
3

5
� x2

��
;

x � k

2kF
5 1; y � z

4eF
: �59�

In order to go beyond the framework of the zero
approximation, we shall use the projection operator method
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of Zwanzig and Mori [30]. According to the definition

P � jri hr j riÿ1h r j � 1ÿQ ; �60�

where arguments k, z are omitted for brevity, the operator P
projects all quantities in the space of dynamical variables (46)
± (48) onto the charge density `axis' r while the complemen-
tary operatorQ does the same on the subspace orthogonal to
this axis. The equation of motion

_r�t� � iLr�t� �61�
written with the help of the Liouville operator L allows the
generation of the space of dynamical quantities based on the r
axis: the current axis j / _r / Lr appears as a result of a single
action of operator L, the effective force axis f / �r / L2r is a
result of the double action, etc.

It is easy to see from (61) that the Laplace transform of the
correlator (52) has the form

j�z� � ÿ
 rj�zÿ L�ÿ1j r� : �62�
Hence, using the operator identity

1

A� B
� 1

A
ÿ 1

B
B

1

A� B
; �63�

it is easy to obtain relations

j�z� � ÿg�z� O� K�z��ÿ1; g � h rj ri ; �64a�
O � ÿo2

0



r jLj r� � o0



r j j� ; o2

0g � 1 ; �64b�
K�z� � ÿ
 j jQ�zÿ Lr�ÿ1Qj j

�
; j � io0 _r; Lr � QLQ :

�64c�

The former is the initial link in the Mori chain while two
others expose the microscopic sense of kernels O;K�z�.
Making calculi for the latter relation by analogy to those for
the initial correlator (62) yields the expression for the second
link in the chain

K�z� � ÿo2
0

�
z�M�z��ÿ1 ; �65a�

M�z� � ÿ
f jQj�zÿ Lj�ÿ1Qjj f
�
; f � oÿ10 Lr j ;

Lj � QjLrQj ; Qj � 1ÿ j j i h j j j iÿ1h j j : �65b�
In contrast to (64a), there is no cross-correlator of the (64b)-
type here, and the memory function (65b) is the correlator of
the generalized force f. The chain can be lengthened further;
in this case, the correlator of the n-th charge density
derivatives (46) with respect to time will be expressed in each
link through the correlator of corresponding n� 1-order
derivatives. Such a structure facilitates explicit interpretation
of the approximation arising from a break of the Mori chain.
If, following GoÈ tze [16, 17], only terms written in (64a), (65a)
are retained, it is possible to represent memory effects playing
a major part in the description of ergodicity breaking in the
course of electron localization. Self-consistency of the scheme
is ensured by expression of the memory function M�z�
through the initial correlator j�z�. Moreover, the following
boundary conditions must be fulfilled [16]:

lim
t!0

jk�t� � lim
z!1

�ÿzjk�z�
� � gk; lim

k!0
gk � gF ; �66�

lim
t!0

Kk�t� � lim
z!1

�ÿzKk�z�
� � wk; lim

k!0
wk �

n

m
; �67�

where gk, wk are the compressibility and polarizability of an
electron gas, respectively{.

The GoÈ tze theory [16, 17] is a variant of the above
projection approach. In the construction of (52)-like correla-
tion functions as basic ones, it is convenient to use
constituents rk0

k rather than the total density rk (see (46)).
Then, jk0k00

k �z� � 

rk0
k �z�jrk00

k �z�
��
-type correlators acquire a

pair of additional indices. Also, it is convenient to present the
original equation (64a) in the form�

zÎk � Ôk � K̂k�z�
�
ĵk�z� � ÿĝk : �68�

The top badge indicates a matrix the elements of which are
defined by superscripts (e.g., jk0k00

k �z� for ĵk�z�), Î is the unit
matrix, ĝk, Ôk and K̂k�z� are defined by relations of the (64b),
(64c)-type. To solve Eqn (68), its matrices need to be
represented in the basis of vectors ak0a

k , a � 0; 1; :::; orthonor-
malized with respect to metric gk0k00

k . In this basis, quantities
rk � g

1=2
k A0

k, jk � �n=m�1=2A1
k defined by equalities (46), (47)

are expressed through vectors

Aak �
X
k0
ak0a

k rk0
k ; a � 0; 1; . . . �69�

Accordingly, Eqn (68) takes the form

�zdab ÿ oabk �jbgk �z� � ÿdag ÿmab
k �z�jbgk �z� ; �70�

where summation is over repeated Greek indices and matrix
elements are given by formulas [17]

