
Abstract. The collapse of the wave function has recently ree-
merged as a subject of extensive discussion in the quantum
mechanical literature. In the present paper, wave function col-
lapses occurring during the irreversible evolution of complex
quantum systems, including those involved in measurement pro-
cedures, are described.

1. Introduction

The following simple example is often used (see, e.g., Ref. [1])
to demonstrate the principles and statistical nature of
quantum theory. Suppose we have a silvered glass plate
which, upon incidence of a beam of light on it, transmits and
reflects exactly the half of the original beam intensity. Now let
a single photon be incident on the plate. The photon wave
function naturally splits into a reflected and transmitted
waves, but if we place a photodetector in the path of these,
only one photodetector will respond, meaning that the
photon finds itself either to the right or to the left of the
plate or, in other words, the photon either is reflected from or
passes through the plate. The detection of the photon is a
random process which is registered in either detector with
probability 1/2.

Here we encounter a typical example of wave function
collapse. At the time of photon registration, or more precisely
within a very short photodetector operation interval, the
photon wave function is destroyed everywhere outside of the
detector, whereas inside the detector the photon is absorbed
and hence also disappears.

It is readily seen that there is actually no need to take a
semitransparent plate to have the wave function collapse. If a

monochromatic photon described by a highly extended wave
function is incident on the photodetector, it can be absorbed
at a small portion of the wave packet, and the packet will be
destroyed over the entire space all at once.

Exactly the same kind of collapse occurs for any quantum
particle incident on an irreversible medium such as a
photographic plate, a Wilson chamber, or simply a gas at
room temperature. A particle in this case is `detected ' within
the medium, whereas everywhere outside the registration
region its wave function is destroyed. We again have a typical
example of wave function collapse. The term `wave function
shrinking' sometimes used here is unsuitable as carrying the
connotation of a certain physical process in which the wave
function `sinks' to the collapse region. In actual fact, the wave
function has no physical sink, and what really happens is
simply that it is destroyed outside the region of `registration'.
We will take this statement as the basic postulate following
from experimental data. In doing so we ascribe to the wave
function a purely information-carrying meaning in the sense
that it is different from zero only where the particle can be
found and is zero where it cannot. This approach is fully
consistent with the basic principles of atomism, whose
fundamental assertion is the conservation of the indivisible
atom (particle) as an entity.

The collapse of the wave function cannot be described by
means of the SchroÈ dinger equation relating the change in the
density jcj2 to certain fluxes. It does not involve any such
fluxes, and what happens is simply that the wave function
viewed as a certain potential source of information is
destroyed outside the region where the particle has proved
to be involved in an irreversible process. Note that such a
process, in which the wave function is destroyed in a large
region of space, may correspond to negligibly small changes
in physical quantities li defined by the relations
li � hcjLijci=hcjci, where Li are the corresponding opera-
tors.

2. Irreversibility

As the simplest example of an irreversible system, let us
consider a dilute atomic gas at a high enough temperature to
make it not important whether the particle statistics is of Bose
or Fermi type. Let the gas be inside a closed vessel whose
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linear dimensions are very large compared to the mean free
path of the atoms. Suppose further that the gas, together with
the vessel, are in a thermostat in full thermodynamic
equilibrium. Now let us perform certain thought experiments
with the gas. Suppose at some time t � 0 the walls of the vessel
become specularly reflective and, correspondingly, thermally
insulating. Simultaneously, let one of the gas atoms be
replaced by a test particle of the same mass, velocity, and
scattering cross section. Such a replacement leads to a very
small change in the state of the gas: its thermal energy remains
the same, and its entropy increases by k ln�V=DV� since the
test particle is not identical with the gas atoms and occupies a
small portion DV of the total volume V (k is Boltzmann's
constant). This done, one would expect that an irreversible
relaxation of the gas will begin. From the classical mechanics
point of view, the test particle must diffuse in space, its mean
distribution function tending to occupy the entire volume of
the vessel. Quantum mechanically, the test particle wave
function is expected to become more and more extended due
to subsequent rescattering on gas atoms. After a sufficiently
long time, it is expected that full thermodynamic equilibrium
will be attained.

Although the above picture appears quite plausible, it
involves a paradox. Our system is a closed one and as such
evolves in a deterministic way, following the laws of conven-
tional mechanics in the classical case and the SchroÈ dinger
equation in the quantum mechanical case.

Such an evolution is fully reversible, so that if at any time
t � t0 one reverses all the particle velocities of a classical
system or, for a quantum system, replaces t by ÿt in the
argument of the wave function c, the evolution process will
reverse its direction, returning the system to its initial state at
t � ÿt0. The test particle, in particular, will return to its initial
state with the entropy it possessed at t � 0.

Clearly, this picture is too idealistic, and the reversibility
will disappear as soon aswe turn to amore practical case of an
ordinary vessel in thermal equilibriumwith a thermostat. The
probability for the test particle to return to its initial state then
becomes negligible since, under the natural conditions of
thermal equilibrium, it is not that simple to reduce the entropy
of the system.

