
Abstract. We consider the stability problem for a plane gas
layer whose nonequilibrium state is maintained by pumping
energy into the molecular vibrational degrees of freedom and
by heat removal through the walls. Two approaches to the study
of gas stability are discussed, which consider the evolution of
small hydrodynamic perturbations and thermal explosion. We
have studied in detail the Rayleigh ±Benard problem of convec-
tion instability and the Semenov ± Frank-Kamenetski|̄ problem
of thermal explosion, and generalised them to the case of a
nonequilibrium gas. Some unsolved problems of the physical
hydrodynamics of a nonequilibrium gas have been outlined as
well.

1. Introduction

Studying fluid motion, hydrodynamics deals with a wide
variety of structures. Essentially, any hydrodynamic state
undergoes structural transformations as external conditions
change. It will suffice to mention the transition of laminar
flow into the turbulent one, initiation of the convection,
thermal explosion, and so on. The number of examples can
be easily increased. We notice that changes in the regimes
show a threshold behaviour and take place at certain critical
values of dimensionless parameters such as the numbers of
Reynolds, Rayleigh, etc. From the standpoint of the phase
transition theory, these parameters are the controlling ones,
while the structural transformation is of character of the
nonequilibrium phase transition of the second order.

The study of the stability problem brings up two groups of
questions: (i) under which conditions and how the stability
originates; (ii) what is the structure of a new stable state
replacing the former state which lost its stability. In the

present paper we intend to consider only the first group of
questions, calling our special attention to the stability
problem of a nonequilibrium gas.

Nonequilibrium gas differs from the equilibrium one by
the presence of additional `degrees of freedom' providing the
means of varying the nonequilibrium excess energy over
individual degrees of freedom. This excess energy gives rise
to a new channel of energy exchange primarily between
translational and internal degrees of freedom, which can
degrade or enhance the mechanism of instability occurrence.
In this connection, the critical parameters, at which the
stability loses, cease to be `universal' in character and begin
to depend on the rate of relaxation processes and on the
energy excess falling within individual degrees of freedom, i.e.
in essence, on the power of a source responsible for the
nonequilibrium energy distribution in the system. Such
problems have come to the attention of researchers only in
recent years, when they started to deal with the large volumes
of nonequilibrium gas, such as active media of gas lasers,
discharge plasma, chemically reacting gases, etc.

Notice that a nonequilibrium gas also occurs under
natural conditions. For example, it appears to be feasible in
the upper atmosphere of the Earth and other planets,
interstellar gas, etc.

One point is to be made. When studying stability in a
classic equilibrium hydrodynamics, we essentially deal with a
nonequilibrium gas too. Actually, formation of the gradients
of thermodynamic variables in the system (which do have a
sufficient effect on instability) disturbs immediately the
Maxwell-Boltzmann distribution of particles. Gas becomes
nonequilibrium. However, a departure from the equilibrium
state is small (the velocity distribution function differs slightly
from the equilibrium one). It is essential only in calculating
the transport coefficients, and does not play a significant part
in the stability problems. For simplicity, this weakly non-
equilibrium gas will be called the equilibrium one, as is
customary.

The question of gas stability first arose late in the nine-
teenth century in studies of two, at first sight, quite different
phenomena, such as a turbulence and thermal explosion. At
present it is clear that we deal with the loss of stability in both
the cases. However, we would like to emphasize the principal
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difference between the classical hydrodynamic instability and
the thermal explosion. In classic hydrodynamics, the analysis
of stability was carried out for equilibrium media, while the
chemically nonequilibrium gas was studied in the theory of
thermal explosion [1, 2]. The chemical nonequilibrium state
possesses formal evidences which are rather similar to those
of a state with nonequilibrium internal degrees of freedom
(for example, deactivation of vibrationally excited molecules
can be considered as an exothermic reaction). In this
connection, the theory of thermal explosion in a none-
quilibrium gas is being developed under the strong influence
of the modern theory of thermal explosion in chemically
reacting media.

Quite a different situation takes place in the theory of
hydrodynamic stability. On studying the hydrodynamic
stability of a nonequilibrium gas, one should take into
account a new channel for amplified perturbations, which
conveys the excess energy from internal degrees of freedom to
the hydrodynamic perturbations.

The review is arranged as follows. In Section 2, we
discuss the hydrodynamic stability of both the equilibrium
and nonequilibrium gas with respect to small perturbations,
the nonequilibrium state being supported by external energy
pumping and heat removal through the boundary. Section 3
deals with the classic theory of thermal explosion in
chemically reacted media as well as in vibrationally excited
gas.

It should be emphasized that the system stability is
primarily analyzed by the example of simplified models
allowing us to investigate the physical mechanisms of
instability occurrence and to reveal the ranges of medium
parameters and wave vectors of perturbations, which are
firstly amplified in the system.

2. Hydrodynamic instability

In this section we take an approach to the stability problem
associated with the analysis of small perturbations in the
linear approximation. It is worthy of note that all the
problems of stability loss formulated for an equilibrium gas
(for instance, instabilities of various types of flows [3]) can
also apply to a nonequilibrium gas, but in the latter case most
of these problems are steel to be solved. In this connection, we
consider only one equilibrium problem of hydrodynamic
stability related to the convection stability of a plane gas
layer, which can be easily extended to a nonequilibrium case.

2.1 Small perturbations in an equilibrium gas
Theoretical investigation of the transition of a laminar flow to
the turbulent one, originated as early as at the end of the
nineteenth century, has introduced into hydrodynamics a
method for studying the stability loss, which is based on the
analysis of time-dependent small hydrodynamic perturba-
tions. The stability of steady states has been mathematically
treated by linearization of the initial equations with respect to
small perturbations. The resulting homogeneous set of linear
differential equations with time-independent coefficients has
the solution of the exp�ÿiot� type. If among the found roots
o � o0 � io1 there are ones for which o1 > 0, then the state
is unstable. This approach yields correct results in most cases.
But it should be remembered that our finding is valid only to
first order of perturbation theory. An account of the next
order approximations can change the pattern. Furthermore,
in a moving infinite medium, perturbations can be carried

over even if they increase, while in a confined space we should
take into account the flow reflection from the walls. In the
linear approximation, the arbitrary perturbation can be
presented as a sum of separated perturbations, each satisfying
the proper set of equations. This is the so-called mode
representation similar to that of small oscillations in mechan-
ical systems with a large number of degrees of freedom as a
superposition of normal oscillations. In the framework of
mode representation, the stability problem is reduced to the
study of time evolution for the individual mode perturba-
tions. The system can be stable with respect to perturbations
of a mode, and unstable with respect to that of another mode.