oabk �
X
k0
ak0a�

k ak0b
k

ÿ
nk0�k=2 ÿ nk0ÿk=2

�
; �71�

mab
k �z� �

X
k0k00

ak0a�
k ak00b

k

D
fk0
k

���QLQÿ z�ÿ1�� fk00
k

E
: �72�

Characteristically, the memory matrix (72) is built up on the
vectors of generalized force

f ak �
X
k0
ak0a

k fk0
k ; �73�

whose zero component f
�0�
k � 0. This follows from the

definition (73) provided force components (48) are substi-
tuted into it, and from the fact that no force affects an electron
in the zero approximation. By virtue of this property, matrix
mab

k �z� in the two-component basis (69) has only one
nonvanishing component m11

k �z� �Mk�z� of the (65b)-type,
which is in fact the correlator of random forces

fk � �mn�ÿ1=2
X
k0
ekÿk0

k�kÿ k0�
k

rk0 : �74�

Assuming fluctuations of quantities ek, rk to be independent,
the expression for the mass operator [17] is

Mk�z� � 1

mn

X
k0
jekÿk0 j2

�kÿ k0�k
k

jk0 �z� ; �75�

where the bar means averaging over level spreading. Equality
(75) represents the self-consistency conditionwhich expresses,

{Donot confuse polarizability wk representing the static limit of correlator

Kk�z� by polarization Pk � _rk and generalized susceptibility (53).
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in terms of the mode-coupling theory [16], the highest
correlator Mk�z� through the original one jk�z�. The linear
character of the coupling (75) is due to the fact that all basis
operators (69) are linear in rk0

k .
Bearing in mind the aforementioned property of the

matrix mab
k �z�, Eqn (70) for the function jk�z� � gkj00k �z�

has the solution [17]

jk�z� � j�0�k

ÿ
z�Mk�z�

��
1� j

�0�
k

ÿ
z�Mk�z�

�
Mk�z�

g
�0�
k

�ÿ1
;

�76�
where the zero function j�0�k �z� is expressed by the relation-
ship (54) through susceptibilities (57), (58). It is easy to see
that (76) can be represented in the form of the first terms
(64a), (65a) of the chain fraction. In the long-wave limit, when
susceptibility assumes the form (59), equality (76) is reduced
to

jK�z� � ÿgFw
�

K

2E
1=2
F

��
z� iDK�z� K2

�ÿ1
: �77�

Here, a diffusion pole was introduced being expressed in units
of D0=k2D � �2m�ÿ1:

DK�z� � 4

3
i

EF

w�K=2E1=2
F �

�
z�MK�z�

�ÿ1
�
�
1�

�
2KE1=2

F

z
�MK�z�

�2

�
�
3

5
� K2

4EF
ÿ
�
3w
�

K

2E
1=2
F

��ÿ1��
; �78�

where MK�z� is expressed in units of D0. The usual diffusion
coefficient

D � 1

3
v2Ft; tÿ1 � D0ImMK�0�z � 0� ; �79�

follows from (78) as the limiting expression
DK�0�z � 0� � 2mD. This coefficient is related to static
conductivity s and mobility m � s=n by the Einstein relation
s � gFD. Hence, the Drude formulas are as follows:

m � t
m
; s � nt

m
: �80�

Dynamic conductivity defined as the current correlator
(47) has the form

s�z� � n

m
D�z�; D�z� � ÿ i

z�M�z� ; �81�

whereD�z� � ÿi limk!0

ÿ
Kk�z�=k2

�
,M�z� �Mk�0�z�.Hence,

expressions for dynamic polarizability w�z� � �i=z�s�z�,
dielectric permeability e�z� � 1� 4pw�z�, and dynamic mobi-
lity m�z� � s�z�=n could be derived immediately.

In the extended state, the conductivity regime is realized
with m 6� 0. Therefore, one finds here

lim
z!0

s�z� � s 6� 0; w�z� � is
z

at z! 0 : �82�

Accordingly, in the localized state, there is an insulator with
mobility m � 0 and polarizability w 6� 0. Here

lim
z!0

w�z� � w � dÿ2; s�z� � ÿizw at z! 0: �83�

It follows from (82), (83) that the occurrence of conductivity s
under delocalization results in the static pole of generalized
polarizability w�z� and the localization parameter d � 0,
whereas localization is characterized by finite values of static
polarizability s and parameter d, along with a linear decrease
in dynamic conductivity s�z� / z. Mathematically, the loca-
lized state is convenient to fix basing on the presence of the
memory function pole:

d2 � ÿzM�z� at z! 0 �84�
rather than the features intrinsic in (83). According to (84),
(83), the residue of this pole is a microscopic localization
parameter d2 inversely proportional to static polarizability w.