In the classical case, irreversibility relates to the strong
instability of the system, i.e., to the divergence of its phase
space trajectories, whereas in the quantum case, the reversal
of time results in transforming scatteredwaves from divergent
into convergent. Clearly, a small external perturbation easily
destroys the coherence of the converging waves, so that, for a
gas in contact with a thermostat, the evolution of the function
c�ÿt�must be similar to that of c�t�: in either case scattered
waves must be present.

Now let us return to our thought experiments with a test
particle and a gas in thermal equilibrium with a thermostat.
Suppose that at some time t � t0 the vessel with the gas is
instantly divided in two halves by an impenetrable partition.
Clearly, the test particle will then find itself in only one of the
halves and will be there as long as the system's subsequent
irreversible evolution lasts. Under these conditions the test
particle wave function in the empty half may be taken to be
zero, at least after a few collisions following t � t0, when a
return to the previous state is definitely ruled out.

Now one can introduce many partitions rather than one,
thus dividing the gas-containing vessel into many little
volumes each a few mean free paths in size. Again, a few
collisions render all long-range correlations obsolete, and the

test particle and its wave function will find themselves in only
one of the little volumes available.

Quite obviously, the wave function of the test particle
must be localised in this little volume even if no partitions
have been introduced. Indeed, the time of the order of a few
collision times is too short for the particle to displace formore
than a few mean free paths. In other words, the collisions
themselves act as `partitions' separating little gas volumes
(assuming the gas is in a stationary state).

Thus, the test particle wave function at any time can be
considered localised in a little volume a fewmean free paths in
cross section.Now let us gomentally to the past, starting from
t � t0. In doing so, all the divergentwaves become convergent.
This means that as t0 ÿ t increases, the test particle wave
function must be steadily shrinking into a tiny lump whose
ultimate size is determined by the competition between the
quasioptical beam focusing and the wave packet diffraction
spread. As will be seen later, in a dilute gas the size of such a
wave packet is just a fraction of themean free path. Therefore,
the past evolution of the test particle wave function can be
described in terms of a random walking of a compact wave
packet being successively scattered by the gas atoms.

A similar behaviour is expected for the wave functions of
the gas atoms.

3. Gas atom wave functions

The wave functions of the atoms of a dilute gas are usually
taken to be plane waves. This assumption comes from the
standard two-particle scattering theory, where the jini and
jouti states can always be considered to be outside of the
interaction region, and appears to be quite natural in the
present context. Indeed, in a dilute gas the mean free path
exceeds the average atom separation. Scattered waves there-
fore have enough time to travel far away from the scattering
point and have an approximately plane wave structure
locally. This point needs to be studied in more detail,
however, because, in contrast to ordinary two-particle
scattering, gas atoms interact continuously with each other.

The point is that, over the mean free path, the wave of a
given atom has enough time to be scattered by many other
atoms, giving rise to a complicated pattern of many scattered
waves. It can be argued that a highly complicated coherent
structure of many scattered waves thus emerges. Obviously
enough, such a structure cannot survive in a gas with
chaotically moving atoms. In the scattering events that
follow, the gaseous medium can `feel' only one of the possible
values of the momentum of the scattered particle. One can
therefore speak of a certain decoherence (i.e., `self-measure-
ment') mechanism continuously operating within the gas,
which picks up, randomly, only one of the available scattered
waves just leaving all the rest of them to be destroyed. In other
words, even the simplest Ð plane wave Ð representation of
the wave functions suggests the presence of a continuously
operating collapse mechanism supposed to `purge' the wave
functions of `empty' waves.

The real situation must be even more complicated.
Suppose the particle j does indeed find itself in one of the
scattered waves with a certain momentum �hkj, kj being the
wave vector. Going back in time along the direction of the
momentum, one can find the scattering point and learn the
number of the particle, say q, at which the scattering event had
taken place (needless to say, one must also go back along the
momentum �hkq of the scattering particle). On the average, the
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time interval time one must go back for this purpose is
t � l=vT, where l � 1=ns is the mean free path, n is the
mass density of gas atoms, s is the scattering cross section,
vT �

������������
kT=m

p
the average thermal velocity, T the tempera-

ture, andm the atommass. Now suppose that, in this travel to
the past, the wave function of the jth atom is represented by
the wave packet exp

�
ikj rj ÿ �rj ÿ r0j�2=2L2

�
. Here the factor

exp�ikjrj� corresponds to the short-wavelength plane wave
`filling', while exp

�ÿ�rj ÿ r0j�2=2L2
�
is (as yet unknown)

envelope localised around r0j. Suppose that at the instant of
wave packet origination the parameter L2 � b2, where b2 is
the constant determining the width of the newly born packet.
A relatively simple argument allows one to determine the
constant b2.