In the three-dimensional case, three perturbation modes
can be revealed in an equilibrium gas: the thermal (entropy)
mode, the acoustic mode, and the mode pertinent to genera-
tion and transfer of vorticity (rot v) [4]. In the nonequilibrium
hydrodynamics, the number of perturbation modes increases
with the number of kinetic processes (additional kinetic
equations) taken into account. We emphasize once again
that the mode representation of perturbations is only possible
in the linear approximation.

For example, the above approach was advantageously
applied to the Rayleigh±Benard problem on convection
stability of fluid. This problem is of interest in itself as it
models a large class of self-organizing systems and can be
easily extended to the case of a nonequilibrium gas.

The occurrence of convection instability fits the instability
with respect to small thermal perturbations which transform
into the convective one under gravity. Actually, gravity-
related term in the equation of motion gives rise to the
thermal mode traffic. The question of the convection stability
will be discussed in detail in Section 2.3.

2.2 Acoustic and thermal perturbations
in a nonequilibrium gas
With advances in physics of gas lasers and physics of
discharges in the mid-1960s, the question of the amplification
of acoustic perturbations has come under the scrutiny of
science [5, 6]. The mechanism of this phenomenon is con-
cerned with changes in the energy flux from internal degrees
of freedom to the translational ones in an acoustic wave under
temperature variation. It is just this flux that leads to the wave
amplification. We emphasize, however, that for a long time
the uniform case has been dealt with. The results of these
studies have been detailed in the review [7]. But in the study of
the system stability, analysis of the uniform case alone
appears to be inadequate and the consideration of the
feedback pertinent to finite dimensions of the system is
required. This necessitates the explicit consideration of
boundary conditions not only for the velocities and the
translational temperature but for the internal energy as well.

There exists also another important reason related to the
fact that the steady nonequilibriummedium is not uniform in
principle, since heat removes from the system due to thermal
conductivity, i.e. it depends on the gradient of translational
temperature and that of vibrational energy (vibrational
temperature). The greater is a departure from the equilibrium
state, the larger is the nonuniformity. Many authors pointed
out the necessity to take into account the system nonunifor-
mity, but the works considering this effect appeared only
recently [8]. So far we have dealt with acoustic perturbations.
But in full measure above considerations are also appro-
priate for thermal modes. In several works (see, for example,
[9]), thermal perturbations were studied in a uniform system.
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The nonuniform case was considered in [10] by viewing the
simplest models.

In solving the problem of nonequilibrium gas stability
with respect to small perturbations, the simplest model from
the standpoint of geometry is a plane layer with heat removal
through the walls. In this case, the main parameters of the
problem depend solely upon a single Cartesian coordinate
(we denote it by z). As indicated above, the energy pumping
into internal degrees of freedom is rendered possible in a
rather complicated kinetic way, which increases significantly
the number of equations, with unknown as a rule kinetic
coefficients. To reveal the general relationships in both
uniform and nonuniform cases, we will consider a vibration-
ally-nonequilibrium gas and use two models. In the first
model, the power I of the energy pumping into the vibrational
degrees of freedom is assumed to be constant. This model
takes into account the energy pumping in the simplest way. In
another approximation, the vibrational energy per unitmass e
is considered to be constant. In the case of discharge this
approximation is justified by the fact that `intensive vibra-
tional excitation by electrons has a chance to maintain the
steady value of Tv' (Tv is the vibrational temperature) [11]. In
practice, the comparison of typical times in a discharge [12]
indicates that the energy is fastly transferred from electrons to
the vibrational degrees of freedom and the temperatureTv for
rather long hydrodynamic times will be equal to the electron
temperature, which is proportional to E=r, where E is the
electric field strength, r is the gas density. This quantity is not
obviously constant with the presence of perturbations. In a
more general case (without surveying a discharge), the
condition e � const means that, by varying the relaxation
term (for example, as �eÿ eeq�=t, where eeq�T � is the
equilibrium value of e for a given translational temperature
T, t is the vibrational relaxation time), the term including e0

(as is customary, primed symbols denote the varied or
`perturbed' quantities) should be much less than the other
terms:����ÿ eÿ eeqt2

dt
dT

T 0 ÿ cv�T�T 0
t

����4 cv�Tv�T 0v
t

; �1�

where cv is the heat capacity of vibrational degrees of freedom
(in deriving (1), we assume t to be dependent mainly on T).
When the first term in the left side of (1) is vastly more than
the second one, then inequality (1) is simplified for the
discharge and takes the form

eÿ eeq
t

q
T 0

T
4

cv�Tv�T 0v
t

�
E 0

E
ÿ r

0

r

�
;

where q � ÿ d ln t= d lnT > 0. If the discharge is stabilized
with respect to current, the quantity in parenthesis in the right
side of this relation is small due to a strong dependence of the
ionization constant on electron temperature [13], and Eqn (1)
is fulfilled.

Both the approximations considered certainly simplify the
real situation, but they give an insight into the peculiarities of
the phenomena studied. Notice that the physical content of
these models is different. At I � const, the temperature Tv

changes and thermal conductivity becomes of importance. At
e � const, the relaxation equation disappears and the quan-
tity e becomes a parameter of the problem. Therefore, on
comparing the results obtained by the two models, we can
estimate the effect of pumping source on various properties of
the system.