Let us further simplify the model in order to formulate the
self-consistent scheme and be able to determine parameter
(84). For this purpose, let us neglect the dependence of the
memory function on the wave vector: Mk�z� �Mk�0�z� �
M�z�, and then reduce the dependence jekj2 to the stepwise
one:

jekj2 �W 2 6p
2

k3D
y �kD ÿ k� : �85�

It ensues from the approximation (85) that random electronic
states are uniformly spreaded over the k space in a sphere of
radius kD and along the energy axis in the interval of widthW.
As a result, the self-consistency condition (75) assumes, in
dimensionless quantities z � z=D0, K � k=kD, EF � eF=D0,
and l � �3=4��W=eF�2, the form

M�z� � 4lEF

�1
0

jK�z�K4 dK; �86�

whereM�z� is expressed in units ofD0, andjK�z�Ðin units of
gF=D0.

The system of Eqns (76), (86) yields the self-consistent
solution for mobility m in the range of conductivity and
inverse polarizability wÿ1 � d2 in an insulator. In the former
case, it is possible to assume that M�z� � in � i=tD0; then
j�0�K �in� � ij�0�K �n�, and (86) takes the form

n � 4lEF

�1
0

F �K; n� K4 dK ; �87a�

F �K; n� � ÿj�0�K �n�
"
1ÿ nj�0�K �n�

w�K=2E1=2
F �

#ÿ1
; �87b�

where function w�x� is given by equality (57). In an insulator,
where the behaviour in the vicinity of z � 0 is important,
equality (78) takes the form DK�z� � ÿ�4=3��
i �EF=d

2�wÿ1�K=2E1=2
F � z, and the relaxation function acquires

the pole jK�z� � ÿ�D0=W�D�K�zÿ1 at z! 0, where the
macroscopic localization parameter D�K� and the related
microscopic one d have the form

D�K� � 2

�
l
3

�1=2

EFw
�

K

2E
1=2
F

�
�
�
1� 4

3
EF

�
K
d

�2

wÿ1
�

K

2E
1=2
F

��ÿ1
; �88a�

d2 � 2�3l�1=2
�1
0

D�K� K4 dK : �88b�
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Pairs of equalities (87), (88) represent transcendental
equations for determining mobility m � �mD0n�ÿ1 of charge
carriers in a conductor and static polarizability w � dÿ2 of a
dielectric.

At arbitrary values of parameters l, EF, Eqns (87), (88)
have only numerical solutions. The resultant dependences
m�W�, d�W� at different EF are shown in Figs 3, 4. The
analytical form is achieved in a limiting case of small m and d
values, which are realized in the intermediate region in both
the weak (l5 1) and strong (l4 1) coupling regimes. Thus,
near the critical value Wc, at which m � d � 0, the relation-
ships are true up to m2, d4 inclusive:

m2B�m� � 1ÿ A; �89�
Cd4 � �Aÿ 1� d2; �90�

where the following notations are introduced:

A � 24lE3=2
F

�a
0

w2�K� K2 dK; aÿ1 � 2E
1=2
F ; �91�

B � 384lE7=2
F

�a
0

�
3

5
� K2 ÿ 1

3
wÿ1�K�

�
w2�K� K4 dK ; �92�

C � 9

2
lEÿ1=2F

�a
0

w3�K� dK : �93� In the limit of large and small EF values

A � 6

�
W

D0

�2

1

8
Eÿ2F

�
1ÿ 1

10
Eÿ1F

�
;

3E
ÿ1=2
F

�
0:329ÿ 2

9
E
1=2
F

�
;

8>>><>>>: �94�

B � 12

25

�
W

D0

�2 Eÿ1F

�
1� 10

21
Eÿ1F

�
;

80

3
EF

h
1� 0:846E

1=2
F

i
;

8>><>>: �95�

C � 27

16

�
W

D0

�2 Eÿ3F

�
1ÿ 1

12
Eÿ1F

�
;

2E
ÿ5=2
F

�
0:709ÿ 32

135
E
5=2
F

�
;

8>>><>>>: �96�

where the first and second lines correspond to EF4 1 and
EF5 1, respectively.

In accordance with (89), (90), the transition line Wc�EF�
separating extended �A < 1� and localized �A > 1� states on
the phase plane EF ±W is defined by the condition

A�W;EF� � 1 : �97�

Substitution of (91) results in a phase diagram shown inFig. 5.
Accordingly, the use of (94) yields limiting analytical expres-
sions for the critical level spreading (in units of D0):

Wc � 1:15EF �1� 0:050Eÿ1F � 0:004Eÿ2F � ;
Wc � 0:411E

1=4
F �1� 0:338E

1=2
F � 0:171EF� : �98�

Here, the first and second lines refer to large and small values
of the parameterEF � eF=D0, respectively. According to (98),
the Anderson transition line near the point W � EF � 0
behaves in variables W, kF in the same (root-like) way as
under usual phase transformations.