Suppose a wave packet initially of the form
exp
�ÿ�rÿ r0�2=2b2

�
evolves in accordance with the SchroÈ -

dinger equation. Then the quantityL2 must equal b2 � i�ht=m,
where the time t is measured from the instant the packet
comes to existence. The average packet lifetime until the next
scattering event is evidently t � l=vT, and the expectation
value of L2 is L2 � b2 � i�ht=m. Roughly speaking, all wave
packets have, on the average, a standard Gaussian form with
L2 � b2 � i�ht=m provided at the instant of creation they were
Gaussian with L2 � b2.

Accordingly, viewing its evolution in retrospect, the wave
packet can be thought of as a `pulsing' entity with an initial
value L2 � b2 and a final value L2 � b2 � i�ht=m.

Now let us consider the wave packet collapse per se, a
process in which L2 changes rapidly fromL2 � b2 � i�ht=m to
L2 � b2. It can be argued that this collapse is caused by the
collapse of the wave function of particle q, the second partner
in the scattering process. If the post-collapse wave function of
the particle q looks like a Gaussian packet with L2 � b2, we
can go back in time to the scattering event, and the particle q
will then have L2 equal to L2 � b2 ÿ i�ht=m, which is the
average conjugate �L2�� of the parameter L2 for the jth
particle. But the scattered particles j and q have a joint wave
function, so that the collapse of the qth particle produces
automatically a form factor exp

�ÿ�rj ÿ r0j�2=2L�20
�
in the

wave function of the j particle. In other words, we have
exp
�ÿ� rj ÿ r0j�2=2L�2�

�
exp
�ÿ� rj ÿ r0j�2=2L2

�� exp
�ÿ� rjÿ

ÿr0j�2=2b2
�
. This yields Lÿ2 � L�ÿ2 � bÿ2, i.e., b2 � �ht=m.

Since

jcj2 � exp

�
ÿ b2�rj ÿ r0j�2

jLj4
�
;

the size of jcj2 pulsates from the initial value b2 � �ht=m to the
final jLj4=b2 � 2�ht=m [2, 3].

The neglect of these pulses results in the continuous
collapse model. The outline of this model is as follows. Since
every wave packet has a finite lifetime t, its energy has an
uncertainty of the order of �h=2t. The corresponding uncer-
tainty in the space of wave numbers K follows from the
relation �h2K2=2m � �h=2t. When two wave packets collide
(scatter), the particles exchange their momenta and, due to
the two wave number uncertainties of order K being added, a
regular broadening of their packets in k also occurs. The
continuous collapse model can include this effect approxi-
mately by using the one-dimensional equation for diffusion in
k space,

qc
qt
� D

q2c
qk2
� gc : �1�

Here c is the wave packet wave function, D � K2=2t is the
diffusion coefficient in k, and the constant g takes account of
the normalisation of jcj2.When changing to the configuration
space, the operator q2=qk2 should be replaced by ÿ�xÿ x0�2,
wherex is the coordinate along the packetmotion andx0 is the
centre of the packet. In changing to three-dimensional space,
the collapse in all three coordinates must be taken into
account. Adding the kinetic energy operator yields the
generalised SchroÈ dinger equation for this model,

i�h
qc
qt
� ÿ �h2

2m
Dcÿ i

�h�rÿ r0�2
2L2

0t
c� i�hgc ; �2�

where L2
0 � 2�ht=m.

The steady-state solution to this equation is

c � exp

�
ÿiotÿ �rÿ r0�2

2L2

�
; �3�

where o � g � 3=4t, Lÿ2 � �1ÿ i�Lÿ20 , L2
0 � 2�ht=m. The

quantity g is selected to ensure that the frequency o is real.
As one can see, the width of the wave packet is determined by
the quantityL2

0 � 2�ht=m. In order of magnitude,L0 �
��������
llB
p

,
where lB � �h=mvT is the average de Broglie wavelength. The
geometrical mean of the macroscopic l and microscopic lB
parameters is of course a hallmark of the mesoscopic region.
Since usually lB5 l, wave packets look like compact entities
reminiscent of classical particles. Their centre trajectories are
broken lines with straight-line segments between and sharp
kinks at the collisions. The collisions are described by
conventional quantum mechanics, and the general behaviour
of wave packets, with account for random collapses, may be
described by the kinetic equation.

The above approach includes wave function collapses
explicitly. This means that we attribute to the wave function
an information-carrying meaning and introduce `self-mea-
surement' processes, in which the particle wave function is
completely destroyed in the regions where the particle is
absent. It is therefore not surprising that an equation of the
type (2) can be used in modelling continuous measurement
processes [4].

Now the question naturally arises, why not to employ the
standard apparatus of quantum mechanics to describe a gas?
Since the interatomic interaction in a dilute gas is small,
perturbation theory would seem to be the most suitable tool
for this purpose. This question received a detailed treatment
in the works by Prigogine and Petrosky [5 ± 7], who showed
that when applied directly perturbation theory leads to
divergences. The reason is that a classical gas is a typical
example of Poincare's Grand System, which is inherently
stochastic. Accordingly, quantum theory involves the self-
scattering paradox similar to the problem of small denomi-
nators in classical theory. To obviate the quantum divergence
difficulties, Prigogine and Petrosky develop a complicated
formalism for describing quantum systems in terms of the
Liouville representation [7]. A more preferable approach, in
our view, is to include the wave function collapse explicitly as
discussed in Refs [2, 3, 8].