In Ref. [8], the stability of a nonuniform vibrationally-
nonequilibrium gas with respect to acoustic perturbations
was studied for a plane layer with a fixed translational
temperature T � Tw at its boundaries z � �L (L is the layer
half-width). We consider here a set of equations of relaxation
hydrodynamics involving equations of continuity, motion,
and relaxation:

dr
dt
� r divv � 0 ;

r
dv

dt
� grad pÿ Z4vÿ Z

3
grad divv � 0 ; �2�

g
gÿ 1

dT

dt
ÿ T

p
div �lTHT� ÿ T

p

dp

dt
ÿ m

kB

eÿ eeq
t

� Z
2

X
i; k

�
qvi
qxk
� qvk
qxi
ÿ 2

3
di k divv

�2

;

de
dt
ÿ 1

r
div �lvHTv� � Iÿ eÿ eeq

t
;

where v;T; p are the gas velocity, temperature and pressure,
respectively, m is the molecular mass, kB is the Boltzmann
constant, g is the adiabatic index without regard for the
vibrational degrees of freedom, Z, lT, and lv are the
coefficients of viscosity, translation-rotational and vibra-
tional thermal conductivities, respectively. If we linearize
Eqn (2) and introduce the notation

a 0�x; y; z; t� � ~a�z� exp �iotÿ ikxxÿ ikyy� ; �3�

where a 0 is a perturbation, then for the soundmode we obtain
the equation in ~vz:

d2~vz
dz2
� A�z� d~vz

dz
� B�z� ~vz � 0 ; �4�

whereA�z� andB�z� are determined by the steady distribution
of unperturbed parameters. In the case of solid walls one gets

~vz�z � �L� � 0 : �5�

It should be pointed out that in determining the unper-
turbed parameters the boundary conditions must be also
specified forTv. These conditions depend on the rate constant
of the heterogeneous reaction on the surface of the walls, and
all the possible variants are restricted by two limiting cases
determined by the ratio between the rates of the energy input
and relaxation. If the relaxation on the surface is rather fast,
then

Tv�z � �L� � Tw : �6�

If the relaxation rate on the surface is small, then the
vibrational energy flux through the boundary is equal to
zero and

dTv

dz
�z � �L� � 0 : �7�

The calculations for the model I � const show that the
gain, i.e. the quantity o1 in the expression o � o0 � io1, is
determined by two factors, each being additive. The first
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factor is the same as in the uniform case (the nonequilibrium
effect and dissipative effects of viscosity and thermal con-
ductivity). The only difference consists in integrating the
corresponding expression for the uniform case over the
whole layer width. The second factor is novel and related to
the influence of the gradients of thermodynamic parameters.
Figure 1 presents neutral curves (o1 � 0) against the dimen-
sionless pumping intensity Y and dimensionless inverse time
of vibrational relaxation x (Y � IqrL2=2lTTw,
x � kBrL2=mlTtw, all the values are determined at z � �L).
These calculations were carried out under boundary condi-
tions (7). Notice that the condition of fast heterogeneous
relaxation (6) does not yield radically new result, but only
slightly shifts the critical curves.

The calculated results for the model e � const show that
the instability region is absent, i.e. the way of energy pumping
significantly affects the results. The main finding following
fromFig. 1 is that the account of spatial inhomogeneity by far
narrows the region of unstable modes in a nonequilibrium
gas.

Thermal instability of the plane layer of a nonequilibrium
gas was studied in Ref. [10]. It was found that in the case of
o � 0 (corresponding to the thermal critical mode) thermal
perturbations do not give rise to a hydrodynamic motion
(equations for the perturbed velocity and pressure are
separated from the equations for the energy and relaxation
and have only zero solutions). The unstable modes were
shown to be possible for the model e � const only under the
boundary condition (7), while for the model I � const the
instability takes place only under boundary condition (6). A
detailed discussion of the results ofRef. [10] will be carried out
in the next section.

2.3 Convection instability
In the simplest case, the Rayleigh±Benard problem of
convection instability looks as follows. The stability of a
horizontal liquid layer confined between two parallel solid
surfaces and affected by gravity forces is studied. Tempera-
ture T1 of the lower surface is higher than that (T2) of the
upper surface. The problem of convection instability is based

on the solution to equations of continuity, motion, and
energy and is usually considered within the approximation
of incompressible liquid. The temperature-dependent
changes in density are taken into account only in a term
describing the pull of gravity (Boussinesq approximation). In
this approximation, the equations for perturbations take the
form [14]

divv0 � 0 ;

r
qv0

qt
� ÿgrad p0 � ZDv0 ÿ bT 0erg ; �8�

v0 gradT� qT
0

qt
� wDT 0 :

Here

b � ÿ 1
r

�
qr
qT

�
p

; w � lT
cp r

;

cp is the specific heat capacity at constant pressure, g is the
acceleration of free fall, e is a vector directed downwards
along the z axis and perpendicular to the surfaces confining
the system.

If all the unperturbed variables are considered as inde-
pendent of time and x and y coordinates, then the solution to
set (8) can be written in the form of (3). In this case ~vz can be
found from

�D2 ÿ k2�3~vz � ÿRa k2~vz

�2L�4 ; �9�

where D � d= dz, L is the layer half-width, k2 � k2x � k2y,
Ra � ÿrgb�2L�3DT=�Zl� is the Rayleigh number, DT is the
temperature difference at the boundaries. The boundary
conditions at z � �L can be expressed as

~vz � 0; D~vz � 0; �D2 ÿ k2�2 ~vz � 0 : �10�

Similar equations can be also written for ~Tz�z�.
Thus, the problem is reduced to the eigenvalue problem

for Ra. At fixed k2, the nonzero solution for ~vz, satisfying
boundary conditions (10), occurs only at several particular
values ofRa. The minimum value �Ra�cr � 1708 is reached at
k � 3:12�2L�ÿ1.