Expressions for mobility m and inverse polarizability d 2

ensuing from (89), (90) has also, close to the lineWc�EF�, the
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Figure 3.Mobility as a function of the level spreadwidth in a conductor for

long-range (a) and short-range (b) correlations in the level spreading.

Values of mc � m�0��Wc�,Wc are determined from formulas (101), (98) [17].
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Figure 4. Localization parameter as a function of the level spread width in

an insulator for long-range (a) and short-range (b) correlations in the level

spreading. Values of d2c � d20�Wc�, Wc are determined from formulas

(102), (98) [11].
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root-like form:

�mD0�m �
�
2

Bc

�1=2�
1ÿ W

Wc

�1=2

; �99�

d �
�
2

Cc

�1=2�
W

Wc
ÿ 1

�1=2

; �100�

where parameters B, C are taken in the critical line.
In the weak coupling �l5 1� limit, the solution to

Eqns (87) is represented by terms m�0� /Wÿ2, dm /W0 [17]:

m � m�0� ÿ dm ;

�mD0�m�0� � 1

3p

�
W

D0

�ÿ2
E
ÿ1=2
F max �1; 16E2

F� ;

�mD0�dm

�
2

3
E
ÿ1=2
F

�
p
2

�
1� 1

20
Eÿ1F

�
ÿ 2

p

�
1� 1

10
Eÿ1F

��
;

p
2
Eÿ1F

�
0:458ÿ 8

3p2
E
1=2
F

�
1� 8

5
EF

��
;

8>>><>>>: �101�

where the first line in the expression for dm corresponds to
large, and the second line, to small EF.

In the inverse limit, expansion of Eqns (88) in �d=W�2
leads to the results [17]:

d2 � d20 ÿ
4

7

�
W

D0

�2

dÿ20 ;

d20 �
3

5

�
W

D0

�2 Eÿ1F

�
1ÿ 5

84
Eÿ1F

�
;�

1� 12

5
EF

�
:

8>>><>>>: �102�

Now, let us turn to Anderson transition dynamics [16, 17].
It can be shown that, in three-dimensional space of variables
W, eF, o, the critical range is defined by conditions

�eFD0�1=2 < jo�M�o�j ;
o < jM�o�j; oM�o� < e2F : �103�

The first of them is responsible for a decrease in dynamical
conductivity (81); the second, for that of inverse polarizability
(84), and the third, for the hydrodynamic regime, the only one
in which the Anderson transition can be expected to appear.
Given conditions (103), the self-consistent system of Eqns
(76), (86) is reduced to an equality which generalizes (89), (90):

Aÿ BMÿ2�z� � CzM�z� � 1 ; �104�
where notations (90) ± (93) and limiting expressions (77), 78)
are used. Let us introduce the quantities

O �
�
B

C

�1=3

; e � �1ÿ A�O2

3B
; �105�

which assume, near the transition line (97), the form

e � ec
�
1ÿ W

Wc

�
; ec � 2O2

c

3Bc
; O � Oc �

�
Bc

Cc

�1=3

: �106�

Therefore, e is the distance from the transition line, and O is
the characteristic frequency. The solution of Eqn (104):

Mÿ1�z� � ÿOÿ1 jej1=2F�
ÿjejÿ3=2z�; e 6� 0;

F0�z�; e � 0;

(
�107�

is expressed through functions F�, F0 representing roots of
equations

F;3� � 3F� � z � 0;

F 3
0 � z � 0: �108�

The form of frequency dependence of these roots (Fig. 6)
determines, taking into account (107), (81), conductivity (in
units of n=mD0):

Re s�o� � M00�o�
�o�M0�o��2 � �M00�o��2 ; �109�
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Figure 5. Insulator/conductor phase separation line [17].
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functions of frequency [17].
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where M0, M00 are the real and imaginary parts of (107),
respectively. The dependence (109) presented in Fig. 7 shows
the appearance of a maximum at the frequency om. It is seen
from Fig. 8 that such character of this dependence is equally
preserved outside the critical region (103). Frequency om of
the conductivity maximum is shifted as the level spread width
W grows, following the curve in Fig. 9. This figure also shows
corresponding dependences for the thermal gap De � eF ÿ ec
representing the difference between the Fermi level eF and the
boundary energy ec (see Fig. 5), and for the optical gap
starting from which finite conductivity becomes distinctive.
Characteristically, a nonzero value of om indicating the
difference between (109) and the Drude dependence is just
apparent below the transition pointWc due to polarization of
the system prior to its transition to the insulating state.
Conversely, quantities De�W�, o0�W� 6� 0 appear only at the
transition point. It is worthwhile to note that the presence of
the optical gap o0 is generally speaking an artifact of the
method employed, which ignores the tendency to zero of the
limiting value �K!1� of the memory functionMK�z� on its
replacement byM�z� �MK�0�z� [17].