4. Gas as a measurement apparatus

There are three stages in any quantum measurement, the
spectral decomposition of the wave function, the collapse of
the wave function, and the registration of the event (see, e.g.,
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Ref. [9]). The first stage is a purely preparatory one, which
does not perform a measurement but just prepares the
spectral decomposition of the wave function for the subse-
quent measurement. In the second, the most extraordinary
and delicate step, the wave function projects itself, as a result
of an interaction with a macroscopic body, onto one of the
possible states, following the law of random events in doing
so. This is where all the specificity of quantummeasurement is
contained. As regards the third stage, this is nothing else than
an archive record of the result produced by the collapse.

Being able to describe the collapse of the wave function of
a gas atom we may analyse this most intriguing stage of a
quantum measurement event. To do this, it suffices to take a
dilute gas as a measuring device, i.e., a system which
implements the collapse of the wave function.

Consider a vertically oriented gas layer of thicknessL4 l.
Let the x axis of a rectangular coordinate system be
coincident with the normal to the layer, and suppose that
along this axis the wave function c�r; t� of a certain particle is
incident on the layer, the particle mass m being equal to that
of the gas atom. The velocity of the particle is v0, and its cross
section for scattering from the gas atom is s0, yielding the
mean free path l0 � 1=ns0. The walls confining the gas are
assumed to be transparent for the incident particle.

The incident wave function is scattered by the gas atoms,
so that its unscattered part decreases with x as exp�ÿx=2l0�,
and the square of the wave function as exp�ÿx=l0� (assuming
v04 vT for the sake of simplicity). Because the incident
particle undergoes many scatterings over a length of the
order of l0, a large number of scattered waves form. To each
one of these there corresponds the second interaction partner,
the atom at which the scattering event occurred.

During the time t � l=vT the atoms of the gas experience
collisions, and correspondingly wave function collapses
occur. Of all the atoms of the gas, only one will be able to
undergo a collapse jointly with the wave function of the
incident particle; for all the others, the incident particle has
nothing to do with their collapses. In the joint collapse, all the
remaining Ð noncollapsing Ð part of the incident wave
function is eliminated instantly.

Now let the incident wave function depends on one of the
transverse coordinates, say y, so that c � c�y�. Since c�y�
prior to the collision enters as a factor in the total wave
function of the system as a whole, it follows that the
probability of a joint collapse for the wave function and one
of gas atoms will be proportional to jc�y�j2, for the simple
reason that the probability for the gas atom wave function to
collapse is proportional to its absolute value squared.We thus
see that the incident particle `is measured' with a probability
proportional to jcj2.

This example clearly demonstrates that the wave function
collapse is a global process related to the total multiparticle
wave function of the problem; it involves not only the wave
function of the particle `being measured' but also the wave
functions of the gas atoms.

If L4 l0, the wave function of the incident particle
`sticks' in the gas layer, i.e., it is certainly `measured' by this
layer. After the collapse of the incident wave function, a
sufficiently compact (� ��������

llB
p

in size) wave packet of the
incident particle forms. The probability of formation of such
a packet is distributed as jc�y�j2 in the transverse direction
and as exp�ÿx=l0� with respect to depth. After the first
`measuring' collapse, the wave packet will diffuse in the gas
experiencing, in doing so, a series of successive Brownian-type

collisions with gas atoms. If the wave packet incident on the
gas layer is much wider than

��������
llB
p

, the post-collapse packet
width, then the size of the wave packet is greatly reduced
during the collapse. It may then be argued that the `small
spots' of the collapsed packets are approximately orthogonal
to one another or, in other words, such collapses resemble
what von Neumann's projection operator would do to the
original wave packet.

We will next consider a more sophisticated version of the
above thought experiment. Suppose that there are two slots
cut in the gas layer under consideration and that at a large
enough distance L0 a second gas layer is placed as a screen.
Clearly the waves passing through the slots produce an
interference pattern on the screen layer. As before, collapses
will produce there small spots of size

��������
llB
p

, their probability
being proportional to jc�y�j2. Performed repeatedly, these
`measurements' will `map' the intensity jc�y�j2 in the second
layer. The number of such spots will be the number of
particles incident on the first layer times the probability of
passing the slots. In other words, only those particles not
`measured' by the first layer, will go through. For the particles
that have collapsed there, the waves passing through the slots
correspond to the so-called `empty waves', which naturally
will no longer be able to collapse in the second layer.