Notice that the above deducing of the critical Rayleigh
number is based on the Boussinesq approximation. The latter
is not primarily determined by medium properties and more
likely by the processes occurring in thismedium. For instance,
acoustic waves are described by this approximation in neither
gases nor liquids, since we cannot neglect the substance
compressibility, however low it may be. In other words,
small coefficients, which are determined by the medium
properties' do not assure small values of the corresponding
terms described by the process under consideration. This fact
can be clearly demonstrated by studying the applicability of
the Boussinesq approximation in gases and liquids for a
thermal mode near the critical threshold regime. In compar-
ison with the well-known works [15, 16] where the applic-
ability of the approximationwas considered in awide range of
parameters, this fitting does not require additional assump-
tions about parameters (apart from the fact that this regime is
close to the critical one ) and yields simple criteria for the layer
width. The Boussinesq approximation can be used if a general
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Figure 1. Plots of neutral curves (o1 � 0): 1Ð approximation of uniform

gas; 2 Ð critical curve without considering gradient terms; 3 Ð critical

curve accounting for the gradient terms.
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set of equations for perturbations in a steady medium is
reduced to set (8):

qr0

qt
� r divv0 � v0 grad r � 0 ;

r
qv0i
qt
� ÿ qp

0

qxi
�
X
k

q
qxk

�
Z
�
qv0j
qxk
� qv

0
k

qxi
ÿ 2

3
dik divv0

��
� r0gei ; �11�

cprv0 gradT� cpr
qT 0

qt
� rT

�
qS
qp

�
T

�
qp0

qt
� v0 grad p

�
� div �l0THT� lTHT 0� ;

where S is the specific entropy.
This reduction of the system is possible only for the

thermal mode (o � 0), given the fulfillment of following
inequalities:

r0 divv4v0 gradr; Dv04 grad divv0;�����qSqp
�
T

rT grad p
����5 ��cpr gradT�� : �12�

We also assume that Drmax=rmin5 1, where Drmax is the
maximum density difference in the volume considered, rmin is
theminimumdensity. These inequalities can be represented as

�Ra�cr
A2

5 1 ; �kTp�A15 1 ; �bT�2 A1A2

A3
5 �Ra�cr :

�13�

Here kT � �1=r��qr=qp�T is the coefficient of isothermal
compressibility, �Ra�cr � 1708; A1 � rg�2L�=p; A2 �
rg�2L�3=�wZ�; A3 � cprT=p; w � lT=�cpr�. Inequalities (13)
restrict the range of applicability of the Boussinesq approx-
imation, mainly in magnitude of 2L. In liquids this range
covers 10ÿ4± 0.2 m, and it is 10ÿ3± 0.2 m in gases. The lower
limit is less affected by the parameters of the system than the
upper one, which is largely determined by the last inequality
in (13). The estimations for gases were made at a pressure of
1 atm. As pressure changes, the lower limit L varies as pÿ2=3,
while the upper one as pÿ1=4.

Notice that the widely used criterion of the Boussinesq
approximation (see, for example, [17])�

qr
qT

�
p

y4
�
qr
qp

�
T

Dpmax ;

which is based on the assumption that the density varies with
temperature rather than with pressure, leads in the case of
liquids to incorrect small sizes of the system in which the
convection instability can be described employing the Boussi-
nesq approximation.

We emphasize once again that the Boussinesq approxima-
tion imposes limits primarily on the process at hand but not
the medium properties. As was pointed out above, the
convective mode makes the thermal one, where motion is
brought about by gravity. The Boussinesq approximation
should be fulfilled just for this mode, while the acousticmodes
are merely lacking in this approximation.

The Rayleigh±Benard problem can be easily extended to
the case of a nonequilibrium gas. The convection instability of
a plane layer was considered in [18] for a vibrationally-
nonequilibrium gas in the framework of the model with
e � const. This problem differs from the equilibrium case
considered above: first, there exists a nonequilibrium energy
supply, and, second, there also appears a nonmonotonic
temperature distribution along the z axis.

A set of equations relating to relaxation hydrodynamics
with experimental layer half-width L is reduced to the
equation in �vz, viz.

�D2 ÿ a2 ÿ s0��D2 ÿ a2�2~vz � ÿ�Ra0 � rz� a2~vz ; �14�

where a � 2Lk (perturbations are considered in the form of
(3)),

r �
�
dR

dz

�
z�0

; Ra � ÿ gr �2L�3
wZ

d lnT

dz
� ÿ ~Ra

d lnT

dz
;

s�z� � �2L�
2

w

�
gÿ 1

g
m

kB

��
eÿ eeq
t2

dt
dT
� cv
t

�
;

d1 � T2 ÿ T1; Ra0 � ÿ ~Ra
d1
T0

:

In (14), the variable z is dimensionless and expressed in units
of 2L. The subscript `0' stands for the values of parameters in
the centre at z � 0.

Eqn (14) generalizes the corresponding Eqn (9) to the case
of a nonequilibrium gas. New terms therewith arise, first of
them is the nonequilibrium state factor s0 allowing for the
nonequilibrium excess vibrational energy (eÿ eeq) and the
temperature dependence of the relaxation time, whereas the
second term Ra0 � rz is determined by a nonmonotonic
distribution of parameters over the layer width.

As seen from Eqn (14), the surface of critical numbers
Ra0�s0; r� separating the unstable modes from the stable ones
[s0 �

ÿ
d2Tq� �2L�2cv=�wt�

�
0
; r � � ~Ra=T0��d2 � d21=T0�;

d2 � �eÿ eeq=wt��2L�2; d1 and d2 correspond to an approx-
imation of the temperature profile by the quadratic relation
T � T0 � d1zÿ d2z2=2] appears in a nonequilibrium gas
instead of a single critical Rayleigh number equal to 1708 in
the equilibrium case. Figure 2 displays the critical surface
�Ra0�cr. The instability region lies above this surface. As seen
from Fig. 2, at s0 < 0 and r > 0, the Rayleigh number �Ra0�cr
decreases. Thus due to the nonequilibrium state effect, the
critical Rayleigh number Ra � 1708 is unwrapped into the
surface of critical numbers Ra, and the amplification of
convective perturbations is conceivable even at T1 � T2.