Let us now consider the nature of spatial dispersion. For
this purpose, it is convenient to use the long-wave limit of
equality (88a). It is easy to see that the macroscopic
localization parameter obeys dependence of the Ornstein ±
Zernike type:

Dk � W

D0
x2k2�1� x2k2�ÿ1; �kDx�2 � 1

3

2kF
kD

dÿ2 �110�

with the correlation length x / dÿ1. Therefore, the greater the
macroscopic localization parameter d, the smaller the region x
in which D�r� acquires an equilibrium magnitude. In other
words, the region of localization of carriers in an insulator
decreases with the distance from the transition pointW �Wc

according to the equality

x � xc
�
W

Wc
ÿ 1

�ÿ1=2
; �kDxc�2 �

2

3

�
kF
kD

�2

Cc; �111�

where the relation (100) is taken into consideration.
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The above discussion was concerned with the three-
dimensional case for which both extended and localized states
are possible depending on quantities W, z. The diagram
technique [29] was used in [12] to study the behaviour of the
vertex part of the relaxation function jk�z� for an arbitrary
dimension d. It has been shown that at d � 3, the considera-
tion is reduced to the above self-consistent scheme [17],
whereas for the dimensions d4 2, at any values of parameters
W, eF, the vertex part has the static pole suggesting
localization. Also, the absence of the extended state in low-
dimensional systems was demonstrated in a renormalization-
group study [6]. However, this does notmean that they always
represent insulators in the experiment. Indeed, despite the fact
that a delocalized cluster is finite at spreadingW 6� 0, its size
may prove so large that it will be apparent as a macroscopic
one.

One should also bear inmind another aspect of clustering,
specifically the percolation nature of the insulator/conductor
transition [32]. Such a problem was considered using the
Lorentz model as an example to illustrate the particle
propagation in the field of scattering centres [33]. Conditions
for the formation of an infinite cluster and particle localiza-
tion in a finite one have been found to depend on the
scattering centre density N. It turned out that formally this
problem is not essentially different from that discussed in a
previous paragraph. However, the dependence of the particle
diffusion coefficient in an infinite cluster on the difference
between the scatterer density N and its critical value Nc

corresponding to the percolation threshold has the linear
form D / Nc ÿN rather than the root-like one as in (99).

At the same time, both dependences were found in the
experiment, the root-like one being accompanied bymagnetic
anomalies, which suggest scattering that violates symmetry
with respect to time reversal [34]. This raises the problem of
modifying the present scheme in such a way as to obtain root-
like and linear singularities, on the one hand, and realize the
symmetrical and asymmetrical regimes, on the other hand.

According to [35], solution of this problem requires a self-
consisting procedure to be applied for the nonreducible part
Sk�z�, which defines Mk�z� by an equality of the (65a)-type
rather than at the level of the memory function Mk�z� itself.
Therefore, ignoring the quantity dependences on the wave-
vector, for simplicity, the following expressions can be written
instead of (86):

M�z� � lo2
0j�z� ÿ d2

�
z� S�z��ÿ1; �112�

S�z� � tÿ11
�
i�D1l1j�z�

�
; t1 �

�
o0

d

�2

Dÿ11 ; �113�

where l, l1 are the coupling constants, o0 is the characteristic
frequency, t1, D1 are the relaxation time and diffusion
coefficient irreducible to the previously used t, D (see (79)).
In the hydrodynamic frequency range jzjt15 1, the current
correlator (64c) takes the form

K�z� � ÿ
n�
oÿ20 z� lj�z��� iDÿ11

�
1ÿ iD1l1j�z�

�ÿ1oÿ1
:

�114�
It was assumed throughout the foregoing discussion that
D1 � 1, and the remaining terms of (114) led, at small
times, to an even asymptotic of the relaxation function:
j�t! 0� � gF

�
1ÿ �1=2�o2

0t
2
�
. On the contrary, the assump-

tion of D1 <1 yields an odd asymptotic j�t! 0�

� gF�1ÿD1t� even in the absence of the feedback
�l; l1 � 0�. It may be inferred that a break of the chain (64),
(65), (112), ... at different steps affects symmetry with respect
to time reversal. Evidently, the coupling constant l 6� 0 takes
into account even effects that do not violate this symmetry,
while the constant l1 6� 0 takes into consideration odd,
asymmetric effects. A survey of the entire l, l1 range may be
hoped to clarify the real situation.