At first sight, the collapse processes in the first and
second gas layers appear to be totally independent: the
second layer will register only those particles having passed
through the slots in the first. The actual situation is
somewhat more complex than that. Let t0 denote the
quantity l0=v0, where v0 is the velocity of the incident
particle, and l0 is its mean free path in the gas. Clearly,
the incident particle will take no less than t0 or t to collapse.
If t05 t, it will travel a distance l0t=t0 during the collapse
time. If this exceeds L0, the incident particle has enough
time to produce scattered waves both in the first and the
second gas layer, meaning that it suffers a collapse only in
one of the layers, with a simultaneous destruction of all
waves in the other. But this means, further, than the wave
function of the incident particle has a correlating effect on
the collapses occurring in two seemingly independent gas
layers. Wave function collapses thus appear as a collective
effect involving the total wave function of the entire system
consisting of the particle and two gas layers.

This last point is even more effectively made if instead of a
single particle a correlated pair of the Einstein ± Podolsky ±
Rosen paradox [10] is considered. Suppose that two particles
emerge from a common centre with total momentum zero,
and that two gas layers are placed on the opposite sides of this
point at the same distance L0 away. If one of the particles
suffers a collapse in one layer, clearly the wave function of the
second collapses in the other, the latter event occurring at the
exactly symmetric (to within

��������
llB
p

) point. If both layers are
distant equally from the emission source, one cannot indicate
the exact layer in which a collapse occurs first. This means
that the very presence of a correlated pair automatically leads
to correlated collapses in two well-separated gas layers.
Again, the collapse involves the entire system, the EPR pair
and two gas layers.

It appears that the irreversibility property of either layer
relates to its irreversibly interacting with the environment.
But this interaction is of such a nature as to preserve the
quantum correlations prior to the collapse. One can thus say
that the collapse events are under sufficiently tight con-
straints, with the consequence that the collapse probability
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strictly follows the law jcj2 and that the wave functionc prior
to the collapse obeys the SchroÈ dinger equation.

The correlation of wave function collapses in a `measure-
ment' event is established instantly, i.e., superluminally. The
idea that collapses in different regions in space must
necessarily be linked in this way was discussed by Stapp [11]
and is a subject of considerable current interest.

5. Quantum communication

The presence of nonlocal correlation links in quantum
mechanics was first demonstrated in the work of Einstein,
Podolsky, and Rosen [10]. Although originally viewed as
something of a paradox, its existence was established beyond
any doubt in later work, notably owing to Bell's theorem [12]
according to which the presence of hidden parameters prior to
a quantum measurement would result in certain inequalities
acting to restrict experimental observation results [13 ± 15].
While lending support to orthodox quantum mechanics, this
is suggestive of nonlocal correlation links coming to existence
at the instant of a quantum measurement. An experiment by
Aspect, Dalibard, and Roger [15] clearly demonstrates that
these links are established superluminally. An appropriate
question to ask is, can quantum correlations be used for
superluminal information exchange?

To employ correlated EPR quantum pairs would appear
the simplest answer. Onemight think, for example, of Bohm's
scheme in which correlated pairs of particles of spin�1=2 and
total momentum zero emerge from the common centre at
x � 0. Registering the spin of one of these at a distance x � L
from the source would be accompanied by the registration of
the second, opposite-spin particle at a distance x � ÿL.
Correlation between the spins occurs at the measurement
instantly, implying that some kind of information link is
established.

It should be emphasised that the quantum measurement
process differs considerably from its classical counterpart in
that the spin of the particle has no definite value prior to the
measurement and assumes a specific value only at the time of
the measurement, due to the wave function collapse to one of
the states available. This collapse is `transferred' instantly to
the second particle, so that the measured total moment of the
pair turns out to be zero.

Thus, the instant nonlocal link does indeed exist between
particles. It turns out, however, that it cannot be used for
transmitting information. In order to do this one must
average the signal over many particles. But both the right
and the left particles have spin measurement probabilities of
exactly 1/2 for spin values�1/2, and the measurement on one
of them has no effect whatsoever on the statistics of the
outcomes (�1=2 or ÿ1=2) for the second. Thus, the simplest
EPR pairs are of no use for information transfer purposes.

The possibility or otherwise of quantum-correlation
superluminal information transfer can be analysed in more
general terms and by considering more complicated quantum
systems [16 ± 19]. The answer is again no. A brief sketch of the
arguments used follows.

The simplest proof is due to Bussey [18]. Suppose two
quantum systems A and B interact for some time before, and
cease to interact after, t � 0. If their common wave function
cAB does not factor into the product cAcB of wave functions
of the two systems, these form a so-called entangled state. A
measurement on one of them then causes a collapse of the
wave function of the second, which gives us grounds for

speculating on the possibility of instant information transfer.
That such transfer turns out to be prohibited, however, is due
to the reversible evolution of quantum systems prior to the
measurement. Let rAB be the density matrix of the combined
system. It is the density matrix which describes the signal
which accumulates over a large number of measurements and
might be employed for transmitting information. According
to the SchroÈ dinger equation, the density matrix evolves in an
irreversible and causal way like

rAB�t� � exp

�
ÿ iHt

�h

�
rAB�0� exp

�
iHt

�h

�
: �4�

Here H � HA �HB is the Hamiltonian of the combined
system in the absence of interaction. For any operator UA in
system A, the result of the measurement is given by

hUAi � TrUArAB � TrUA�rA ; �5�

where Tr denotes the trace of a matrix, and �rA denotes the
reduced density matrix, i.e., one resulting from taking the
trace rAB with respect to the variables of system B,
�rA � TrB rAB. In other words, in accordance with the general
principles of quantum mechanics the description of system A
can be given by taking the (partial) trace of the matrix rAB
with respect to the variables of system B. Since
H � HA �HB,