3. Theory of thermal explosion

3.1 Classic theories of thermal explosion
The problem of thermal explosion first arose late in the
nineteenth century. Thermal explosion constitutes a sharp
increase in temperature and pressure in an enclosed volume
under conditions when heat released by exothermic reactions
has no time to dissipate by exchanging with environment.
This phenomenon has yet been discussed by Van't Hoff,
however a detailed quantitative theory was developed only to
the mid twentieth century, mainly, in the works by Semenov
and Frank-Kamenetski|̄ [1, 2].
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Noteworthy are two peculiarities of the theory of thermal
explosion. The simplest theory developed by Semenov deals
with a homogeneous reacting mixture, wherein heat releases
proportionally to the reaction rate with the Arrhenius
temperature dependence, i.e. proportionally to
exp�ÿE�=�RT��, where E� is the activation energy. The rate
of heat removal is assumed to be proportional to the
temperature difference a�Tÿ Tw�, where Tw is the environ-
ment temperature, and a is the coefficient of heat transfer
(temperature equalization in the interior of the reacting
system due to thermal conduction is assumed in the Seme-
nov's theory to proceed far and away faster than the heat
exchange with an environment, i.e. the Bio number is small:
Bi � aL=lT5 1). Figure 3 depicts schematically the intensity
of heat release (curves 1 ± 3) and intensity of heat dissipation
into environment (curve 4) as functions of temperature. If
heat in the system releases according to 3, while heat exchange
follows that of 4, then heat dissipation through the wall has

no time to compensate for heat release in the volume. In this
case the steady reaction is impossible and thermal explosion
occurs. If heat releases and removes in accordance with 1 and
4, then the existence of two steady regimes is possible. One of
them corresponding to temperature T1 is stable, while the
other is unstable at T2. It can be easily seen by varying
temperature and considering subsequent temperature
changes as the system evolves. Notice that the availability of
several steady regimes is not a specific feature of the
Semenov's theory. A variety of steady regimes is typical for
all the problems pertinent to the stability loss. Minimum
values of the parameters, at which the thermal explosion is
possible (explosion conditions), correspond to curves 3 and 4
and are determined by the condition that the rates of heat
release and removal as well as their derivatives should be
equal at the point T.

Another peculiarity of the theory of thermal explosion lies
in the analytical approach to the explosion conditions
calculation using the steady temperature distribution [2]. We
illustrate it considering a plane gas layer between two solid
surfaces with fixed temperatures, which was studied by
Frank-Kamenetski|̄. The stationary equation takes the form

lT
d2T

dz2
� ÿQ �T� �15�

with the boundary conditions

T � Tw at z � �L ; �16�
where 2L is the layer width. Frank-Kamenetski|̄ chose the
intensity of a bulk heat source as

Q � Q0 exp
ÿ
b�Tÿ Tw�

�
; �17�

that well approximates the Arrhenius dependence at small
heat-up (Tÿ Tw5Tw). The analysis of Eqn (15) together
with (16) shows that the stationary solution satisfying
boundary conditions (16) is possible only for a few values of
parameters entering this solution. In particular according to
[2], there is no solution to (15) ± (17) provided

bQ0
L2

lT
> 0:88 �18�

at maximum temperature Tmax attainable in the centre and
satisfying the condition b �Tmax ÿ Tw� � 1:2.

The disappearance of the stationary solution is identified
with the thermal explosion in the Frank-Kamenetski|̄ theory.
We point out at once the limitations of this approach. The
disappearance of the stationary solution indicates that the
initial equation fails to account for all the processes. In
particular, if heat releasing in the bulk results from a chemical
reaction, then the approximation of Q by the Arrhenius
dependence or by expression (17) is valid only for the initial
stage of the process. In the course of the reaction, inverse
processes arise, which decrease the reaction rate ( and heat
release) up to zero in the limiting case of the equilibrium state
(for more details, see the next section).

Here an important fact is noteworthy. Semenov's theory
differs essentially from that of Frank-Kamenetski|̄'s in one
point. In the Semenov's theory, heat transfer is limited by the
external heat removal (Bi � aL=lT5 1), whereas in the
Frank-Kamenetski|̄ treatment, by thermal conduction
(Bi4 1). Thus, Frank-Kamenetski|̄ explicitly takes into
account the temperature gradient. The influence of the
temperature gradient on the gas stability can be estimated
by (18). With Q0=lT � const, then Q0 decreases as lT

TÔÕ T1 T2 T

Q�;Qÿ

3 2 1 4

Figure 3. Temperature dependences of heat release Q� (curves (1 ± 3) and
heat removal Q (straight line 4) rates.
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0
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Figure 2. Surface of critical numbers Ra0�s0; r�.
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diminishes, which corresponds to an increased average
temperature gradient.We can also compare the critical supply
energies at which the thermal explosion occurs in the two
limiting cases: in the Semenov's theory Q0S � a=�bLe�,
Bi5 1, while in the Frank-Kamenetski|̄'s treatment
Q0F � 0:88 lT=�bL2�, Bi4 1. Average temperatures are
approximately equal in both the cases, although the ratio
Q0S=Q0F4 1 exceeds greatly unity. Thus, the stability of a
nonequilibrium gas decreases as the average temperature
gradient rises.

3.2 Thermal explosion in a nonequilibrium gas
The theory of thermal explosion having been developed since
the late 1920s took up a new impulse in the 1970s due to the
progress in laser physics. The work [19] resulted from one of
the first investigations where special attention was given to
the thermal instability of a nonequilibrium gas in activemedia
of gas lasers.

The modern theories of thermal explosion are developed
in the following directions:

(1) The consideration is not limited by heat supply from
chemical reactions. Laser or electron energy pumping may
present as the heat sources. They produce a nonequilibrium
reserve of vibrational energy, transferring subsequently into
the translational degrees of freedom, namely, into heat.

(2) The problem of thermal explosion is formulated using
a time-dependent energy equation which takes into account
all the main processes (for example, direct and inverse
reactions). Within this approach, the concept of thermal
explosion disappears. Instead, a sharp temperature growth
takes place on some time intervals, which can be considered as
a thermal explosion. This approach was also used in studying
the chemical reactions of explosive type. However, a new
factor related to vibrational thermal conduction appears in a
nonequilibrium gas, which changes themechanism of thermal
explosion. In the Semenov's theory, the thermal explosion
results from the predominance of heat release over heat
removal, while in a nonequilibrium gas the thermal explosion
may be caused by the energy redistribution over the transla-
tional and vibrational degrees of freedom.