Let us introduce for quantitative consideration the
dimensionless variables z � z=D1, j�z� � �D1=gF�j�z�,
K�z� � K�z�=D1,M�z� �M�z�=D1 and coupling constants

e � 1ÿ lgF; Z � l1gF : �115�
Then, it is possible to omit the term oÿ20 z in (114) in the
frequency range jzj < jM�z�j, and the self-consistent condi-
tion obtained by substituting (114) into (64) takes the form
[35]�

z� eK�z���z� iZ� K�z�� � iK�z��z� K�z��2: �116�

In a conductor, the limiting valueÿiK�z � 0� � K� > 0 is
realized. Therefore, it is possible to write down K��z� �
iK�

�
1� f��z�

�
, where

K� � 1

2

�
e�

�����������������
e2 � 4eZ

p �
;

f��z� � ÿiAÿ1z; A � e�2K� ÿ e�
�
1ÿ e�2K� ÿ e�

K�

�
: �117�

It can be seen that the conducting phase occurs only at e > 0,
that is parameter e has the former meaning such as (106). The
position of the critical point does not depend on the second
parameter Z, however its value dictates the dependence D�e�
of the diffusion coefficient D � D1K� on the distance e from
the critical point. Indeed, according to (117), there is a root-
like dependence D � D1�Ze�1=2 in the immediate vicinity of
the critical point �e5 4Z� and a linear one D � D1�Z� e� far
from it �e4 4Z�.

An insulator is characterized by an asymptotic
limz!0

�
zÿ1K�z�� � Kÿ > 0 taking which into account yields

Kÿ�z� � Kÿz
�
1� fÿ�z�

�
. Then, it follows from (116) that

Kÿ � ÿeÿ1; fÿ�z� � i

�
z 1ÿ e� �

e

�2�
z�1ÿ e� ÿ iZe

�
: �118�

Accordingly, polarizability w�z� � izÿ1Kÿ�z� takes the form
w�z� � iKÿ

�
1� fÿ�z�

�
.

In the analysis of dispersion, three boundary values
should be introduced, apart from the soft mode frequency
o0, viz., the hydrodynamic limit oe � D1jej

�������������������
e2 � 4jejZp

and
critical frequencies oc � D1Z2 and oce � D1Ze. At large
values ofo � o0, the quantityK�z� in (64a) may be neglected
and the spectral density has the limiting form j00�z� / zÿ1. In
the conducting phase �e > 0�, only the hydrodynamic bound-
ary defined by the condition jf��z�j5 1 is apparent. Within
this boundary �o5oe�,j00�o� � gF=D is constant. The form
of dependence fÿ�z� in insulator is more complicated and the
following limiting relations arise from (118):

K00�o� � D1

�
o
D1e

�4

Zÿ2; o5oce;�
o
D1e

�2

eÿ1; o4oce,

8>>><>>>: �119�
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the applicability of these relations is restricted by the
frequency oce / eZ. According to (119), symmetry violation
with respect to time reversal leads to the extension of the
region of the anomalous dependence K00�o� / o4 with
increasing Z. Here, the relaxation function has the form

j�z� � ÿD1

W
qzÿ1 ÿ e�1ÿ e�ÿ2fÿ�z�zÿ1; z! 0: �120�

If the first pole leads to an ordinary d-peak characterized by
the Edwards ±Anderson parameter q, the second term stands
for the pseudogap/white noise transition:

j00�o� � gF
D1

�
o
D1Z

�2

jejÿ3; o5oce;

jejÿ1; o4oce:

8><>: �121�

Therefore, in the o5oce range, time-symmetry violation
gives rise to different frequency dependences j00�o� for a
conductor and insulator. At time reversal �oce / Z � 0�, the
relationship j00�o� � const holds in both cases.

On the assumption that limz!0

�
zKÿ1�z�� � 0, Eqn (116)

in the transition line (e � 0) takes the form

K 3�z� ÿ izK�z� � Zz � 0 : �122�

Hence, in limiting cases given by frequencyoc / Z2, it follows

K00�o� � 1

2
D1

31=2
�
Zo
D1

�1=3

; o5oc;

21=2
�
o
D1

�1=2

; o4oc:

8>>><>>>: �123�

Therefore, the spectral density j00�o� / 1=K00�o� undergoes
transition from the normal asymptotic j00�o� / oÿ1=2 in the
o4oc region to the anomalous one j00�o� / oÿ1=3 at
o5oc. Hence, in the time axis, we get

j�t� ÿ q

W
/

tÿ1=2; Z25oct5 1;

tÿ2=3; 15oct5
oc

oe
.