�rA � exp

�
ÿ iHAt

�h

�
TrB

�
exp

�
ÿ iHBt

�h

�
rAB�0�

� exp

�
iHBt

�h

��
exp

�
iHAt

�h

�
: �6�

But the trace of the bracketed expression with respect to the
variables of system B is simply TrB rAB�0� and does not
depend on time. Therefore, no manipulations on physical
quantities in system B can have any effect on system A, and
accordingly it is absolutely impossible to transmit informa-
tion from A to B after these systems have ceased to interact.

The elegant proof given by Bussey appears to rule out
quite rigorously any possibility of signaling by means of
quantum correlations. Ultimately, this conclusion relies on
the fundamental quantum mechanical principles, according
to which the evolution of a system prior to the measurement
obeys the SchroÈ dinger equation, and in the measurement
process itself the probability of a given outcome is propor-
tional to jcj2 for the corresponding wave function compo-
nents.

There is, however, one inaccuracy in Bussey's proof, and
this was removed in a paper by Shimony [19], whose reason-
ing is very much in the spirit of Ghirardi, Rimini, and Weber
[17]. The point is that Bussey ignores the presence of the
measuring apparatus, which is generally incorrect. According
to [19], however, if one replaces rAB in (6) by rABM and HB

by HB �HM, where index M denotes the measuring appa-
ratus, and then averages over the variables of systems B and
M, the same final conclusion will be reached, that transmit-
ting information by means of quantum correlations is
prohibited by the fundamental principles of quantum
mechanics.

Although apparently quite convincing and categorical,
this conclusion is in fact valid only for a specific model. It is
assumed, namely, that first two correlated particles or
quantum systems are prepared, that they then fly apart Ð
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obeying the SchroÈ dinger equation in their evolution Ð and it
is only then that they are subjected to a measuring procedure.
The time t in brackets in expression (6) drops out for the only
reason that the quantum system B is assumed to evolve
causally and totally reversibly. Thus, the above proof does
not give an answer to the question of whether or not
information can be transmitted by using quantum correla-
tions in irreversible quantum systems. In other words, the
question remains, Is it possible, presumably by using a more
sophisticated scheme or by introducing some elements of
irreversibility into the instrument, to manufacture a quantum
system in which transmitting information by means of
quantum correlations would become possible? The answer is
far from trivial.

One scheme of this type [20] employs EPR pairs of S-state
photons, their detectors being provided with appropriate
polarisers and with half wave plates at points A and B.
Suppose the polarisation of the photons is such that upon
the measurement of a definite polarisation at point A, the
photon at point B is seen to be in the orthogonal polarisation
state. If the photon measured at A is a plane polarised one, so
too will be the photon detected at B. If, on the other hand, the
detection scheme at point A is devised to register photons
with a circular polarisation, then at point B photons will
collapse into a circular polarisation state. In the former case,
the light beam which is on the average unpolarised at B will
consist of plane polarised photons, in the second, of circularly
polarised photons. Were it possible to detect the difference
between plane unpolarised and circularly unpolarised light at
point B, the observer B would be able to know the exact state
of the measuring system at point A. But then, since this
information is created by collapses, superluminal telecommu-
nication would be realised.

In order to find out the exact unpolarised state of the beam
of photons in the detection region B, Herbert [20] proposes to
place a laser gain tube before the detection system B. His idea
is that such a tube will `clone' photons, and each incident
photonmust accordingly give rise to a light burst consisting of
many similar photons. Since it is a simple matter to establish
the polarisation of such a burst, one would expect that this
kind of irreversible device will help to understand what
happens to photons in the detection region A.

This `quantum telegraph' proves to be unworkable,
though [21, 22]. Themost convincing proof is due toWootters
and Zurek, who demonstrate that a single photon cannot be
cloned because of the linearity of quantum mechanics. Their
argument is as follows. A perfect amplifying device performs
the following operation upon the photon:

jA0ijsi ! jAsjssi: �7�

Here jsi corresponds to the incident photon in the state s, jA0i
and jAsi are respectively the initial and the final states of the
apparatus, and the symbol jssi refers to the state in which two
photons have the same polarisation s. Suppose the amplifica-
tion (7) can in fact be performed for the vertical polarisation
jli and for the horizontal polarisation j$i, so that

A0jli ! jAvertij lli ; �8�
A0j $i ! jAhorij$$i : �9�
In the spirit of quantum mechanics, such amplification

can be represented as a linear transformation. Therefore, if
the incoming polarisation is given by the superposition

aj li � bj $i (which for a � b � 1=
���
2
p

corresponds to the
linear polarisation at an angle of 45�) then, from (8) and (9),
the result of the interaction with the apparatus must be