(3) The problem of the system stability is considered
generally with respect to perturbations of all modes, the
thermal explosion being treated as an instability originated
in one (thermal) mode. Thus, the stability problem is reduced
to finding the order of priority, i.e. to clarifying a question
which mode is first perturbed in the system.

We shall only illustrate these directions by some examples,
since the complete theory of thermal explosion has not been
developed so far.

As pointed out above, the work by Eletski|̄ and Starostin
[19] was one of the first appeared in this field. They considered
molecular gas in a steady-state discharge with cooling walls.
The initial set of equations describes the balance of the
vibrational and translational energies in the gas with a
uniform distribution of parameters:

Q�
ho
m
� eÿ eeq�T�

t
� eÿ eeq�Tw�

td
� e
tr
; �19�

Xm

ho
eÿ eeq�T�

t
� a1Q� � Tÿ Tw

t d

kB
ho

;

where ho is the vibrational quantum, Q� is the intensity of
electron energy pumping (Q� � const), a1 is the portion of the
electron energy spent for the direct heating of a gas (a15 1),X

is the fraction of molecules, td and tr are the typical diffusion
and radiative deactivation times, respectively. If t=t d4 1 and
e4 eeq, Eqns (19) are reduced to

kB
Tÿ Tw

ho
t
t d
� Q�X
1=t� 1=t d � 1=tr

: �20�

If we suppose that t � exp �sTÿ1=3� and use the Frank-
Kamenetski|̄ transformation [2]

exp �ÿsTÿ1=3� � exp �ÿsTÿ1=3w � exp �by� ; �21�

where y � �Tÿ Tw�=Tw, b � sTÿ1=3w =3, then (16) can be
written as

y � K exp �by� ; �22�

where K � Xhot�dQ
�t d=�kBTwtw�, t�d � trtd=�tr � t d�,

tw � t�Tw�. Eqn (22) was shown by Frank-Kamenetski|̄ [2]
to have no solutions at K > 1=�be�, which is interpreted as an
occurrence of thermal explosion.

Thus, the work [19] reproduces the Semenov's calculation
scheme for the thermal explosion, but considers a different
source of heat release. The main result of Ref. [19] is the
evidence that a great difference between vibrational and
translational temperatures is impossible in the discharge.
The strong temperature dependence of the vibrational relaxa-
tion time t (analog of feedback) restricts the real energy
capacity of the vibrational degrees of freedom at any
pumping, bringing it closer to the equilibrium value in the
limit of very significant energy pumping.

Practical applications following from the unstable regime
found in [19] were discussed in [20], where the development of
thermal instability is shown to be accompanied by a consider-
able temperature drop between the axis and the walls of the
discharge tube, leading to a discharge compression. The
theory of thermal instability of vibrationally excited molecu-
lar gas was further developed in [21], where the problem of
thermal explosion in gas with an excess vibrational energy of
molecules was considered in the framework of the Semenov's
treatment, i.e. in a uniform system. In contrast to [19], the
paper [21] took into account the change in the excess
vibrational energy, which resulted in a more complicated
temperature dependence of the heat release rate as compared
to the Semenov's theory. If, following the latter, we assume
the rate of heat release and removal to be equal, then it is
possible to find several stationary states, including necessa-
rily the unstable one. One of the stable states was predicted
in [19] and corresponds to the finite deference between the
vibrational and translational temperatures. Another stable
state observed at high-energy pumping arises when the
vibrational and translational temperatures compare well
with each other.

Further progress in the theory of thermal instability is
concerned with a concrete choice of the source of energy
supply into the system. The stability of initially none-
quilibrium gas was considered in [21] without any external
energy source; in [19], the electron pumping served as a
source of the vibrational energy. According to [22 ± 27], the
energy delivered into the system due to an optical pumping
by resonance radiation. In [28], the system was heated via
molecular photodissociation. A great number of physical
effects associated with the instability occurrence in the
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system have been studied in detail in [26, 29 ± 31]. The work
[31] dealt with the phenomenon of explosive absorption of
CO2-laser radiation in the atmosphere, lying in the fact of
sharp increase in absorption and caused by strong self-
heating in the laser beam channel. A self-oscillating regime
accompanied by a periodic clarification or blackening of
the medium was studied in [30] (see also [32, 33]). Possible
practical applications of the effect of thermal absorption
have been analyzed in [26].

All the above refers to the studies of instability in a
uniform medium with the Bio number Bi5 1 (the Semenov's
approach). Nonuniformity of parameters distribution and its
effect on the thermal explosion occurrence were first taken
into consideration in [21], where the problem is formulated as
follows. A plane layer of vibrationally-nonequilibrium gas is
considered with the boundary conditions at the walls
(z � �L) T � Tw and e � 0. The equations of steady-state
balance for the translational and vibrational energies take the
form

eÿ eeq�T�
ct

� lT
cr

d2T

dz2
� 0 ; �23�

eÿ eeq�T�
t

�D
d2e
dz2
� I � 0 ;

where c is the heat capacity per unit mass pertaining to the
translational and vibrational degrees of freedom, D is the
diffusion coefficient of vibrationally excited particles, which
is assumed equal to lT=�cr�. In the approximation

eÿ eeq�T�
I t

� L2

2Dt
5 1; e4 eeq ; �24�

in view of Eqn (17), set (23) is reduced to the equation [21]

d2y
dz02
� ÿ~d�1ÿ z02� exp y; �25�

where

y � s

3T
4=3
w

�Tÿ Tw�; z0 � z

2L
; ~d � L2sI

6T
4=3
w D2ctw

: �26�

Eqn (26) is similar to that of Frank-Kamenetski|̄. It has a
solution at ~d4 ~d� � 1:02. The absence of a solution at ~d > ~d�

is treated as a thermal explosion occurrence. The explosion
parameters are determined by the conditions ~d� � 1:02 and
ymax � 1:15.