8<: �124�

At t5oÿ10 , j�t� � gF
�
1ÿ �1=2�o2

0t
2
0

�
, whereas in the inverse

limiting case t4oÿ1e , the Debye fall j�t� / exp�ÿoet� is
involved. In the middle, there is a region of applicability of
asymptotics (124).

4. Conclusions

Themain objective of this review is to demonstrate themutual
complementarity of the site and wave approaches to the
problem of quantum particle localization in the random
potential. In so doing, one-particle properties are most
naturally represented in the framework of the site approach,
whereas the wave approach is useful for representing collec-
tive properties. Physically, this situation can be accounted for
by the fact that in the former case the role of the initial
(disordered) state is played by localized, and in the latter case,
by extended states.

It is clear from Section 2 that the theoretical scheme of the
site approximation is based on two major premises. In the
first place, it should be borne in mind that overlapping of site
wave functions leads to the division of the configuration space
into isolated and multisite state constituents. Due to this, the
Anderson Hamiltonian (5) undergoes transformation to the

expression (8), which differs from the BCS Hamiltonian for
the theory of superconductivity only in that it contains the site
representation instead of themomentumone and the effective
potential of interparticle interaction depends on the energy
spectrum of the system. Another essential feature of our
approach [18, 19] is the idea to represent quenched disorder
in the distribution of a cold variable e by the distribution (19)
reducible to the Gibbs's one. In other words, we propose to
represent strongly nonequilibrium statistical disorder as
frozen thermodynamic fluctuations characterized by the
`temperature'W=2.

At first site, the second proposal is most liable to criticism
because the Gibbs distribution describes equilibrium statis-
tical ensembles, whereas the Anderson model defines a
strongly nonequilibrium system. This fact may be simply
ignored which was exactly what Anderson [2] did by
accepting a priori the stepwise approximation P�e�. This line
of reasoning leads to considering our distribution (19) as a
feasible approximation in a series of models proposed by
Anderson, Lloyd, and other authors. However, there is every
reason to prefer the exponential distribution to all others not
only because it is more customary to deal with but also in
principle. Indeed, it has recently been shown (see, for
instance, [36]) that the shape of the Gibbs distribution is
intrinsic in statistical ensembles just as well as in systems being
far from equilibrium. The main conditions for conserving the
exponential form of statistical distribution are the stationary
state{ of a nonequilibrium system and its ergodicity. If these
conditions are satisfied, the statistical distribution of a none-
quilibrium system will have the form of the Gibbs distribu-
tion, where the synergetic potential plays the part of energy
and temperature is reduced to noise intensity, which deter-
mines the degree of the quenched disorder [36]. It has been
shown in Section 2 that our distribution (19) has exactly this
sense. As regards stationary and ergodic conditions, the
former is due to the infinitely rapid quenching of the system
down to zero temperature as implied in the Anderson model.
The ergodicity condition does not seem to be met because
localization of electrons is none other than ergodicity break-
ing in terms of their movement in the real space. However, in
contrast to hierarchically coordinated systems like spin
glasses, the phase space is not splitted into an infinite set of
isolated macroregions. More specifically, localization results
in the separation of isolated microscopic regions (in the r
space their scale is restricted to the interatomic one) from the
configuration space corresponding to the extended state.
These regions being alike, it is possible to pool them into a
phase space macroregion corresponding to the localized
phase, whereas the remaining part of the space will govern
behaviour of the delocalized phase. As a result, the division of
the phase space due to localization is represented in the same
way as in usual phase transitions. It is this fact that allowed
the process of delocalization to be represented in agreement
with the standard phase transition scheme.

It has already been mentioned that in the framework of
our approach, the order parameter determines a fraction of
delocalized electrons, whereas its conjugate field Ð a shift
from the band centre. The width of level spreading plays the
role of the state parameter like a temperature. A marked
difference of the delocalization scheme described in Section 2
from the standard version of the microscopic phase transition
theory is due to the aforementioned division of the system's

{ For example, a fluid flowing with a constant speed is stationary.
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configuration space into localized and extended state regions.
It turned out that the effective interaction potential depends
on the character of this division, that is on external condi-
tions. This is manifested in the appearance of the logarithmic
multiplier for the dependence of the `thermodynamic' poten-
tial on the order parameter, which resulted in a change in the
order of phase transition from 2 to 2� d, d! 0.