A0

ÿ
aj li � bj $i�! ajAvertij lli � bjAhorij$$i : �10�

If the apparatus statesAvert andAhor are not identical, the two
photons emerging from the apparatus will be in a mixed state.
Otherwise they will be in the pure state

aj lli � bj$$i : �11�

In neither case will two photons be in a polarisation state
aj li � bj $i. For a perfect amplifier, such a state would have
to be written as

2ÿ1=2�aa�vert � ba�hor�2j0i � a2j lli � 21=2abj l$i � b2j$$i ;
�12�

where the a�vert and a
�
hor are photon production operators and

j0i is the vacuum state. It is readily seen that the state (12) is
not identical to the superposition (11), meaning that no
apparatus exists which is capable to amplify an arbitrary
polarisation. Needless to say, this does not exclude the
possibility of a device capable to amplify either vertical or
horizontal polarisation separately, but such an amplifier will
be of no use for superluminal communication purposes.

Another aspect of the above device, brought out by
Glauber [22], is photon noise. Using a simple upside-down
pendulum amplifier model, Glauber shows that noise ampli-
fication is so large that the Herbert scheme is not viable for
this reason either.

One further quantum communication scheme [22, 24]
employs the irreversible Sokolov effect. The effect itself was
discovered by Sokolov and associates [25] in atomic inter-
ference experiments, in which a beam of excited hydrogen
atoms in the metastable state 2s is passed through a small slot
with a longitudinal electric field. Due to the linear Stark
effect, an atom in the field is polarised to form a time-
decaying 2p-component. With two slots, the interference of
2p-amplitude can be observed. An unexpected result (dubbed
the Sokolov effect) was that even in the absence of an electric
field 2s-atoms are polarised in their motion near a metallic
sample.

A possible explanation of the effect [26] invokes the
collapse of the wave functions of conduction electrons in the
metal. As a 2s-atom flies near the metal surface, conduction
electrons interact with the excited atom. The effect of this
interaction is on the average very small because there is
virtually no macroscopic field outside the metal (the thermal
fluctuations of the electric field are small, and the image field
is even smaller). However, in their motion back into the metal
after the interaction, conduction electrons may suffer col-
lapses when scattered by other electrons, phonons, or
impurity atoms. Although electron wave functions typically
follow the p � jc j2 law in such collapses, however, owing to
the energy conservation law a very small deviation from this
law occurs. The reason is that the post-collapse wave packet is
more localised, and on the average the energy conservation
law favours collapses into the slower part of the wave packet.
A consequence of this asymmetry is that each electron, due to
its entanglement with the moving atom, adds something to
the shift of the atom's 2p-amplitude. The effect of one single
electron is very small as being proportional to the interaction
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matrix element times the small collapse asymmetry parameter
a � ����������

lB=l
p

, where lB and l are the conduction electron de
Broglie wavelength and mean free path, respectively. How-
ever, since the number of interaction electrons is very large,
the total effect is not small.

Thus, the Sokolov effect may be said [26] to be produced
by quantum correlations between the excited atom and the
collapsing wave functions of the conduction electrons. If the
electron scattering rate is controlled one might, in principle,
expect for a corresponding response on the part of the 2p-
state amplitude, i.e., the excited atom radiation intensity. It is
here where quantum telecommunication on the basis of the
Sokolov effect looks to be possible.

Recent experimental verifications [27] of the above
mechanism are in good agreement with theory, in particular
as far as the roles of the sample geometry and the beam-metal
sample distance are concerned. It can be stated that the theory
is confirmed by experiment. If the quantum communication
scheme of Refs [23, 24] is indeed realisable, one can develop a
better understanding of when it is possible and when not to
transmit information by means of quantum correlations with
the use of the wave function collapse. It should be noted that
the signal transfer we are discussing here has nothing to do
with either electromagnetic waves or modulated particle
beams. Rather, by quantum communication we mean the
possibility of an instant transfer of information via the
collapse of correlated nonlocal wave functions.

All schemes involving very widely separated correlated
quantum systems prove invalid due to the basic quantum
mechanical principle that the probability of a given outcome
of the contact between the wave function and outer devices
(which contact is `measurement') very accurately follows the
law jcj2. And since, as quantum systems fly apart, they evolve
reversibly in accordance with the SchroÈ dinger equation, it
follows from (6) that measurements in one of them have no
effect on the statistics of measurement results in the second.

Using irreversible systems with a continuum spectrum,
such as an ordinary or a free electron gas, may lead to a small
systematic departure from the p � jcj2 law, which can
conceivably be employed for transferring information. In
this case, however, the time it takes to prepare the system for
the information transfer act is not more than the relaxation
time t, due to, say, electron collisions in the metal. We must
therefore limit our expectations to short information transfer
distances, i.e., to those within one combined complex system
which undergoes irreversible nonlocal relaxation. Quantum
communication is most likely to be limited to complex
irreversible systems. It might play some role in biological
systems, which exemplify most vividly the complex evolution
of irreversible self-organising systems.