Notice that Eqn (25) lies beyond the accuracy dictated by
the approximation (24). A more rigorous derivation of (25)
and discussion of its applicability were given in [10] and they
will be considered below.

The thermal explosion in a plane layer of a nonequili-
brium gas was studied in great depth in [10]. Statement of the
problem is analogous to that considered in the previous
section. Stationary equations of balance for the translational
and vibrational energies are investigated with the boundary
conditions (16) and (17) for two models of the energy
pumping: I � const and e � const.

Figure 4 plots the dependence of dimensionless variable
�e � me=�kBTw� on temperature Tmax in the centre of the layer
(e�z� � const is a parameter of the problem) for O2 and N2 at
various pressures. Curve 3 with a point of inflection corre-
sponds to the boundary of the thermal instability. It is seen

that the same value �e corresponds to three different steady
states a, b, and c, two of which (a and c) being stable, and one
(b) unstable. Actually, in the region where de= dTmax < 0, the
increment de > 0 lowers the average temperature gradient. As
a result, the thermal flux through the boundary falls and de
further increases. Parameters of the stable regimes a and b can
be found by the Frank-Kamenetski|̄ approach. In this case,
we should suppose that

e4 eeq ; �27�
and the temperature dependence of t needs to be approxi-
mated as

t � t0 exp
�
b �Tÿ T0�

�
:

Then the energy equation from set (19) is reduced to the
known Frank-Kamenetski|̄ equation

d2y
dz02
� ÿd exp y ; �28�

where

d � mpe�2L�2 b
kBTwtwlT

; z0 � z

2L
; y � b �Tÿ Tw� :

Eqn (28) has two roots at fixed e, which correspond to
stable (point a) and unstable (point b0) states. The stable state
c cannot be obtained with the Frank-Kamenetski|̄ approach,
since the term eeq=t responsible for the curve rising from the
minimum point in Fig. 4 was discarded. The maximum point
(the stability boundary) is determined by the disappearance of
solution (28) and corresponds to

d � 0:88; Tmax � Tw � 1:2

b
: �29�

Minimum t, at which the stability loses, can be estimated
from (29), if we suppose e � eeq�Tmax� and use the expression
for t following from the Schwartz ± Slawsky ±Herzfeld
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Figure 4. Plots of �e �Tmax�
ÿ
�e � me=�kBTw�

�
: 1ÐN2 at p� � 3:5� 105 Pa;

2ÐO2 at p� � 2000 Pa; 3ÐO2 at p� � 7950 Pa (the boundary of thermal

instability); 4Ð calculation of curve 2 by the Frank-Kamenetski|̄ theory;
5Ð calculation of curve 2 without considering inverse processes.
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theory. The limiting curve, separating the stable region from
the region where the thermal explosion is possible, can be
found from the relation

exp

�
ÿ ho
kBTw

�
� 0:88

kBTw

ho
lTTw

pL2b
: �30�

The calculations show that the thermal instability is
possible in a vibrationally-nonequilibrium gas at e � const
only in the case of molecules with large vibrational quanta
and long relaxation times. The instability region can be
determined by the method of small hydrodynamic perturba-
tions as well. If these perturbations are supposed to be in the
form of (13), then the thermal mode (o � 0, v 0 � 0,
e � const) will be only described by two remaining equations:
an equation for unperturbed temperature

d2T

dz2
� F �T; r�; �31�

and that for perturbed temperature

d2T 0

dz2
� qF
qT

T 0 ; �32�

where F � �ÿmp=kBT� �eÿ eeq=tlT�. In deriving (32), we
neglect the weaker dependence of F on r.

Figure 5 presents the neutral curves in dimensionless
variables e=eeq and

z � mp�eeq�Tw�L2

tw kBlTT2
w

(where p� is the pressure at a zero pumping), which enclose the
instability region. The curves were obtained by numerical
calculation of Eqs (31), (32) for O2 at various pressures. The
curves in Fig. 5 enclose the region corresponding to the
unstable regime at the same z. This region corresponds to
the descending branch connecting the maximum and mini-
mum values of e on curve 2 in Fig. 4.

In the second particular case I � const, both the relaxa-
tion equations should be taken into account. If we choose the
boundary conditions on the walls in the form of (6), then the
bifurcation of temperature profiles T�z� and Tv�z� is possible
at I � const, since

dT

dz

����
z��L

and
dTv

dz

����
z��L

are not fixed, and only the total energy flux is fixed through

ÿlT dT

dz

����
z��L

and ÿ lv dTv

dz

����
z��L

;

where lv is the coefficient of vibrational thermal conductivity.
The numerical calculation of the dependence of �I on Tmax

is presented in Fig. 6. The parameters of curves 1 and 2 are the
same as those of curves 1 and 2 in Fig. 4.

The shape of curves in Fig. 4 matches that in Fig. 6, but
the nature of the process is somewhat different. Actually,
curve 3 in Fig. 6 corresponds to the case when the inverse
processes can be neglected. This curve goes through two
extrema, in both these points e4 eeq (Tv4T) in contrast to
the case e � const. Therefore, the minima arising on curves
1 and 2 cannot be attributed to the effect of inverse
processes, i.e. effect of eeq. Figure 7 presents the fluxes of
the vibrational and translational energies through the wall.
As seen, the following inequality takes place up to rather
large pumping intensities:

qv � lv dTv

dz

����
z��L

4 qT � lT dT

dz

����
z��L

:

The maximum arising on the curve I � �I �Tmax� (see
Fig. 6) can be described analytically. Two balance equa-
tions for the vibrational and translational energies can be
reduced to
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Figure 5. Area of unstable solutions (dashed portion) in the plane of

dimensionless variables: vibrational energy e=eeq Ð inverse relaxation

time z.
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Figure 6. Plots of �I �Tmax� ��I � Imp�L2=lvkBT2
w�: 1Ð N2 at p� � 105 Pa;

2 Ð O2 at p� � 1000 Pa; 3 Ð calculation of curve 2 without considering

inverse processes; 4 Ð calculation of curve 2 by the Frank-Kamenetski|̄
theory; 5ÐO2 at p� � 3000 Pa (the boundary of thermal instability).
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d2T

dz2
� r2cvI
2lTlvtw

�L2 ÿ z2� ; �33�

if we assume that

e4 eeq; Tÿ Tw5Tw and e � cvTv : �34�
Eqn (33) coincides with Eqn (25) derived in [21], with D

replaced by lv=�cvr�, and t presented in the form
t � t0 exp

ÿ
b �Tÿ Tw�

�
. The solutions to Eqn (25) exist only

at ~d4 1:02. Figure 6 illustrates the accuracy of approximat-
ing (33) by the exact dependence I � �I �Tmax�.