It is worthwhile to note that this observation does not
exhaust all causes underlying the difference between the
Anderson transition and the mean-field theory for ordinary
phase transitions. According to [37], this approximation
implies that a new phase is created in regions of similar
shape and size. In other words, it is assumed that fluctuations
are uniformly distributed in space. Taking into account the
deviation from this pattern and especially the fractal nature of
fluctuations in the critical region, it can be seen that the values
of all critical indices are dissipated within certain limited
intervals [37]. For example, the exponent b in the relation
Z / �Wc=Wÿ 1�b obeys the condition 1=34b4 1=2. It is
noteworthy that the fractal structure is characterized by a
certain distribution of b values along the entire length of this
interval rather than by a single value.

As far as specific features of the wave approximation are
concerned as described in Section 3, it should be in the first
place emphasized that it is intrinsically different from the site
approach. The latter allows only stationary values to be
found (see Section 2), whereas the former is principally
designed to derive hydrodynamic expressions for character-
istic correlators depending on complex frequency and wave
vector. Therefore, the most suitable mathematical tool for the
solution of this problem is the Zwanzig ±Mori chain fraction,
which allowsmajor correlators of the `density-density' type to
be expressed through higher correlation functions. From the
physical point of view, such a fraction is convenient because
each of these functions has clear physical sense. This makes it
easy to understand the character of the approximation that
results from a break of a chain fraction.

We used the mode-coupling technique to elaborate a
self-consistent scheme for it allows the higher correlator to
be expressed through the original one. In the simplest
version of the localization theory suggested by GoÈ tze [17],
effects of ergodicity breaking are made explicit in the
memory function, which represents the kernel of the second
link in the Mori chain. Taking into consideration the
absence of the direct interaction between electrons, GoÈ tze
assumed that the memory function is proportional to the
first power of the original correlator (52). Therefore, the
mode-coupling technique which, by definition, implies the
presence of higher powers in such approximations, was
actually reduced to examining uncoupling modes. This
explains the lack of nonlinear feedback in the scheme [17]
notwithstanding self-consistent nature of the problem. Also,
it was apprehended that the scheme [17] may not contain
phase transition since, in accordance with synergic ideology
[38], it is positive feedback that gives rise to self-organiza-
tion. For this reason, I V Koplyk and A A Koloskov, my
coworkers, undertook it to check up the numerical solution
of self-consisting equations (87), which underlie the GoÈ tze
scheme [17]. Surprisingly, mobility m / nÿ1 turned out to be
other than zero at all W values, which indicates that these
equations do not lead to the Anderson transition even
though the dependence m�W� shown in Fig. 3 is well
reproduced far from the critical point Wc. Since none of
GoÈ tze's publications mentions this fact, we had to conclude

that allegedly the self-consistent scheme [17] is actually
lacking in consistency. In addition to what was said in
connection with Eqns (87), this inference ensues from the
condition (89) giving the phase diagram of the system: to
derive this expression, the long-wave approximation (77) is
used, which assumes z � 0, whereas in the following
expression (78) for the diffusion coefficient, the first
cofactor has z � 0 and the second, z � 1. Thus, the theory
[17] is an approximation scheme in the framework of which
the presence of the Anderson transition is due only to
artificial selection of terms in the self-consisting equation.

To summarize, a few remarks are in order concerning
problems and prospects of further development of the
approaches discussed in this review. To begin with, many
results (e.g., mobility threshold, state density) must not be
sensitive to the type of quantum particle statistics by virtue of
the one-particle character of the problem even though the
above discussion was concerned with an electron in a random
field. The question: `Is this really so?' remains to be answered.

It is worthy of note that either approach is discussed
independently in Sections 2 and 3, respectively. This naturally
prompts the idea of their unification. We have recently
realized this programme [39] based on the locator approxima-
tion in the framework of which one-particle properties of a
system are described by the Green's function for fermions
taken in the site representation. This function obeys the
Dyson equation in which the self-energy function is expressed
through the vertex function for the effective interaction
potential of fermions. This function represents collective
excitations of a system and obeys the Bethe-Salpeter equa-
tion, which closes the self-consistent description of both types
of excitation. In the framework of such a modality, the
mutual complementarity of site-temporal and frequency-
wave approaches is manifested in the fact that the Dyson
and Bethe ± Salpeter equations are in the simplest way
represented in terms of the former and the latter approaches,
respectively. This is not unexpected bearing in mind that the
site approximation in Section 2 was used to mainly describe
one-particle properties, and the wave approximation in
Section 3 Ð collective properties.

I wish to thank VGBar'yakhtar for supporting this work.
I also acknowledge the assistance of I V Koplyk, A A
Koloskov, and V A Brazhny|̄.
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