6. Conclusions

First raised in the early years of quantum theory, the question
of the wave function collapse has since been discussed
continuously from a variety of viewpoints.

Mathematically, von Neumann [28] distinguishes here
two dissimilar processes, the continuous evolution of the
quantum system according to the SchroÈ dinger equation
between measurements, and random projections onto one of
the possible states during themeasurement. The latter process
cannot be described by the SchroÈ dinger equation and is
random but, von Neumann argues, this random process
cannot be described in terms of hidden variables either.

Since the division of evolution processes into only two groups
without a physically clear description of collapse is unsatis-
factory for those inclined to a visual way of thinking, the
problem of collapse has always been a subject of lively
discussion and has been approached from many and often
widely different directions.

There is a view [29, 30] that this problem does not exist at
all since ``the state vector cannot be ascribed to an individual
system but only to an ensemble of systems.'' Accordingly the
wave function, rather than being a property of the system,
becomes only a `procedure' for calculating probabilities Ð a
difficult approach to accept. ``Those readers'', Peres adds [30],
``who adopt a `realistic' attitude will disagree with my
approach. However, it is their problem then to explain the
miraculous events'' occurring during a measurement. In
direct opposition to this view, a dynamical description of the
collapse [31] and even spontaneous collapses of a free particle
[32] are suggested. In order to describe such collapses, the
introduction into the SchroÈ dinger equation of phenomenolo-
gical term with stochasticity is suggested. This, however,
changes the dynamics of a free particle and indeed implies a
cardinal revision of the very foundations of quantum
mechanics Ð an endeavour which is difficult to justify at
present.

The more natural approach is perhaps to relate the
collapse phenomenon to the influence of a complex environ-
ment [33 ± 35]. In fact, taking an oscillator bath to model the
interaction with the environment, Unruh and Zurek [36]
discover the possibility of a collapse of the wave function of
the upside-down pendulum. The same type of wave function
collapse might be expected in systems whose classical
analogues have divergent trajectories in phase space. The
simplest example is an ordinary gas, and it is therefore natural
to assume that a gas acts as stochasticity amplifier, whether
classical or quantum [8]. If this is indeed the case, we naturally
arrive at the molecular chaos picture [2], in which the
amplification of external stochasticity manifests itself in the
collapse of gas atom wave functions as they are scattered and
subsequently undergo a complicated decoherence process.

Assuming the effect of this decoherence to be the
elimination of wave function in regions where no atoms are
present, we are naturally led to a description of a gas in terms
of wave packets. Each one of these first interacts with other
atoms, creating scattered waves, and then collapses into one
of possible scattered packets. In this approach the wave
functions of gas atoms appear as information-carrying
entities, which makes it quite natural to speak of the
elimination of waves in the regions where no particles are
present.

The collapses of the wave functions of gas atoms lead to
the wave function collapses for other particles interacting
with the gas. Thus, the gas can be thought of as a measuring
instrument: it performs easily this most delicate Ð wave
function collapse Ð stage in the measurement process.

Wave function collapses do not proceed in an arbitrary
way but rather obey a universal outside constraint that their
probabilities be proportional to jcj2 for the corresponding
state. This universal law prevents superluminal communica-
tion over arbitrarily large distances. However in a gas and
particularly in a free electron gas, small departures of the
universal jcj2 law are possible which, although generally of
minor importance, provide a clue to explaining the Sokolov
effect. Based on this latter, it is then conceivable that
information can be transmitted across relatively short dis-
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tances by means of quantum correlations, the irreversible
relaxation of conduction electrons being instrumental in the
process.

Thus, if one adopts the `realistic' viewpoint, the wave
function collapse should be treated as a quite real process.
Wave function collapses may occur within a physical system
as a kind of an `inner measurement' or a `self-measurement'.
It is these processes which are involved in the evolution of the
wave function of atoms or Brownian particles in a gas. Wave
function collapses manifest themselves even more vividly in
conventional `external' measurements, in which the wave
function of the microobject under measurement and that of
the measuring instrument collapse simultaneously. Such a
collapse clearly demonstrates the quantum correlation of
these two systems.

During the collapse of a correlated system an exchange of
information occurs. The question is, whether this exchange is
a purely random event or it has the potential for the
controllable transfer of information which can be accumu-
lated by many microobjects. Since collapses of correlated
systems may occur within sufficiently short time intervals, the
possibility of quantum correlation information transfer is
readily associated with the superluminal signaling idea.
Clearly, faster-than-light signaling across large distances is
at odds with the principle of relativity, so that instant
signalling across large distances is forbidden. This follows
[16 ± 19] from the general quantum mechanical principle that
the probability of an event is proportional to jcj2. Conversely,
the principle of relativity implies the random nature of
quantum events as well as the p � jcj2 law (see Ref. [37] for
more on that). However, in complex irreversible systems there
appears to be no ban on internal exchange of information via
quantum correlations. Hopefully future research will clarify
this point.
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