The analysis of Eqn (33) shows that the instability is made
possible with the condition

lv
1:02twkB
mpL2bcv

> 1 : �35�

As in the case e � const, Eqn (35) holds only for gases with
long relaxation time. Thus, the thermal instability appears to
be possible in vibrationally-nonequilibrium gases only at long
relaxation times and large vibrational quanta in themolecular
modes, which determine the rate of vibrational relaxation.

Using the results obtained in [8, 10], we can find which
mode is first perturbed. The stability limits and the mechan-
ism itself of instability occurrence are shown to depend
strongly on the pumping source [8, 10]. Actually, the acoustic
modes are always stable in the case e � const and the thermal
instability is possible here. In the case I � const and under the
boundary conditions (17) there is no thermal instability,
although the acoustic perturbations can amplify. It is thus
seen that we do not know a priori perturbations of what mode
are firstly amplified, hence the stability of all modes should be
analyzed. The above examples clearly demonstrate the
limitations of the theory of thermal explosion as applied to
reveal gas stability, since the stability with respect to the
thermal mode does not guarantee that to other perturbation
modes.

The second direction in the theory of thermal explosion is
related to the study of time evolution of this explosion. It has

been conducted in [28], where the time evolution was
considered for molecular photodissociation, at which the
average kinetic energy of dissociated atoms exceeded the
thermal energy of surrounding particles. The set of time-
dependent balance equations for the translational and
vibrational energies was solved numerically, the pumping
intensity being varied, while the distribution of parameters
was considered uniform (Bi5 1). There appear several
regimes depending on the pumping intensity. At small
intensities I, the rate of heat release inside the system is
comparable to the rate of heat removal and the system
involved smoothly approaches the steady-state regime in the
course of evolution. In this regime the gas temperature T
rises as I increases (see curve 1 in Fig. 8). Further increase in
I, especially after the threshold, results in a sharp increase in
the rate of heat release and gas temperature, leading to
higher photodissociation rate and, hence, cumulative
growth of gas temperature. The thermal explosion occurs
and the system changes to a new stable steady-state regime
(see curve 2 in Fig. 8).

Noteworthy is an important peculiarity of the time
evolution of parameters in the course of thermal explosion.
During the thermal explosion, temperature goes through the
maximum, i.e. it becomes higher than the further steady-state
value. The similar effect was observed at the thermal
explosion in a chemically reacting system [34].

Figure 9 plots the time dependence of entropy production
during the thermal explosion. As seen, the entropy produc-
tion rises sharply at the moment of the explosion, and then it
becomes equal to the steady-state value, which is higher than
that before the explosion. We notice an important fact.
Figure 10 depicts the entropy production s in the steady
state as a function of the dimensionless energy pumping H
(H � 2pStw I=�h�o�, S and �o are the absorption cross section
and frequency of laser emission, respectively). In addition to
the increase in s, the general conclusion results from Fig. 10,
i.e. s is less in a new structure than the entropy production
which could be in the system in the absence of the structural
transition (thermal explosion). This result agrees with the
principle of minimum entropy production during the self-
organization process, which has been introduced in [35].
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Figure 7.Dependence of thermal wall fluxes on the pumping intensity I for
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4. Conclusions

Nonequilibrium gas comprises a peculiar state of the sub-
stance with its specific physicochemical and hydrodynamic
properties. The stability problems of a nonequilibrium gas
considered in the present review, form only a small part of the
great problem related to the development of the hydrody-
namic theory of a nonequilibrium gas. The hydrodynamics
of nonequilibrium gas is a new field of physicochemical
hydrodynamics, where, in essence, only first steps have been
made so far. Figuratively speaking, this field is covered with
`blank spaces' of unresolved problems. Even if we restrict
ourselves to only the stability problem, it involves a lot of
questions. We outline here only a few of them. In fact, the
main mechanisms of stability loss in a nonequilibrium gas
were revealed only for the Benard problem and the problem
of thermal explosion. The Reynolds problem of the transi-

tion of laminar flow into the turbulent one, as well as the
Lin stability problem of flow between two parallel surfaces,
and Rayleigh±Taylor stability problem for a rotational flow
between two rotating cylinders, etc. have not yet been
extended to the case of a nonequilibrium gas. Moreover,
the state in which a nonequilibrium gas goes after the first
bifurcation point (for instance, at Reynolds and Rayleigh
numbers higher than the critical ones) is still to be
investigated. But the first bifurcation can be followed by
the second, the third, etc. As in the case of the Benard effect,
when the hexagonal structure of flow begins breaking down
and transforms into the turbulent convection as the
Rayleigh number rises.

There is a large number of questions beyond the scope
of stability problems in nonequilibrium hydrodynamics. For
instance, the propagation of hydrodynamic perturbations in
a nonequilibrium gas. There, only simplest problems have
been solved, which are related to perturbations of initially
equilibrium but relaxing media (the nonequilibrium state
effect results from hydrodynamic perturbations) and in the
initially nonequilibrium gas. The unresolved problems in
this field refer to the study of the propagation of strong
shock waves, when they lose their stability. Special attention
should be also given to the problems of a nonequilibrium
gas flow near solid surfaces subject to peculiarities of
catalysis, i.e. various heterogeneous reactions occurring at
these surfaces.

The scope of unresolved problems extends continually,
since new problems arise in the fields of permanent interest,
namely, in gas dynamics of re-entry vehicles and physics of
gas lasers.

This work was partially supported by the Russian
Foundation for Basic Research (Project Code N 95-01-
00354a).
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